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Numerical investigations have been performed for the flow past square-section cylin-
ders with a spanwise geometric deformation leading to a stagnation face with a
sinusoidal waviness. The computations were performed using a spectral/hp element
solver over a range of Reynolds numbers from 10 to 150.

Starting from fully developed shedding past a straight cylinder at a Reynolds
number of 100, a sufficiently high waviness is impulsively introduced resulting in
the stabilization of the near wake to a time-independent state. It is shown that
the spanwise waviness sets up a cross-flow within the growing boundary layer on
the leading-edge surface thereby generating streamwise and vertical components
of vorticity. These additional components of vorticity appear in regions close to the
inflection points of the wavy stagnation face where the spanwise vorticity is weakened.
This redistribution of vorticity leads to the breakdown of the unsteady and staggered
Kármán vortex wake into a steady and symmetric near-wake structure. The steady
nature of the near wake is associated with a reduction in total drag of about 16% at
a Reynolds number of 100 compared with the straight, non-wavy cylinder.

Further increases in the amplitude of the waviness lead to the emergence of hairpin
vortices from the near-wake region. This wake topology has similarities to the wake
of a sphere at low Reynolds numbers. The physical structure of the wake due to
the variation of the amplitude of the waviness is identified with five distinct regimes.
Furthermore, the introduction of a waviness at a wavelength close to the mode A
wavelength and the primary wavelength of the straight square-section cylinder leads
to the suppression of the Kármán street at a minimal waviness amplitude.

1. Introduction

Bluff bodies are found in many engineering applications, including heat exchangers,
risers in marine technology, road vehicles, buildings and bridges. Their wakes can gen-
erate large unsteady forces which have the potential to violently damage the structural
integrity of the bluff body. For this reason, many methods have been proposed over
the recent years to control the wake vortex dynamics with the aim of weakening the
vortex shedding and reducing the amplitude of the fluctuating lift as well as the drag.

Nominally two-dimensional methods such as splitter plates (Roshko 1955; Bearman
1965) and base bleed (Bearman 1967) have been successfully used in the past to
suppress vortex shedding and reduce the base drag. These studies suggest that the
effect of the splitter plate and base bleed is to delay the upper and lower separated
shear layers interacting with each other and hence they increase the formation length
(position at which the vortices are fully formed or, in a time-average sense, the length
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of the mean recirculation region). As discovered by Bearman (1965), the base pressure
varies linearly with the inverse of the formation length. Hence, the increase in the
formation length results in a reduction of the suction near the base of the cylinder
and hence reduces the base drag.

Three-dimensional methods that achieve similar effects have also been proposed.
Naumann, Morsbach & Kramer (1966) showed that vortex shedding could be sup-
pressed by using broken and corrugated separation wires as well as a forced step in
the separation line along the span of a circular cylinder at a supercritical Reynolds
number of 500 000. Tanner (1972) continued the work of Naumann et al. (1966) by
introducing a broken separation line along the trailing edge of a blunt aerofoil. He
applied a stepwise deformation to the trailing edge and observed that by increasing
the depth of the steps, larger base drag reductions are obtained. The maximum drag
reduction obtained using this method was 64%. However, no explanation of the aero-
dynamic mechanisms which are responsible for the drag reduction was given. The
study of this drag reduction technique (segmented trailing edge) was then continued
by Rodriguez (1991) and Petrusma & Gai (1994, 1996).

Bearman & Tombazis (1993) and Tombazis & Bearman (1997) investigated the
three-dimensional features of the wake behind a blunt-based model with a wavy
trailing edge at a Reynolds number of 40 000. For a two-dimensional body at high
Reynolds numbers, it was noted that vortex dislocations appeared in the wake
apparently randomly in time and spanwise position. However, they observed that
the introduction of a spanwise waviness at the trailing edge fixed the positions of
these vortex dislocations along the span of the body. They found that by increasing
the wave steepness, defined as the ratio of peak-to-peak wave height divided by the
wavelength, the base pressure was increased which resulted in a drag reduction. The
maximum drag reduction of 34% at a Reynolds number of 40 000 occurred for a
wave steepness of 0.14 (the non-dimensional wavelength, defined as the wavelength
divided by the base height, was equal to 3.5). Based on these facts, they concluded
that encouraging the formation of dislocations in the wake reduces the drag.

More recently Bearman & Owen (1998a, b) continued the above work but this time
applied the waviness at the leading edge only for rectangular cross-section bodies.
Wavy flat plates were also investigated. They observed that a mild disturbance (wave
steepness of only 0.06 to 0.09) resulted in the complete suppression of vortex shedding
and substantial drag reduction of at least 30% at a Reynolds number of 40 000 (the
non-dimensional wavelength was equal to 5.6). Also, a large variation in the wake
width across the span was reported. The reasons for these observations are not yet
understood and are the subject of the present work.

The aim of the current work is to carry out well-resolved numerical simulations
of the flow past three-dimensional bluff bodies with a sinusoidal stagnation surface.
The geometries used in this work have both front and rear faces sinusoidal. However,
in the work of Bearman & Owen (1998a, b), only the front face was wavy for
the rectangular cross-section bodies. In their experiments, similar results were also
obtained with a flat plate which has both front and rear faces wavy. This latter
result would suggest that the wavy trailing edge does not influence the qualitative
observations made during the experiments of Bearman & Owen (1998a, b). It is
found that accurate computations obtained directly from the Navier–Stokes equations
greatly contribute to an understanding of the fundamental issues regarding the vortex
dynamics occurring in the wake of such complex three-dimensional bodies. Most of
the simulations in this paper have been done at a Reynolds number of 100 although
for purposes of comparison additional Reynolds numbers of 10, 30 and 150 were used.
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Figure 1. Schematic of the cylinder with the waviness at both the leading and trailing edge
surfaces.
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Figure 2. Specification of the waviness of the centreline (plan view).

This paper is outlined as follows. Section 2 details the problem definition and in-
troduces the non-dimensional parameters. In § 3, we introduce the mapping employed
to handle the waviness. We include more details about the numerical method as well
as a resolution study for the flow investigations in the Appendix. In § 4, we present
the main results of the effect of varying the amplitude of the waviness in terms of
the forces and flow regimes. A physical interpretation of the non-dimensional param-
eters describing the waviness is introduced and the effect of the initial conditions is
also investigated. In this study, the method proposed by Jeong & Hussain (1995) to
identify vortical regions is used to elucidate the wake topology. Finally, we present a
discussion in § 5 and conclude in § 6.

2. Parametric definition of the geometric body

We are interested in the flow past a square-section cylinder with a waviness in both
the front and rear faces as shown in figure 1. The wavy cylinder is defined by the
peak-to-peak wave height W , the wavelength λ and the base height D. The free-stream
velocity U∞ is aligned with the x-axis (streamwise direction), the span of the cylinder
is aligned with the z-axis (spanwise or cross-flow direction) and finally the y-axis will
be denoted as the vertical direction. We define the Reynolds number based on the
base height D, as Re = U∞D/ν where ν is the kinematic viscosity of the fluid. A plan
view of the waviness of the centreline (defined as a line through the centroid of the
body along the span) is shown in figure 2. The maximum denotes the most upstream
cross-section (peak), while the minimum denotes the most downstream cross-section
(valley). Furthermore, with reference to figure 2, the waviness of the centreline can be
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expressed mathematically in the following form:

ξ(z) = −
W

2
cos

(

2π

λ
z

)

. (2.1)

2.1. Dimensionless length scales

In contrast to the standard flow past a non-wavy cylinder, we have now introduced
two extra length scales W and λ. Whilst the non-wavy case can be completely
characterized by the Reynolds number based upon the base height D, we now have
a further two independent length parameters that we choose to define as W/λ and
λ/D. Further, differentiating equation (2.1) with respect to z gives an expression for
the slope of the waviness dξ/dz:

dξ

dz
= π

W

λ
sin

(

2π

λ
z

)

= As sin

(

2π

λ
z

)

(2.2)

where As = πW/λ is the maximum magnitude of the slope and depends on W/λ
which is defined as the wave steepness by Bearman & Owen (1998a, b). The slope of
the waviness, which is proportional to the wave steepness, reaches a maximum value
of As at the inflection points z = 1

4
λ, 3

4
λ shown in figure 2.

3. Computational method

A parallel spectral element code NεκTαr (Sherwin & Karniadakis 1995; Warbur-
ton 1998; Karniadakis & Sherwin 1999) was employed to solve the three-dimensional
incompressible Navier–Stokes equations. Spectral element methods have been widely
used in the past for the prediction of bluff body flows (Karniadakis & Triantafyl-
lou 1992; Henderson & Karniadakis 1995; Henderson & Barkley 1996; Thomp-
son, Hourigan & Sheridan 1996; Henderson 1997) due to their high temporal and
spatial accuracy. Solution refinement can be obtained either by refining the mesh
(h-refinement) or increasing the polynomial order P (P -refinement). A brief overview
of the algorithm as well as a convergence study is presented in the Appendix. Before
proceeding to the results section, we will discuss the use of a geometric mapping
employed in the current work.

3.1. Mapping from a wavy to a straight cylinder

An efficient approach to the computation of the flow past three-dimensional bodies
(as far as CPU time is concerned) is possible when the cross-section of the body is
constant along the span, such as the geometry shown in figure 1. In this approach,
a spectral element discretization is used only in the (x, y)-plane while a Fourier
expansion is used in the spanwise z-direction. Hence, periodic boundary conditions
have to be specified in the spanwise direction. This method is often referred to as the
spectral element/Fourier method. Only a two-dimensional mesh is required which is
a considerable advantage when compared to a full three-dimensional approach.

The waviness is introduced via a mapping previously adopted by Newman (1996)
and Evangelinos (1999). The mapping transforms the deformed body into a non-
deformed body as shown in figure 3. Therefore, in the transformed coordinate system
(x, y, z) the geometry appears straight. In an inertial reference frame (x′, y′, z′), the
non-dimensional Navier–Stokes equations can be written as

∂u′

∂t
+ (u′

· ∇
′)u′ = −∇

′p′ +
1

Re
∇′2u′, (3.1)
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Figure 3. Transformation of the computational domain from an inertial system x′, y′, z′ where the
domain boundaries are deformed to the non-deformed domain x, y, z.

∇
′
· u′ = 0, (3.2)

where u′ = u′i′ + v′j ′ + w′k′ is the velocity vector, p′ is the static pressure, Re is
the Reynolds number and ∇

′ is the gradient operator in the inertial reference frame.
Lengths are scaled by the cylinder base height D and the velocities by the free-stream
velocity U∞. The transformation is then defined as:

x = x′ − ξ(z′), y = y′, z = z′, (3.3)

where ξ(z′) is the streamwise displacement of the cylinder given by ξ(z) =
− 1

2
W cos ((2π/λ)z). By differentiating (3.3) and applying the chain rule, the veloc-

ities and pressure are then transformed as: u = u′ − w′∂ξ/∂z, v = v′, w = w′ and
p = p′. The Navier–Stokes and continuity equations in terms of the transformed
coordinates and velocities then become (see Newman 1996 for more details)

∂u

∂t
+ (u · ∇)u = −∇p +

1

Re
∇2u + A(u, p, ξ),

∇ · u = 0,







(3.4)

where A(u, p, ξ) is the d’Alembert acceleration term introduced by the non-inertial
transformation (3.3). The x-, y- and z-components of A are given by
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An alternative interpretation of A is as a forcing term to the flow past a straight
cylinder due to the wavy geometry. As can be seen the Ax and Az mapping terms
have both inviscid and viscous parts, while the Ay term has only a viscous part.
Furthermore, the inviscid mapping term of Ax contains the convective derivative of
the z-component of equation (3.4). Hence by substituting the right-hand side of the
z-component of equation (3.4) into the inviscid part of Ax, this mapping term can be
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rewritten as
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It can be appreciated that the inviscid mapping terms have two contributions from
the pressure gradients in the spanwise and streamwise directions. One can write out
these terms using equation (2.1) for the displacement in the ξ-direction:
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We therefore see that these terms depend on the wave steepness as well as the spanwise
and streamwise pressure gradients which are significant near the body.

4. Results

As we have previously mentioned there is a large three-dimensional parameter
space based upon Re, W/λ and λ/D. A series of computational investigations have
been carried out at a Reynolds number of 100 for different values of W/λ and
λ/D. All these investigations were started from a fully developed unsteady flow past
a straight, non-wavy cylinder. The physical conditions can therefore be interpreted
as instantaneously introducing the waviness on a straight cylinder. The flow past a
straight, non-wavy cylinder is discussed in § 4.1 and can be considered as the base
case to which the introduction of the waviness can be compared. In § 4.2, we will
discuss the effect of the parameters W/λ and λ/D on the lift and drag forces on
the body. Using the force characterization and the vortex structure identification of
the wake (Jeong & Hussain 1995), we will define five distinct flow regimes in § 4.3.
To illustrate these various regimes, we have focused our studies on a fixed λ/D of
5.6 and varied the parameter W/λ. In § 4.4, we summarize the regimes for a broader
parametric space of 0 < λ/D < 11 and 0 < W/λ < 0.25. In § 4.5, we will address
the influence of the initial conditions on the flow. Finally, in § 4.6, by considering
the vorticity contours in the upper and lower shear layers, we introduce a physical
interpretation of the length parameters W/λ and λ/D.

The wake topology is illustrated using the method proposed by Jeong & Hussain
(1995). This method identifies vortical regions by locating a pressure minimum in
the plane. By neglecting the influence of unsteady straining and viscous effects, they
define a vortex core as a connected region containing two negative eigenvalues of
S

2 + Ω2 (where S and Ω are respectively the symmetric and anti-symmetric parts of
the velocity gradient tensor ∇u). If λ1, λ2, λ3 are the eigenvalues and λ1 > λ2 > λ3, the
new definition is equivalent to the requirement that λ2 < 0 within a vortex core. A
value of λ2 = −0.01 was used to extract all the iso-surfaces in this study; vortical
regions are expected to be within these iso-surfaces.
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Figure 4. (a) Drag and lift coefficient history for the base case; (b) perspective view from above
showing the two-dimensional wake at tU/D = 42.58 (Re = 100). Note that the body is shown using
a wire frame.

4.1. Straight cylinder

A three-dimensional simulation was performed past a straight, non-wavy square-
section cylinder at Re = 100. The spanlength of the domain was equal to 5.6D. The
time history of the lift and drag forces as well as a perspective view of the wake
topology are given in figures 4(a) and 4(b), respectively. It can be clearly seen that the
wake topology consists of strong spanwise vortex tubes identifying the well-known
Kármán street. The values of the global flow coefficients are: C ′

L = 0.186, St = 0.146
and CD = 1.486.

Recent experiments reported in Sohankar, Norberg & Davidson (1998) place the
critical Reynolds number for the onset of vortex shedding near Rec = 47 ± 2. Beyond
this Reynolds number, the flow is unsteady and vortex shedding occurs in the near
wake. An interesting flow pattern then develops on the top and bottom surfaces with
increasing Reynolds number as shown in the simulations of Robichaux, Balachandar
& Vanka (1999). In this work, they show that at low Reynolds numbers, the shear
layers remain attached on the top and bottom surfaces. The shear layers then separate
from the trailing edge, forming the Kármán vortex street in the wake. For the base
case considered in this section, the shear layers always separate from the trailing edge.
As the Reynolds number is increased to around Re = 120, the shear layers separate
from the leading edge but reattach a short distance downstream, thus forming small
unsteady recirculating cells on the top and bottom surfaces. Finally, at around a
Reynolds number of 150, the shear layers separate from the leading edge without
reattachment.

The first three-dimensional transition in the wake of a circular cylinder, referred
to by Williamson (1996b) as mode A, occurs at a Reynolds number near Re = 194.
Mode A appears as a waviness of the spanwise vortices with a wavelength of around
3–4 diameters and is characterized by the formation of vortex loops that connect the
spanwise Kármán vortices. The formation of mode A results in a sharp drop in the
Strouhal number as well as a drop in the base suction which leads to a drag reduction.
As the Reynolds number is further increased the wake becomes unstable to another
type of three-dimensionality known as mode B at Re = 230–250. This mode has
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finer-scale streamwise vortices with a smaller wavelength, usually of the order of one
diameter. There is now excellent agreement between computations and experimental
measurements of the critical wavelength and Reynolds number (Barkley & Henderson
1996; Williamson 1996a, b). Another three-dimensional instability, mode C, has been
proposed by Zhang et al. (1995) for Re = 170–270 with an intermediate wavelength
of 1.8 diameters. The numerical simulations of Zhang et al. (1995) show that this
mode C appears only in the presence of an interference wire placed close to and
parallel to the cylinder axis. It therefore seems that by externally forcing the wake,
other three-dimensional instabilities can be excited.

For the square-section cylinder, there is a more or less complete absence of experi-
mental data for the transition process to three-dimensionality. On the computational
side, Robichaux et al. (1999) performed a Floquet stability analysis (similar to the one
done by Barkley & Henderson 1996) for the square-section cylinder. At a Reynolds
number of 150 the wake was found to be stable to three-dimensional perturbations.
They reported a long-wavelength, mode A, instability at a Reynolds number of about
160 but do not mention the associated spanwise wavelength. At a Reynolds number
of 175, they found a range of unstable wavenumbers. The wavenumber with the max-
imum growth rate corresponds to a wavelength of 5.07 diameters. As the Reynolds
number is increased to 225, three different unstable wavenumber bands are found.
The first wavenumber band corresponds to the long-wavelength, mode A, with a
wavelength of 5.5 diameters and the last band corresponds to mode B with a shorter
wavelength of 1.2 diameters. The most amplified wavenumber for the intermediate
band corresponds to a wavelength of 2.8 diameters. This wavelength was referred
to as mode S in the paper. It should be noted that no precise determination of the
critical values of the wavelength and Reynolds number for the onset of mode A and
mode B was prescribed in this work.

In summary, the flow past a straight, non-wavy cylinder at Re = 100 is stable to
three-dimensional perturbations and the shear layers on the top and bottom surfaces
always separate at the trailing edge. The effect of introducing the spanwise waviness
onto this base case will now be discussed in terms of the fluid forces and wake
topology.

4.2. Force coefficient history

The results for the variation of the mean drag coefficient CD and the root mean
square of the total lift coefficient C ′

L with respect to the wave steepness W/λ are
summarized in figures 5 and 6 for values of λ/D less than and greater than 5.6,
respectively. Note that the forces are normalized by the free-stream dynamic pressure
and the projected area of the body to produce the drag and lift coefficients. Out of
all the tests, the maximum drag reduction occurs for λ/D = 5.6,W/λ = 0.03 yielding
a drag reduction of 16% when compared to the straight, non-wavy cylinder. It is
interesting to note that for the particular case of λ/D = 5.6, the drag progressively
drops until a minimum is reached at W/λ = 0.03 but then as the wave steepness
is further increased the drag increases slightly. It is shown in the next section that
this slight increase in drag is associated with the periodic shedding of anti-symmetric
hairpin vortices from the steady near-wake region. Similar features can also be seen
for λ/D = 2.8, 4.0. For low values of the wavelength, e.g. λ/D = 1.0, there is no
substantial effect on the drag in the wave steepness range considered.

To check the results, we also performed simulations using a cylinder with two
wavelengths for the cases with λ/D = 2.8, W/λ = 0.09 as well as λ/D = 5.6,
W/λ = 0.09. These tests did not show any difference from a single wavelength run.
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Figure 5. Variation of (a) the mean drag coefficient CD and (b) the root mean square of the total
lift coefficient C ′

L with respect to the wave steepness W/λ for values of λ/D less than or equal to
5.6.
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Figure 6. Variation of (a) the mean drag coefficient CD and (b) the root mean square of the total
lift coefficient C ′

L with respect to the wave steepness W/λ for values of λ/D greater than or equal
to 5.6.

The magnitude of the root mean square of the total lift coefficient C ′
L is a good

indicator of the level of unsteadiness and anti-symmetry present in the near-base
region. As can be seen, the level of the lift force drops significantly for the λ/D =
2.8, 4.0, 5.6 cases, indicating a reduction of unsteadiness and anti-symmetry in the
near-base region. C ′

L is zero for three particular points (λ/D = 2.8, W/λ = 0.2),
(λ/D = 4.0, W/λ = 0.06) and (λ/D = 5.6, W/λ = 0.03) which also correspond to the
minimum level of the drag for each respective wavelength. Further increase in wave
steepness beyond the point of zero C ′

L for each wavelength results in a slight increase
in the lift coefficient which is consistent with the appearance of the periodic shedding
of unsteady hairpin structures to be discussed in § 4.3. For wavelengths greater than
5.6, i.e. λ/D = 8, 10 (see figure 6), the total lift coefficient drops progressively with
increasing wave steepness W/λ without passing through a state where C ′

L is zero.
Similarly, the drag drops progressively with increasing W/λ until a minimum drag
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Figure 7. (a) Drag and lift coefficient history for regime I. The two-dimensional simulation
without the waviness is shown until tU/D = 49.19, after that, the three-dimensional simulation
with the waviness is shown. (b) Perspective view from above showing the three-dimensional wake,
tU/D = 129.19. Note that the body is shown using a wire frame.

level is reached. In addition, it can be observed from figure 5(b) that at a fixed
level of wave steepness W/λ, the reduction in C ′

L increases as the wavelength λ/D
increases from 1.0 to 5.6. However, above the critical wavelength of λ/D = 5.6, the
opposite occurs, i.e at a fixed value of the wave steepness C ′

L starts to increase from
its minimum value at λ/D = 5.6 as the wavelength increases from λ/D = 8.0 to 10.0
(see figure 6b).

4.3. Flow regimes

Based on the previous subsection, it is clear that the flow dynamics can be classified
into distinct regimes characterized by the force coefficient history. We will supplement
this classification with the near-wake vortex structures. The results can be best
summarized by looking at a particular wavelength and progressively increasing the
wave steepness. To illustrate this, we will primarily consider the particular case of
λ/D = 5.6.

4.3.1. Regime I – (λ/D = 5.6, W/λ ≈ 0–0.015, Re = 100)

The spanwise waviness has a small effect on the lift and drag forces and perturbs
the Kármán vortex street into a three-dimensional state (see figure 7). The unsteady
and anti-symmetric shedding still occurs as can be seen from the periodicity of the
lift and drag forces. The values of the global flow coefficients are: C ′

L = 0.173,
St = 0.145 and CD = 1.481 for e.g. W/λ = 0.01. As can be seen, these values have
not significantly changed (less than 3%) when compared to the base case without
the waviness (C ′

L = 0.186, St = 0.146 and CD = 1.486). From figure 7(b), a three-
dimensional vortex street can be seen with a small curvature appearing in the top
shear layer during the formation of the Kármán vortices in the near-wake region.
Further downstream, the Kármán vortices become distorted in the spanwise direction.

4.3.2. Regime II (type A) – (λ/D = 5.6, W/λ ≈ 0.016–0.022, Re = 100)

The global flow coefficients are: C ′
L = 0.091, St = 0.134 and CD = 1.418 for e.g.

W/λ = 0.02. As can be seen, the global flow coefficients are noticeably altered by the
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Figure 8. (a) Drag and lift coefficients history for regime II (type A). (b) Perspective view from
above showing the three-dimensional wake, tU/D = 208.19.

waviness, indicating a change in the near-wake structure of the flow (see figure 8). The
lift and drag have dropped by 51% and 4.5%, respectively. The shedding frequency is
also reduced by 8.4%. In addition, C ′

D has dropped by at least one order of magnitude.
From figure 8(b), it can be seen that three-dimensional structures are appearing in the
form of streamwise vorticity which connects adjacent spanwise vortices. Downstream
of the geometric inflection points, the spanwise vortices have become highly distorted
in the regions where the streamwise vorticity originates. In the formation region, there
is a greater spanwise curvature of the top and bottom shear layers which leads to a
direct interaction of the top shear layer and the first spanwise vortex of the bottom
half of the wake (see figure 8b). In this case, the waviness reduces the magnitude of
the forces but the near wake remains unsteady and three-dimensional with a reduced
shedding frequency.

4.3.3. Regime II (type B), Re = 100

The previous regime II (type A), only appears when the parameter λ/D is less
than or equal to about 5.6. Above this value, another type of regime II appears with
a low-frequency modulation. Considering the case where (λ/D,W/λ) = (10, 0.03),
initially, the drag and lift drop simultaneously (see figure 9) and it is interesting to
note that the lift force drops linearly in time. After this decay, the lift and drag
saturate in a time-periodic state with a low-frequency modulation. The global flow
coefficients are: C ′

L = 0.0917 and CD = 1.434. The low-frequency unsteadiness has
a frequency of 0.01 which is approximately 1/14 of the shedding frequency of the
base case (see § 4.1). From figure 9, the flow clearly seems to alternate between two
distinct states. At the maximum drag and lift, the regime is mildly three-dimensional
(9b) with a small curvature appearing in the spanwise vortices, and at the minimum
drag and lift, the wake is highly three-dimensional (9c). This regime seems to be a
combination of regime I and regime II (type A). Furthermore, a spectrum analysis
of the spanwise-averaged lift force clearly demonstrates the presence of two distinct
shedding frequencies as shown in figure 10. The two frequencies are 0.143 and 0.133,
respectively. The higher frequency is associated with the two-dimensional shedding
frequency of the base case and regime I whereas the lower frequency seems to be
associated with the three-dimensional state of regime II (type A). The difference
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Figure 10. Power spectra of the spanwise-averaged lift of figure 9(a).

between these two frequencies, 0.143–0.133 ≈ 0.01, leads to the beating frequency. In
figure 11 we plot the sectional lift force along the span of the wavy cylinder versus
time. We see that the lift force is well correlated along the span near tU/D = 450
which corresponds to a maximum value of the spanwise-averaged lift force shown in
figure 9(a). However, the correlation progressively decreases until tU/D ≈ 425 where
there is a change in phase of the sectional lift along the span. This instant in time
corresponds to a minimum value of the spanwise-averaged lift force. By counting the
number of black bands (corresponding to a negative peak in the lift force), it can be
seen that the middle of the span is shedding at a lower frequency than the extremities.
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Figure 11. The sectional lift coefficient along the span versus time, from tU/D = 400.2 to 500.2, i.e.
during one beating period for regime II (type B). Contour levels between 0.01 and −0.01 are used
to highlight the phase difference. A maximum value of 0.25 is observed during one beating period.
Note that Z/D = 5.0 is the minimum (most downstream cross-section) of the wavy geometry.

The middle is shedding at a frequency of 0.133 and the extremities are shedding at a
higher frequency of 0.143. To accommodate the spanwise variation in the frequency
of vortex shedding, we anticipate a vortex dislocation or split is occurring, leading to
the phase change observed at tU/D ≈ 425. Similar results were observed in the work
of Bearman & Tombazis (1993) and Tombazis & Bearman (1997), where two main
shedding frequencies were detected in the wake, resulting in the occurrence of vortex
dislocations at the boundaries of the cellular vortex shedding.

4.3.4. Regime III (type A) – (λ/D = 5.6, W/λ ≈ 0.023–0.03, Re = 100)

The lift and drag forces drop until the lift force is zero and a time-independent
state is reached (see figure 12a). In this saturated state, the global flow coefficients
are: C ′

L = 0, St = 0 and CD = 1.233. The drag has hence dropped by about 16% and
this is the case where the greatest reduction in drag occurs. The Strouhal frequency
as well as the lift force have become zero which would suggest that the near wake
has become steady. The λ2 iso-surface is symmetric about the centreline with both
vertical and horizontal connections.

4.3.5. Regime III (type B) – (λ/D = 5.6, W/λ ≈ 0.04–0.25, Re = 100)

The flow in the near-base region has a similar symmetry to that of regime III
(type A). The global flow coefficients are: C ′

L = 0.0016, St = 0.082 and CD = 1.245 for
W/λ = 0.1667. These values show a strong decrease in the mean drag and a drop of
two orders magnitude in the lift amplitude when compared to the base case (see § 4.1).
This small fluctuating lift force results in the appearance of a small unsteadiness in the
near wake when compared to regime III (type A). The frequency of this unsteadiness
is nearly half the shedding frequency of the cylinder without the waviness. From
figure 13(b), it can be seen that large unsteady hairpin structures are emerging from the
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Figure 12. (a) Drag and lift coefficients history for regime III (type A). (b) Perspective view from
above showing the vortex dynamics, tU/D = 351.
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Figure 13. (a) Drag and lift coefficients history for regime III (type B). (b) Perspective view from
above showing the vortex dynamics, tU/D = 218.

near-base structure observed in regime III (type A). This wake topology has similarities
to the wake of a sphere at low Reynolds numbers (for example, Johnson & Patel 1999).

4.4. Overview of the parameter space

To obtain an overview of the simulations performed, we investigated the flow regimes
for a broader parametric space 0 < λ/D 6 10 and 0 < W/λ 6 0.25 as shown in
figure 14. The smallest waviness amplitude W/λ to force the flow into regime III
(type A) occurs at around a critical value of λ/D = 5.6. Above this critical value,
only regime II (type B) has been observed and below this critical value only regime
II (type A) has been observed. In addition, below this critical value, only regime III
(type A) occurs but above this value predominantly regime III (type B) has been
observed with increasing values of W/λ.
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regime III (type A) and regime III (type B) occur.

In summary, the flow transition as W/λ is increased for a fixed λ/D can be viewed
as

regime I ⇒ regime II (type A or B) ⇒ regime III (type A or B)

In regime I, a small curvature appears in the top and bottom shear layers during
the formation of the Kármán vortices in the near-wake region. Further downstream,
there is a discernible spanwise deformation of the Kármán vortices. Regime II is the
unsteady transitional regime where the three-dimensional effects are more dominant
in the formation region. A large spanwise curvature appears in the top and bottom
shear layers. Further downstream streamwise vortices associated with the sinusoidal
spanwise deformation of the distorted Kármán vortices are observed. Within regime
II, there is a further distinction between normalized wavelengths above and below
λ/D ≈ 5.6. For λ/D 6 5.6, denoted as regime II (type A), a time-periodic state with
a single frequency is observed. However, for λ/D > 5.6 denoted as regime II (type
B), we observe a beating phenomenon where the wake topology alternates between a
mildly three-dimensional state similar to regime I and a highly three-dimensional state
similar to regime II (type A). Finally, for a sufficiently large waviness amplitude, the
near-base region is steady and the Kármán vortex street is suppressed. This regime is
defined as regime III (type A) and it is in this regime that the greatest reduction in drag
occurs. It was shown that the smallest waviness W/λ to force the flow into regime III
(type A) occurs at around a critical wavelength of λ/D = 5.6. However, for λ/D > 5.6
with higher waviness amplitudes, hairpin vortices are emerging periodically from the
near-base region. In this regime, defined as regime III (type B), a small unsteadiness
appears in the near wake due to the shedding of these hairpin vortices.
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Figure 15. Comparison of the lift and drag coefficient history for the two different initial conditions.
(a) Initial conditions: wavy cylinder started with free-stream conditions (note that in this case the
plot is shown from tU/D = 10); (b) initial conditions: two-dimensional shedding, the restart with
the waviness is done at tU/D = 80.

While the λ/D axis represents the straight, non-wavy cylinder, the axis W/λ is not
easily interpreted physically since by definition along this axis λ/D = 0 making W/λ
infinite for any finite W and D. However, if we consider the case where λ/D = ǫ where
ǫ ≪ D then we expect the waviness to have a minimal effect since the wavelength
of the oscillation will be much lower than any other scale in the problem, especially
since we have limited our observations to W/λ 6 0.25.

4.5. Effect of initial conditions

Observations from on-going experiments of wavy cylinders by J. C. Owen & P. W.
Bearman (private communication, 1999) have raised the issue of the effect of the
initial conditions on the wake structure. To investigate this point, two different initial
conditions for the case of λ/D = 6.0, W/λ = 0.1667 were used. In the first case, the
simulation was started from tU/D = 0 past a wavy cylinder with uniform free-stream
conditions, i.e. (u, v, w) = (1, 0, 0). In the second case, the waviness was instantaneously
applied to the unsteady flow past a square-section cylinder without the waviness, i.e.
the base case (see § 4.1). In both cases, the force history was monitored over time and
the vortex structures extracted at particular instances in time for comparison. Note
that for the second set, slightly different length parameters were used, λ/D = 5.6,
W/λ = 0.1667. The lift and drag coefficient history for both cases is shown in
figure 15. In the first case, the lift is zero for approximately 60 time units but then
grows until it saturates in a time-periodic state. In this saturated state, the values
for the global parameters are: C ′

L = 0.0017, St = 0.085 and CD = 1.244. The lift
amplitude is hence very small, two orders of magnitude less, than the amplitude of
the lift without the waviness present (see § 4.1). Vortex structures were extracted at
tU/D = 56.25 when the lift is zero and tU/D = 303.75, when the lift has saturated
in a time-dependent state. The results are shown in figure 16. It is interesting to see
that during the transient time when the lift is zero, the wake is symmetric about
the centreline and is formed of periodic hairpin structures being shed from the near-
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Figure 16. Perspective view of the vortex structure in the wake at two different times illustrating
the breaking of the symmetry about the centreline. At tU/D = 56.25, the hairpin structures are
symmetric during a transient phase but then the flow saturates in a time-dependent state where the
hairpin structures are anti-symmetric (tU/D = 303.75).

wake region. After a long transient time, the shedding becomes anti-symmetric which
results in the oscillatory behaviour of the lift coefficient history. The force history for
the second initial conditions where the waviness was instantaneously applied to fully
developed shedding past a non-wavy cylinder is shown in figure 15(b) and indicates a
rapid decay in the lift coefficient although small oscillations are still present at long
times. At saturation, the values for the global coefficients are: C ′

L = 0.0016, St = 0.082
and CD = 1.245. These values are in good agreement with the data obtained when
the simulation was started at tU/D = 0. The vortex structure has been extracted at
tU/D = 218 (see figure 13b) and is in agreement with figure 16 at tU/D = 303.75,
where the wake is also anti-symmetric.

We therefore believe that at Re = 100 the initial conditions do not alter the
asymptotic state of the simulation but do influence the vortex dynamics over a long
transient time period before the flow saturates. Unless otherwise stated, all simulations
have been restarted from the unsteady flow past a straight, non-wavy body.

4.6. Interpretation of the λ/D and W/λ parameters

To investigate the physical interpretation of the length parameters λ/D and W/λ,
contours of each of the vorticity components in a (y, z)-plane normal to the flow at
x = 0 have been extracted for regime III (type A) for the particular case (λ/D,W/λ) =
(5.6, 0.03) at tU/D = 351 (when the lift force is zero) and are shown in figure 17. This
plane is of importance because the shear layers have not yet reached the near-wake re-
gion. Contours of ωz are drawn for levels of 0.8, 2.4, 4.0, 4.8 with the zero contour omit-
ted for clarity and negative values drawn with dashed lines. Similarly, in figure 17(b, c),
we have plotted ωx and ωy contours for increments of 0.04 and 0.00675, respectively. It
can be seen, that there is already a presence of streamwise and vertical vorticity within
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Figure 17. Contours of vorticity in a vertical plane at x = 0: (a) contours of ωz; (b) contours of
ωx and (c) contours of ωy . The black dot on the left of all plots denotes the location of the survey
point used to measure the strength of the different components of vorticity with increasing wave
steepness W/λ (see figure 18).

the shear layers which does not appear in the base case, i.e. for the straight cylinder at
Re = 100. There is a spanwise variation in the levels of ωz , which has a value of 4.8 at
the valley and decays to 4.0 at the peaks (see figure 17a). This spanwise variation of ωz

occurs mainly in the region of the inflection points and leads to the appearance of the
extra components of vorticity ωx and ωy . These extra components of vorticity appear
in organized elliptical regions which are aligned with the position of the geometric in-
flection points. Hence, the ratio of the spanwise to vertical spacing of these additional
ωx and ωy vorticity components is equal to half the geometric wavelength, i.e 1

2
λ/D.

Furthermore, the strength of these extra components of vorticity was investigated
by probing the values of ωx/ωz and ωy/ωz in the same (y, z)-plane at a z value
corresponding to the inflection points and a y value within the shear layers, i.e.
at (z, y) = (1.4, 0.72). This point is shown as a black dot on figure 17(a–c). These
values were extracted as a function of the wave steepness W/λ for a fixed λ/D = 5.6
and are shown in figure 18. Beyond a value of W/λ = 0.03 when the near wake
becomes steady, we observe an almost linear increase in ωx/ωz while ωy/ωz seems to
saturate for high W/λ. In addition, the values of ωx/ωz are approximately an order
of magnitude greater than those of ωy/ωz .

We note that the predominant feature of the waviness is to modify the spanwise
distribution of ωz within the top and bottom shear layers. The spanwise variation
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Figure 18. Variation of ωx/ωz and ωy/ωz with increasing wave steepness W/λ for λ/D = 5.6.

leads to the appearance of mainly streamwise vorticity ωx in the top and bottom shear
layers. This streamwise component of vorticity appears in the region of the geometric
inflection points with a spanwise spacing equal to 1

2
λ/D. In addition, the strength of

ωx increases with increasing wave steepness W/λ. Based on these observations, we
introduce the following physical interpretation for the length parameters:

(a) λ/D: ratio of the spanwise to vertical spacing of the streamwise vorticity;
(b) W/λ: wave steepness which governs the strength of the streamwise vorticity.

5. Discussion

In the earlier work of Bearman & Tombazis (1993) and Tombazis & Bearman
(1997), the wake past a body with wavy trailing edge was studied at a Reynolds num-
ber of 40 000. Vortex shedding was found to occur up to a wave steepness of 0.14 with
an associated drag reduction of 34%. Two main shedding frequencies were detected in
the wake, which resulted in the occurrence of vortex dislocations at the boundaries of
the cellular vortex shedding. A similar wake pattern is observed in regime II (type B) of
the present study, where a low-frequency beating occurs due to two distinct shedding
frequencies. Lasheras & Choi (1988), Meiburg & Lasheras (1988) and Lasheras &
Meiburg (1990) carried out experiments on and simulations of the three-dimensional
structure of the wake at moderate Reynolds numbers (≈ 100) behind a flat plate sub-
jected to periodic spanwise perturbations. They introduced a sinusoidal streamwise
and vertical undulation at the trailing edge of the plate and observed qualitatively the
transition process by studying the evolution of the interface that separates the two
streams composing the wake. They found that these spanwise perturbations resulted in
the formation of counter-rotating pairs of streamwise vortex tubes that are located in
the braids, connecting consecutive Kármán vortices of opposite sign. These streamwise
structures have some analogy to the ones found in the three-dimensional wake tran-
sition of a circular cylinder (modes A and B), see Williamson (1996a). In the present
study, regime II (type A) where streamwise vorticity is observed in the braid region
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connecting opposite sign vortices, has similarities with mode A and the streamwise
structures found in the work of Lasheras & Meiburg (1990) and co-workers.

In these two bodies of work, the waviness was introduced at the trailing edge of
the body and the primary instability (Kármán vortex shedding) was not suppressed.
It seems that in one case, the wavy trailing edge forced vortex dislocations and in the
second, forced earlier transition to a three-dimensional wake by producing streamwise
vortices in the braids that connect adjacent Kármán vortices. Both of these effects
have been reproduced, in the present study, for the wavy-leading-edge bodies.

Regime II (type A) corresponds to the case where streamwise vortices connect
adjacent Kármán vortices and regime II (type B) to the case where a beating occurs
due to two distinct frequencies in the wake. We assume that there is a similar pattern
of vortex dislocations to that reported in Bearman & Tombazis (1993) and Tombazis
& Bearman (1997). However, for the wavy-leading-edge bodies, further increase in
the amplitude of the waviness leads to the complete suppression of the primary
instability (Kármán vortex shedding), which does not occur for the wavy-trailing-
edge bodies. The wavy-leading-edge bodies introduce three-dimensional effects much
earlier during the shedding process than the wavy-trailing-edge bodies, which makes
the former bodies more sensitive to wave steepness. These three-dimensional effects
redistribute the vorticity within the growing boundary layer on the wavy stagnation
face and subsequent shear layers on the top and bottom surfaces. On the other hand,
for the wavy-trailing-edge bodies, the boundary layer and shear layers are still two-
dimensional until the shear layers separate from the wavy trailing edge. In order to
demonstrate why the wavy-leading-edge body is capable of suppressing the primary
instability, the results will be discussed mainly for regime III, which is the steady
regime and the case where most drag reduction occurs.

From the results section, it is clear that the introduction of the spanwise waviness
on the stagnation face has significantly influenced the overall forces and wake charac-
teristics of the base case, i.e. the straight, non-wavy cylinder. The main observations
made during the present numerical simulations and the experiments (Bearman &
Owen 1998a, b) can be summarized into the following main points:

significant drag and lift reductions are observed in regime III (type A or B);
near-wake width variation across the span;
large-scale recirculating cells along the span in the near-base region in regime III
(type A or B);
loss of the Strouhal frequency in the wake for regime III (type A or B).

Each of these specific characteristics will be now addressed with emphasis on regime
III (type A or B) where the most significant reduction in drag occurs.

5.1. Reduction in drag

The progressive reduction in drag observed in the successive flow regimes is mainly
due to the increase in the mean level of the static pressure in the near-base region,
i.e. the mean base pressure. The base pressure is highest in regime III (type A) where
most of the drag reduction occurs. The increase of the mean base pressure can be
associated with the fact that the near-base region becomes steady. This can be seen
from the force history where the fluctuating components of the lift C ′

L and drag C ′
D

drop to nearly zero in regime III (type A or B) (see figures 5 and 6). The steady and
unsteady drag curves for the square cylinder are plotted in figure 19 and clearly show
the reduction in drag associated with the steady branch. However, at low Reynolds
numbers (Re = 10 and 30), the drag level of the wavy cylinder is similar to that of the
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Figure 19. Unsteady and steady drag curves as a function of Re for the flow past a straight and
wavy square-section cylinder. •, two-dimensional steady simulations for the straight cylinder at
Re = 10, 15, 20, 25, 30, 35 and 40; ⋄, two-dimensional unsteady simulation for the straight cylinder
at Re = 70, 80, 100, 120, 140 and 150; ◦, two-dimensional steady simulation for the straight cylinder
at Re = 100, 150; ⊳, wavy cylinder (regime III (type A)) at Re = 100; ⊲, wavy cylinder (regime III
(type B)) at Re = 150; O, wavy cylinder at Re = 10 and 30.

non-wavy cylinder. Note that to obtain a steady flow past the non-wavy cylinder at
Re = 100, symmetry may be imposed using half of the mesh shown in figure 26(a) in
the Appendix with symmetry boundary conditions v = 0, ∂u/∂n = 0 on the centreline.

A reduction in the fluctuating forces or the velocity fluctuations in the near-base
region is usually associated with an increase in the mean base pressure as was shown
in experiments using splitter plates (Roshko 1955; Bearman 1965) and base bleed
(Bearman 1967). The splitter plate and base bleed stabilize the near wake by delaying
the interaction of the top and bottom shear layers in the near wake and hence
suppress the formation of low-pressure vortices associated with the unsteady Kármán
vortex wake. The suppression of these low-pressure vortices in the near-base region
leads to an increase in the mean base pressure and hence results in a drag reduction.
The increase in base pressure can be seen from the surface pressure coefficient CP

plots shown in figure 20. The pressure coefficient is defined as CP ≡ (p − p∞)/ 1
2
ρU2

∞,
where p is the time-averaged pressure and p∞ is the static pressure at infinity. Note
that the fast pressure recovery on the side BC is due to the fact that the shear layers
do not separate from the leading edge B at Re = 100 (see § 4.1).

As can be seen, there is an increase in the base pressure on the side CD for the
simulation with the splitter plate (of length, l ≈ 7D) where the near wake has been
stabilized. Similar results are also obtained in regime III (type A) which would suggest
that the waviness in regime III is strong enough to delay the top and bottom shear
layers from interacting and hence suppress the formation of the low-pressure vortices
in the near wake.

5.2. The Az and Ax forcing terms

We recall from § 3.1 that another way of interpreting the effect of the geometric
waviness is the addition of inviscid and viscous forcing terms in the momentum
equation for a straight cylinder. The Ax and Az mapping terms have both inviscid
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Figure 20. Comparison of the surface pressure distribution CP around the body for three cases:
�, non-wavy cylinder; ⊳, non-wavy cylinder with a splitter plate of length l ≈ 7D; �, wavy cylinder
(regime III (type A)).

and viscous parts, while the Ay term has only a viscous part. Simulations were
performed neglecting the viscous terms and no significant differences (less than 1%)
were observed in the forces or the wake topology when compared to the simulations
with the full forcing terms. The forcing terms can therefore be modelled as
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, (5.1)

Ay = 0, (5.2)

Az = π
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(
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z

)

∂p

∂x
. (5.3)

These inviscid forcing terms depend mainly on the spanwise and streamwise pres-
sure gradients. The Az term, given by equation (5.3), depends on the streamwise
pressure gradient and the z-derivative of the shape of the waviness. The streamwise
pressure gradient ∂p/∂x will be large near the stagnation face and will always be
positive. The forcing term Az will therefore be positive between 0 < z < λ/2 and
negative between λ/2 < z < λ as illustrated in figure 21(a).

This forcing therefore sets up a spanwise or cross-flow velocity component, w,
along the leading-edge surface going from a position corresponding to the maximum
towards a position corresponding to the minimum of the wavy cylinder. The spanwise
component w of the velocity along the leading-edge surface reaches 3%, 5% and
20% of the free-stream velocity with increasing values of W/λ for regime II (type
A), III (type A) and III (type B), respectively. The spanwise component w will result
in a spanwise pressure gradient, ∂p/∂z, along the leading-edge surface. This spanwise
pressure gradient as well as the streamwise pressure gradient, ∂p/∂x, contribute to the
streamwise forcing term, Ax. From equation (5.1), there are two terms which depend
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Figure 21. (a) Schematic of the d’Alembert forcing term Az in the spanwise component of the
momentum equation. This forcing term is positive in one half of the domain and negative in the
other, thus setting up a cross-flow w, corresponding to the flow from the maximum to the minimum
in the wavy cylinder. (b) Schematic of the Ax forcing term which is negative in the region of the
inflection points thus slowing down the u-component of the velocity.

on the pressure gradients:
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and a term which depends on the cross-flow component w, i.e.

−2w2
π

2W

λ2
cos

(

2π

λ
z

)

.

The latter term is typically negligible since the maximum value of w is close to 0.2,
making −2w2

π
2W/λ2 at least one order of magnitude less than the leading coefficients

of the pressure gradient terms. By comparing the sign of the two pressure gradient
terms, we see that they both contribute to a net negative forcing in the region close to
the leading edge. A closer inspection of the magnitude of the forcing term Ax revealed
that it reaches a negative peak near the inflection points. This latter observation can
also be inferred from the fact that the streamwise pressure gradient is larger than the
spanwise pressure gradient at the leading-edge surface. Hence, the Ax forcing term is
mainly dominated by

−π
2
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λ

)2

sin2

(

2π

λ
z

)

1

ρ

∂p

∂x

which is negative all along at the leading edge and reaches a maximum in the region
of the inflection points as shown in figure 21(b). The streamwise forcing term, Ax, will
thus slow down the two-dimensional u component of the velocity more significantly
close to the inflection points, which is consistent with the cross-flow w reaching a
maximum in that region. In addition, we found that near the stagnation face the
magnitude of the Az forcing term is at least 70% greater than the magnitude of the
Ax forcing term.
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Figure 22. Contours of the vorticity components on the wavy leading edge surface
(λ/D = 5.6, W/λ = 0.1667). (a) ωz; (b) ωx; (c) ωy .

5.3. Cross-flow

The cross-flow component at the leading-edge surface is present in all flow regimes. It
is small in regime I and II but reaches a maximum of 5% and 20% of the free-stream
velocity in regime III (type A) and regime III (type B), respectively. The effect of the
cross-flow at the leading-edge surface is twofold.

First, in addition to the usual spanwise vorticity component ωz = (∂v/∂x − ∂u/∂y)
within the growing boundary layer, the cross-flow will generate a vertical component
of the vorticity ωy = (∂u/∂z − ∂ω/∂x) as well as a streamwise component ωx =
(∂ω/∂y − ∂v/∂z). These extra components of vorticity, ωx and ωy are shown in
figure 22. From a quantitative analysis, it was found that only the spanwise derivatives
∂v/∂z and ∂u/∂z dominate ωx and ωy , respectively. The origin of the streamwise and
vertical components of vorticity can therefore be attributed to the rate of change of
the two-dimensional velocity components u and v in the spanwise direction.

Secondly, the cross-flow will lead to a higher influx of spanwise velocity w near the
saddle point (minimum) which will then result in a higher vertical velocity v within
the shear layers than in the region of the stagnation point (maximum). A spanwise
gradient of v will hence result within the top and bottom shear layers, which is
consistent with the appearance of the streamwise vorticity, ωx.

5.4. Near-wake width variation across the span

During experiments (Bearman & Owen 1998a, b) and the present numerical simula-
tions, a wake width variation was observed along the span of the wavy cylinder. This
is illustrated for the present numerical simulations in figure 23. The wake is wide
behind the minimum and narrow behind the maximum. This three-dimensionality of
the near wake is consistent with the appearance of the streamwise vorticity and the
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Figure 23. Instantaneous spanwise vorticity ωz contours for regime III (type B) at (a) the maximum
z = 0 and (b) minimum z = 2.8 cross-sections showing the variation of the wake width along the
span (total spanlength equals 5.6D). For comparison, the instantaneous contours for the non-wavy
cylinder are also shown in (c).

change in the vertical velocity distribution within the top and bottom shear layers as
shown schematically in figure 24. The streamwise vorticity creates an upwash behind
the maximum and a downwash behind the minimum which displace the near wake
in a sinusoidal fashion. The variation of the vertical velocity field v within the shear
layers will also contribute to the widening and narrowing of the near wake by pushing
the free shear layers further apart in the vertical direction behind the minimum where
the v velocity component is maximum. This three-dimensionality of the shear layers is
associated with the earlier separation of the shear layer just after the leading edge at
the minimum (see figure 23b), while at the maximum the shear layer remains attached
as in the base case (see figure 23a, c).

The change in wake width along the span is also associated with a three-dimensional
distribution of the static pressure in the near-base region. This three-dimensional
distribution can be seen from the time-averaged pressure coefficients CP in the
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Figure 24. Schematic view of the relation between the streamwise vorticity and wake width
variation along the span.
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Figure 25. (a) Centreplane y = 0 streamlines showing the two recirculating cells in the near-base
region for regime III (type A); (b) time-averaged pressure coefficient CP contours at y = 0 for
regime III (type A).

centreplane y = 0 for regime III (type A), shown in figure 25(b). It can be observed
that the static pressure is higher at the minimum and lower at the maximum in the
near-base region. For example, the difference is CPmin

− CPmax
= ∆CP ≈ 0.14 near the

backface for regime III (type A). For regime III (type B) ∆CP ≈ 0.12 and for the
other regimes, ∆CP is less than 0.09.

A pressure gradient is therefore produced from the minimum to the maximum in the
near-base region which leads us to the next physical observation of the recirculating
cells.



Square-section cylinder with a wavy stagnation face 289

5.5. Recirculating cells

Two recirculating cells have been observed in the near-base region for regime II and
III. These cells are shown in figure 25(a) for more clarity using two-dimensional
streamlines in the centreplane for regime III (type A). These cells are aligned with the
inflection points and have also been reported in on-going experiments (J. C. Owen
& P. W. Bearman, private communications 1999). The maximum spanwise velocity w
attained in these cells reaches 10%, 19% and 20% of the free-stream velocity with
increasing values of W/λ for regimes II (type A), III (type A) and III (type B),
respectively. The progressive increase in strength of these recirculating cells leads to
the appearance of two local pressure minima in the near-base region at x ≈ 1.8 for
regime III (type A or B) only, as can be seen from the pressure coefficient plot shown
in figure 25(b).

The appearance of the recirculating cells is clearly consistent with the existence
of the spanwise pressure gradient in the near-base region mentioned in the previous
section. A potential driving force for the recirculating cells results from the wake
width variation which is observed to produce a near-base pressure gradient.

5.6. Suppression of the Kármán vortex shedding

It was shown in §§ 4.6 and 5.3, that the top and bottom shear layers have a spanwise
variation in the level of ωz , which leads to the appearance of additional components
of vorticity ωx and ωy in the region of the geometric inflection points. This additional
vorticity, particularly the ωx component, tends to distort the two-dimensional ωz

shear layers so that they are pushed further apart in the vertical direction behind
the minimum as shown in figures 23 and 24. It would seem reasonable that the
suppression of the Kármán vortex shedding can be attributed to the development
of the three-dimensional shear layers making them less susceptible to rolling-up into
a Kármán vortex street by diverting spanwise vorticity into streamwise and vertical
components of vorticity. This three-dimensional redistribution of vorticity within the
boundary layer and shear layers may prevent the shear layers interacting in the
near-base region and hence suppress the Kármán vortex shedding. In contrast, the
wavy-trailing-edge bodies have principally two-dimensional shear layers until they
separate from the wavy-trailing-edge, which makes these bodies less sensitive to wave
steepness.

In § 4, we have seen that as the spanwise wavelength of the waviness introduced
in the two-dimensional shear layers approaches λ/D ≈ 5.6, vortex roll-up into a
Kármán vortex street is suppressed for a minimum value of W/λ. We therefore make
the conjecture that there is a critical spanwise perturbation which can be introduced
into a pair of shear layers which alters their dynamics and discourages the roll-up
into spanwise vortices for a minimum waviness amplitude. Physical scales which
have a similar wavelength are the mode A wavelength (≈ 5.5D) of a straight, non-
wavy square-section cylinder and the primary wavelength (spacing between same-sign
vortices in a row of a Kármán vortex street). The waviness of the stagnation face can
be thought of as forcing mode A at a subcritical Reynolds number.

6. Conclusion

A numerical investigation has been performed to understand the effects of intro-
ducing a leading-edge sinusoidal waviness to a square cylinder. The investigations
were primarily performed at a Reynolds number of Re = 100 for which the non-wavy
square cylinder has a purely two-dimensional Kármán type wake. The wavelength
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λ and amplitude W of the waviness were varied, introducing different degrees of
geometric three-dimensionality. From consideration of the wake topology and force
characteristics, the effect of introducing a wavy stagnation face has been classified
into five distinct regimes.

For a mild geometric waviness we obtain regime I, where the formation of the wake
at the base of the cylinder is mildly three-dimensional and the force history is similar
to the straight cylinder. However as the wake evolves further downstream there is a
discernible deformation of the spanwise Kármán vortices.

For a slightly higher level of waviness we obtain a transitional regime denoted as
regime II. In this regime the effects of the geometric waviness in the formation region
are more dominant. A large spanwise curvature appears in the top and bottom shear
layers and an associated drop occurs in mean drag and the root mean square of the lift.
Further downstream we observe the formation of streamwise vortices associated with
the sinusoidal spanwise deformation of the distorted Kármán vortices. Within this
transitional regime II, we make a further distinction between normalized wavelengths
above and below λ/D ≈ 5.6. For λ/D 6 5.6, denoted as regime II (type A), we observe
a time-periodic state with a single frequency where streamwise vortices occur in the
braids and connect adjacent Kármán vortices. These streamwise vortices have some
analogy with the streamwise structures found in the wake of a wavy splitter plate
(for example, Meiburg & Lasheras 1988) and the mode A instability (see Williamson
1996a). However for λ/D > 5.6, denoted as regime II (type B), we observe a beating
phenomenon where the wake topology alternates between a mildly three-dimensional
state similar to regime I and a highly three-dimensional state similar to regime II
(type A). Two distinct frequencies are detected, which again is similar to the results of
Bearman & Tombazis (1993) and Tombazis & Bearman (1997) for a wavy-trailing-
edge body with cellular vortex shedding and the associated vortex dislocations.

Finally, when the amplitude of the waviness is sufficiently large, we obtain a near-
base region which is completely steady, leading to a significant reduction in mean
drag and the lift tending to zero. This region of maximal drag reduction is denoted
regime III and within this regime, there is no evidence of a Kármán vortex wake.
Once again we can identify two sub-regimes. In the first case, regime III (type A),
the flow is completely steady and has only been observed for λ/D 6 5.6. It is in
regime III (type A) that the most significant drag reduction occurs. However, when
λ/D > 5.6, hairpin vortices are shed periodically from the almost steady near-base
region. In this regime, defined as regime III (type B), a small unsteadiness appears in
the near wake due to the shedding of these hairpin vortices. We note that the wake
topology of the hairpin vortices in regime III (type B) resembles that of a sphere
at low Reynolds numbers. It was shown that the smallest wave steepness W/λ to
force the flow into regime III (type A) occurs at around a value of λ/D ≈ 5.6. This
critical wavelength has a similar length scale to the mode A transition of the wake
of a straight, non-wavy square-section cylinder and the primary spacing of same-sign
vortices in a Kármán vortex street.

The three-dimensional geometry produces a leading-edge cross-flow which generates
streamwise and vertical components of vorticity in the early stages of the shedding
process. These additional components of vorticity appear in regions close to the
inflection points of the wavy stagnation face where the spanwise vorticity is weakened.
They then persist in the top and bottom shear layers which distort the shear layers
so that their vertical displacement is largest behind the most downstream cross-
section and is smallest behind the most upstream cross-section. It is hypothesized
that a sufficiently large spanwise perturbation of the shear layers alters their dynamic



Square-section cylinder with a wavy stagnation face 291

interaction by diverting spanwise vorticity into streamwise and vertical components
of vorticity, leading to the suppression of the Kármán street and an associated drop
in drag.

For the wavy-leading-edge body, the perturbations in the vorticity distribution are
introduced at the wavy stagnation face and so have a longer period of time to evolve
than if these perturbations were introduced at the trailing edge. The wavy-leading-
edge bodies are therefore more sensitive to wave steepness than the wavy-trailing-edge
bodies. It would also appear that the introduction of a waviness at a wavelength close
to the mode A and the primary wavelengths of the straight square-section cylinder
leads the suppression of the Kármán street at a minimal waviness amplitude.

A drag reduction of 16% at Re = 100 was obtained as compared to a drag
reduction of at least 30% achieved in the experiments of Bearman & Owen (1998a, b)
at Re = 40 000. This large variation is principally due to the fact that for a straight,
non-wavy cylinder, the shear layers separate from the leading edge at Re = 40 000
whereas at Re = 100 the shear layers remain attached until they separate from the
trailing edge. The leading-edge separation at higher Reynolds numbers leads to a
higher drag for the straight, non-wavy cylinder. However, from on-going simulations
at Re = 500, the asymptotic level of the drag coefficient of the wavy cylinder does not
change significantly from that at Re = 100. Therefore, at Re = 500, we would expect
a higher drag reduction due to the increase in the drag coefficient of the straight,
non-wavy cylinder.
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Appendix. Discretization of the Navier–Stokes equations

The Navier–Stokes equations (equation (3.4)) are solved using the hybrid code
NεκTαr (Sherwin & Karniadakis 1995; Warburton 1998; Karniadakis & Sherwin
1999). A Fourier expansion is used in the spanwise direction, while two-dimensional
spectral elements are used in each of the Fourier planes. Within each triangular
element both the solution and the geometry are represented by a higher-order poly-
nomial basis which is Co continuous across the elemental boundaries. Convergence
can be achieved either by increasing the number of elements (h-convergence) or by
increasing the polynomial order within each element (P -convergence). A convergence
study involving both h and P convergence is given in § A.1 for the two-dimensional
mesh.

A non-dimensional time step of ∆tU∞/D = 0.005 was used with second-order
time integration for most of the simulations. However, for large values of the wave
steepness W/λ, it was necessary to decrease the time step to 0.0025 and use first-order
time integration. Convergence tests indicated that the simulations were well resolved
in time.
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Figure 26. (a) Coarse spectral element mesh M1 (1110 triangles). The bold square indicates the
region where an h-refinement was performed (see figure 27). (b) Smaller spectral element mesh M4
(1083 triangles). Note that mesh M4 is drawn to scale with respect to mesh M1.
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Figure 27. h-refinement near the wall. (a) M1; (b) M2; (c) M3.

A.1. Convergence studies

The detailed convergence study presented in Barkley & Henderson (1996) was used
as the principal guide in the present study. They extensively tested the effects of
the domain size parameters, li (inflow), lo (outflow), lh (crossflow) on the numerical
solutions. Based on their chosen domain parameters which resulted in a mesh-
independent solution, we have selected the following parameters for the present
study: li = 16, lo = 25, lh = 22 (blockage = 1

2
lh ≈ 2.3%). For the square-section

cylinder, the resolution near the sharp corners and the walls is a critical point to
consider as large gradients of the vorticity occur around these regions. It was therefore
decided to investigate the effect of an h-refinement near the geometry while keeping
the external resolution of the domain fixed. Three levels of mesh resolution were
tested. The first level represents a coarse mesh denoted by M1 and has 1110 spectral
elements (see figure 26a). The second level M2 corresponds to a medium mesh with
a total of 1196 elements and finally the fine mesh M3 has 1502 elements. In each
case, only the near-wall mesh has been refined whereas the rest of the domain is
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Mesh/Polynomial order St CD CDP
C ′

L C ′
LP

M1, P = 6 0.1446 1.4626 1.3922 0.1822 0.1589
M2, P = 6 0.1447 1.4559 1.3896 0.1821 0.1590
M3, P = 6 0.1446 1.4613 1.3989 0.1845 0.1610

M1, P = 8 0.1446 1.4652 1.3956 0.1836 0.1601
M2, P = 8 0.1447 1.4627 1.3958 0.1836 0.1601
M3, P = 8 0.1446 1.4669 1.4052 0.1848 0.1613

M1, P = 10 0.1446 1.4652 1.3956 0.1848 0.1612
M2, P = 10 0.1446 1.4667 1.4007 0.1848 0.1612
M3, P = 10 0.1446 1.4664 1.4087 0.1852 0.1617

M4, P = 6 0.1463 1.4855 1.4324 0.1864 0.1628

Table 1. Convergence of global flow parameters at Re = 100 with polynomial order P for the
various h-refinement levels.

kept at the same resolution (see figure 27). A smaller mesh with li = 12, lo = 18,
lh = 12 (blockage ≈ 4.2%) shown in figure 26(b) was used to check the order of
magnitude of the errors. Results are presented in table 1 for global flow coefficients
St, CD , CDP

, C ′
L, C

′
LP

as the polynomial order, P , is increased for each of the various
h-refinements at Re = 100. Here St is the Strouhal number (St = fD/U∞, where f is
the vortex shedding frequency), CD is the mean coefficient of total drag, CDP

is the
mean coefficient of the pressure drag, C ′

L is the root mean square of the total lift
coefficient and C ′

LP is the root mean square of the pressure lift coefficient. For these
tests, the time step was held constant at ∆tU∞/D = 0.005 and second-order time
integration was used.

All runs captured the large scales of motion in the wake, i.e. the vortex street. On
the quantitative side, the variation between the values at P = 6 to P = 10 is less
than 1%. The M3 mesh already provides accurate results at P = 6. In addition, the
smaller mesh M4 provides a good basis to judge the level of errors. Even with these
reduced dimensions and increase in blockage ratio, the maximum error is still less
than 2% when compared to the high-resolution run (M3 with P = 10).

Based on this analysis, it was decided to use both meshes M3 and M4 at P = 6 with
an error tolerance of 2%. Most of the runs with the M3 mesh have been performed
at P = 8. Spot checks have also been done at higher resolution (P = 9, 10) during the
convergence for some cases. Temporal convergence was also investigated by reducing
the time step by half and did not show any difference in the global flow coefficients.

The spanlength of the computational domain, Lz , was chosen to be equal to one
geometric wavelength, λ. Tests were performed with two wavelengths but did not show
any difference in the forces and wake topology. The Fourier resolution in the spanwise
direction was investigated for the particular case of λ/D = 5.6, W/λ = 0.1667. The
number of Fourier modes required to reach the dissipation scale in the simulation
can be estimated from βD = (2π/Lz)M ≈ Re1/2 (Henderson 1997) or M ≈ 9 modes
for λ/D = 5.6 and Re = 100. Three different resolutions were tested with 8, 16, 32
Fourier modes. In the saturated state, the values of the forces differed by only 0.3%
and the wake topology was similar. Based on this analysis, it was decided to use eight
Fourier modes for λ/D 6 4.0 and 16 modes for λ/D > 4.0.

Simulation runs were performed on 8 and 16 DEC Alpha 21164 processors of a
CRAY T3E-1200E, used 200 MB per processor and took about 7 seconds per time
step.
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