JOURNAL OF THEORETICAL
AND APPLIED MECHANICS
2, 37, 1999

FLOW PAST A SPHERE MOVING TOWARDS A WALL
IN MICROPOLAR FLUID

ANNA KUCABA-PIETAL

Department of Fluid Mechanics and Aerodynamics, Rzeszow University of Technology

anpietal@prz.rzeszow.pl

The paper presents the first "exact” solution to the problem of cre-
eping flow past a sphere moving towards a wall in micropolar fluid. The
analytical-numerical method is presented, that is a development of the
boundary collocation technique previously used for solving many corre-
sponding problems for a Newtonian fluid. The initial study of the method
has been carried out and the results for a force acting on a sphere com-
pared with their counterparts for a Newtonian fluid are presented. It is
worth while to note that the drag force on a sphere depends on material
constants of the micropolar fluid and the distance from the wall.
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1. Introduction

Since the 1970s the study of microhydrodynamics has been undertaken in
large measure due to the numerical techniques development. Generally, these
flows appear in suspension rheology, colloids, aerosols, microdevices. The pre-
sence of a wall changes the hydrodynamical parameters of a moving body and
this phenomenon can be observed in many industrial and biological processes.
Various numerical schemes have been constructed to solve these problems. For
a thorough survey of the available results the Reader is reffered to Happel and
Brenner (1985), Kim and Karilla (1991). Ganatos et al. (1980) proposed the
method which enabled one calculate the low Reynolds number interaction for
a sphere moving in a Newtonian fluid bounded by planar walls. The results
can be applied to modelling diffusion of the plasmalemma vesicles across en-
dothelial cells lining the artery wall (Weinbaum and Caro, 1976; Arminski et
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al., 1980) and diffusion of the molecules across the intercellular space between
adjacent cells. Owing to the linearity of the Stokes equations and boundary
conditions, the arbitrary motion of a sphere can be separated into the parallel
and perpendicular ones, respectively, to the bonding walls.

The experimental results show, that when considering micro-scale fluid
flows, several effects which are commonly excluded from the macro-scale fluid
flow become increasingly important. This has introduced "anomalies” which
the classical Newton theory of fluid is unable to explain. One of the effects
not included in the classical Newton theory is the micro-rotation effect due to
rotation of fluid molecules. This is of crucial importance when considering fluid
Hows in narrow channels (capillaries) and when the fluid under investigation
reveals substructures. The biofluids fall into the category.

The micropolar fluid theory proposed by Eringen (1966) auguments the
laws of classical continuum mechanics by incorporating the micro-rotation ef-
fects. In such fluids, the rigid particles included in a small volume element
can rotate about the element centre represented by the micro-rotation vector.
This local rotation of particles is an addition to the usual rigid body mo-
tion of the entire volume element. The laws of classical continuum mechanics
are augumented with additional equations representing the conservation of
microinertia moments and the balance of first stress moments for which con-
sideration of the microstructure in a material accounts. Field equations are
presented in terms of two independent kinematic vector fields, the velocity
and microrotation vector and involve material constants. The stress tensor
is not symmetric. Basing on the micropolar fluid theory the solutions have
been obtained to many interesting physical problems in the field of lubricants,
fluid with additives, blood, eletromagnetical suspensions, polymers and flows
in microchannels. The up-to-date review can be found in Petrosyan (1984),
Prohorenko and Migoun (1988), Lukaszewicz (1998).

The lack of solutions to the problems of micropolar fluid flow past a body
in the presence of walls motivated the investigation. The micropolar model
of fluid seems to be more realistic than the Newtonian one when we consider
a small dimension of channel and properties of the biofluid. Results can be
applied to biomechanics, the diffusion problem mentioned above and many
other engineering issues.

In the paper, the Author concentrates on the creeping motion of a sphere
towards a wall, treated as an initial study of a two walls problem. Our aim is
to constuct an effective solving method and to answer the question: how do
the material constants of micropolar fluid influence the force? The analytical-
numerical method of solution is constructed and the force acting upon a sphere
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is calculated. It is based on the boundary collocation method, which is a parti-
cular case of the weighed residual method and is a very useful tool for solving
the flow problems that can be formulated using linear equations. The biggest
advantage of this method in comparison in the others ones (e.g. Finite Element
Methods, Finite Difference Methods) is that for slightly more complicated re-
gions it requires less work. The up-to-date bibliography and review of the
results of the application of the boundary collocation method into mechanics
can be found in Kolodziej (1987), Kim and Karilla (1991).

The crucial element of the proposed analytical-numerical method consist in
general solutions of the Stokes equations for a micropolar fluid in the spherical
and cylindrical coordinates. They are derived in the paper and can be applied
to solution of another flow problerns.

The results show that:

(i) The material constants p, &, v of micropolar fluid have a considerable
influence on the force acting on the sphere.

(ii) Form of the boundary conditions to be satisfied by the microrotation
vector on surfaces of the sphere affects the force.

(iii) Presented method can be extended to cover the flow past a sphere be-
tween parallel walls but it is beyond the scope of this paper. The Author
intends to undertake the research in the near future.

2. Formulation of the problem

Let us consider a quasi-steady flow field of an incompressible micropolar
fluid due to a translational axisymmetric motion of a sphere S, of radius a
towards the wall (Fig.1). The distance between the sphere and wall is denoted
by d. In the polar coordinate system (r,#8,2) with the origin in the center of
the moving sphere the wall surface is described as z = —c; ¢ = d + a. The
translational velocity of sphere S, is (0,0,U).

The fluid is at rest at infinity. The Reynolds number is low.

Therefore, the equations of motion describing this low are the Stokes equ-
ations for micropolar fluid and read

(b +rR)VH+rVx@m-Vp=0
(2.1)

(@™ + " +9)VVw -y VXV xw+ sV xv—2k0=0
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Fig. 1. Geometry of the flow

moreover, the mass conservation equation is satisfied: V -v = 0, where v
denotes the velocity of the fluid, w is the microrotation vector. The positive
constants pu, k, ™, B™, v characterise isotropic properties of the micropolar

fluid.
The boundary conditions imposed on the moving sphere S, are

1
v=U w= 01154 (2.2)
and on the wall )
v=0 W= 5( (2.3)
Moreover at infinity
@ =0 (2.4)

0< ey <1, i=1,2.
Because of the axisymmetric geometry of the flow, the streamn function
¥(r,z) can be used and the axial and radial velocity components expressed as
109 109
=U (2.5)

=Urae =V

r JOr
Moreover the microrotation vector has one component only.
Replacing the velocity with the derivatives of stream function in the Stokes

equations (2.1), we obtain

Uy

—(p+ K) LAWY + kL (rw) = 0

(2.6)
—vLi(rw) + kL (¥) — 2krw =0
L, is the generalised axisymmetric Stokes operator L; = 3%27 - %—3‘9—? + 8%27'
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The above equations are fourth-order partial differential equations, linear
for ¥ and w. After elimination from Eqgs (2.6) the microrotation vector w
we arrive at

L3L, - 2w =0 (2.7)
with the microrotation being given by

1

w 2r

(L1W-y31%é;flL?w) (2.8)

and constant A? defined as

2 A2+ )

g +k) (29)

To solve Eq (2.7) which is equivalent to the Stokes equations of micropolar
fluid, the boundary conditions (2.2) = (2.4) have to be reformulated. On the
moving sphere S, they are

1, o 1
and on the wall o0 .
Yy o= = = — 2.
P 0 w QQ2C ( 11)

Moreover, at infinity

v =0 (2.12)

The stream function ¥ that satisfies the partial differential equation (2.7)
with the corresponding boundary conditions (2.10) + (2.12) and the microro-
tation vector defined by Eq (2.8) represent the flow field for the problem under
consideration.

3. Solution procedure
The alghoritm for the flow field determination can be constructed as fol-
lows:

Stage (i) — We seek the solution of Eq (2.7) as a sumn

U =0, + 7, (3.1)
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The part ¥, represents the general solution of the Stokes equation in
the spherical coordinates. It can be expanded into an infinite series. W,
represents the general solution of the Stokes equation in the cylindrical
coordinates regular in the flow field and is given by an integral. Using Eqs
(2.5) we can write the formulae for velocity and microrotation vectors.

Stage (ii) - In order to obtain a unique solution the unknown constants
from the general solutions have to be determined. First, we impose the
boundary conditions on the wall Eqs (2.3).

As aresult we get equations which can be easily inverted. This fact allows
us to express the unknown constants which appeared in the integrand
into series.

Having done it, the axial w,, and radial wv, velocities of the fluid How
and the microrotation vector @ can be rewritten in terms of an infinite
series i1 which still the unknown constant appears.

Next, we truncate the infinite series and impose the boundary condi-
tions on the sphere at a finite number of discrete points. The collocation
technique is applied.

Stage (iii) — Then we solve the derived linear set of the equations using a
numerical method. At this stage the solution is known.

To apply the algorithin we should first find the general solutions of the
Stokes equation for the micropolar fluid in the cylindrical and spherical coor-
dinates. The stream function ¥ is split up into two parts

U=l y? (3.2)

where W2 and W! satisfy the second order differential equations resulting
from Eq (2.7)
Lol = (L, =X =0 (3.3)

In spite of that W! is the well known general solution of the classical case
(cf Happel and Brenner, 1985) our problem reduces to solving the second order
differential equation (3.3)s.
In the cylindrical coordinates Eq (3.3)s can be rewritten as
( 9 10 0*

or?  ror + 9z? A )JI 0 (34)

It can be solved by the variables separation as follows

% = R(r)Z(2) (3.5)
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The two second order equations result

d’R(r) 1 dR(r)
dr? R(r) dr

(3.6)
2
a Zg” (e + A Z(2) =0
dz
The first of these equations has the solution
R(r) = ArJ\(ar) + BrYi(or) (3.7)
whereas the solution of the latter is
Z(2) = G (a)e™% + Gy(a)e” (3.8)

where § = VA2 + a?.
Symbol J, denotes the Bessel function, Y is the Weber function.
The condition for ¥ at infinity (2.12) demands that B =0 and G, =0.
Combining (3.7) and (3.8), yields

o ¢]
w2 — /Gl(a)e_‘szATJl(ar) do (3.9)
0
Hence, we are able to write the general solution of the Stokes equations for the

micropolar fluid in the cylindrical coordinates, which are regular everywhere
in the flow field. It is given by the Fourier-Bessel integral

by = /[B(a)e_"‘z + D(a)aze™® + G (a)e™*)rJ (ar) da (3.10)
0

Here B(a), D(a), G(a) are unknown functions of «.
In the spherical coordinates, Eq (3.3}, assumes the form

o2 1-¢* o 2\ /.2
with ( = cos#.
We look for the solution of the form

2 = R(0)Z(() (3.12)
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Substituting Eq (3.12) into Eq (3.11) yields

2 12
—%% -nn-1Z=0
(3.13)
0 d®’R
Rdo®
The first equation of Eqs (3.13) is the Gegenbauer equation (cf Happel
and Brenner, 1985), solutions of which are the Gegenbauer functions of de-

gree (—1/2)

n(n —1)R — pA’R =0

Z(¢) = In({) + Hn(Q) (3.14)

of the first I,,(¢), and the second kind H,(¢), of order n.
The second equation of Egs (3.13) (cf Kamke, 1976) is the Bessel modified
equation of the solution

R(0) = \/(0)Zn_12(i00) (3.15)
where Z,,_, /5 denotes the sum of the Bessel functions
Znyyo(iz) = Cilp_yja(2) + Co Ky ja(2) (3.16)

Note, that the solution derived by Rambkissoon and Majumdar (1976) may be
obtained by putting into Eq (3.16) n = 2.
Upon collecting the results we find as possible solutions of Eq (3.11)

V2= Anln 1 j2(0NIn(C) (3.17)

n=2

In spite of the fact that ! is the well known general solution of the classical
case (cf Happel and Brenner, 1985) in accord with (3.2), a complete solution
regular in the flow field for the stream function in the spherical coordinates
reads

Uy = Y [ Bro ™ + Do ™™ + Anly 1o (0N 1 (C) (3.18)
n=2

Ayn, B, and D, are unknown constants which will be determined from the
equations resulting from the non-slip boundary conditions on the surface of
the sphere.

Before, that we write the formula for the microrotation, Eq (2.8), some
simplifications should be made. From Egs (3.3) it follows (cf Ramkissoon and
Majumdar, 1976) that

Lyw=Lwt+ ) o2 o L= \Lhe? = )\ (3.19)
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Substituting Eqgs (3.2) and (3.19) into Eq expression (2.4), yields

w = %(Llwl + 6w?) (3.20)
;
where
5= X1+ (“_”)A?) (3.21)
Ii

From the above it follows that the microrotation vector w can be written as

[Buo™*! + ATy 1 (00| In(€) +

g
1
K

2

3
I}

(3.22)

+ [B(a)e_az(az) + JG(a)e_‘s"] Ji(ar) da

Eq (3.2) is written now in mixed coordinates: the cylindrical coordinate system
and the spherical coordinate system. In order to differentiate Eq (3.2) and
impose the no-slip conditions along the wall we have to employ the relation
between the spherical and cylindrical coordinates

1 Z
Vr? 4 22
We denote by u,, u,, wr, w, the velocity components derived from Eqs

(2.5) after substituting for the stream functions ¥, (3.18) and ¥, (3.10),

respectively.
After differentiation one obtains the formulae for the axial and radial com-

ponents of velocity v, and v,

o= Vr?+ 22 6 = cos” (3.23)

o0 o0
vr = _(BuBrn + DpDrn + AnArn) +/<5' o, z)ad) (ar) da = uy + w,
n=2
’ (3.24)
00 o0
02 = 3" (BuBun + DuDin + Anen) + [ Floy )adolar) da = us +w, = U
n=2 0

and for microrotation

w—ZB Bon + An A0n+/g (@, 2)ad) (ar) do (3.25)
n=2
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The function A, Brn, ..., Dyn, ..., G are listed in Appendix Al.
Thus, the boundary conditions (2.2), which should be satisfied by the
velocity v on the wall yield

Up = — Wy u, = —w, + U (3.26)

The fact, that the vorticity vector ¢ has the form (0, (,0) gives (cf Ramkissoon
and Majumdar, 1976)
(R=LV¥ (3.27)

which allows us to write the boundary conditions (2.3); for the microrotation
w vector as

1 1
g(Lllﬁ‘ + 60?) = aing(!PQ + oY (3.28)

The Egs (3.26) and (3.28) can be easily inverted and integration can be per-
formed using the Hankel transforms. It is

00 o0
%, 29) /tZ[B Brn(t, 20) + ApArn(t, 20) + DaDrn(t, 20)|J1 (at) di
n=1
000 N
azo /tZB B.n(t, 20) + AnAzn(t, 20) + DpDonl(t, z0)] Jo(at) dt
n=1
0 (3.29)
o0
G%(a, 29) = —/ U1 = 01)BaBon(t 20) + (1 — 01) An Aon(t, 20) Jo(at) dt
0 n=1

These integrals for some functions can be calculated analytically. Let us de-
note by

o0
x a’20| (n- l) —a|zo|
B = E)/ 1Byn(t, 20) 1 (k) dt = n'( - ) o
o0
(n-1)
B = /thn(t 20)Jo(at) dt = -2 , (@)"e‘w0|
5 n: Z0
o0
D = —/tDm(t,zo)Jl(at) dt =
0

(3.30)

= = (A el (20 - )l — i - 2)
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o0

D;n = _/tDzn(t,ZO)Jo(at) dt =
0
_a(”_3) (a|20|

)"eml=0l[(2n ~ 3)alz| — (n - 1)(n - 3)

n! 20

Using this notation it is obvious that the functions A}, A7, calculated nu-
mericaly. Then the components w,, w, can be now rewritten as

o
= Z BnWBrn + DnWDrn + ATLW-Arn
n= (3.31)
(o)
= Z BnWan + D WDy, + AnW-Azn

n=2

The functions WB,,,, WD, WB,,, WA,, are listed in Appendix A2.

Thus, substituting the above formulae into Egs (3.24) and (3.25) one ob-
tains the velocity fields wv., v, and microrotation w, however, still in terms
of unknown coefficients B,, D,, 4,

o]
=Y Bu(Bin + WBp3) + Dp(Drn + WDr) + Ap( A + WA)
;

(3.32)

o6}
Z Bon + WBon) + ‘D (Don + WDOTI) + An(-Aon + W'AOTE)

In order to obtain a unique solution, we should combine the boundary
conditions imposed on the moving particle (2.2) with Eqgs (3.32) at a finite
number of discrete points on the sphere. Then, after truncating the infinite
series we solve the derived equations for B,,, D,, A,.

This step finishes the procedure of finding solutions to the considered pro-
blem. We can see that the three material constants of micropolar fluid; i.e.,
1, K, v and the form of boundary conditions on microrotation vector w affect
values of the coefficients written above.

From the relations (3.32) it is possible to observe that the velocities and
microrotation in the flow field depend on the three material constants pu, ,
~ and on the boundary conditions for the microrotation as well.
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The drag force acting on the sphere can be obtained by the use of a stan-
dard integral formula, but evaluation of it is often troublesome problem. Ram-
kissoon and Majumdar (1976) derived the elegant formula for a drag force
acting on an axially symetric body and we employ it in the paper. We have

_ .Y
D = 47 (2u + k) pl_l}go o) (3.33)
Using this formula one can find the drag on any axially symmetric body from
the knowledge of the stream function and a simple limiting process.
Using the formula for ¥ given by Eqs (3.18), (3.10) to (3.33) as a result

we obtain
D =27UQ2u + x)Dy (3.34)

It should be noted that the drag is affected by the sphere radius, translation
velocity, all material constants of the micropolar fluid and form of the boun-
dary conditions to be satisfied by the microrotation vector on the wall. The
latter can be observed from the solution procedure for obtaining the unknown
constants.

The drag force acting on the sphere moving towards the wall can be also
expressed using the drag correction factor dc as

D
de = — 3.35
c= 75 (3.35)
where P ) \
pu - 57 a(2p+ K)(p+ £)(1 + ad) (3.36)

K4 2u+ 20 p + 20k

is the drag force acting on a sphere in unbounded region, derived by Ramkis-
soon and Majumdar (1976).

4. Numerical results and conclusions

The algorithm was implemented in Fortran and run on an IBM Pentium
160 computer. The unique feature of the approach consists in the fact that
the convergence and accuracy of the solution could be controlled simply by
selecting the proper set of test points on the surface of the spheres. Because
the ”best” collocation criterion does not exist a priori (cf Kim and Karilla,
1991), the scheme for arrangement of the collocation points on the surface of
the sphere follows Ganatos et al. (1980) in which the coresponding problem for
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the Newtonian fluid is studied. More, the calculations of the wall correction
factor dc in this study have been made using the set of points: 0°, 45°, 90°,
1329, 145°, 175°, 177°, 180°.

It is worthwhile to note that owing to the nature of the problem each bo-
undary point represents a ring. To study this algorithm a series of calculations
of the force D, see Eq (3.34), for various rheological parameters of the fluid
and the nondimensional distances dis = ¢/a between the sphere and wall has
been made.

22

dCZO— e—o—o Ganatos et al. (1980)

=2
KIp=15

121 /=05

1 2 3 4 3 S B 5 10
dis=cja

Fig. 2. Comparison between the results for different values of parameter x/p and
Newtonian fluid (Ganatos et al. 1980); o) = a2 =03,y =1

The results of calculations are presented and compared with those obtained
for a corresponding problem for the Newtonian fluid (cf Ganatos et al., 1980).
Because the corrector factor dc is given only for selected parameters dis (cf
Ganatos et al., 1980), the same values of dis were used in this test. The results
are plotted in the Fig.2 and Fig.3. The curves show the force D acting on the
translating sphere versus its position dis.

To study the effect of the fluid reological parameters on the wall correction
factor the results in Fig.2 are plotted for variable ratio «/u and constant
parameters <y and «; = ay. In Fig.3 the wall corector factor is depicted for
the constant ratio x/u and variable parameter <y. From the qualitative point
of view, when we take into account the distance of the sphere to the wall,
it can be noticed that the wall corrector factor reveals a similar behaviour
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de +—o—o Ganatos et al. (1980)

56 7 8 9 1o
dis=c/a

Fig. 3. Comparison between the results for different values of parameter + and
Newtonian fluid (Ganatos et al. 1980); a; = a2 = 0.3, k/p = 0.5

de o—o—o Ganalos et al. (1980)
201 Kucaba-Pigtal (1999)

6F

dis=cja

Fig. 4. Comparison between the results for different values of parameter «/u and
Newtonian fluid (Ganatos et al. 1980) as well as asymptotic solution
(Kucaba-Pietal, 1999)
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for both the micropolar and classical fluid. Clearly, the influence of the fluid
rheological properties on the force can be observed, i.e., the force D increases
as the value of the ratio K = k/u grows.

In spite of the fact that the plane wall can be considered as the limit of
the sphere with infinite radius, the results are compared with those obtained
by Kucaba-Pigtal (1999) for converging spheres. They are shown in Fig.4. The
differencies can be explained by the fact, that the asymptotic expression for
the force correct to O(elne¢) term contains only the two material constants of
micropolar fluid p, k. When the distances dis are small, the influence of ~y
can be neglected.

The following conclusions can be drawn:

e The collocation method presented in the paper yields the solution of
the flow field for the sphere moving towards the wall. It can be easily
extended to cover the problem of creeping flow past a sphere moving
between parallel walls.

e The material constants p, x, v of micropolar fluid and the form of
boundary conditions to be satisfied by the microrotation vector w on
the rigid surfaces have a considerable influence on the force acting on
the sphere.

e The force appearing in a micropolar fluid is greater than that in a clas-
sical fluid and increases with x/p. This phenomenon was also reported
by Ramkissoon and Majumdar (1976).

Appendix

A1l. Functions Brn, Drn, Bon, Dan, EH e, ), Fi(a,z) which appear in Eqgs
(3.24) and (3.25) can be written as follows

1 1 z 2 2 z
Arm = ———I_1p-1 _ Lo (2
n 721 52 n—l/?T n+1< ) iy ) 72+ 22 n+3/2r n( T, )

B - n+1 1 ( z )
o/ +z4)nT it Vit 22

D, = n+1 1] ( z ) 2 21n< z )

N GCET = NV 22 A ) e T\t g 2
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2 Z 1 Z
.Azn = mln—l/’zln(m) + \/mlfl“'w‘zp’q‘( /72 + 22)
1 Z
Bon = V(r? 4 22)n T Pn(\/v"2 + ZQ)

2 z 1 z
Dz = I = + P =
Ve n<\/7"2+z2) V(r2 + 221 n<\/72+22)

E(a,z) =Be *—=D(1l—o0)e™* + Gze™®
Fla,z) = Be™® + Doe™ " + Ge™®
Gla,z) = Be™* + Ge™®

where: ¢ = ac, z = Va? + A% and

_ “2uyo+us(o—14z0)+uz(c—1—-z0) _,

B = e
c—1+zo
- -1
D ug + uz(x )+u1e_"
c—1+4+zo
G —UQO'—U:;(.’L'—'].)‘l"lL].O'e_Qa_I
—c—14z0

and wu, denotes &(a,—c), uo denotes F(a,—c), us denotes G(a, —c) from
Eqgs (3.29) for 2o = —c.

A2. The functions which appear in Eqs (3.31) read

o0

WBpp = — /[(1 —0)e B, + Ue_“B:na} Ji(ar) da
0
o0

WEBpp = — /[—oe_"B:n + (o + 1)e_"B;na} Jo(ar) do
0
o0

WD, = — / (1= 0)e=oDy, + 0e~7 D} Ji(ar) do
0
o0

WD,y = — / [—Ue_aD:n + (o + 1)e_"D;‘na] Jo(ar) da
0
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Przeplyw wokdét czastki kulistej poruszajgce] sie w kierunku $cianki
w plynie mikropolarnym

Streszczenie

Rozwigzane zostalo zagadnienie wyznaczenia pola przeplywu i dzialajacej sily na
czastke kulista poruszajaca sie w kierunki §cianki w plynie mikropolarnym. Skonstru-
owano metode analityczno-numeryczng w oparciu o metode kolokacji. Rozpatrzono
przeplyw quasistacjonarny w przyblizeniu Stokesa.

Wykazano, ze istotny wplyw na warto$¢ sily maja zaréwno stale materialowe
plynu mikropolarnego p, &, <y jak 1 postaé¢ warunkéw brzegowych, jakie spetnia wektor
mikrorotacji na ograniczajacej powierzchni.
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