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Abstract." We discuss the flow of BKZ fluids in an orthogonal rheometer. Some 
analytical results are proved, and numerical solutions are obtained for the Currie 
model. These solutions show a boundary layer behavior at high Reynolds numbers 
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numbers. 
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1. Introduction 

The flow in an orthogonal rheometer has been the 
object of considerable interest and has been studied by 
several authors (cf. Maxwell and Chartoff [1], Blyler 
and Kurtz [2], Bird and Harris [3], Huilgol [4], Kearsley 
[5], Gordon and Schowalter [6]). The apparatus consists 
of two parallel plates which rotate with the same con- 
stant angular velocity about distinct axes (see figure 1). 
In all these investigations the analysis was based on the 
assumption that inertial effects are negligible. Abbot 
and Walters [7] obtained an exact solution for the flow 
of a Newtonian fluid under the assumption that the 
plates are infinite. They also studied the flow of a 
viscoelastic fluid in such an apparatus, but in this case 
they assumed that the distance between the two axes of 
rotation is small and employed a power series expan- 
sion in the distance between the axes. This kind of 
expansion is also studied by Goldstein and Schowalter 
[8]. 

Rajagopal [9] showed that the equations of motion 
for an arbitrary simple fluid are compatible with the 
following ansatz for the velocity field: 

u = - ~ [ y -  g (z)], 

~, = ~ [ x - f  (z)], 
w = 0. (1) 

Here u, v and w are the x, y and z components of the 
velocity, and the plates of the rheometer are parallel to 
the x,y-plane. This velocity field describes a flow in 
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which each plane rotates rigidly with the same angular 
velocity .(2. The locus of the centers of rotation is in 
general a curve in space defined by x = f ( z ) ,  y = g (z). 
The flow given by (1) is a motion with constant stretch 
history (cf. Coleman [10], Noll [11]). This implies that 
the equations of motion for a simple fluid reduce to 
the same order as the Navier-Stokes equations and that 
the no-slip boundary conditions are sufficient for 
determinacy. For related results, see also Goddard [12]. 

For certain special fluid models, the resulting 
boundary value problem can be solved exactly. Rajago- 
pal and Gupta [13] obtained an exact solution for the 
incompressible fluid of second grade, while Rajagopal 
and Wineman [14] established exact solutions for a 
special class of BKZ fluid. 

In this paper, we study the flow of a general BKZ 
fluid in the orthogonal rheometer. Detailed numerical 
results are provided for a specific model. We find that 

z t 
= y  

L 

Fig. 1. Flow domain 
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it is possible that the locus of  the centers of  rotation is 
piecewise continuously differentiable. 

2. E q u a t i o n s  o f  m o t i o n  

The Cauchy stress T in an incompressible homoge- 
neous simple fluid undergoing a motion with constant 
stretch history can be expressed as (cf. Wang [15]) 

T = - p l  + f(A1,Az,A3) , (2) 

where A1, A2 and A 3 denote the first three Rivlin- 
Ericksen tensors (cf. Rivlin and Ericksen [16]) defined 
recursively by 

A 1 = (Vv) + (Vv) r , (3) 1 

and 

dA,_l 
An dt t- An_ I (Vv) + (Vv) r A~_ 1 . (3)2 

In these equations, t, denotes the velocity vector, d/dt is 
the material t ime derivative and Vv is defined accord- 
ing to the convention (Vv)i i = ~vi/i}xj. 

For the motion under consideration, it can be shown 
that (cf. Rajagopal [91) 

A 3 = - (22A 1 , (4) 

and hence (2) reduces to i) 

T = - p l  +T(A1,A2). (5) 

Since A 1 and A2 depend only on z, the equation of 
motion reduces to 

6('/'13 i+ dr23 j + dr33 k (6) 
dz dz dz 

= Vp + V(~)~) - Qf22[x - f ( z ) ] i -  Of22[y- 9 (z ) ] j ,  

where i, j und k denote unit vectors in the x, y and z 
directions, respectively. In obtaining (6) we have also 
assumed that the body force is conservative and 
derivable from a potential q,. By operating on (6) with 
the curl operator, we find 

d2.)`13 d 
{~n2f(z) l ,  (7)~ 

dz 2 dz 

d2J'23 d {QQ2g ( z ) } .  (7)2 
dz 2 dz 

These equations can be integrated to yield 

dfi3 
dz = Qf22 / ' ( z )  + s ,  (8)1 • 

d)`i3 
dz = ~(22g (z) + q, (8)2 

where q and s are constants. I f ) ' '  and g satisfy eqs. (8), 
then (6) is satisfied if and only if the pressure is given 
by 

O~'~2 _ 
P = - ~ c l ) + - - ~ ( x Z + y 2 ) + s x + q y + f 3 3 ( z ) + C ,  (9) 

where C is an arbitrary constant. Hence the system (8) 
can be regarded as equivalent to (6). 

Since the fluid adheres to the rotating plates, the 
appropriate boundary conditions for the problem are 
(see figure 1) 

f2a 
u =  ~ f2y, v = f 2 x ,  w = 0  at z = h ,  (10)1 

(2a 
u -  ( 2 y ,  v = f 2 x ,  w = 0 at z = 0 .  (10)2 

2 

When inserted into (1), these conditions lead to 

f (O)=f (h )=O,  9 ( 0 ) = - a / 2 ,  9 ( h ) = a / 2 .  (11) 

For the following, we consider fluids in which the 
Cauchy stress tensor T is related to the history of  the 
deformation in the following manner  (cf. Bernstein, 
Kearsley and Zapas [17]) 

t 
T = - p l + 2  ~ { U 1 C 7 1 ( r ) - U 2 C ~ ( z ) ] d r .  (12) 

--00 

Here C, is the right relative stretch tensor defined by 

c , ( r )  = F, r (~) 6 (~), (13) 

and Ui is the derivative of  the stored energy function 
U = U(Ii, 12, t - r )  with respect to the argument  li. The 
latter are defined by 

11 = tr C t  I ( r ) ,  12 = tr Ct(z).  (14) 

It follows from a lengthy but straightforward com- 
putation that the equation of  mot ion reduces to 

d 
d---z, { f '  (z) B (z) + 9 '  (z) A (z)} = 0 (22/(z) + s ,  (15)1 

d 
~zz { - f '  (z) A (~) + 9 '  (z) B (~)} = 0f229 (z) + q .  (15)2 

l) The same form is obtained for viscometric flows where 
A 3 = 0. However, the function fappearing in (5) is in general 
• different from that in viscometric flow. 

The functions A and B are defined by 

A (×) = 2~ U[3 + 2 (1 - cos~2 e) z, c~] sinf2 c~ d~,  
0 

(16)~ 
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B ( z ) = 2  U[3+2(1  cosf2c0z, x ] ( 1 - c o s Q ~ ) d ~ ,  
o (16)2 

where 

(~[I, :q = U ~ ( I , I , a )  + U 2 ( I , I , ~  ) . (17) 

The quantity z is defined as 

X(Z) = [jr', (Z)]2 q_ [~ , (Z) ]2 .  (18) 

In this work, we shall find numerical solutions of the 
system (15) with boundary conditions (11) for a special 
class of BKZ fluids. Before we do this, however, we 
first remark on a few general characteristics of the 
problem under consideration. 

3. Analysis 

The solution to the system (15) depends on the 
material properties of the model. However, when 
a = q = s = O ,  we always have the trivial solution 
f =  9 = 0. If a, q and s are small, this trivial solution can 
be uniquely continued to a solution f (z;  a,q,s) and 
9' (z; a,q,s). As the values of a, q and s are further 
increased, the process of unique continuation can only 
fail if one of the following situations occurs: 

(i) the equations become singular, 
(ii) the solution and/or its derivative become infinite, 
(iii) the linearization of (15) at f(z; a, q, s), 9 (z; a, q, s) 
has a nontrivial solution. 

Whether any of these situations obtains depends on the 
choice of the constitutive equation which determines 
the functions A and B. In the following, we discuss 
some implications of each of these conditions. 

Case (i) 

Eqs. (15) imply that 

f " [ B  + 2 B ' f  '2 + 2 A ' f '  b"] 

+ g ' [ A + 2 B ' f ' g ' + 2 A ' g ' 2 ] = g f 2 2 f + s ,  (19)i 

f " [ - A  - 2A ' f  '2 + 2B'.f' 9'] 

+ g ' [ B - 2 A ' ) C ' g ' + 2 B ' g ' 2 ] = O f 2 2 9 +  q. (19)2 

This system becomes singular if and only if the 
determinant of the coefficients of the second deriva- 
tives becomes zero. This determinant is given by 

d 
D= A2 + B2 + 2x(AA' + BB') ---ff-~ {x(A2 + B2)} . (20) 

If the function z--+ z (A2+B 2) is strictly monotonic, 
then D can never be zero. This is the case for the 

models studied by Rajagopal and Gupta [13] and Raja- 
gopal and Wineman [14] where A and B are constant. 

Case (ii) 

We now assume that the system (15) is non-singular, 
and discuss some of the implication of (ii). The 
following lemma shows that if D and B are positive, 
and the derivative of f o r  g becomes infinite, then this 
must happen at the boundary. 

Lemma: I f  D and B are positive, then z cannot have 
an interior maximum. 

Proof: If we differentiate eqs. (15) and evaluate at 
z '  = 0, we find that 

f " B  + 9 " A  + f ' B ' z "  + 9 'A ' z"  = Qf22f ' , (21)1 

- f " A + g " B - f " A ' ~ ' + g ' B ' x ' = ~ f 2 2 g  ' .  (21)2 

Multiplying (21)1 by f ' B  + (t'A and (21)2 by 9'B - f ' A ,  
and adding the two, we obtain 

(A 2 + B 2) ( f ' " f '  + g"' g') + (AA' + BB') zx" 

= O~2  zB .  (22) 

It follows from the definition (18) of z and from (20) 
that (22) can be rewritten as 

1 r x  ~'t ( , ] , ¢ " ' 2 _ [ _  -£ LJX = (A2 + B 2) g,,2) + gy22zB. (23) 

Since B and D are postive, it follows that z " >  0. 
Hence any interior point where z'  = 0 is a minimum. 

If further assumptions are added, it is possible to say 
more .  

Lemma: ! / A  and B are positive, bounded functions of 
z and they have strictly positive lower bounds, then 
case (ii) does not happen. 

Proof: We multiply (15)1 by f, (15)2 by 9, add them 
and integrate. This leads to 

h 
~ g Q 2 ( f 2 + g 2 ) + B ( f ' 2 + g ' z ) + , r [ ' + q g d z  (24) 
0 
= a/2 [sf ' (h)  A (z(h)) + ,q'(h) B(z(h))  

- f ' ( 0 )  A (z (0)) + g/' (0) B (z(0))]. 

Next, we multiply (15)1 by 9 and (15)2 by f subtract 
them and integrate. This leads to 

h 
A ( f ' 2 + g ' 2 )  + sg - q fdz  (25) 

0 

= a/2 [ f '  (h) B (~ (h)) + g'(h) A (x (h)) 

÷ f '  (0) B (z (0)) + g' (0) A (z (0))]. 

It follows easily that the HLnorm o f f  and g can be 
estimated in terms of the boundary terms occurring on 
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the right side of  ei ther (24) or (25). If  the Hi -norm 

stays bounded while following a branch of  solutions, 
then the min ima of  ] f ' B + g ' A [  and ] - f ' A + g ' B  I 

also stay bounded,  and so do the max ima  of  I f l  and 
g [. By integrating (15) with respect to z, it follows that 
! f ' B + g ' A ]  and i - f ' A + g ' B ]  remain  uniformly 
bounded,  and the assumptions on A and B imply that  
J '  and ]g'l also remain  uniformly bounded.  In order  

for case (ii) to happen,  it is therefore necessary that  the 
terms on the right of  (24) and (25) both tend to 
infinity. Again by integrating (15) with respect to z, we 
find that this is possible only if  the min ima  of  
f ' B + g ' A  and - f ' A + g ' B  both tend to + c o .  In this 
case, however, we conclude that  

A B g ,  
A 2 + B  2 ( f ' B + g ' A ) +  A Z + B  2 ( - f ' A + g ' B )  

(26) 

tends to + co uniformly on [0, h], which is inconsistent 
with the boundary  conditions. 

Whether  case (ii) ever obtains depends of  course on 
the model  under consideration. In the models  consid- 
ered by Rajagopal  and Gupta  [13] and Rajagopal  and 
Wineman [14], the above lemma shows that case (ii) 
cannot obtain. 

Case (iii) 

Depending on the model  under  consideration, this 
case could lead to l imit  points or bifurcations. This 
cannot happen  as long as the matr ix of the coefficients 
of  f "  and g"  in equations (19) remains posit ive 
definite. This is the case as long as 

B > 0  and B 2 + 2 B B ' x - A ' 2 ; 4 2 > O .  (27) 

If A and B are positive constants, such as in [13] and 
[14], (27) holds 2). 

In summary,  we found that  nei ther  of  the cases 
( i ) - ( i i i )  ever occurs in a s imple model  where A and B 
are positive constants. Below, we report  numerical  
results for a model  where A and B are rather compli-  
cated expressions. The results clearly indicate that  

case (i) occurs in this model.  

4. Numerical solutions 

Let the interval [0, h] be partitioned into N equal sub- 
intervals bounded by points z i = ( i -  1)h/N, i = 1, 2 , . . . ,  N +  1. 
Define the notation f = f ( z l ) ,  gi = g (zt). The finite difference 

2) Of course this analysis only shows the absence of bifur- 
cations within the class of solutions described by the kinemat- 
ics of eq. (l). There may well be other possible flows which 
cannot be described by (1). 
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Fig. 2. Graph o f f ( z /h )  versus z/h, s = q = O. 
2 = 0.5, C = 2.5, ~ = 1, h = 2, zero-shear-rate viscosity = 10. 
(1) a = 1.0, Re = 0.2, We = 1.0. 
(2) a=O.1, Re=2.0,  We= 10.0. 
(3) a = 1.0, Re = 0.04, We = 0.2. 
(4) a=O.I, Re=0.2,  We= 1.0. 
(5) a = 0.1, Re = 0.04, We = 0.2 

scheme used to approximate the system (15) is given by 

A + [ A - f B  (;¢_) + A - g  A (~_)1-= 0 ~ 2 f / +  S,  (28)1 

a + [ - A - f A  (z_) + d - g  B (z,)] = O02gi + q,  (28)2 

where, with Ah = h/N, 

( ' ) i - -  ( ' ) i-1 ( ' ) i + 1 -  ( ')i A-(.) , A+(.) , (29) 
Ah Ah 

and 

x_ = ( a - ] )  2 + ( y g ) 2 .  (30) 

Since by (11), fl =J)v+l = 0 and gl = - a / 2 ,  gN+l = a/2, there 
are 2 N - 2  unknowns, J2, . . . , fN and g2 . . . . .  gN. This dis- 
cretization leads to the following nonlinear equations 

(fi+ 1 --J;) B (N+) q- (gi+ 1 - ~i) m (Z+) -- ~i - - f i -1 )  B (X_) 
- (gi-gi_OA(x_) - (411) 2 (~f22.f} + s) = 0 ,  (31)1 

-- (.f}+ I - - f i )  a ()~+) Jr" (gi-t-I -- gi) B (;g+) -}- ( J } - f t ' - 1 )  a (~_) 

-- (gi-- gi-I) B (×_) - (d/02 (0f22 gi + q) = 0 (31)2 

for each mesh interval point zi, i = 2 . . . . .  N. 
Denote eqs. (31) l and (31) 2 respectively by 

El  ( f i -1 ,  g i - I  ,J~, gi , f i+l ,  •i+1) = E(i) = 0 ,  (32)1 

E2(J)-I, gi - l , f i ,  gi,fi+l, 9i+1) = E(2 i) = 0, (32)2 
i = 2 , . . . , N .  

This system is solved using Newton's scheme on the vector 
equation V= 0 where 

E.?[ 
V= E~N) I . (33) 

E~2N) J 
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The corresponding Jacobian 

~E(2) i~E(2) ~E( 2/ ~E(2) 

~f2 ~g2 ~f3 ~g3 

aEp o o 
OJ~ eg2 ~J; ~o3 

0 0 

is ( 2 N -  2) square and is banded with three sub-diagonals above and below the main diagonal: 

0 0 

~Jl2 Og2 ~J43 ~g3 ~J44 ~ff4 

eE2 (3) ~E2 (3) 0E2 (3) eE2  (3) eE2 (3) eE2 (3) 

~f2 Og2 ~J¢3 Og3 ~f4 Og4 

0 0 

0 0 

0 0 

. ' i "  
0 0 

~fu-1 ~gN-! ~fN ~gN 

0 0 
~fN-I ~gN-I ~fN ~gN 

(34) 

Several tests were carried out for the convergence of 
Newton's iteration scheme. The first uses the exact solution 
obtained by Rajagopal and Wineman [14] for the case in 
which A (z) and B (x) are constants and s = q  = 0. Letfi (e) and 
g},,/ denote the values of f ( z )  and g (z) given by the exact 
solution in [14] and let J}(~), g}c) denote the values computed 
from Newton's iteration. Calculations were carried out for 

= 3, f2 = l, a = 0.1, h = 2, B (z) = 3, A (x) = 2 and a Newton's 
scheme tolerance of 10 -5. The absolute errors f . (e)-f i  (el, 
gi(e)-gi  (c) were evaluated as the number of points was 
doubled from N = 10 to N = 20 and doubled again to N = 40. 
The errors went down by 1/4 each time indicating quadratic 
convergence as would theoretically be expected. 

Next, A (z) and B (~) were prescribed to be 

A(:4) = a  I Z + a  2, (35)l 

a (x) = b~ ~ + b2, (35)2 

with al,  a2, bl, b2 prescribed constants. An exact solution for 
f(z)  and 9 (z) is unknown for this ease. In order to test the 
convergence of the Newton iteration scheme, the problem was 
modified in the following manner, f(z)  and g (z) were chosen 
in the form 

f ( z )  ~---JCi [(2--  ]l/2) 2 -- (h/2)21, 
9' (z) = gl ( z -  h/2) 3 + 0 2 ( z -  h /2 ) ,  

(36)1 

(36)2 

where f i ,  gl, g2 are prescribed constants. Note that in accor- 
dance with (1 l), f (0)  = f ( h )  = 0 and g (0) = - 9 (h). The f and 
9 as given by (36) do not satisfy equations (15). We can, how- 
ever, make them satisfy the equations by adding a forcing 
term to the right hand side of (15). When discretizing, we 
obtain a corresponding forcing term to be added to the right 
side of (32). We denote these terms by/~(J), ~(0. 

The original system (32) is thus modified to 

E(i) = Ez (i) , (37) 1 

E2(i) = Ez (i) , i = 2 . . . . .  N ,  (37)2 

for which (36)1 and (36)2 provide the exact solution. Compu- 
tations were carried out for the two sets of parameters: 
(Q, f2, h, al, az, b l , b z , f l , g l , g 2 ) = ( 3 ,  1,2, 1, 1, 1, 1, 1, 1, 1), 
(3, 1, 2, 1.5, 2.9, 3.1, 10.0, 0.1, 2.4, 5.2) with 10, 20, 40 and 80 
meshpoints. Comparison of the computed values and its exact 
solutions showed quadratic convergence. 

In the final case, the process was repeated for 

A (:4) = a I ~ + a 2 + a3 z2 , (38)1 

B (x) = b 1 x + b 2 + b3 N3 . (38)2 

Computations were performed for the second choice of 
parameters above, with a3 = 1, b3 = 0 and with a3 = 1, b3 = 1. 
The results again showed quadratic convergence. 

5. The Currie model 

Computa t ions  were carried out  using the form of  the 
stored energy funct ion  U der ived by Curr ie  [18] as an  

app rox ima t ion  for the Doi -Edwards  mode l  (cf. [19]), It 
is g iven by 

U ( I r ,  12, s) = m (s) O ( J ) ,  (39) 

where  

U ( J )  = 5 l n ( J -  1) - 9 .73,  (40) 

J = Ii + 2 (/2 + 3.25)1/2, (41) 

and  

m (s) = - G (s) .  (42) 

G(s)  is the stress re laxat ion  func t ion  of  l inear  visco- 

elasticity. For  the present  calculat ions,  

m (,~ = C e  -'~s . (43) 
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The form of the function (7 (I, e) defined in (17) is 

U (I, e) = Ce -~+~ U (I) , (44) 

where ( 1) 
I - 1 + 2 ] / I + 3 . 2 5  1+ 1/ i~-3 .25 " (45) 

Functions A and B defined through (16) become 

¢o 

A = 2 C ~ e - ~ ~ ( J [ 3 + 2 ( l - c o s f 2 e ) x ] s i n f 2 e d e ,  (46)1 
0 

co 

B = 2C ye - ~  (713 + 2 ( l - cos f2 e) z] ( 1 - c o s f 2 ~ ) d e .  
0 (46) 2 

For convenience in numerical integrations, these 
integrals can be re-expressed as 

2C 
A 

f2 [1 - exp ( -  2~z )+/Q)] 
2n 

• ~ e - ; J / a O [ 3 + 2 ( 1 - c o s e ' ) x ] s i n e ' d e ' ,  (47)1 
0 

2C 
B (47)2 

f2 [1 - exp ( -  2~r )+/f2)] 
2~ 

e -~~'/~ 0 [3 + 2 (1 - cos e') ~] (1 - cos e') d e ' ,  
0 

where the non-dimensional time ~ ' = e g ?  has been 
introduced. 

The parameters of  the problem are now: a, h with 
dimension L; Q, )o with dimension T - ' ;  ~ with dimen- 
sion M/L3;  and C with dimension M / ( L T 3 ) .  Note 
C/)~ 2 is the zero shear rate viscosity• From these the 
following non-dimensional parameters are formed; a/h,  
a Weissenberg number  W e = . Q / 2  and a Reynolds 
number Re=Qh2f~22/C.  These appear in the non- 
dimensionalized version of  eqs. (15) 

d ( j d f  + .~d j ]  = ReWef+g (48), 
de\ de ds i 

d 
- A + B = Re We O + O , (48)2 

where f = f / a ,  9 = g/a ,  ~ = z /h ,  A =  A 2 / C  and 
= B2/C.  
The Jacobian associated with Newton's method re- 

quires the evaluation of the derivatives dA/dz  and 
dB/dz .  Expressions for these are given by 

dA 4 C  
(49) 1 

dx f2 [ 1 - exp ( -  2 ~ 2/f2)] 
2~ 

• ~ e-  ~+ m/Q (7' [3 + 2 (1 - cos e') z] (1 - cos e') sin e '  de'  , 
0 

dB 4 C 
(49) 2 

dx - f2 [1 - exp ( -  2~ 2/f2)] 
2~z 

• S e- '~ ' /°  (~'[3 + 2(1 - cose')  z] (1 - cos~')2 de ' . 
0 

Each of  the integrals in (47) and (49) is evaluated by 
subdividing the interval [0, 2~] into subintervals of  
equal length and then using the trapezoidal rule. 

The following are the components of  traction at the 
walls z = 0, h which were also computed: 

tx = B (x, f 2 ) f '  + A (~, f2) g ' ,  (50)1 

ty=  - A (z , .Q)f '  + B ( z ,  f2) 9 ' .  ( 5 0 ) 2  

By comparing this with eqs. (15), we find that if 
h 

sh + Of 22 ~ f ( z ) d z  is not zero, then the component of  
0 

traction tx has different values at the top and bottom 
h 

plates• Similarly, if qh + 0~22 ~ g (z) dz is not zero, then 
0 

the component of traction ty would be different at the 
top and bottom plates. This was also checked numeri- 
cally for the figures discussed below• 

6. Results and discussion 

The three non-dimensional parameters governing the 
problem are the Reynolds and the Weissenberg num- 
bers and a/h. Rajagopal and Wineman [14] restricted 
themselves to the special case when s = q  = 0. In the 
case of small Reynolds numbers, they found their solu- 
tions for f and g to be approximately linear• However, 
at high Reynolds numbers, they found a boundary 
layer structure in their solution• The model considered 
here is much more complicated than that considered in 
[14] and it is possible that the solutions possess a more 
complicated structure. 

We shall first discuss the situation when the Rey- 
nolds number is small and the Weissenberg number  is 
large• When s = q = 0, we find that, below some critical 
value of  a/h, the numerical scheme converges to a solu- 
tion which is anti-symmetric about the mid-plane with 
] ' ~  0 and 9 being approximately linear as indicated in 
figures 2 - 5 .  (Note that f =  0 and g linear is an exact 
solution for Re = 0.) Figure 2 shows that f ~  f2 for 
small £2 and J ' ~  a for small a. Figure 3 shows that 
9 ( z ) ~ a ( z / h - 0 . 5 )  for small ~2 and a. At W e =  10, 
Re = 2, Newton's scheme converged quickly until a 
reached approximately 0.94, above which it diverged• 
As the critical value of  a is approached, the discrimi- 
nant D =- A 2 + B 2 + 2~(AA'  + BB')  approaches zero 
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2 = 0.5, C = 2.5, 0 = I, h = 2, zero-shear-rate viscosity = 10. 
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Fig. 5. Graph ofg (z/h) versus z/h, s = q = O. 

2=1,  C = I ,  0=0.1, h = l ,  Q = 4 ,  W e = 4 ,  Re=0.4,  zero- 
shear-rate viscosity = 1. Twenty meshpoints were used in the 
finite-difference scheme 
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Fig. 4. Graph o f f ( z / h )  versus z / h ,  s = q = O. 
2=1,  C = I ,  Q=0.], h = l ,  /2=4,  W e = 4 ,  R e = 0 . 4 ,  zero- 
shear-rate viscosity = l. Twenty meshpoints were used in the 
finite-difference scheme 

and the Newton scheme has convergence problems.  
The solutions shown have been tested for convergence 
with 20 and 40 meshpoints.  Figures 4 and 5 display 
solutions with discontinuous derivatives when W e  = 4, 

R e = 0 . 4 .  The solutions possess the ant i -symmetr ic  
structure for a up to about  0.9750, above which the dis- 
criminant D approaches  zero. For  larger values of  a, 
solutions are not unique. They may possess discon- 
tinuous slopes with the discr iminant  D becoming nega- 

t i re  on part  of  the solution. Which solution the Newton 
iteration would converge to depends on, e.g., the 
number  of  meshpoints.  We display the results obta ined 
with 20 meshpoints for a above 0.9750. It is found that  
the discontinuous solutions are not anti-symmetric.  
This breakdown in symmetry  is purely due to the 
round-off  error in the numerical  scheme rather than 
any non-symmetric  input  into the problem. In view of  
experiments,  it is interesting to note that the tractions 
on the plates can be different  for these discontinuous 
solutions. It is evident from figure 4 that  the integral of  
f is not zero, and hence tx must have different  values at 
the two plates. Direct  computa t ion  of  the tractions 
showed that both tx and ty have different values on the 
plates. Note that there is no difference in the tractions 
as long as either the solution is ant isymmetr ic  or 
inertial effects are ignored. 

When s 4 :0  or q 4: 0, the 'functions f and 9 are not 
symmetric,  as shown in figures 6 and 7, where s = 0.1, 
q = 0.01, W e  = 4, R e  = 0.4. Since our numerical  scheme 
is designed to start  with a = 0, and a is incremented in 
small steps, and the solutions for f and g are obta ined 
from iterating on the respective solutions for the 
previous value of  a, the scheme converges to a smooth 
solution while a remains small. For  example,  in figures 
6 and 7, we find that the solutions are smooth until a is 
slightly over 0.8. A critical value of  a is then reached at 
which the discr iminant  is zero, and the scheme has 
convergence problems.  The solutions plot ted for 
a _-< 0.8 can be reproduced with finer meshes. Above 
the critical value of  a, the Newton scheme again 
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shear-rate viscosity = 1 
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2=1 ,  C = I ,  ~=0.1, h = l ,  g2=4, W e =  4, Re---0.4,  zero- 
shear-rate viscosity = I 

converges but the solutions are non-unique and can be 
non-smooth with discontinuous derivatives, with the 
discrimimant being negative on part of  the solution, 
Which solution the Newton scheme chooses to con- 
verge to depends on the number  of  meshpoints and 
may be influenced by round-off  errors as above. Using 
twenty meshpoints, the scheme converged at a =  
0.9510626 to the non-smooth solutions displayed in 
figures 6 and 7. The graph of  this solution has been 
plotted with interpolation from the solution computed 
with twenty meshpoints up to z / h  = 0.95. The kink in 
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Fig. 8. Graph o f f ( z / h )  versus z /h ,  s = q = O. 
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ity = 10 
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Fig, 9. Graph of g (z /h)  versus z /h ,  s = q = O. 
i = 0.5, C = 2,5, h = 2, Q = 0.5, We --- 1, zero-shear-rate viscos- 
ity = 10 

the solution occurred at the meshpoint next to the 
boundary. This is not surprising, since z assumes its 
largest values at the boundary (cf. the lemma in sec- 
tion 3), and hence D would first become zero at the 
boundary. 

The appearance of  discontinuous solutions may be 
related to local yielding, which is observed experimen- 
tally (cf. Wissbrun [20]). We note that although the 
flow under study is not viscometric, there is a qualita- 
tive similarity with simple shear flow. The Currie 
model has a shear stress maximum in shear flow, a n d i f  
shear rates exceed a critical value, then discontinuous 
solutions are also possible. In the geometry studied in 
this paper, solutions with discontinuous derivatives 
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were shown to exist for nonlinear  elastic mater ia ls  with 
non-convex stored energy functions (cf. Rajagopal  and 
Wineman [21]). 

If  the Weissenberg number  is small and the Reynolds 
number  is large, there is a boundary  layer structure to 
the solution as is to be expected from the study of  
s impler  models [13], [14], see also Joseph [22], where 
the case of large Q and small a/h is considered for 
arbi t rary simple fluids Examples are shown in figures 
8 and 9. 
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