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Abstract

Flow past a circular cylinder for Re = 100 to 107 is studied numerically by solving the un-

steady incompressible two-dimensional Navier-Stokes equations via a stabilized finite element

formulation. It is well known that beyond Re ∼ 200 the flow develops significant three di-

mensional features. Therefore, two dimensional computations are expected to fall well short of

predicting the flow accurately at high Re. It is fairly well accepted that the shear layer insta-

bility is primarily a two dimensional phenomenon. The frequency of the shear layer vortices,

from the present computations, agree quite well with the Re0.67 variation observed by other

researchers from experimental measurements. The main objective of this paper is to investigate

a possible relationship between the drag crisis (sudden loss of drag at Re ∼ 2 × 105) and the

instability of the separated shear layer. As Re is increased the transition point of shear layer,

beyond which it is unstable, moves upstream. At the critical Reynolds number the transition

point is located very close to the point of flow separation. As a result, the shear layer eddies

cause mixing of the flow in the boundary layer. This energizes the boundary layer and leads to

its reattachment. The delay in flow separation is associated with narrowing of wake, increase in

Reynolds shear stress near the shoulder of the cylinder and a significant reduction in the drag

and base suction coefficients. The spatial and temporal power spectra for the kinetic energy

of the Re = 106 flow are computed. As in two dimensional isotropic turbulence, E(k) varies

as k−5/3 for wavenumbers higher than energy injection scale and as k−3 for lower wavenum-

bers. The present computations suggest that the shear layer vortices play a major role in the

transition of boundary layer from laminar to turbulent state.
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I. Introduction

The flow past a circular cylinder is associated with various instabilities. These instabilities

involve the wake, separated shear layer and boundary layer. Williamson1 has given a compre-

hensive description of the flow phenomena at different Reynolds numbers (Re). Upto Re ∼ 47,

the flow is steady with two symmetric vortices on each side of the wake center line. The first

wake instability, manifestation of a Hopf bifurcation, occurs at Re ∼ 47. For Re > 47, although

it remains laminar, the flow becomes unsteady and asymmetric. Von Karman vortex shedding

is observed for slightly larger Re. At Re ∼ 190, three-dimensional instabilities, such as forma-

tion of vortex loops, deformation of primary vortices and stream wise and span wise vortices,

appear in wake. The wake flow undergoes a series of complex three-dimensional instabilities,

eventually making it turbulent. Beyond a certain critical Re, the shear layer separating from

the upper and lower surface of the cylinder, starts becoming unstable via the Kelvin-Helmholtz

mode of instability. The transition point, beyond which the separated layer becomes unstable,

moves upstream with increase in Re. At Re ∼ 2 × 105, the boundary layer on the cylinder

surface undergoes a transition from laminar to turbulent. This transition leads to a delay of the

separation of flow from the cylinder surface causing a substantial reduction in the drag force

that the cylinder experiences. This is often referred to as Drag crisis.

Bloor2 observed the shear layer instability for Re = 1300 and above. The unstable flow

structures were referred to as ”transition wave” and identified with Tollmein-Schlichting waves.

The ratio of the frequencies of transition waves and primary vortex shedding was found to be

proportional to Re0.5. Gerrard3 observed the shear layer instability at Re = 350 and higher.

Wei and Smith4 observed the presence of secondary vortices, similar to transition waves, for

1200 ≤ Re ≤ 11, 000. The ratio of frequencies associated with the shedding of secondary

and primary vortices was found to vary, approximately, as Re0.87. Kourta et al.5 observed the

non-dimensional shedding frequency of the secondary vortices directly proportional to Re0.5

for 2000 < Re < 16, 000. Unal and Rockwell6 reported an experimental study of vortex

shedding from a circular cylinder for 440 ≤ Re ≤ 5040. According to their flow visualization
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experiments, the shear layer instability starts becoming evident at Re = 1900. Braza et al.7

showed the development of Tollmein-Schlichting transition waves in the separated shear layer

via two dimensional computations for 2000 ≤ Re ≤ 10, 000. They concluded that the origin of

the shear-layer instability, which leads to mixing layer eddies, is predominantly two-dimensional.

The ratio of the computed frequencies of the transition waves and vortex shedding agrees with

experimental data of Bloor2 and Kourta5 and is quite close to experimental works of Wei and

Smith.4

Prasad and Williamson8 found that the spanwise end conditions, which control the primary

mode of vortex shedding, also affect the shear layer instability. For end conditions that result

in parallel mode of shedding, shear layer instability starts at Re ≈ 1200 while this value is 2600

for the end conditions that lead to the oblique shedding mode. The normalized shear layer

frequency, equivalent to the non-dimensional shedding frequency of the secondary vortices as

used by Wei and Smith,4 follows the Re0.67 power law. In fact, Prasad and Williamson8 plotted

not only their own data but also that from all the previous investigators and found that the

Re0.67 power law gives a much closer fit than the Re0.5 law proposed earlier, from approximate

analysis. In that sense, the Re0.67 power law represents almost all the experimental data

that exists. They also observed that the shear layer fluctuations are intermittent and become

stronger with increase in Re. Recent computations by Mittal9 for a cylinder, with a ”slip”

splitter plate occupying the wake center line, show that the shear layer instability can be

observed for Re = 300. It was observed that the slip splitter plate annihilates the primary

wake instability and, therefore, the shear layer instability can be clearly observed in such a

set-up.

Depending on the free stream turbulence and surface roughness, beyond a certain critical

Re, the boundary layer on the cylinder becomes turbulent.10,11 It is accompanied with a

significant reduction in drag and is often referred to as drag crisis. It also results in an increase

in the base pressure coefficient. The drag coefficient for the subcritical flow is ∼ 1.2 and it

reduces to ∼ 0.3 for the supercritical flow. For the transcritical flow,10 it again increases to

∼ 0.7. Achenbach and Heinecke11 presented the variation of Rec for various values of the

surface roughness parameter. For a smooth cylinder, Rec is approximately equal to 3 × 105.

With increase in surface roughness, the Rec decreases and the mean drag coefficient at Rec
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increases. Roshko10 observed, from experiments, that for sub-critical conditions the boundary

layer separation is laminar. As Re is increased, beyond the critical value, transition in boundary

layer moves ahead of the laminar separation point. The turbulent boundary layer can withstand

a greater pressure rise and delays separation.

Selvam12 presented his results for two dimensional Large Eddy Simulation (LES) for flow

past a cylinder. The reduction in the drag coefficient was observed but not to the same extent

as indicated by the measurements. Further, the reduction was achieved only when the Van

Driest damping factor is utilized at the wall. Tamura et al.13 carried out computations without

any turbulence model with a third order upwind finite difference scheme in two and three

dimensions. Their computations have been able to predict drag crisis for certain grids. However,

on increasing the number of grid points, the drag coefficient at Re = 106 increases significantly.

Cantwell & Coles14 measured various quantities relevant to the Reynolds stresses for the

Re = 1.4 × 105 flow corresponding to the high subcritical state. In such a flow large coherent

eddies can be studied in their natural state. These eddies are turbulent line vortices which are

produced and shed in an essentially regular manner. Except for some dispersion, the vortices

are not subject to interactions that might obscure their identity. Reynolds stress receives

contribution from, both, the random and periodic motion of the flow. They observed that the

contribution of the random turbulent fluctuations, to the Reynolds stress, is much larger than

that from the organized large eddies. Periodic stress patterns show a strong symmetry with

respect to the wake centerline and remarkable indifference to local turbulence.

In the present study, two-dimensional flow past a circular cylinder is simulated for Re =

100− 107 using a stabilized finite element formulation. It is well known that beyond Re ∼ 190

the flow ceases to be two-dimensional. In that sense, the present two dimensional computations

are expected to fall well short of accurately predicting the various quantities associated with

flows at high Re. The objective of the present work is to investigate a possible connection

between the shear layer instability and drag-crisis. It has been reported in the literature7,1 that

the shear layer instability is primarily two dimensional. A very fine finite element mesh, that is

capable of resolving the boundary layer at the cylinder surface and the flow structures associated

with the shear layer vortices, is utilized. Computations are carried out at various Re to study
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the shear layer instability. The variation of the frequency of the shear layer vortices with Re

is compared to the trends from experimental studies. Good match between the present and

published results is observed. It is found that the present computations are able to reproduce

the significant drop in the drag coefficient at the critical Re. The results indicate that the

shear layer instability plays an important role in this phenomenon. In this paper a possible

mechanism for the phenomenon is discussed. For high subcritical flow the transition point,

beyond which the separated shear layer is unstable, is located shortly downstream of the point

of laminar separation of the boundary layer from the cylinder surface. At Rec the transition

point moves very close to the separation point and causes local remixing in the boundary layer

leading to reattachment of flow.

Direct numerical simulation (DNS) of flows at large Re is not possible owing to the heavy

demands on computational resources it places. Beaudan and Moin,15 have observed that com-

putations with the Reynolds averaged equations pose great difficulty in predicting the mean

forces on the cylinder and the near-wake mean flow statistics. Large eddy simulation (LES), in

conjunction with a suitable turbulence model, is a viable proposition. Kravchenko & Moin16

carried out LES for the Re = 3900 flow past a cylinder using a high order accurate scheme.

Good match is seen between their computational results and experiments. They also simulated

the flow without the subgrid scale model. No significant difference is found in the mean-velocity

profiles from the two cases. However, slower decay of energy at large wave-numbers for the sim-

ulations without subgrid model is observed in one-dimensional spectrum of velocity distribution

at a downstream location. Mittal and Moin17 reported that the numerical viscosity removes

substantial energy from the high wave number regime for higher order upwind-biased finite

difference schemes. They also observed that a central difference scheme does not have such

problem but it poses additional difficulties related to high dispersion errors. Akin, Tezduyar,

Ungor & Mittal18 have shown that the numerical viscosity generated by the stabilization terms

for the finite element formulation with bilinear interpolation functions is much higher than the

eddy viscosity generated by Smagorinsky turbulence model except in regions very close to the

cylinder. In the present study, computations are carried out with and without a Smagorin-

sky model for flow past a cylinder at Re = 106. The mean profiles as well as the fluctuating

quantities are compared. It is found that the results from the two sets of computations are
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almost indistinguishable. Therefore, for the computations in this paper, no turbulence model

is employed.

The governing equations for the fluid flow are the incompressible Navier-Stokes equations.

They are solved via a stabilized finite element formulation in the primitive variables. Equal-in-

order linear basis functions for velocity and pressure are used and a 3 point Gaussian quadrature

is employed for numerical integration. The non-linear equation systems resulting from the finite

element discretization of the flow equations are solved using he Generalized Minimal RESidual

(GMRES) technique in conjunction with diagonal preconditioners.

II. Governing Equations

Let Ω ⊂ Rnsd and (0, T ) be the spatial and temporal domains respectively, where nsd is

the number of space dimensions, and Γ denote the boundary Ω. The spatial and temporal

coordinates are denoted by x and t. The Navier-Stokes equations governing incompressible

fluid flow are

ρ

(

∂u

∂t
+ u · ∇u − f

)

−∇ · σ = 0 on Ω for (0, T ), (1)

∇ · u = 0 on Ω for (0, T ). (2)

Hence, ρ,u, f and σ are the density, velocity, body force and the stress tensor, respectively.

The stress tensor is written as the sum of its isotropic and deviatoric parts :

σ = −pI + T , T = 2µǫ(u) , ǫ(u) =
1

2
((∇u) + (∇u)T ), (3)

where p and µ are the pressure and coefficient of dynamic viscosity, respectively. Both the

Dirichlet and Neumann type boundary conditions are accounted for, represented as

u = g on Γg , n · σ = h on Γh, (4)

where, Γg and Γh are complementary subsets of the boundary Γ. The initial condition on the

velocity is specified on Ω :

u(x, 0) = u0 on Ω, (5)

where, u0 is divergence free.
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In addition to the mean flow, it is useful to study the Reynolds stresses (u′u′, v′v′ and u′v′).

Here, u
′

and v
′

are the fluctuations in the components of the velocity field as defined below,

following the decomposition proposed by Hussain and Reynolds19:

u(x, t) = ū(x) + u
′

(x, t). (6)

Here ū(x) is the mean velocity field, and u
′

(x, t) is the unsteady part of the velocity with

contributions from organized wave and turbulence.

III. Finite Element Formulation

Consider a finite element discretization of Ω into sub domains Ωe, e = 1, 2, ..., nel, where

nel is the number of elements. Based on this discretization, for velocity and pressure we define

the finite element trial function spaces Su

h and Sh
p , and weighting function spaces Vu

h and Vh
p .

These function spaces are selected, by taking the Dirichlet boundary conditions into account,

as subsets of [H1h(Ω)]nsd and H1h(Ω), where H1h(Ω) is the finite dimensional function space

over Ω. The stabilized finite element formulation of equations 1 and 2 is written as follows:

find uh ∈ Su

h and ph ∈ Sh
p such that ∀wh ∈ Vu

h, qh ∈ Vh
p

∫

Ω
wh · ρ

(

∂uh

∂t
+ uh · ∇uh − f

)

dΩ +
∫

Ω
ǫ(wh) : σ(ph,uh)dΩ +

∫

Ω
qh∇ · uhdΩ

+
nel
∑

e=1

∫

Ωe

1

ρ

(

τSUPGρuh · ∇wh + τPSPG∇qh
)

·

[

ρ(
∂uh

∂t
+ uh · ∇uh − f) −∇·σ(ph,uh)

]

dΩe

+
nel
∑

e=1

∫

Ωe

δ∇ ·whρ∇ · uhdΩe =
∫

Γh

wh · hhdΓ (7)

In the variational formulation given by equation 7, the first three terms and the right hand side

constitute the Galerkin formulation of the problem. The first series of element level integrals

are the SUPG and PSPG stabilization terms added to the variational formulations. In the

current formulation τPSPG is the same as τSUPG and is given as

τ = ((
2‖uh‖

h
)2 + (

4ν

h2
)2)−

1

2 (8)

The second series of element level integrals are added to the formulation for numerical stability

at high Reynolds numbers. This is a least squares terms based on the continuity equation. The
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coefficient δ is defined as

δ =
h

2
‖uh‖z (9)

where,

z =

{

(Reu

3
) Reu ≤ 3

1 Reu > 3
(10)

and Reu is the cell Reynolds number. Both stabilization terms are weighted residuals, and

therefore maintain the consistency of the formulation. h is the element length and various

definitions have been used by researchers in the past. Mittal20 conducted a systematic numerical

study to investigate the effect of high aspect ratio elements on the performance of the finite

element formulation for three commonly used definitions of h. The one which results in the least

sensitivity of the computed flow to the element aspect ratio has been used for computations

in the present work. According to this definition, the element length is equal to the minimum

edge length of a triangular (3 noded) element.

The time discretization of the variational formulation is done via the generalized trapezoidal

rule. For unsteady computations, the relevant parameter is set to give second order accuracy in

time. Equal in order basis functions for velocity and pressure (the P1P1 element) are used and

a 3 point quadrature is employed for numerical integration. The non-linear equation systems

resulting from the finite element discretization of the flow equations are solved using the Gener-

alized Minimal Residual (GMRES) technique21 in conjunction with a diagonal preconditioner.

A matrix free version of the GMRES algorithm is utilized to reduce the memory requirement.

In this procedure, the result of matrix vector products in the GMRES algorithm is direct

computed which avoids the explicit formation and storage of the element level matrices.

IV. Results and Discussions

A cylinder, of diameter D, is placed in a domain whose outer boundary is a rectangle. The

center of the cylinder is located at the origin of the coordinate system. The free-stream flow

is along the x axis. The Reynolds number, Re, is based on the diameter of the cylinder, free-

stream velocity and viscosity of the fluid. In all the figures in this paper, the shading in gray

scale represents the magnitude of the associated flow quantity. While the white shade shows a

low value, the darker shade represents a higher value. The contour lines in black color indicate
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a positive value of the variable and a negative value is shown by lines in white color.

A. Boundary conditions

Free-stream values are assigned for the velocity at the upstream boundary. No slip con-

dition for the velocity is applied on the cylinder boundary. At the downstream boundary a

Neumann type boundary condition for the velocity is specified that corresponds to zero viscous

stress vector. On the upper and lower boundaries the component of stress vector along these

boundaries and the velocity normal to them are assigned zero values.

B. Finite element mesh

The finite element mesh consists of two parts: a structured grid close to the cylinder and

an unstructured mesh in the remaining domain. The structured mesh allows for having ade-

quate control on the resolution of the flow in the boundary layer. It consists of Nt nodes in

the circumferential direction. The radial thickness of the first layer of elements on the cylinder

boundary is denoted by h1
r . The unstructured mesh is generated via the Delaunay’s trian-

gulation technique. This kind of a hybrid mesh is useful in handling complex geometries by

providing adequate resolution close to the body without requiring the same distribution of grid

points in the remaining domain. This results in significant saving of computational resources

as opposed to computations on a structured mesh with similar resolution close to the body.

Given in Table 1 are the details of the various meshes used in the present study. Figure 1

shows the close-up views of a typical mesh around the cylinder. Most of the computations in

this paper have been done with mesh M4 which consists of 47, 011 nodes and 93, 574 elements.

The time-averaged drag-coefficient (C̄d) for Re = 106 obtained with the mesh M4 is 0.591. To

check the convergence of the computations with respect to spatial resolution, the flow is also

computed with a more refined mesh, M5. Mesh M5 consists of 116, 166 nodes and 231, 484

elements. The value of (C̄d) with mesh M5 is 0.607. Other mean and fluctuating quantities also

show a good match between the results from the two meshes. This establishes the adequacy of

mesh M4 to resolve most of the large scale structures of the flow in this range of Re.
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C. Large Eddy Simulation vs. model free calculations

It is not possible, with the present computational resources, to conduct DNS for the range

of Re that are being attempted in this study. LES in conjunction with a suitable sub-grid

scale model seems like a viable proposition. A LES with a constant coefficient Smagorinsky

model was attempted for Re = 106. The dynamic coefficient of viscosity, µ, is locally modified

using a Smagorinsky turbulence model as µeffective = µ + ρ(Che)
2
√

2ǫ(u) : ǫ(u). Here C is a

constant equal to 0.1 and he is the element length scale. Mesh M4, with 47, 011 nodes and

93, 574 elements, is employed for the computations. Computations are also carried out without

the turbulence model. Figure 2 shows the time averaged vorticity, pressure, u′u′ ,v′v′ and

u′v′ fields for the model free calculations (first column) and LES (second column). It can be

observed that the results from the two simulations are very comparable. Other quantities,

for example, the time averaged drag and base pressure coefficients are also very comparable.

They are shown in later figures in the paper. This is consistent with the observations of Akin,

Tezduyar, Ungor & Mittal18 who found that the numerical diffusion due to the stabilization

terms in the finite element formulation, with bilinear interpolation functions, is much higher

than the eddy viscosity generated by Smagorinsky turbulence model except in regions very close

to the cylinder. In view of these observations, all further simulations are carried out without

any turbulence model. It is quite possible that the situation may change for three dimensional

simulations or with computations employing higher order interpolation functions. These issues

are under investigation.

We wish to reiterate here that 2D LES by no means captures all the details of an inherently

three-dimensional flow. The attempt in this paper is to investigate the possibility of a connec-

tion between the shear layer instability (which is known to be two-dimensional) and drag-crisis

and not to model/resolve the 3D effects. In addition to LES, there are other approaches that

have shown promise in solving 3D unsteady flows. For example, the interested reader may

see the work by Travin et al.22 who have simulated flow past a circular cylinder via Detached

Eddy Simulation for laminar and turbulent separation. Reynolds numbers chosen for laminar

separation are 5.0 × 104 and 1.4 × 105 while those for turbulent separation are 1.4 × 105 and

3.0×106. The results of turbulent separation cases, i.e., drag, skin friction, shedding frequency
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and pressure match well with the experimental results.

D. General overview of the flow

Figures 3 and 4 show the variation, with Re, of the time-averaged drag and base suction

coefficient, respectively. Data from computations on various finite element grids has been

shown along with experimental results from other researchers. It is observed that the values

from present computations match well with the results from experiments for Re < 200. For

example, the Strouhal number (St: non-dimensional vortex shedding frequency based on the

dominant frequency in the time variation of lift coefficient) for Re = 100, from the present two

dimensional computations, is 0.1643. Williamson23 measured St = 0.1648 for parallel shedding

and the value reported by Kravchenko, Moin and Shariff24 and Persillon and Braza25 from their

computations is 0.164. The amplitude of the lift coefficient from the present computations is

0.319 and it compares well with the value reported by Kravchenko, Moin and Shariff24 (=0.314).

For Re = 200, the values for C̄D and St from the present two-dimensional computations are

1.327 and 0.1947, respectively. The corresponding values from Posdziech and Grundmann26

from their computational studies are 1.3132 and 0.1944. The experimentally measured value

for St is 0.196.27 Again, the comparison with the present results is excellent.

Beyond Re ∼ 180 the wake flow undergoes three-dimensional transitional instabilities.

Therefore, for Re > 200, the drag and base suction coefficient and Strouhal number are over

predicted by two dimensional computations. This observation was made by Mittal28 for two

and and three dimensional computations for the Re = 300 and 1000 flow past a cylinder. For

example, the three dimensional computations for the Re = 300 flow with slip side walls by

Mittal,28 using a very similar finite element formulation as in this work, results in St = 0.203.

The present two dimensional computations, as expected, result in a slightly larger value of

St (= 0.208). Kravchenko, Moin and Shariff,24 from their three dimensional computations,

observed St = 0.203 and C̄D = 1.28. The corresponding experimental values from Williamson1

are 0.203 and 1.22. The mean drag coefficient from the present two dimensional computations

for Re = 300 is 1.357. Mittal and Balachander29 have suggested that the higher value of the

drag coefficient for the 2D simulations is caused due to higher level of Reynolds stresses re-

sulting in a shorter formation length behind the bluff body. Detailed results for the flow at
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low Re (100 < Re < 1000) with the same finite element formulation as in this work, and their

comparison with experiments, can be found in our earlier papers .30,31,28

It is clear from Figures 3 and 4 that as the three dimensional features in the flow become

increasingly important, the two-dimensional computations over predict the mean drag and base

suction coefficient for 2 × 103 < Re < 3.2 × 104. Three very interesting observations can be

made from these figures. First, consider the variation of −CPB with Re (Figure 4) in the

regime where the flow is two dimensional. Also shown in the figure is a straight line that

passes through the data points for Re < 200. It can be observed that the results from two-

dimensional computations for 2 × 103 < Re < 3.2 × 104 lie close to the line extrapolated from

the two-dimensional behavior. Also, the difference between the results from two-dimensional

calculations and real three dimensional flow increases rapidly with Re. A similar observation

was made by Mittal and Balachander.29 However, their data is for a smaller range of Re. Higher

value of base suction results in larger drag force experienced by the cylinder. Consequently, two

dimensional computations overpredict the drag coefficient. The second interesting observation is

that the present, two dimensional, computations are able to pick up the sudden reduction in drag

and base suction coefficient close to the critical Re. This suggests that the drag crisis is largely

a two-dimensional phenomenon. Also, at the critical Re and beyond, the two-dimensional

computations result in a fairly good prediction of the time-averaged drag coefficient. The third

observation from the two figures is regarding the behavior of the flow in the supercritical state.

Subsequent to the drag crisis, an increase in, both, the mean drag coefficient and base suction

coefficient is observed. This behavior is replicated by the present computations. Another

observation that can be made from Figures 3 and 4 is the excellent agreement between the

results obtained with computations using different meshes. For example, meshes M2 and M4

give very similar values for the Re = 104 flow.

The time averaged vorticity field and Reynolds stress distribution (u′u′ , v′v′ and u′v′) for

various Re are shown in Figure 5. Narrowing of the wake for the Re = 106 flow, compared to

flow at lower Re, is clearly observed. Our results indicate that the Reynolds stresses are sym-

metric about the center axis and the normal components are, in general, larger than the shear

components. Similar to the observations of Cantwell & Coles14 and Mittal & Balachandar,29

it is seen that the v′v′ field achieves a peak along the center axis while the peaks in u′u′ and
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u′v′ are achieved off the flow axis, within the wake bubble. At Re = 100 the Reynolds stresses

close to the cylinder are very small. With increase in Re their magnitude, close to the cylinder

especially in the region of separated shear layer, increases. This suggests an increased unsteady

activity, for higher Re, in that region of the flow.

E. Shear layer instability

Figure 6 shows the instantaneous vorticity field for various Re. For the Re = 100 & 200 flow the

wake is very organized and the regular von Karman vortex street is observed. At higher Re, the

separated shear layer becomes unstable and smaller vortices form as a result of this instability.

The fluctuations in the velocity field due to the shear layer instability are intermittent and their

strength increases with Re. In addition, the point at which the separated shear layer becomes

unstable moves upstream with an increase in Re. Some of these features can be observed from

Figure 6. As is observed for the time averaged flow, the narrowing of the wake for the Re = 106

flow is seen here, as well.

The time histories of the drag and lift coefficients for various Re are shown in Figure 7.

The aerodynamic coefficients exhibit a very organized behavior for low Re. For Re = 100 and

200, a single frequency, corresponding to the vortex shedding frequency (fK), is observed. The

onset of shear layer instability modifies this variation. In addition to fK a smaller frequency,

fSL, that corresponds to the oscillations due to the shear layer vortices, sets in. It is seen from

the time variation of the lift coefficient at Re = 104 (Figure 7) that the shear layer instability

is intermittent. It is more regular at larger Re.

Prasad and Williamson8 studied the shear layer instability via laboratory experiments.

They suggested two techniques for determining the shear layer frequency (fSL). In the first

technique, fSL corresponds to the maximum in the broad-band peak of the long-time-averaged

velocity spectra. Since the shear-layer instability occurs intermittently, long-time-averaged

velocity spectra appears reduced in amplitude. In the second method, fSL is measured from

the period of shear-layer fluctuations using time traces. A statistically significant sample is

chosen to estimate a reasonable value. A histogram between the percentage of total number of

shear-layer cycles and frequency is utilized to select fSL. It corresponds to that frequency which

has the most prominent bin in the histogram. Both techniques result in very similar results.
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Figure 8 shows the ratio of shear layer and primary vortex shedding frequencies (fSL/fK) from

the present computations for various Re and their comparison with the measurements from

other researchers. The ”histogram” technique proposed by Prasad and Williamson8 has been

utilized in the present work. Good match is observed with the Re0.67 variation for Re upto

2 × 105. This confirms the observation of Braza, Chassaing & Ha Minh7 that the origin of the

shear layer instability and the subsequent development of small scale vortices is essentially a

two dimensional phenomenon. The agreement at Re = 106 is poor. This is because at this Re,

the transition point at which the separated shear layer becomes unstable reaches the cylinder

surface. Consequently, the generation and time evolution of the shear layer vortices is influenced

by the cylinder surface and the boundary layer on it. As a result the separated boundary layer

ceases to behave as a free shear layer. It is clear from this plot that fSL increases with Re.

This is consistent with the vorticity field shown in Figure 6 where the number of shear layer

vortices generated/released per unit time increases with Re.

F. Drag crisis and shear layer instability

Figure 9 shows close-up views of the instantaneous vorticity field at various Re near the

upper and lower surfaces of the cylinder. The reduction in the boundary layer thickness with

the increase in Re has been adequately resolved by an appropriate finite element mesh near

the cylinder surface. The instability of the separated shear layer and its interaction with the

boundary layer on the cylinder surface can be observed from this figure. For the Re = 3.2×104

flow the transition point, for the onset of shear layer instability, is located fairly downstream

of the cylinder. It moves upstream, towards the cylinder, with increase in Re. At Re = 105

the shear layer becomes unstable shortly downstream of the point of flow separation from the

cylinder surface. At Re = 106 the point of instability reaches very close to the un-separated

boundary layer on the surface of the cylinder. As a result of these eddies the boundary layer

experiences mixing with the outer flow causing reattachment of flow and delay of separation.

This is associated with narrowing of wake and significant reduction in drag and base suction

coefficients. At Re = 107, the instability of the shear layer propagates further upstream and

causes mixing of a significant portion of the boundary layer prior to its eventual separation. The

mixing of flow results in a significant increase in the Reynolds stresses in this region. Figure 10
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shows the Reynolds shear stress near the cylinder surface in the region of flow separation. The

time averaging for u′v′ shown in this figure has been carried out for one shear layer cycle for

each case.

These results suggest that the transition of the boundary layer, on the surface of cylinder, is

initiated by the instability of the separated shear layer. For the sub-critical flow, the instability

of the separated shear layer commences sufficiently downstream of the point of separation.

At the critical Reynolds number, the separated laminar boundary layer experiences significant

mixing shortly downstream of its separation, due to the eddies generated by the shear layer

vortices. This marks the transition of the separated boundary layer from laminar to turbulent

and causes the flow to reattach. The eventual separation of the re-attached flow occurs at a

much downstream location and results in drag-crisis. For higher Re the shear layer instability

moves upstream and so does the transition point of the boundary layer. Eventually, the entire

boundary layer on the cylinder surface becomes turbulent. This results in an increase in the

drag experienced by the cylinder due to the increased skin-friction on its surface. This can also

be observed from Figure 3 which shows the variation in the time-averaged drag coefficient for

various Re. As is observed from experimental data, the drag coefficient for Re = 107 is larger

than that at Re = 106.

Shown in Figure 11 is the instantaneous vorticity field for the Re = 106 flow along with

the velocity profiles (in wall coordinates) at certain locations. Also shown, in broken line, is

the velocity profile in the viscous sub-layer and log layer for a turbulent boundary layer on

a flat plate. These plots indicate that the present simulations are fine enough to resolve the

boundary layer and the associated flow structures of similar scale close to the cylinder. The

velocity profile at station (a), before the flow separates from the surface of cylinder, matches

that for a laminar boundary layer over flat plate. Shortly downstream of the flow separation,

the shear layer eddies cause mixing of flow leading to the reattachment of boundary layer. At

stations shortly downstream of this phenomenon, the velocity profile looks similar to that of a

turbulent boundary layer over a flat plate in adverse pressure gradient. The presence of the log

layer is indicative of a possible turbulent boundary layer. In contrast, for the Re = 105 flow,

the log layer is observed at locations sufficiently downstream of the point of separation after

the flow has undergone intense mixing. The present simulations are not fine enough to resolve
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the random turbulent fluctuations. However, it appears that at least the large scale structures

that are mainly responsible for the transition of boundary layer are sufficiently resolved in these

computations.

Figure 12 shows time averaged pressure coefficient (CP ) distribution on the surface of the

cylinder. It is observed that CP at θ = 0, the front stagnation point, is more than 1.0 for low Re,

for example, at Re = 100. This is consistent with the observations of earlier researchers. With

increase in Re, the peak suction pressure coefficient (−CP ) increases. As is seen from Figure 4,

the base pressure coefficient (CP at θ = 180o) first decreases (achieves a larger negative value)

with Re and than increases. Compared to the flow at Re = 105, the delay in flow separation

for Re = 106 results in a higher peak suction, near the shoulder of the cylinder, and a higher

base pressure. The higher base pressure results in a lower drag coefficient. It is also seen that

for the Re = 106 flow, the 2D LES with a Smagorinsky turbulence model results in virtually

identical pressure distribution as the model free computations.

The pressure distribution for Re = 105 shows a second local suction peak on the surface of

the cylinder. This secondary peak occurs beyond the shoulder of the cylinder and points to the

presence of a local recirculation zone close to the surface. Figure 13 shows the time averaged

streamlines for the flows at Re = 2000, 105 and 106. It is observed that the Re = 2000 flow is

associated with two recirculation zones on each half of the cylinder. However, they are located

away from the surface of the cylinder and the speed of flow in these regions is relatively small.

Consequently, their effect is not felt by the surface CP distribution. At Re = 105, downstream

of the separation point, the speed of the flow in the reverse flow region is quite high very close

to the surface of the cylinder. This results in a local peak in the suction pressure. At Re = 106,

it disappears again because of the delay in flow separation. The time-averaged streamlines

and pressure distributions suggest that the Re = 105 is associated with a recirculatory laminar

”bubble” close to the cylinder, immediately downstream of the point of flow separation. At

higher Re, the shear layer vortices cause the flow to become turbulent and the laminar bubble

bursts.

The time averaged flow from the present computations appear symmetric about the x axis

for Re = 106. The flow at Re = 105 clearly shows some asymmetry. Schewe32 conducted
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force measurements in a pressurized wind tunnel from subcritical up to transcritical Re, i.e.,

2.3 × 104 ≤ Re ≤ 7.1 × 106. It was shown in this study that asymmetric flow separation with

the generation of non-zero steady lift in critical regime (2.8×105 ≤ Re ≤ 3.5×105), of both the

positive and negative sign, is a fundamental phenomenon. This phenomenon is marked by two

discontinuous transitions, i.e. drop and jump in CD and St. After the first transition, the flow

achieves a bistable asymmetric state consisting of two stable states corresponding to positive

and negative lift force. The second transition is characterized by further jump and drop in St

and CD and the abrupt disappearance of the steady lift. Bearman33 examined the flow around

a circular cylinder over the Re range 105 to 7.5 × 105. A discontinuity was recorded at Re ∼

3.4 × 105 in the variation of the base pressure coefficient. This is caused by the appearance of

a laminar separation bubble forming on only one side of the cylinder. This appearance extends

up to Re = 3.8 × 105. At both the ends of the regime, marked by the laminar separation

bubble, discontinuous drop and jump in Strouhal number and the drag coefficient, respectively,

are observed. Detailed computations close to Rec need to be carried out to further investigate

this behavior of the flow.

G. Energy spectra

In this section results are presented for the energy spectra of the flow. To construct a spec-

trum of the energy at various spatial scales, the solution obtained from the Navier-Stokes equa-

tions over an unstructured mesh is interpolated on a structured mesh. The two-dimensional,

discrete Fast Fourier Transform (FFT) of the velocity field is carried out by using the subrou-

tines in the library from the Numerical Algorithm Group (NAG). The temporal spectrum is

constructed by sampling the time history of the velocity at a point (x/D = 0.26, y/D = −0.46)

with respect to the center of the cylinder.

In three-dimensional turbulence, energy injected into a flow system at a low wave number

cascades to higher wave numbers via vortex stretching. In this inertial range the structure of

energy density E(k) is determined solely by the non-linear interactions while the total energy

∫

E(k)dk is conserved. In the inertial range E(k) varies as k−5/3 down to the length scales where

viscous effects cause a rapid decay of E(k). In two-dimensional flows, the vortex stretching

mechanism is absent. Consequently, both, energy (
∫

E(k)dk) and enstrophy (square of L2 norm
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of vorticity,
∫

Ω |ω|2dΩ) are conserved. This implies that any flow of energy from low to high

wave numbers is accompanied with another flux, back from small to larger length scales. This

characteristic of two-dimensional turbulence is called inverse cascade.34 The enstrophy cascade

follows the k−3 law. More details on two-dimensional turbulence can be found in Paret &

Tabeling,35 Frisch,36 Doering & Gibbon37 and Lesieur.38

It is well known that even for high subcritical Re the flow in the wake, outside the boundary

layer, is turbulent. The spatial power spectra for the Re = 106 flow is shown in Figure 14. The

mesh used for the flow computations is M5. The velocity field is interpolated on a structured

grid with 3648 × 1536 nodes. As expected in two-dimensional isotropic turbulence, both, k−3

and k−5/3 variations of E(k) are observed. The power spectra corresponding to the time history

of the velocity at a point in the wake is shown in Figure 15. The frequency in the time domain

is non-dimensionalized with the vortex shedding frequency. A similar distribution, as in the

spatial spectrum, is observed.

V. Concluding Remarks

Flow past a circular cylinder is simulated for Re = 100 to 107 via a stabilized finite element

formulation in two dimensions. The computations with and without a sub-grid scale model

lead to very similar results. As expected, beyond Re ∼ 200, the 2D computations are unable

to predict the correct value of drag coefficient. However, the phenomenon of drag-crisis is

predicted quite well. For Re ∼ 2000 and larger, in addition to the primary wake instability,

the instability of the separated shear-layer is observed. The mesh close to the cylinder is fine

enough to resolve the boundary layer and its interaction with the shear layer instability. It

is found that the ratio of the shear layer and vortex shedding frequencies varies as Re0.67, in

agreement with results from other researchers. The transition point beyond which the separated

shear layer becomes unstable moves upstream with Re. The unstable shear layer is responsible

for the small scale vortices. At a certain critical Reynolds number (Rec), the transition point

moves very close to the separation point leading to an interaction between the boundary layer

and the shear layer vortices. These vortices cause mixing of flow in the boundary layer, thereby

energizing it and leading to its reattachment. An increase in the Reynolds shear stress near the
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separation point is observed as a result of this vortical activity. The entire boundary layer, till

the point of separation, is laminar for Re < Rec. At Re = Rec even though a significant part of

the boundary layer is laminar, the latter part, beyond the point of reattachment, undergoes a

transition to a turbulent state. The flow is associated with narrowing of wake and a significant

reduction in the time averaged drag- and base suction coefficients. Beyond Rec, the boundary

layer achieves a turbulent state well ahead of the flow separation. This leads to increased skin

friction and drag coefficient.

The transition of the boundary layer to a turbulent state is also observed from the velocity

profiles. These computations highlight a possible mechanism that lead to the transition of

the boundary layer flow. The interaction between the shear layer eddies and the boundary

layer plays a major role in the transition. The computations also suggest that the genesis and

development of the shear layer vortices and their interactions with the boundary layer leading

to its transition to a turbulent state is primarily a two dimensional phenomenon. Almost all the

features of the flow are captured by the present two dimensional computations, qualitatively.

Three-dimensional effects need to be accounted for to obtain good quantitative comparisons

with experimental results. Although the present computations do not utilize grids that are fine

enough to resolve the random fluctuations associated with transitional flows, yet, most of the

flow features are predicted reasonably well. This shows that the large scale flow structures play

a primary role in this transition process.

The spatial and temporal energy spectra for the Re = 106 flow have been studied. It is found

that the energy spectrum exhibits the structure of two-dimensional isotropic homogeneous

turbulence. The k−3 and k−5/3 variation of E(k), for k higher and lower than the energy

injection scale, respectively, is observed.
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Mesh nodes elements h1
r/D Nt domain size

M1 11384 22654 1.5 × 10−2 64 50D × 50D
M2 22403 44454 2 × 10−5 300 38D × 16D
M3 34613 68858 5 × 10−3 320 38D × 16D
M4 47011 93574 2 × 10−5 400 38D × 16D
M5 116166 231484 2 × 10−6 800 38D × 16D

Table 1. Flow past a cylinder at various Re: details of the finite elements used.
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Figure 1: Flow past a cylinder: successive close up views of the finite element mesh M5 with
116, 166 nodes and 231, 484 triangular elements.
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Figure 2: Re = 106 flow past a cylinder using mesh M4: the time averaged vorticity and
pressure fields and distribution of Reynolds stresses for 2D LES with a Smagorinsky model
(right) and model free (left) calculations.
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Figure 3: Flow past a cylinder: variation of the time averaged drag coefficient with Re. The
experimental data from Weiselberger (1921) has been taken from Roshko.10 The data from 2D
calculations by Henderson39 are also shown.
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Figure 4: Flow past a cylinder: variation of the time averaged base suction coefficient (−CPB)
with Re. The experimental data from various studies by Williamson & Roshko,40 Norberg,41

Flaschbart (1992) and Shih et al.42 has been taken from Williamson.1
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Figure 5: Flow past a cylinder: time averaged vorticity field, and Reynolds stresses (u′u′, v′v′

and u′v′) for various Re.
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Figure 6: Flow past a cylinder: instantaneous vorticity field for various Re.
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Figure 7: Flow past a cylinder: time histories of drag (solid lines) and lift (broken lines)
coefficients for various Re.
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Figure 8: Flow past a cylinder: variation, with Re, of the shear layer frequency (fSL) normalized
with vortex shedding frequency (fK). The expression for the Re0.67 power law is from from
Prasad and Williamson.8 The Re0.5 power law is from an approximate analysis.
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Figure 9: Flow past a cylinder: close-up view, near the upper and lower shoulder of the cylinder,
of the instantaneous vorticity field for various Re.
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Figure 10: Flow past a cylinder: close-up view of the u′v′ distribution. The averaging has been
done for one shear layer cycle.
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Figure 11: Re = 106 flow past a cylinder: instantaneous vorticity field and velocity profiles at
various stations in wall co-coordinates. Positive vorticity is shown in solid lines and negative
in broken lines. Also shown in broken lines is the velocity profile in the viscous sublayer and
log layer in a turbulent boundary layer on a flat plate.
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Figure 12: Flow past a cylinder: pressure distribution on the surface of the cylinder for the
time averaged flow field.
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Figure 13: Flow past a cylinder: streamlines for the time averaged flow field for Re = 2000,
105 and 106.
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Figure 14: Re = 106 flow past a cylinder with mesh M5: spectrum of the spatial distribution
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Figure 15: Re = 106 flow past a cylinder with mesh M5: spectrum of the temporal variation
of energy sampled at (x/D = 0.26, y/D = −0.46).
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Figure 1: Flow past a cylinder: successive close up views of the finite element mesh M5 with
116, 166 nodes and 231, 484 triangular elements.

Figure 2: Re = 106 flow past a cylinder using mesh M4: the time averaged vorticity and
pressure fields and distribution of Reynolds stresses for 2D LES with a Smagorinsky model
(right) and model free (left) calculations.

Figure 3: Flow past a cylinder: variation of the time averaged drag coefficient with Re. The
experimental data from Weiselberger (1921) has been taken from Roshko.10

Figure 4: Flow past a cylinder: variation of the time averaged base suction coefficient (−CPB)
with Re. The experimental data shown is from Williamson & Roshko,40 Norberg,41 Flaschbart
(1992) taken from Roshko43 and Shih et al..42

Figure 5: Flow past a cylinder: time averaged vorticity field, and Reynolds stresses (u′u′, v′v′

and u′v′) for various Re.

Figure 6: Flow past a cylinder: instantaneous vorticity field for various Re.

Figure 7: Flow past a cylinder: time histories of drag (solid lines) and lift (broken lines)
coefficients for various Re.

Figure 8: Flow past a cylinder: variation, with Re, of the shear layer frequency (fSL) normalized
with vortex shedding frequency (fK). The expressions for the Re0.67 and Re0.5 power laws are
from Prasad and Williamson8 and Kourta et al.,5 respectively.

Figure 9: Flow past a cylinder: close-up view, near the upper and lower shoulder of the cylinder,
of the instantaneous vorticity field for various Re.

Figure 10: Flow past a cylinder: close-up view of the u′v′ distribution. The averaging has been
done for one shear layer cycle.

Figure 11: Re = 106 flow past a cylinder: instantaneous vorticity field and velocity profiles at
various stations in wall co-coordinates. Positive vorticity is shown in solid lines and negative
in broken lines. Also shown in broken lines is the velocity profile in the viscous sublayer and
log layer in a turbulent boundary layer on a flat plate.

Figure 12: Flow past a cylinder: pressure distribution on the surface of the cylinder for the
time averaged flow field.

Figure 13: Flow past a cylinder: streamlines for the time averaged flow field for Re = 2000,
105 and 106.

Figure 14: Re = 106 flow past a cylinder with mesh M5: spectrum of the spatial distribution
of energy.
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Figure 15: Re = 106 flow past a cylinder with mesh M5: spectrum of the temporal variation
of energy sampled at (x/D = 0.26, y/D = −0.46).
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