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ABSTRACT

Channel flow–vegetation interaction has been extensively studied in the past few decades and many

equations have been developed which essentially differ from each other in derivation and form. As

the process is extremely complex, getting deterministic or analytical forms of process phenomena

are too difficult. A hybrid neural network model (combining genetic algorithm with neural network),

which is particularly useful in modeling processes about which adequate knowledge of the physics is

limited, is presented here as a complementary tool to model channel flow–vegetation interactions in

submerged vegetation conditions. The prediction capability of the model has been found to be

satisfactory. The input significance of the different parameters has been analyzed in the present

work in order to find out the influence of these parameters on channel flow velocity.
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INTRODUCTION

Estimating the flow resistance of vegetation is of great impor-

tance in river management, since it may have a significant

effect on the conveyance of the channel (Järvelä ). The

presence of vegetation in a channel also leads to a change

in the hydrodynamic characteristics of the channel (Nepf

; Shields & Cooper ; Millar ; Montgometry &

Piegay ). Interactions between flow and vegetation are

complex and depend on environmental factors and plant

characteristics such as mean flow velocity, turbulence, chan-

nel morphology, water temperature, plant morphology, age

and size, and the spatial distribution of plant patches (Yen

). Knowledge of flow–vegetation interactions is impor-

tant for both engineering and ecological applications

(Nikora et al. ). The literature is replete with experimen-

tal and numerical works on flow–vegetation interactions.

Experiments in laboratory flumes have been carried out to

quantify flow–vegetation interactions by various researchers

(Wilson et al. ; Armanini et al. ). Green () has

done field measurements in natural vegetated fields. Also,

detailed numerical simulations of flow through vegetation

have been performed (Neary ; Choi & Kang ).

Several empirical (Kouwen & Fathi-Moghadam ) and

theoretical relations (Stone & Shen ; Stephan &

Gutknecht ) have been proposed to describe flow–

vegetation interactions. Huthoff et al. () have ascertained

that due to their simplicity, empirical equations have better

field applicability than theoretical ones. However, empirical

relations have the drawback that their applicability is limited

to the range of conditions forwhich theywere derived.On the

other hand, theoretical descriptions are often complex.

Besides, they may require poorly understood closure par-

ameters and sometimes pose practical difficulties when

gathering required input data (Huthoff et al. ). Galema

(), based ondata available in the literature, has compared

different predictors of flow characteristics and concluded

that no simple predictor exists for both conditions.

Data mining techniques can help in modeling such pro-

cesses about which the level of available knowledge is too

limited to put the relevant information in a mathematical

framework (Bhattacharya et al. ). Data mining is pre-

sently being utilized in almost all branches of science as

an alternative and complementary technique to the more
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traditional physically based modeling systems. Use of artifi-

cial neural networks (ANNs) remains in the forefront of

this complementary modeling practice. Neural network

techniques have been used to study several hydrologic and

hydraulic phenomena (Dolling & Varas ; Srinivasulu

& Jain ; Kumar ; Wei ).

Although conventional ANN setups have been employed

in several instances, there are certain difficulties that ANNs

are prone to when used with the back propagation training

algorithm. The selection of network architecture and its effi-

cient training procedure are major obstacles for any ANN-

based model. Due to the profile of the error hyper-surface,

ANN generally misses out the global optima. More recent

algorithms (genetic algorithm (GA), particle swarm optimiz-

ation, etc.) from the paradigm of evolutionary computing

havemade it possible to overcome such limitations of training

algorithms (Koza ; Giustolisi & Savic ). A GA could

represent a valid alternative to ANNs to establish a relation-

ship among the parameters (vegetation characteristics,

channel characteristics, etc.) influencing the flow. GA,

based on natural selection and genetic mechanism, is a

global search that grabbles from one population of points to

another. As the algorithm continuously samples the par-

ameter space, the search is directed toward the area of the

best solution (Goldberg ). GA has been applied to

many problems in hydrology and water resources (Cheng

et al. ; Wang et al. ; Nasseri et al. ).

The primary objective of the present work is to develop

the flow prediction model of a submerged vegetative chan-

nel. Recent studies have provided a variety of methods for

quantifying and interpreting the contributions of the vari-

ables in neural networks (Duh et al. ; Olden &

Jackson ). Thus the methods developed for input signifi-

cance testing through neural networks have been applied in

the present work to find out variability of flow velocity with

other different physical parameters.

FUNCTIONAL ANALYSIS OF THE FLOW–

VEGETATION INTERACTION

The use of neural networks allows developing a model

incorporating many complex variables of the systems to be

built without requiring the explicit formulation of the

possible relationships that may exist among variables.

Neural network does function mapping of the input vectors

of real values to the real output values. Thus, it needs a func-

tional form of a physical system describing its dependent

and independent variables. Yen () has analyzed several

equations in terms of their dependent and independent vari-

ables. The physical modeling of channel flow through

vegetation is very complex. According to Lopez & Garcia

(), it is a function of many variables: the fluid properties,

flow properties, vegetation characteristics, and channel

characteristics. A closer look (Table 1) at the existing

equations shows that flow–vegetation interactions can be

described by the following function:

f(u, h, k, i, m, Cd, D) ¼ 0 (1)

where u is the mean velocity, h is the flow depth, k is the

height of the vegetation, i is the channel slope. D is the diam-

eter of cylindrical vegetation andm is the number of cylinders

per m2 horizontal area. Cd is the non-dimensional drag coef-

ficient. Equation (1) is for homogeneous vegetation of fixed

height and diameter. Flow is assumed to be steady and uni-

form. Assuming a wide channel, sidewall effects can be

neglected (Borovkov & Yurchuk ). The condition of

fully submerged vegetation is h>>5k. In this case, the veg-

etation does not block the velocity at the upper part of the

water column (Galema ). The submerged condition

also follows 5k> h> k. In these conditions, the vegetation

is relatively high in relation to the flow depth; as a

Table 1 | Available descriptors for flow velocity in vegetative channel (submerged

vegetation)
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consequence, the velocity profile changes a great deal over

depth. In channels with sufficient density of vegetation, the

effect of bottom roughness can also be neglected (Stone &

Shen ). The present work aims at predicting the flow vel-

ocity of a submerged vegetated channel, so u can be made as

dependent variable which depends on the various other fac-

tors as shown in Equation (1). Keeping this in view,

Equation (1) can be written as:

u ¼ f(h, k, i, m, Cd, D) (2)

The objective here is to construct a neural network

model that approximates an unknown input–output

mapping of Equation (2) on the basis of given real obser-

vations. The goal, however, is not to provide an exact fit to

the data but to develop a model that captures the underlying

relationship so that it can be used to predict the output at

some future observation of the input.

NEURAL NETWORK MODELING

In this paper, a hybrid algorithm using GA technique is pro-

posed to optimize parameters of the ANN. This is done by

considering the following steps: first, define the structure of

the ANN; second, define the encoding of the interconnection

weights; and third, optimize the interconnection weights of

the ANN by GA. In this paper, the most popular models of

neural networks (NNs) such as feedforward networks are con-

sidered. Supervised learning is one of the most effective weight

training algorithms, whereby efforts aremade to find an optimal

set of connectiveweights for aNNaccording to someoptimality

criteria. One of the most popular supervised learning training

algorithms for feedforward NNs is back propagation (BP). The

BP is a gradient descent search algorithm. It is based on mini-

mization of the total mean square error between the actual

output and the desired output (Irie & Miyanki ). This

error is used to guide the search of the BP algorithm in the

weight space. However, the problem of the BP algorithm is

that it is very often trapped in local minima and the learning

and adaptation speed are very slow in searching for the global

minimum of the search space. Some developed evolutionary

algorithms, notably GA, have attracted great attention in the

NN from many communities (Chen et al. ; Salajegheh &

Gholizadeh ; Giustolisi & Simeone ; Singh et al.

). GAs are parallel stochastic optimization procedures

which are good at exploring a large and complex space in an

intelligentway to find values close to the global optimum (Gold-

berg ). As compared with BP, GA is more qualified for

neural networks if only the requirement of a global searching

is considered. A simple chromosome representation is used,

which contains information about connections, weights, and

biases of the multiple layer perceptron neural network

(MPLNN). The parameter learning process, based on GA tech-

nique and BP algorithm, is a two-step learning process. In the

first step, the initial parameters, such as weights of the NN are

tuned by the GA. In the second step, the BP algorithm and the

Levenberg–Marquardt method is introduced to train the NN

to yield optimal values of weights of theNN. The block diagram

of the proposed hybrid algorithm is depicted by Figure 1.

Figure 1 | Flowchart of the learning algorithm.
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The procedure of the hybrid algorithm is presented as

follows in the sections below.

Chromosome representation

An MLPNN can be represented by a directed graph,

encoded on a chromosome with each parameter (weights

and biases). All these parameters are memorized by a row

vector C¼ (ci), i¼ 1, 2…M, where M is the number of all

NN parameters. The chromosome can be written as:

C ¼ W1, W2½ � (3)

whereW1 denotes the connective weight of link between the

input layer and the first hidden layer andW2 is the connective

weight of link between the hidden layer and output layer.

Fitness function

The fitness function is dependent on problem and is used to

evaluate the performance of each individual. The error

signal of the output neuron j at iteration n (i.e., presentation

of the nth training example) is defined by:

ej(n) ¼ dj(n)� yj(n), neuron j is an output neuron (4)

The instantaneous value of the error energy for neuron j

can also be defined as: (1=2)e2j (n). Correspondingly, the

value of ξ(n) is obtained by summing (1=2)e2j (n) over all

neurons in the output layer (Haykin ).

ξ(n) ¼ 1

2

X

j¼C

e2j (n) (5)

where the set C includes all the neurons in the output layer

of the network. For MLPNN it is the sum squared error.

The fitness is defined as by summing ξ(n) over all n with

respect to the set size N, as shown by:

F ¼
X

N

n¼1

ξ(n) (6)

Here, the objective is to minimize F(·) subject to

weights and biases.

Selection

The selection operator is to select individuals from the popu-

lation for reproduction based on the relative fitness value of

each individual. The extraction can be carried out in several

ways. One of the most commonly used selection methods is

the roulette wheel selection (Goldberg ), where individ-

uals are extracted in probability following a Monte Carlo

procedure. The extraction probability pr(Xi) of each individ-

ual Xi is proportional to its fitness F(Xi) as a ratio to the

average fitness of all the individuals. The offsprings are

produced based on this selection.

Crossover

To apply the standard crossover operator the individuals of

the population are randomly paired. Crossover takes two

parents and performs an interpolation of the two parents.

Each pair is then recombined, and the new individuals

(offsprings) are formed by the interpolation of parents.

Mutation

After crossover, the new individuals are subjected to

mutation. Mutation prevents the algorithm being trapped

in a local minimum. A variable is selected with a certain

probability and its value is modified by a random value.

Here, we choose non-uniform mutation method. Non-

uniform mutation changes one of the genes of the parent

based on a non-uniform probability distribution.

Levenberg–Marquardt method

The equations for changing the weights (ΔW ) during train-

ing in the Levenberg–Marquardt method are given as

follows:

ΔW ¼ (JT J þ μI)�1 JTe (7)

where J is the Jacobian matrix of the derivative of each error

to each weight, μ is a scalar, and e is an error vector. The

Levenberg–Marquardt algorithm performs very well and

its efficiency is found to be of several orders above the
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conventional back propagation with learning rate and

momentum factor.

RESULTS AND DISCUSSION

The entire modeling and analysis has been done by the use

of the neural network toolbox of MATLAB® software.

Galema () documented a comprehensive database of

different types of vegetations with hydraulic properties

from different sources. Table 2 shows the ranges of the

observations used in the present work. The total number

of observations used in the modeling is 449. The sample

size of the data set is an important issue in neural networks.

Neural networks typically require larger sample sizes than

conventional statistical procedures for model building and

validation. In general, the larger the sample is, the better is

the chance for a neural network to adequately approximate

the underlying complex patterns without suffering from the

problem of overfitting/underfitting. For development of

the ANN model, 60% of observations (independent of the

source, data have been randomized before selecting training,

test, and validation sets) have been assigned as training sets

and 20% for testing and 20% for validation. All data sources

are not cited in the references of this paper as they can be

found in Galema (). It should be noted that, like all

empirical models, ANNs perform best in interpolation

rather than extrapolation (Masters ); consequently, the

extreme values of the available data are included in the

training set. Once data have been divided into their subsets,

the input and output variables are preprocessed by scaling

them between 0.0 and 1.0 to eliminate their dimension

and to ensure that all variables receive equal attention

during training. The architecture of the initial neural net-

work (Figure 2) has been chosen based on maximum R2

over complete observations with increasing number of

nodes in the hidden layers (Appendix 1, available online at

http://www.iwaponline.com/jh/016/055.pdf). The transfer

function used in the model is log sigmoid and tan sigmoid

at input to hidden and hidden to output layers, respectively.

The number of iterations has been fixed at 1,000.

The results of neural modeling are shown in Figure 3. It

can be clearly seen from Figure 3 that the linear coefficient

of correlation is very high between observed data and values

predicted through neural nets and it is 0.993, 0.984, and

0.988 in training, validation, and testing, respectively. Over-

all, the linear coefficient of correlation is 0.982 as shown in

Figure 3. This shows the learning and generalization per-

formance of the network is good. The non-linear and

non-parametric nature of the neural network model is desir-

able for field applications, it also brings about more

opportunities to go wrong in the modeling and application pro-

cess. Thus, it is worthwhile noting that predictions from ANN

models are better when used for ranges of input variables simi-

lar to those utilized in model training. Two standard training

algorithms – the Levenberg–Marquardt (LM) optimization

and the BFGS (Broyden, Fletcher, Goldfarb, and Shanno)

quasi-Newton method along with multiple regression analysis

have been used to compare the GA-ANN results. The perform-

ance of gradient-based methods (ANN-LM and ANN-BFGS)

was found to be comparable with those of the GA-ANN

algorithm. The model equation generated by multiple

regression analysis is given in Appendix 2 (available online

at http://www.iwaponline.com/jh/016/055.pdf). However,

the results of training the algorithm with GA-ANN gave

superior predictive models, as reflected in Table 3.

In the present work, formulas listed in Table 1 have also

been tested to quantify their predictioncapability. Performance

analysis of these formulas is shown in Figure 4. As shown in

Figure 4, Huthoff’s () formula predicts better than other

formulas with R2 around 0.67. The functional form of the

empirical formulas does not hold true for all the ranges, for

example,Huthoff’s () formulaworksonlywhenh is greater

thank. ANN is free from such functional formandwillworkon

all the ranges used in deriving the model.

In the neural network, the connection weights between

neurons are the linkages between the input and the output

of the network, and therefore are the link between the prob-

lem and the solution (Olden & Jackson ). Garson’s

algorithm or ‘weights’ method includes partitioning the con-

nection weights to determine the relative importance of the

various inputs. In the present work, connection weights

(Olden & Jackson ), Garson’s algorithm (Garson )

and partial derivative method (Ng et al. ) have been

implemented to know the importance of the input variables

on output. Connection weights calculate the product of the

raw input–hidden and hidden–output connection weights

between each input neuron and output neuron and sum
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Table 2 | Summary of hydraulic and vegetation characteristics of the data

D (m) m (m�²) k (m) Cd h (m) i u

Source

No. of

observations

Min

value

Max

value

Min

value

Max

value

Min

value

Max

value

Min

value

Max

value

Min

value

Max

value

Min

value

Max

value

Min

value

Max

value

Einstein & Banks

()

20 0.0064 0.0064 3 108 0.038 1.4 0.073 0.108 0.00774 0.01024 0.8 1.2

Tsujimoto &

Kitamura ()

6 0.0015 0.0015 2.500 2.500 0.046 1.46 0.073 0.095 0.001 0.00703 0.117 0.331

Shimizu &

Tsujimotot ()

13 0.001 0.0015 2.500 10.000 0.041 0.046 1 0.0631 0.1052 0.001 0.00886 0.096 0.331

Dunn et al. () 12 0.0064 0.0064 42 384 0.12 1.13 1.13 0.164 0.335 0.00359 0.01607 0.308 0.854

Meijer () 48 0.008 0.008 64 256 0.45 1.5 0.96 1 0.99 2.5 0.00055 0.00205 0.175 1.242

Stone & Shen () 92 0.00318 0.0127 173 696 0.124 0.124 0.96 1.11 0.151 0.314 0.00009 0.04402 0.017 0.502

Poggi et al. () 5 0.004 0.004 67 1.072 0.12 1.5 1.5 0.6 0.6 0.00004 0.00032 0.3 0.313

Murphy et al. () 24 0.006 0.0064 250 800 0.0139 0.61 1 0.088 0.467 0.00000055 0.000596 0.013 0.197

Fenzl () 26 0.00238 0.00238 11 1.808 0.051 0.152 1.01 1.17 0.058 0.181 0.00163 0.00285 0.052 0.289

Kouwen et al. () 27 0.005 0.005 5.000 5.000 0.05 0.1 3 0.149 0.4 0.0005 0.01001 0.03 0.609

Ree & Crow () 30 0.005 0.005 1.464 1.076 0.203 0.305 1 0.242 0.751 0.00042 0.0021 0.046 0.427

Murota et al.() 8 0.00024 0.00024 4.000 4.000 0.048 0.06 2.75 2.75 0.092 0.116 0.0005 0.00383 0.085 0.258

Tsujimoto et al.

()

12 0.0015 0.0015 2.500 2.500 0.0238 0.0419 3.14 3.14 0.07 0.11 0.001 0.007 0.0945 0.4836

Tsujimoto et al.

()

12 0.00062 0.00062 10.000 10.000 0.061 0.065 2 0.1 0.16 0.00051 0.01076 0.078 0.385

Ikeda & Kanazawa

()

7 0.00024 0.00024 20.000 20.000 0.04 0.045 1 0.142 0.19 0.00247 0.00641 0.349 0.606

Meijer () 7 0.0057 0.0057 254 254 1.55 0.165 1.81 1.81 1.75 2.5 0.00109 0.00208 0.142 0.393

Rowinski & Kubrak

()

8 0.000825 0.000825 2.500 10.000 0.165 0.165 1.22 1.35 0.1962 0.2475 0.0087 0.0174 0.1587 0.2948

Järvelä () 12 0.0028 0.003 12.000 512 0.155 0.295 1 0.306 0.7065 0.0002 0.0051 0.072 0.33

Carollo et al. () 80 0.0045 0.0045 28.000 44.000 0.044 0.082 1 0.061 0.272 0.001 0.05 0.211 1.047
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the products across all hidden neurons. The relative impor-

tance of input parameter j is determined through the

following formula:

Imp(j) ¼
X

n

x¼1

CW jh(x)CWho(x) (8)

where Imp( j) is the relative importance of parameter j, n the

total number of hidden nodes, x the index number of hidden

node, CWjh(x) the connectivity weight between input par-

ameter j and hidden node x, CWho(x) is the connectivity

weight between hidden node x and the output node. The

methodology for Garson’s algorithm is as follows:

(a) For each hidden neuron H, divide the absolute value of

the input–hidden layer connection weight by the sum of

the absolute value of the input–hidden layer

connection weight of all input neurons.

For H¼ 1 to nH, for j¼ 1 to nj,

Aih ¼ jW jHj
Pnj

i¼1 jW jHj
(9)

(b) For each input neuron j, divide the sum of the A jH for

each hidden neuron by the sum for each hidden neuron

of the sum for each input neuron of A jH, multiply by

100. The relative importance of all output weights

attributable to the given input variable is then obtained.

j: 1 to nj

RIð%Þj ¼
Pnh

n¼1 A jH
Pnh

n¼1

Pnj
j¼1 A jH

× 100 (10)

Connection weight and Garson’s algorithm are based on

the weight matrices of the neural network. Partial derivative

method computes the partial derivatives of the ANN output

with respect to the input neurons by making use of the

Taylor expansion to approximate the output perturbations

with respect to either the input or weight perturbations. Cal-

culations of all approaches for input significance testing are

tabulated in Table 4. The values depicted in Table 4 have

been derived from both initial and final weight values of

the ANN model. As can be seen from Table 4, flow depth

Figure 3 | Results of neural network model.

Table 3 | Comparative analysis of different intelligent predictors

R
2

Methodology Training Testing

GA-ANN 0.993 0.988

ANN-LM 0.965 0.92

ANN-BFGS 0.94 0.88

Multiple regression 0.88 0.81

Figure 2 | Optimal artificial neural network.
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and drag coefficient have much more influence on the mean

velocity of a vegetative channel. For the channel with den-

sely distributed vegetation, the drag of vegetation becomes

the major parameter to characterize the channel

hydrodynamics. Turbulent vortices are created in the

wakes downstream of the protruding stems in a vegetative

channel (Akilli & Rockwell ). The associated energy

losses of the mean flow field cause the flow to slow down.

Figure 4 | Performance analysis of flow velocity predictors in vegetative channel.

Table 4 | Input significance and ranking of the variables

Connection weights Garson’s algorithm Partial derivatives

Variables Initial weights Final weights Initial weights Final weights Initial weights Final weights

i 0.08 (6) 0.01 (6) 7.05 (5) 9.12 (6) 0.03 (6) 0.02 (6)

m 0.165 (4) 0.13 (5) 19.1 (3) 15.33 (4) 0.165 (4) 0.12 (5)

k 0.163 (5) 0.15 (4) 4.4 (6) 11.58 (5) 0.09 (5) 0.14 (4)

D 0.164 (3) 0.19 (3) 9.45 (4) 19.86 (3) 0.17 (3) 0.27 (2)

h 0.171 (2) 0.23 (2) 30.5 (1) 23.02 (1) 0.28 (1) 0.15 (3)

Cd 0.25 (1) 0.28 (1) 29.5 (2) 21.03 (2) 0.25 (2) 0.29 (1)

The value in brackets shows rank importance.
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These drag effects can become very important, which is also

shown in Table 4. Calculations shown in Table 4 indicate

that any error in determining flow depth and drag coefficient

may result in under- or over-estimation of mean velocity.

Table 4 also highlights the importance of D on mean vel-

ocity prediction.

Contribution plots for each of the predictor variables

have been constructed in the present work, as shown in

Figure 5. Figure 5(a) shows the variation of u with h and i

by keeping the other variables at mean value. The range of

i has been divided into 10 parts, and plots of h and u have

been drawn at each value of i. It can be seen from Figure 5(a):

(i) mean velocity increases with an increase in h and (ii) it

also increases with an increment in the channel slope (i).

Mean velocity is directly proportional to flow depth and

channel slope as per any flow equations existing in the litera-

ture. It is probably more relevant to analyze the trends

shown in Figure 5(a) through Manning’s formulation as it

is most often employed in practice. The trend shown in

Figure 5(a) matches with the most used Manning’s formula

for mean velocity. Mean velocity will increase with flow

depth and channel slope as per Manning’s formula. Man-

ning’s formula, however, has Manning’s coefficient as

controlling factor, thereby limiting the increasing trend of

mean velocity with flow depth and channel slope. The

same can be seen in Figure 5(a). When flow depth and chan-

nel slope have high values, increment in mean velocity is

slow and it tends towards attaining an asymptotic nature.

Figure 5(b) shows the combined variation of D and k with

u. D and k are descriptors of vegetation properties. Except

for Stone and Shen’s equation (Stone & Shen ), most

of the equations given in Table 1 show that u will decrease

non-linearly with an increase in D. Equations given in

Table 1 do not show a general behavior of k with u; how-

ever, Figure 5(b) shows that u will increase with k. The

trend that u will decrease non-linearly with an increase in

D is also shown in Figure 5(c). m represents the density of

vegetation. When m is very high, flow will be very low

because of high density of vegetation, which is shown in

Figure 5(c). Drag opposes the fluid motion; this general be-

havior is shown in Figure 5(d). u will decrease with an

increase in Cd, which may be due to increasing moment

absorbing area. The non-linearity, shown in Figures 5(a) to

5(d), probably originates from attenuation effects of veg-

etation that reduce bed surface contribution to the overall

resistance (Armanini et al. ).

Figure 5 | Variability of u with input parameters: (a) relationship between u, h, and i; (b) variation of D and k with u; (c) variation of D and k with u; (d) relationship between u, Cd, and m.
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CONCLUSION

Vegetation–flow interactions are central to many problems of

practical interest to hydraulic engineers, including flood risk

studies, sediment transport studies, and the analysis of the

hydraulic performance of river restoration schemes. Existing

predictors are too complex and limited in terms of their applica-

bility. Based on a large database of submerged vegetation

conditions (rigid and flexible), the present work formulates a

neural network model of mean velocity in a vegetative channel

comprising all the relevant parameters. In thisway, a qualitative

effect of all types of parameters can be incorporated in the pre-

diction of flow velocity in a vegetative channel. The

generalization capacity of the model is very good considering

there are so many different parameters affecting flow–veg-

etation interactions. In engineering applications, errors in

determining the governing parameters affect the accuracy of

the prediction. The present analysis based on the input signifi-

cant test shows that in order to get the accurate flow velocity

prediction, there should be more accurate determination of

flow depth and drag coefficient due to vegetation. The variabil-

ity offlowvelocitywith different parameters is also important to

understanding the process. The present work shows the mean

velocity decreases with an increase in vegetation diameter, veg-

etation density, and drag coefficient. The variability of mean

velocity with vegetation height is an increasing one.

ACKNOWLEDGEMENT

The author gratefully acknowledges the financial support

received from the Department of Science and Technology,

Government of India (SERC-DST: SR/S3/MERC/005/

2010) to carry out the research work presented in this paper.

REFERENCES

Akilli, H. & Rockwell, D.  Vortex formation from a cylinder in

shallow water. Phys. Fluids 14, 2957–2967.

Armanini, A., Righetti, M. & Grisenti, P. Direct measurement

of vegetation resistance in prototype scale. J. Hydraul. Res.

43, 481–487.

Baptist,M. J., Babovic,V.,Uthurburu, J.R.,Keijzer,M.,Uittenbogaard,

R.E., Verway,A.&Mynett,A.E. On inducing equations for

vegetation resistance. J. Hydraul. Res. 45, 435–450.

Bhattacharya, B., Price, R. K. & Solomatine, D. P.  A data

mining approach to modelling sediment transport. In: 6th

International Conference on Hydroinformatics (S.-Y. Liong,

K.-K. Phoon & V. Babovic, eds), 21–24 June, World Scientific

Publishing Company, Singapore.

Borovkov, V. S. & Yurchuk, M.  Hydraulic resistance of

vegetated channels. Hydrotech. Const. 28, 432–438.

Carollo, F. G., Ferro, V. & Termini, D.  Flow resistance law in

channels with flexible submerged vegetation. J. Hydraul. Res.

131, 554–564.

Chen, S., Wu, Y. & Luk, B. L.  Combined genetic algorithm

optimization and regularized orthogonal least squares

learning for radial basis function networks. IEEE Trans.

Neural Netw. 10, 1239–1243.

Cheng, C. T., Ou, C. P. & Chau, K. W.  Combining a fuzzy

optimal model with a genetic algorithm to solve multi-

objective rainfall-runoff model calibration. J. Hydrol. 268 (3),

72–86.

Choi, S. U. & Kang, H.  Reynolds stress modeling of vegetated

open-channel flows. J. Hydraul. Res. 42, 3–11.

Dolling, O. R. & Varas, E. A.  Artificial neural networks for

streamflow prediction. J. Hydraul. Res. 40, 547–554.

Duh, M. S., Walker, A. M. & Ayanian, J. Z.  Epidemiologic

interpretation of artificial neural networks. Am. J. Epidemiol.

147, 1112–1122.

Dunn, C., Lopez, F. & García, M.  Mean flow and turbulence

in a laboratory channel with simulated vegetation. Hydraulic

Engineering Series. 51. University of Illinois at Urbana-

Champaign, Urbana, IL.

Einstein, H. A. & Banks, R. B.  Fluid resistance of composite

roughness. American Geophysical Union 3, 603–634.

Fenzl, R. N.  Hydraulic resistance of broad shallow vegetated

channels. PhD thesis, University of California, Davis, CA.

Galema, A.  Evaluation of Vegetation Resistance Descriptors

for Flood Management. Master Thesis, University of Twente,

Enschede, The Netherlands.

Garson, G. D.  Interpreting neural-network connection

weights. Artif. Intell. Expert. 6, 47–51.

Giustolisi, O. & Savic, D. A.  A symbolic data-driven

technique based on evolutionary polynomial regression.

J. Hydroinform. 8 (3), 207–222.

Giustolisi, O. & Simeone, V.  Optimal design of artificial

neural networks by multi-objective strategy: groundwater

level predictions. Hydrol. Sci. J. 51, 502–523.

Goldberg, D. E.  Genetic Algorithms in Search, Optimization

and Machine Learning. Addison-Wesley, Reading, MA.

Green, J. C.  Effect of macrophyte spatial variability on

channel resistance. Adv. Water Res. 29, 426–438.

Haykin, S.  Neural Networks: A Comprehensive Foundation.

Prentice-Hall, Upper Saddle River, NJ.

Huthoff, F.  Modelling Hydraulic Resistance of Floodplain

Vegetation. PhD Thesis, Department of Water Engineering,

University Twente, Enschede, The Netherlands.

Huthoff, F., Augustijn, D. C. M. & Hulscher, S. J. M. H. 

Analytical solution of the depth-averaged flow velocity in

848 B. Kumar | Flow prediction in vegetative channel Journal of Hydroinformatics | 16.4 | 2014

Downloaded from http://iwaponline.com/jh/article-pdf/16/4/839/387413/839.pdf
by guest
on 21 August 2022

http://dx.doi.org/10.1063/1.1483307
http://dx.doi.org/10.1063/1.1483307
http://dx.doi.org/10.1080/00221680509500146
http://dx.doi.org/10.1080/00221680509500146
http://dx.doi.org/10.1080/00221686.2007.9521778
http://dx.doi.org/10.1080/00221686.2007.9521778
http://dx.doi.org/10.1007/BF01487449
http://dx.doi.org/10.1007/BF01487449
http://dx.doi.org/10.1061/(ASCE)0733-9429(2005)131:7(554)
http://dx.doi.org/10.1061/(ASCE)0733-9429(2005)131:7(554)
http://dx.doi.org/10.1109/72.788663
http://dx.doi.org/10.1109/72.788663
http://dx.doi.org/10.1109/72.788663
http://dx.doi.org/10.1016/S0022-1694(02)00122-1
http://dx.doi.org/10.1016/S0022-1694(02)00122-1
http://dx.doi.org/10.1016/S0022-1694(02)00122-1
http://dx.doi.org/10.1080/00221686.2004.9641178
http://dx.doi.org/10.1080/00221686.2004.9641178
http://dx.doi.org/10.1080/00221680209499899
http://dx.doi.org/10.1080/00221680209499899
http://dx.doi.org/10.1093/oxfordjournals.aje.a009409
http://dx.doi.org/10.1093/oxfordjournals.aje.a009409
http://dx.doi.org/10.1623/hysj.51.3.502
http://dx.doi.org/10.1623/hysj.51.3.502
http://dx.doi.org/10.1623/hysj.51.3.502
http://dx.doi.org/10.1016/j.advwatres.2005.05.010
http://dx.doi.org/10.1016/j.advwatres.2005.05.010
http://dx.doi.org/10.1029/2006WR005625


case of submerged rigid cylindrical vegetation. Water Resour.

Res. 43, W06413.

Ikeda, S.&Kanazawa,M. Three-dimensional organized vortices

above flexible water plants. J. Hydraul. Eng. 122, 634–640.

Irie, B. & Miyanki, S.  Capabilities of three layer perceptrons.

In IEEE Second International Conference on Neural

Networks, San Diego, CA, 1, pp. 641–648.

Järvelä, J.  Flow resistance of flexible and stiff vegetation: a

flume study with natural plants. J. Hydrol. 269, 44–54.

Järvelä, J.  Flow resistance of flexible and stiff vegetation: a

flume study with natural plants. J. Hydrol. 269, 44–54.

Koza, J. R.  Genetic Programming: On the Programming of

Computers by Means of Natural Selection. MIT Press,

Cambridge, MA.

Kouwen, N. & Fathi-Moghadam, M.  Friction factors for

coniferous trees along rivers. J. Hydraul. Eng. 126, 732–740.

Kouwen, N., Unny, T. E. & Hill, H. M.  Flow retardance in

vegetated channels. J. Irrig. Drain. E. 95 (2), 329–344.

Kumar, B.  Data mining approach for friction factor in mobile

bed channel. Water Manage. 164, 15–25.

Lopez, F. & Garcia, M.  Open-channel flow through

simulated vegetation: Suspended sediment transport

modeling. Water Resour. Res. 34, 2341–2352.

Masters, T.  Practical Neural Network Recipes in Cþþ.

Academic Press, San Diego, CA.

Meijer, D. G.  Modelproeven overstroomd riet. Technical

report PR177, HKV Consultants, Lelystad, The Netherlands.

Millar, R. G.  Influence of bank vegetation on channel

properties. Water Resour. Res. 36, 1109–1118.

Montgometry, D. R. & Piegay, H.  Woods in rivers:

interactions with channel morphology and processes.

Geomorphology 51, 1–5.

Murota, A., Fakuhara, T. & Sato, M.  Turbulence structure in

vegetatedopenchannelflow. J.Hydrosci.Hydraul.Eng.2, 47–61.

Murphy, E., Ghisalberti, M. & Nepf, H. Model and laboratory

study of dispersion in flows with submerged vegetation.Water

Resour. Res. 43, W05438.

Nasseri, M., Asghari, K. & Abedini, M. J.  Optimized scenario

for rainfall forecasting using genetic algorithm coupled with

artificial neural network. Expert Syst. Appl. 35, 1415–1421.

Neary, V. S.  Numerical solution of fully-developed flow with

vegetative resistance. J. Eng. Mech. 129, 558–563.

Nepf, H. M.  Drag, turbulence, and diffusion in flow through

emergent vegetation. Water Resour. Res. 35, 479–489.

Ng, W. Y., Yeung, D. S., Wang, X. & Cloete, I.  A study of the

difference between partial derivative and stochastic neural

network sensitivity analysis for applications in supervised

pattern classification problems. Proceedings of the Third

International Conference on Machine Leaming and

Cybernetics, Shanghai, 4283–4288.

Nikora, V., Larned, S., Nikora, N., Debnath, K., Cooper, G. &Reid,

M.  Hydraulic resistance due to aquatic vegetation in

small streams: a field study. J. Hydraul. Eng. 134, 1326–1332.

Olden, J. D. & Jackson, D. A.  Illuminating the ‘blackbox’:

understanding variable contributions in artificial neural

networks. Ecol. Model. 154, 135–150.

Poggi, D., Porporato, A., Ridolfi, L., Albertson, J. D. & Katul, G. G.

 The effect of vegetation density on canopy sub-layer

turbulence. Boundary-Layer Meteorol. 111, 565–587.

Ree, W. O. & Crow, F. R.  Friction factors for vegetated

waterways of small slope. Technical Report Publication S-151.

USDepartment of Agriculture, Agricultural Research Service.

Rowinski, P. M. & Kubrak, J.  A mixing-length model for

predicting vertical velocity distribution in flows through

emergent vegetation. Hydrol. Sci. J. 47, 893–904.

Salajegheh, E. & Gholizadeh, S. Optimum design of structure

by an improved genetic algorithm using neural networks.

Adv. Eng. Softw. 36, 757–767.

Shields, F. D. & Cooper, C. M.  Woody vegetation and debris

for in-channel sediment control. Int. J. Sed. Res. 15, 83–92.

Shimizu, Y. & Tsujimoto, T.  Numerical analysis of turbulent

open-channel flow over a vegetation layer using a k-e

turbulence model. J. Hydrosci. Hydraul. Eng. 2, 55–67.

Singh, A. K., Deo, M. C. & Kumar, V. S.  Neural network–

genetic programming for sediment transport. Maritime Eng.

160, 113–119.

Srinivasulu, S. & Jain, A.  A comparative analysis of training

methods for artificial neural network rainfall–runoff models.

Appl. Soft Comput. 6, 295–306.

Stephan, U. & Gutknecht, D.  Hydraulic resistance of

submerged flexible vegetation. J. Hydrol. 269, 27–43.

Stone,B.M.&Shen,H.T.Hydraulicresistanceofflowinchannels

with cylindrical roughness. J. Hydraul. Eng. 128, 500–506.

Tsujimoto, T. & Kitamura, T.  Velocity profile of flow in

vegetated bed channels. KHL progressive report 1,

Kanazawa University, Kanazawa, Japan.

Tsujimoto, T., Okada, T. & Kitamura, T.  Turbulent flow over

flexible vegetation covered bed in open channels. KHL

progressive report 1, Kanazawa University, Kanazawa, Japan.

Tsujimoto, T., Okada, T. & Kontani, K.  Turbulent structure of

open channel flow over flexible vegetation. KHL progressive

report 4, Kanazawa University, Kanazawa, Japan.

Van Velzen, E. H., Jesse, P., Cornelissen, P. & Coops, H. 

Stromingsweerstand vegetatie in uiterwaarden. Handbook

report 2003.028, RIZA, Arnhem, The Netherlands.

Wang, X., Lu, W., Cao, S. & Fang, D.  Using time-delay neural

network combined with genetic algorithms to predict runoff

level of Linshan watershed, Sichuan, China. J. Hydrol. Eng.

12 (2), 231–236.

Wei, C.  Soft computing techniques in ensemble precipitation

nowcast. Appl. Soft Comput. 13, 793–805.

Wilson, C. A. M. E., Stoesser, T., Bates, P. D. & Batemann-Pinzen,

A.  Open channel flow through different forms of

submerged flexible vegetation. J. Hydraul. Eng. 129, 847–853.

Yen, B. C.  Open channel flow resistance. J. Hydraul. Eng.

128, 20–39.

First received 6 May 2013; accepted in revised form 28 September 2013. Available online 22 November 2013

849 B. Kumar | Flow prediction in vegetative channel Journal of Hydroinformatics | 16.4 | 2014

Downloaded from http://iwaponline.com/jh/article-pdf/16/4/839/387413/839.pdf
by guest
on 21 August 2022

http://dx.doi.org/10.1029/2006WR005625
http://dx.doi.org/10.1016/S0022-1694(02)00193-2
http://dx.doi.org/10.1016/S0022-1694(02)00193-2
http://dx.doi.org/10.1061/(ASCE)0733-9429(2000)126:10(732)
http://dx.doi.org/10.1061/(ASCE)0733-9429(2000)126:10(732)
http://dx.doi.org/10.1029/98WR01922
http://dx.doi.org/10.1029/98WR01922
http://dx.doi.org/10.1029/98WR01922
http://dx.doi.org/10.1029/1999WR900346
http://dx.doi.org/10.1029/1999WR900346
http://dx.doi.org/10.1016/S0169-555X(02)00322-7
http://dx.doi.org/10.1016/S0169-555X(02)00322-7
http://dx.doi.org/10.1029/2006WR005229
http://dx.doi.org/10.1029/2006WR005229
http://dx.doi.org/10.1016/j.eswa.2007.08.033
http://dx.doi.org/10.1016/j.eswa.2007.08.033
http://dx.doi.org/10.1016/j.eswa.2007.08.033
http://dx.doi.org/10.1061/(ASCE)0733-9399(2003)129:5(558)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2003)129:5(558)
http://dx.doi.org/10.1029/1998WR900069
http://dx.doi.org/10.1029/1998WR900069
http://dx.doi.org/10.1061/(ASCE)0733-9429(2008)134:9(1326)
http://dx.doi.org/10.1061/(ASCE)0733-9429(2008)134:9(1326)
http://dx.doi.org/10.1016/S0304-3800(02)00064-9
http://dx.doi.org/10.1016/S0304-3800(02)00064-9
http://dx.doi.org/10.1016/S0304-3800(02)00064-9
http://dx.doi.org/10.1016/j.advengsoft.2005.03.022
http://dx.doi.org/10.1016/j.advengsoft.2005.03.022
http://dx.doi.org/10.1680/maen.2007.160.3.113
http://dx.doi.org/10.1680/maen.2007.160.3.113
http://dx.doi.org/10.1016/j.asoc.2005.02.002
http://dx.doi.org/10.1016/j.asoc.2005.02.002
http://dx.doi.org/10.1016/S0022-1694(02)00192-0
http://dx.doi.org/10.1016/S0022-1694(02)00192-0
http://dx.doi.org/10.1061/(ASCE)0733-9429(2002)128:5(500)
http://dx.doi.org/10.1061/(ASCE)0733-9429(2002)128:5(500)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2007)12:2(231)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2007)12:2(231)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2007)12:2(231)
http://dx.doi.org/10.1016/j.asoc.2012.10.006
http://dx.doi.org/10.1016/j.asoc.2012.10.006
http://dx.doi.org/10.1061/(ASCE)0733-9429(2003)129:11(847)
http://dx.doi.org/10.1061/(ASCE)0733-9429(2003)129:11(847)
http://dx.doi.org/10.1061/(ASCE)0733-9429(2002)128:1(20)

	Flow prediction in vegetative channel using hybrid artificial neural network approach
	INTRODUCTION
	FUNCTIONAL ANALYSIS OF THE FLOW-VEGETATION INTERACTION
	NEURAL NETWORK MODELING
	Chromosome representation
	Fitness function
	Selection
	Crossover
	Mutation
	Levenberg-Marquardt method

	RESULTS AND DISCUSSION
	CONCLUSION
	The author gratefully acknowledges the financial support received from the Department of Science and Technology, Government of India (SERC-DST: SR/S3/MERC/005/2010) to carry out the research work presented in this paper.
	REFERENCES


