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ABSTRACT 

Flow Rate Measurement in a High Temperature, Radioactive, and Corrosive 
Environment 

 
by 
 

Taleb Moazzeni 

Dr Yingtao Jiang, Examination Committee Chair 
Associate Professor of Electrical Engineering 

University of Nevada, Las Vegas 

Accurate measurement of coolant flow rate is essential for determining the maximum 

power required by the nuclear plant operation and critical for monitoring its operation 

safety.   However, no practical off-the-shelf flowmeter is available to satisfy all the 

pressing multidimensional operation requirements (i. e., high temperature, high 

irradiation, and high corrosion).   This work thus deals with the development of a new 

flowmeter for nuclear power plant/reactor process-monitoring and real time analysis; this 

proposed flowmeter shall be able to continuously conduct robust measurements under 

extremely harsh environment with high irradiation, high pressure, high temperature and 

corrosive media. We investigate a transit-time based flow rate measurement which is 

used in such environment. The transit time of a thermal signal travels along with a liquid 

flow can be obtained using a cross correlation method. This transit-time-based flowmeter 

using thermocouples with grounded stainless steel shielding is by far the most robust and 

reliable solution to measure the flow rate in a harsh environment typically seen in a 

nuclear reactor.  In practice, cross correlation calculation tends to produce flat peak 

plateau or multiple peaks, leading to a significant error in peak detection.  To overcome 

this problem, in this work, an Auto-Adaptive Impulse Response Function estimation 

(AAIRF) technique is introduced and a significantly narrower peak is shown theoretically 
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and also verified experimentally.  In addition, we show that more accurate results can be 

obtained if moving average filter based cross correlation function (MAFCCF) is 

combined with AAIRF. Also in this work, we investigate a few important practical 

problems related to negative delays and sampling frequencies of the data acquisition. 

The second part of this work deals with the calibration of the developed flowmeter 

which was mentioned above. To commission the flowmeter, calibration process is 

applied by comparing the reading measurements with a standard flowmeter measurement. 

In this work, this process is performed in an in house developed water-based test 

apparatus with a developed transit-time based flowmeter based on the measurement and 

processing of correlated thermal signals. In this system, we have observed that the 

accuracy of the measured flow is restricted to the time response of the thermocouples. In 

addition, since the flow rate is inversely proportional to estimated time delay, high flow 

rates measurement like 5 gpm (gallon per minute) requires large transit-time span that 

can not be achieved from a limited physical system dimensions. These problems are 

investigated through this work. 

In the final part of this work, as the ultrasonic flow measurement technologies 

including transit-time and Doppler effect technologies are usually used in harsh 

environments, we study these methods with intensive simulations.  
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CHAPTER 1 

INTRODUCTION 

The measurement of flow rates (mass flow rates or volume flow rate) is an essential 

activity in a variety of industries and utility services. It also plays a notable role in 

monitoring and controlling the experimental conditions. The bulk flow rates can be 

obtained through direct methods, which measure the amount of discharged fluids over a 

period of time. Alternatively, flow rates can also be obtained using in-direct methods.  

For example, they can be derived through the measurement of fluid velocities. There are 

many ways in which the flow of the fluid can be measured including [1]: differential 

pressure flowmeters (primary element options, pitot tubes, variable area flowmeters), 

mechanical flowmeters (positive displacement, turbine, and other rotary flowmeters), 

electronic flowmeters (magnetic, vortex, and ultrasonic flowmeters), and mass 

flowmeters (Coriolis mass, thermal mass flowmeters, and hot-wire anemometers).  

So far the flow velocity has been found in strong correlation with signals of pressure, 

temperature, optical wave, and ultrasonic wave etc, based on diverse physical principles, 

[2], [3]. In the application of liquid metal coolant flow rate measurement, the high 

temperature, pressure, corrosion environment limits most flow meter devices from being 

used in long term and maintenance-free operation. In addition, due to the strong radiation, 

high temperature and pressure in such applications like in the reactor core of a nuclear 

power plant or in the reactor vessel, in general it is difficult to measure local flow. The 

temperature measurement technique which is based on correlated thermal signals is well 

developed for high temperature applications [4], [5]. In the following, the main 

limitations with conventional flowmeters are summarized.  
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1.1. Momentum Sensing Meters 

One big class of flowmeters is based on momentum sensing that the flow rate or flow 

velocity is derived from the momentum equation of fluid dynamics. Variable area meter 

(tube and float meter), spring-loaded diaphragm meter, target meter are typical examples 

[6]. The force from direct contacted fluid exerts on the float, diaphragm, or target is 

related to the fluid flow rate. The straightforward operation of this type of sensor makes it 

popular in a lot of applications in industry. However, the drawback of direct-contact 

excludes this flowmeter from being applied to corrosive environments. The material 

degradation of float, spring or target will have adverse effect on flow rate measurement.   

In general, any device (such as orifice) in a flow duct will generate pressure drop (or 

loss), the flow rate correspondent to the pressure loss can be derived from Bernoulli’s 

equation (or momentum equation, generally speaking) [6]. That is, the flow rate can be 

obtained from the pressure change between two reference locations that have different 

cross-sectional areas. Typical flowmeters based on the principle described here include 

orifice plate meter, Venturi meter or Dall tube meter, averaging pitot, and wedge/ V cone 

design meter, etc.   

As this kind of flowmeters relates flow rate measurement to direct pressure 

measurement using some pressure sensor(s), it is thus necessary to examine pressure 

sensors against high temperature, corrosion and irradiation environments. Unfortunately, 

the corrosion and high temperature environment will quickly lead to a deadly failure of 

common pressure transducers (resistance variation to tensor on a diaphragm). Irradiation 

is another impacting factor that can generate significant errors of resistance measurement, 

consequently on the pressure measurement.   
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Piezoelectric sensors can measure various physical quantities, with pressure and 

acceleration being the most common ones. If a piezeoelectric sensor is used to measure 

the pressure, a membrane and a massive base are needed to ensure that an applied 

pressure specifically loads the elements in one direction. The deformation of piezoelectric 

material by pressure exert on it can generate a detectable voltage signal that can be 

related to the applied pressure. Piezoelectric technology is insensitive to electromagnetic 

fields and radiation, enabling measurement under irradiation environments. However, the 

high temperature is a big barrier that a piezoelectric pressure sensor can not tolerate. 

Although some piezoelectric materials (gallium phosphate or tourmaline) have shown 

high stability at high temperatures, which may be translated to sensor temperature 

tolerance up to 1000 C [7], the working temperature range for pressure sensor based on 

piezoelectric technology is far below that level. In the open literature, we have found that 

one product, K-12 pressure sensor from Piezo technologies, can be used up to 593 C 

continuously and up to 760 C intermittently. The corrosion resistance of K-12 sensor is 

not available in the literature. If the installation, sealing of diaphragm and other 

engineering issues have to be considered, this K-12 sensor shall work below 593 C.   

Above discussions have clearly indicated that the various flow meters based on 

pressure measurements are not practical for the applications in the high temperature 

(typically above 600 C) corrosive and radiation environment. 

1.2. Vortex-shedding, Swirl, and Fluidic Flowmeters 

Vortex flow meter is another big class of sensor to measure the flow rate, and it is 

based on the phenomenon of Karman-vortex-street, which shows close to linear 

relationship between vortex shedding frequency and Reynolds number for certain range 
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of Reynolds number. As such, the measurement of flow rate is transformed to the 

measurement of vortex frequency, which is normally achieved by using a pressure sensor.  

As described before, the high temperature is a barrier for this type of sensor to be 

applicable in nuclear industry. In addition, material degradation of blunt body inside a 

vortex flowmeter due to corrosion/erosion will also lead to significant measurement 

errors. Actually, the same corrosion/erosion problems will have negative impacts on 

orifice plate flowmeters.   

1.3. Other Intrusive Flowmeters 

Other intrusive flowmeters include turbine and related flowmeters (Pelton wheel 

flowmeters, vane-type flowmeters etc.), positive displacement flowmeters (Helical rotor 

meter, reciprocating piston meters, precision gear flowmeters etc.), angular momentum 

devices, Coriolis flowmeters, and hot-wire thermal flowmeters etc. Due to the material 

degradation caused by corrosion/erosion, large measurement error, or even a total failure 

of sensor, is inevitable during a long term operation in nuclear plant.   

1.4. Non-intrusive Flowmeters 

Non-intrusive technologies, such as electromagnetic flowmeter and ultrasonic 

flowmeter, have been considered to replace intrusive flow meters to overcome the 

corrosion/erosion problem at high temperature. Laser Doppler Anemometry has been 

recognized as a leading non-intrusive velocity measurement technology.  However, this 

technology cannot be used in fluids where no light can pass through as is the case of 

liquid metal coolant. Another problem is that this technology requires the inclusion of 

tracking particles to reflect the optical Doppler signal [8]. But it is impractical to 

introduce those small tracking particles into a nuclear reactor system.   
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Ultrasonic flowmeter can be an alternative to overcome the shortcomings of optical 

anemometry when dealing with an opaque fluid. The ultrasonic applications actually 

became really attractive until the development of piezoelectric transducers [9]. In general, 

there are a few different types of ultrasonic flowmeter, including the transit-time 

flowmeter, the Doppler meter and the cross-correlation flowmeter.   

Similar to laser Doppler anemometry, an ultrasonic Doppler flow meter depends on 

the Doppler frequency shift, which occurs when sound wave bounces off a moving 

object. When most fluids flowing through pipelines are clean without any wave reflecting 

particles, this flowmeter may fail to measure the flow rate, as reported in [6].   

Other ultrasonic flowmeters can be categorized as Wetted (transducer immersed 

directly to fluid) and non-wetted transducers. The wetted transducers for high 

temperature and corrosive environment encounter the same technical problems caused by 

high temperature as piezoelectric technology is used. The non-wetted transducer is 

protected by a metal window or even the pipe wall. However, it was noticed that there is 

a significant variation of ultrasonic wave propagation if wall roughness changes [10]. As 

a result, the ultrasonic flowmeter has to be frequently re-calibrated due to the inner 

surface degradation by corrosion/erosion.   

Another non-intrusive flow rate measurement technology is electromagnetic 

flowmeter, which is based on Faradey’s law of electromagnetic induction. The principle 

of this flowmeter limits its application for only conductive fluids. The very low voltage 

detected by flowmeter is a function of linear flow velocity, dimension of pipe (ID and 

OD), electric conductivities of the pipe wall, liquid and contact resistance at the liquid-
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wall boundary. The variation of inner diameter, contact resistance due to long term 

corrosion/erosion will lead to considerable measurement errors [11]. 

This dissertation investigates the practical problems with the flow measurement 

technologies in the corrosive environments. The main contribution of this work which is 

directly related to the motivation of our research is to address the practical problems with 

a special flowmeter called correlated thermal signals based flowmeter.  

Chapter two introduces the theoretical background behind this method and solutions 

to related problems with time delay estimation as it is the key point for calculation of 

flow rate in this method. In this chapter, we discuss the problems which we conducted in 

experiments with some signal processing solutions to overcome these problems.  

Chapter 3 deals with the calibration procedures which is performed to derive the flow 

rate from the measured time delay. In this chapter, some related problems with 

calibration such as dependency of the flow measurement accuracy on the Reynolds 

number and physical settings are discussed.  

Chapter 4 presents a theoretical study on the application of ultrasonic flow 

measurement technologies in corrosive environments. This chapter also provides a 

computer simulation on the main problem with this technology in such environment 

which is the pipe inner surface roughness.  

Finally, chapter five gives some future direction issues for further study and research 

associated with this work.  
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CHAPTER 2 

TIME DELAY ESTIMATION IN CORRELATED THERMAL SIGNALS 

2.1. Introduction 

In advanced nuclear reactors with a strong irritation, high pressure and temperature 

(>300 oC – 1000 oC), accurate measurement of coolant flow rate over an extended period 

of time is essential for safe operation [5]. Combination of irradiation, high temperature 

and high corrosiveness in a medium has imposed great challenges for flow rate 

measurement.  

Many flow measurement technologies have been applied in various industries 

including momentum sensing meters (variable area meter [12], [13], spring-loaded 

diaphragm meter and target meter [14], [15]), vortex flowmeter, turbine and related 

flowmeters, positive displacement flowmeters, angular momentum devices, Coriolis 

flowmeters [16] and non-intrusive technologies, such as electromagnetic flowmeter and 

ultrasonic flowmeter [17]-[20]. Among all these flowmeters, only the non-intrusive ones 

are capable of working in corrosive environments.  

The non-intrusive electromagnetic flow rate measurement technology is only good to 

be used in such harsh environment for a short time, as long term corrosion/erosion would 

change contact resistance at the liquid-wall boundary, leading to escalated measurement 

errors [15]. The ultrasonic flowmeters can be broadly categorized into wetted and non-

wetted transducers, and they both suffer from corrosion problems. The wetted transducers 

are directly immersed in fluid and thus corrosive environment will gradually degrade the 

performance of the transducer. The non-wetted transducers demand frequent re-
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calibration as the degradation of pipe inner surface caused by corrosion/erosion produces 

significant variation of ultrasonic wave [19].   

This work thus deals with the development of a flowmeter to be used in a harsh 

environment such as a nuclear power plant/reactor for process-monitoring and real time 

analysis with reliable and accurate measurement. The transit-time of inherent random 

temperature fluctuations in processes, like the coolant flow in a nuclear reactor, can be 

obtained by the cross correlation calculation of flow temperatures recorded by two 

separate temperature sensors placed certain distance apart [20]-[23]. In specific, the first 

thermocouple placed at an upstream position on the flow senses a signature of 

temperature fluctuation, while the second downstream thermocouple ideally grabs the 

same signature with a delay that is inversely proportional to the flow rate. Determination 

of this delay through the cross correlation calculation of these two temperature signals 

will thus reveal the flow rate of interest.  

Theoretically speaking, flowmeters based on this method can be employed in a harsh 

environment provided temperature sensors built upon corrosion- and radiation-resilient 

materials, like stainless steel with grounded shielding, are used. Practically, the cross 

correlation calculation that this scheme is based upon can generate a wide peak or a weak 

peak which may not be distinguishable from the one caused by background gamma 

radiation [5]. In either case, the accuracy of this technique is questionable. This problem, 

to some extent, is alleviated if the generalized cross correlation method [25] is used. 

However, this method requires a priori knowledge of the power spectra of both the signal 

and the noise, or it can give poor performance if the estimated spectra do not match well 

with the true spectra [26].  
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As an attempt to address the aforementioned problems in the cross correlation and the 

generalized cross correlation methods, one approach based on impulse response 

estimation using transfer function calculation was introduced in [15]. We tested this 

method experimentally using an in-house developed test apparatus, and results showed 

that this method unfortunately generates multiple peaks with same or similar height, 

leading to possible wrong readings. 

As a result, in this work, we present an Auto-Adaptive Impulse Response Function 

estimation (AAIRF) technique, and we will theoretically show that a significantly 

narrower, stronger peak can be obtained, and this desirable property is also 

experimentally verified.  The accuracy of AAIRF can be further improved if a proposed 

moving-average-filter-based cross correlation function (MAFCCF) is combined with 

AAIRF. Moreover, in this work, we will try to address a few important practical 

problems related to negative delays and sampling frequencies of the data acquisition. 

With all these techniques in place, one shall expect that a highly reliable sensor can be 

developed in a harsh environment that currently no other sensors can succeed. 

The rest of this chapter is organized as follows. In section two, the time delay 

estimation methods including the cross correlation function, the transfer function 

estimation and the proposed methods are presented. In section three, the accuracy and 

error analysis of the proposed methods is given. Section four presents the test apparatus 

for the experiments and the experimental results are reported. Section five gives the 

results and discussions. Finally, section six concludes the chapter. 
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2.2. Time Delay Estimation Techniques 

Assume that there is a negligibly small change in the characteristics of flow profiles, 

provided the thermocouples are within certain distances (Fig. 2.1).  As a good rule of 

thumb, the thermocouples are spaced approximately three times of the pipe diameter [22], 

[24]. This promises high correlation between the downstream and the upstream signals. 

In order to generate the thermal signals that can well track the temperature fluctuation in 

a real setting, a heater that generates heat impulses can be employed.   

 

 

Fig. 2.1. Transit time configuration. 

 

In this case, the upstream thermocouple records a flow signature VL /  seconds earlier 

than the downstream one, where L is the distance between the two sensors and V is the 

average flow speed.  By comparing the thermal signals obtained from the two 

thermocouples, we are able to determine the time delay, , thus the flow speed given as 

follows, 
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                                                         /LV                                                            (2.1)                         

The time delay can be traditionally obtained using two methods: the cross-correlation 

function-based and the transfer-function-based methods. 

2.2.1. Cross-correlation Method  

The principle behind this method is that the cross correlation calculation of the two 

correlated signals creates a peak which gives an indication of the time delay between the 

two thermocouples [15]. The cross correlation of )(1 ti at time t and )(2 ti  at time t  is 

obtained from the average of the product of the two values over the observation time 

[22]. This method includes following major steps:    

1) Calculate the cross correlation function (CCF) of the two thermocouple input signals 

)(1 ti and )(2 ti . 

                                              dttitiCCF )()()( 21  

                                         (2.2) 

where   is the time delay between )(1 ti and )(2 ti  

2) Detect the peak of )(CCF  to obtain .  Since )(2 ti   is treated as a faithful copy of 

)(1 ti delayed by , one has, 

                                   )()()()( 21   ACFdttitiCCF                               (2.3)                         

where ACF is the autocorrelation function of )(1 ti .  

Since the autocorrelation function (ACF) always has its maximum at time lag of zero, 

the cross correlation function (CCF) between these two signals, defined in Eq. (2.2), 

reaches its maximum after  [15]. That is, the amount of time that CCF reaches its peak 

is actually the time delay of interest, . In a simple word, detection of maximum peak of 

CCF gives the time delay, . 
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2.2.2. Transfer Function Estimation Method  

The first method which uses the maximum value of the CCF of the measured signals 

has two main problems: (i) the obtained peak is too wide which has negative impact on 

the result accuracy and (ii) besides the main peak which yields the expected time delay, 

there can be other undesirable peaks. To alleviate this problem, the transfer function 

estimation approach was recently proposed which tends to give a narrower peak to get the 

time delay [15]. Unlike the previous method, the system here is modeled as shown in Fig. 

2.2. The measured signals )(1 ti and )(2 ti are considered as respective input and output of 

the model [15], and )(th is the impulse response function of the system. 

 

)(th)(1 ti )(2 ti
 

Fig. 2.2. System model for basic transfer function estimation. 

 

It is shown that the CCF of )(1 ti and )(2 ti is equal to the impulse response function of 

the system, )(th , provided that the applied signal at the first thermocouple is an impulse 

function, )()(1 tti  [15]. It means that the maximum peak of )(th  corresponds to the 

time delay, , as the CCF does. Therefore, estimation of  boils down to obtaining )(th . 

- Practical estimation of the transfer function (TF):  

To obtain an unbiased estimation of the TF, it is supposed that the measured signals 

)(1 ti and )(2 ti  have some added white noise. In this case, the system shown in Fig. 2.2 

becomes the one shown in Fig. 2.3 [15]. The input and output of this model are 
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bI and kI , respectively, and 1W  and 2W are the respective added noise to the input and the 

output. The transfer function, )( jH , is obtained by [15], 

                                                   

2

2
1

1

12

1
bI

W
H

APSD
CPSD



                                                 (2.4)                         

where 12CPSD  is the cross-power spectral density of 1I  and 2I , and 1APSD   is the 

auto power spectral density of 1I . In Eq. (2.4), since the 
2

2
1

bI

W
is much less than 1, we 

may ignore this term to get the following expression of the estimated transfer function.  

                                                       
1

12ˆ
APSD

CPSD
H                                                      (2.5)                         

)( jH
)( jI k)( jIb

)(1 jW )(2 jW

)(1 jI

)(2 jI

 

Fig. 2.3. Transfer function estimation with added white noise. 

 

This algorithm includes following major steps: 

1) Convert the time domain signals )(tACF  and )(tCCF  to their frequency 

representations to get 1APSD and 12CPSD , respectively.  
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2) Apply Eq. (2.5) to obtain )( jH and convert it back to )(th  with inverse Fourier 

transform. 

3) Detect the peak of )(th  to obtain .  

2.2.3. Auto-Adaptive Impulse Response Function Estimation Method  

The conventional transfer estimation method using cross correlation and 

autocorrelation calculations mentioned in above section suffers from multiple peaks 

problem due to the fluctuations of the temperature in the coolant flow and additional 

fluctuations due to detection (statistical) uncertainties [15]. In Fig. 2.4, we show a result 

obtained from an experiment conducted in our lab using an in-house developed test 

apparatus. One can see that as the estimated impulse response function using the 

conventional transfer function is used, the actual delay point can hardly be detected from 

the multiple peaks. To alleviate this problem, a method called Auto-Adaptive Impulse 

Response Function estimation (AAIRF) is proposed. In this method, for transfer function 

and thus impulse function estimation, windowed cross correlation and autocorrelation 

functions are used. To do so, only the region around the peak that is detected by the cross 

correlation method is taken into account, and such a region can be chosen between two 

adjacent valley points around the peak.   
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            Fig. 2.4. Some impulse response of the system obtained from    

                          conventional  transfer function estimation. 

 

Assume that )(tACF  and )(tCCF have multiple peaks as shown in Figs. 2.5.a and 

2.5.b. Let )(11 t  and )(12 t be the respective windowed functions of )(tACF  and 

)(tCCF  (Figs. 2.6.a and 2.6.b). )(12 t  can be expressed in terms of )(11 t as follows, 

                                       )()()( 111112   ttt                                     (2.6)                         

Let )(
~ jH  be the Fourier transform of the system based on the windowed 

correlation function. By transforming Eq. (2.6) to frequency domain via Fourier 

transform, one may find, 
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Since )(11  t  and )(11  t are in close phase and the amplitude of )(11 t is 

much smaller than that of )(11 t , Eq. (2.7) yields following approximation for )(
~ jH ,  

                                                   
 j

ejH
)(

~
                                                  (2.8)                         

Therefore,                                                      

                                                       )()(
~   tth                                                   (2.9) 

Eq. (2.9) indicates that the obtained impulse response function )(
~

th is theoretically 

close to an impulse function, and thus it shall have one single extremely narrow and 

strong peak at point  . 

 

 

 

                         

             (a)                                                                   (b) 

Fig. 2.5. (a): The autocorrelation function of )(1 ti , (b): The cross correlation 

                                function of  )(1 ti and )(2 ti . 

                                                              

 

 

                          

             (a)                                                                            (b) 

Fig. 2.6. (a): The windowed version of the autocorrelation function of )(1 ti ,    

            (b): The windowed version of cross correlation function of )(1 ti and )(2 ti .  
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2.2.4. Moving Average Filter based Cross correlation Function method 

Although the Auto-Adaptive Impulse Response Function estimation method gives a 

very narrow and strong peak, the considered window and thus the accuracy of detected 

peak is dependent on the peak point deviation in cross correlation function. In other 

words, deviation of the cross correlation estimate affects the performance of this method. 

To alleviate this problem, we employ another method called Moving Average Filter 

based Cross Correlation Function (MAFCCF) [27].  In this method, the raw data are 

simply averaged over some interval, followed by cross correlation calculation using the 

filtered data. This MAFCCF function can be expressed as, 

                                   ))(()(
1

)( 2
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1
121 sM
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where r is the number of sampled-data in CCF, k is the number of sampled-data in 

signals )(1 ti and )(2 ti , sT  is the sampling period, and M is the length of moving average 

filter. 

2.3. Accuracy and Error Analysis 

The accuracy of the cross correlation time delay detector depends on the 

measurement of the peak value of the cross correlation function. The major sources of 

errors include the bandwidth of measured signals, number of samples, background noise, 

waveform sampling, waveform quantization and distortion of the trace pattern in the flow 
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between the thermocouples (and TC responses) [28].  In addition, there are several 

possible sources of systematic error, such as filter mismatch, pipe diameter variations and 

differences between the geometrical and effective thermocouple spacing [28]. In this 

study, we found the system error is negligibly small as compared to the error due to time 

delay estimation method and the sampling frequency. 

2.3.1. Error due to time delay estimation method (cross-correlation function) 

It can be shown that the respective normalized mean square error in cross correlation 

function and the variance of time delay estimates *  are given by [28]: 
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where B is the bandwidth of measured signals, T is the length of measured signals, 

1ACF  and 2ACF are the respective autocorrelation functions of )(1 ti and the cross 

correlation of )(1 ti and )(2 ti , sf is the sampling frequency, )(2  xy is the normalized 

cross correlation, and q is the correlation coefficient between the instantaneous flow 

event. This correlation coefficient for the measured signals can be obtained by [28]: 

                                                        
SNR

Tf
q s1                                                    (2.16)                       

where SNR is the mean square signal to noise ratio that may be estimated from the 

measured normalized cross correlation by [28]: 
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As the SNR in MACCF is larger than that in CCF, according to Eqs. (2.16) and 

(2.13), the normalized mean square error of time delay estimates in MACCF will be 

smaller than that in CCF method.   

2.3.2. Error due to the sampling frequency  

  As we use ADC and DAC devices, the sampled-data form is used in calculations. 

Thus, the cross correlation function is calculated point by point as shown in Fig. 2.7. This 

function gives the position of peak, not the real time delay. The time delay is obtained by 

dividing the detected number where the peak occurred by the sampling frequency (Fig. 

2.7). If the sampling frequency is not large enough, it may make an error in the 

calculation of the time delay as shown below.   

 

 

 

 

 

Fig. 2.7. Point by point cross correlation. 

 

The flow rate is related to the time delay between the two thermal signals as follows, 
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where Q is the flow rate, V  is the flow velocity, A is the cross-sectional area of the pipe, 

L is the distance between two thermocouples, τ is the time delay between the two thermal 

signals, and D is the internal diameter of pipe. 

Substituting
sf

  , where   is the sample offset delay between two thermal signals, 

into Eq. (2.18) gives,  

                                                      
sfK

K
Q                                                   (2.19)                         

Taking derivative with respect to sf  yields, 

                                                       2
ss ff
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                                                    (2.20)                        

Combining Eq. (2.19) and (2.20) gives, 
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By combining 2

Q K
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  and Eqs. (2.19) and (2.21), one may get, 
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                                                       (2.22)                 

According to the above equation, the measured flow rate deviation with respect to the 

sampling frequency is dependent on the sampling frequency itself which can come with a 

larger error at a low sampling frequency.                                   

2.3.3. Determination of the effective Bandwidth of the System  

The bandwidth of the turbulent flow noise is usually wide; however, the 

thermocouples used in the system can filter out the high frequency components of the 

measured signals [29]. One approach to measure the bandwidth of the system was 
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introduced in [29] which is again based on the cross correlation calculations. Assume that 

the downstream signal, )(2 ti , can be approximated by letting the upstream impulse 

signal, )(1 ti , pass through a low pass filter and then get delayed by τ (Fig. 2.8). Then the 

normalized cross correlation function is given by [29]: 

                                 )(2/))(2sin()(*)()( 21   tBtBtitith                             (2.23)                         

As the bandwidth of the system (Fig. 2.9) with its impulse response given in Eq. 

(2.23) can be calculated by [29]: 

                                                        HzB
4

1
                                                      (2.24)                         

where γ is the deviation time from the peak point that takes the correlation function to 

reach /2  of its maximum value. 

Therefore, finding the system bandwidth boils down to determine the value of γ such 

that  /2)(  th . 
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Fig. 2.8. Approximation to system model. 
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Fig. 2.9. Effective bandwidth representation of cross correlation function. 

 

For instance, we found from one of experiments (Fig. 2.10) that  is about 0.5 

seconds. Correspondingly, the measured effective bandwidth of the system will be 0.5 

Hz. 
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Fig. 2.10. Cross correlation of measured signals. 

 

2.3.4.. Threshold Signal to Noise Ratio 

The minimum signal to noise ratio (SNR) required to detect the peak point in the cross 

correlation function algorithm is achieved by [30]:   

                                                   TBSNRTh
32

0 /                                              (2.25)                         
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where 0 is the center frequency of recorded signals, B and T are given in Eq. (2.24) and 

(2.13),  respectively. 

2.4. Eexperiments  

To experimentally verify the proposed methods, we performed an experiment using a 

water-based test apparatus developed at our laboratory (Fig. 2.11).  This system 

comprises of two thermocouples along the pipe, a water tank, a water pump for 

circulating the flow, an electrical heater for exciting the system and a data acquisition 

system for collecting the data and transferring them to a PC. The internal diameter of the 

pipe is 20.9 mm and the distance between the two thermocouples is 500.0 mm. This 

distance is so chosen so that it is three times longer than that of the pipe diameter (for 

reasons mentioned in section two). This way, the meter is able to measure wider time 

delay span with more accurate flow rate readings. In this experiment, the thermocouples 

have found to have the time constant of 1.4 seconds. The tips of the thermocouples are 

placed at the center of pipe. The data acquisition system uses the delta-sigma ADC with a 

resolution of 24 bits, maximum sampling rate of 475 KS/s and input bandwidth (-3 dB) of 

15 Hz. As the system deals with a flow with a flow rate ranging from 0.5 gallon per 

minute (gpm) to 5 gpm, the corresponding Reynolds number is between 41004.1  and 

41040.10  which means the flow is turbulent (Re>2300) [31].  
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Fig. 2.11. A water-based test apparatus. 

 

Experimental data obtained from this test apparatus are used for evaluation of 

different methods, CCF, AAIRF, and MAFCCF. The data are recorded in different flow 

rate levels ranging from 0.5 to 5 gpm with different heating patterns: periodic and 

random heating.  

2.4.1 Experiments using Periodic Heating 

To create a strong thermal signal in the system, the water flow in the test apparatus is 

periodically heated using the heater shown in Fig. 2.11. In order to evaluate how the 

period and the duty cycle of the heating signal may affect the accuracy of the time delay 

estimation, we have tested four different heating patterns as summarized in Table 2.1.  

Here flow rate is fixed to 0.5 gpm, sampling window size is set to 400, and the sampling 

frequency is 10 Hz. 

 

 

 

 

 

Heater
Thermocouple 1 Thermocouple 2

Data Acquisition
System
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Table 2.1. Periodic heating (heating pulse) patterns. 

Heating 
Pattern 

On Heating 
Time (s) 

Off Heating 
Time (s) 

Duty 
Cycle 

Period (s) 
 

1 1 4 20% 5 

2 2 3 40% 5 
3 1 7 12.5% 8 
4 2 6 25% 8 

 
 

2.4.2 Experiments using Random Heating: Sampling Window Size 

In the second set of experiments, the heater shown in Fig. 2.11 is turned on/off in a 

random fashion to create temperature fluctuations in the water flow. Here we try to 

evaluate how the sampling window size may affect the accuracy of the time delay 

estimation. In these experiments, the sampling frequency is fixed to 10 Hz, but we vary 

the numbers of samples from 1 to 400 samples.  

2.4.3 Experiments using Random Heating: Sampling Frequency  

    In the third set of experiments, we try to evaluate how the sampling frequency may 

affect the accuracy of the time delay estimation. Here again the heater is turned on/off in 

a random fashion to create temperature fluctuations in the water flow. In these 

experiments, the number of samples is fixed to 400 samples, and the sampling frequency 

sweeps from 1 to 40 Hz. Since the maximum response time of the thermocouples is 1.4 

seconds, the minimum sampling frequency has to be chosen to satisfy the Nyquist 

sampling theorem, which is 0.23 Hz. 

2.5. Results and Discussions 

2.5.1. Experiments using Periodic Heating 

In this set of experiments, we have found that if the period of the heating signal is not 

sufficiently higher than the time delay between the two thermal signals, the cross 
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correlation function tends to generate multiple peaks with same height and/or negative 

peaks. For instance, with the experiment setting mentioned in section 2.4.1, the estimated 

time delay is 4.2 seconds, when heating patterns 1 and 2 (Table 2.1) are applied with a 

period of 5 seconds, the side-lobe peaks are found to have the same height as the 

supposedly main peak. However, when heating patterns 3 and 4 are applied with a period 

of 8 seconds, about the twice of the time delay, these problems are gone.  

Of all the four heating patterns (Table 2.1), it has been found that the duty cycle has 

no noticeable effect on the time delay estimation.  

2.5.2. Effects of Sampling Window Size 

The size of the sampling window has significant impacts on the accuracy of the time 

delay estimation. In the second set of experiments (section 2.4.2), we have examined the 

number of samples vs. variance of estimated time delay by using several methods, 

including CCF,  the baseline AAIRF, and the proposed MAFCCF with its moving 

average filter assuming different lengths (i.e., 2, 4, and 6). That is, there are a total of five 

configurations, and their results are plotted in Fig. 2.12.  

Both CCF and the baseline AAIRF methods give nearly identical variance of 

estimated time delay. But when the moving average filter is used, one can see from Fig. 

1.12 that the variance is reduced, indicating improved accuracy. It can be found that the 

longer of the moving average filter, the less of the variance of estimated time delay.  

For the same configuration in Fig. 2.12, one can see that when the size of the 

sampling window is below 270 samples, significant variance exists. When the size of the 

sampling window exceeds 270 samples, the accuracy improvement in terms of reduced 

variance of estimated time delay is very statistically small. When the sample size is near 
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400 samples, the variance is largely due to the system errors, and no improvement can be 

expected if the sampling window size goes higher. Therefore, in practice, the sampling 

window size is set to 400 samples for most of our experiments using the test apparatus 

shown in Fig. 2.11. 
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Fig. 2.12. Variance of estimated time delay for considered methods for flow rate of 2 gpm, 

sampling frequency of 10 Hz and for five different configurations: (i) CCF, (ii) 

AAIRF, (iii) MAFCCF with its moving average filter assuming a length of 2, (iv) 

MAFCCF with its moving average filter assuming a length of 4, and (v) MAFCCF 

with its moving average filter assuming a length of 6. 

 

2.5.3. Effects of Sampling Frequency 

Fig. 2.13 shows that the results of the sampling frequency (Hz) vs. deviation of 

calculated flow rate (gpm), which agrees well with the theoretical predications by Eq. 

(2.22). For all three flow rates in Fig. 2.13, when the sampling frequency is below 10 Hz, 

significant deviation has been observed, which corresponds to lower accuracy. Although 

we showed in section 2.4.3, that the minimum sampling frequency can be as low as 0.23 

Hz, in practice, the sampling frequency has to be chosen higher to get reasonably low 
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deviation of the flow rate. When the sampling frequency exceeds 10 Hz, no significant 

reduction of the deviation of flow rate can be achieved. Therefore, in practice, the 

sampling frequency is set to 10 Hz for most of our experiments using the test apparatus 

shown in Fig. 2.11. 

When the same sampling frequency (10 Hz) is used, we try to compare the accuracy 

of different methods, including CCF, the baseline AAIF, and the MAFCCF with its 

moving average filter assuming a length of 6. The results are reported in Table 2.2. Here 

two figures of merit are used: (i) the variance of time delay estimates, which is given in 

Eq. (2.14), and (ii) the Full Width at Half Maximum (FWHM), defined as peak height 

divided by its width (Fig. 2.14). In addition, these three methods are compared for their 

respective computation efficiency given in CPU time. 

 From Table 2.2, it can be seen that in terms of FWHM, the AAIF has much more 

accurate result than the other two at a higher computation cost.  It is also seen that 

although the baseline AAIF method gives a very narrow peak to detect the peak point, its 

deviation of estimated time delay is the same as that of CCF method (Fig. 2.12), as AAIF 

and CCF both are based on the same correlation calculation. MAFCCF on the other hand, 

gives lower deviation of estimated time delay than AAIF and CCF. 

Also from Table 2.2, for the same variance of estimated time delay of 0.005 seconds, 

the CCF and AAIF methods require longer CPU time than MAFCCF method. This means 

that the MAFCCF method requires fewer samples to converge to a given level of 

accuracy. As a result, when both accuracy and CPU time are concerned, the MAFCCF 

has its advantages over the other methods. 
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Fig. 2.13. Calculated flow rate deviation with respect to sampling frequency. 
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Fig. 2.14. The full width at half maximum representation. 

 

Table 2.2. FWHM and CPU time comparison of the methods with the  

                  same variance of estimated time delay of 0.005 seconds. 

 

 

 

 

 

 

 

 

Methods FWHM Normalized CPU Time 
CCF 0.035 1 
AAIF 1.653 1.12 

MAFCCF (M=6) 0.042 0.45 
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2.6. Conclusions 

Experiments indicated that for flow rate measurement in a harsh environment, the 

conventional methods that are based on the calculation of cross correlation function or 

transfer function suffer from a few signal processing problems; often undesirable wide 

peaks, and catastrophic negative or false peaks which may fail these methods will be 

generated. To address these problems, two methods, (i) the baseline AAIF and (ii) 

MAFCCF, were proposed in this paper, and they were experimentally verified. The 

results showed that the proposed baseline AAIF approach gives very narrow and sharp 

peak. When AAIF is combined with a moving average filter, this MAFCCF algorithm 

showed a few distinct advantages: (i) it generates extremely narrow peaks as AAIF does, 

(ii) it has the lowest normalized standard error than any other approaches, and (iii) it has 

low computation requirement suitable for real time processing.  
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CHAPTER 3 

CALIBRATION 

3.1. Introduction 

There has been a growing demand world-wide for flow meter verification testing and 

calibration services [31]. Calibration is a set of operations and services that under 

specified conditions, establish the relationship between values of quantities indicated by a 

flowmeter and the corresponding values realized by standards [33]. In these operations, 

by measuring the error of indication of the meter, the output value from the meter has to 

be adjusted is corrected. The flowmeter is manufactured with a pulse output signal that is 

often marked with a correction coefficient called K-factor. The correctness of this factor 

is found out only after calibration [34]. Due to normal variation of K-factor with the flow, 

the meter needs to be calibrated at different flows for better accuracy [34]. The state of 

the art in the field of the liquid flow calibration is still being represented by a theoretical 

foundation dating back about 40 years [35]. 

There are two basic types of flowmeter calibration systems: primary and secondary 

systems [32],[36]-[38]. Primary systems uses fundamental measurements of mass, length 

(or volume), and time. In this case, a primary calibration is performed by measuring the 

volume or mass of the liquid moved over an elapsed time and compute the flow rate 

directly [39]. Examples include gravimetric (weigh tank) systems; bell-type provers; 

piston-type (swept volume) provers; and pressure, volume, temperature, and time systems 

(PVT) [32]. Secondary systems are those calibrated based on a primary system. These 

systems typically include experimentally determined calibration coefficients that take 

into account modeling simplifications. 
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Secondary calibration involves comparing the device to another, more accurate, 

device (i.e. another flow meter). However the second device must also be calibrated 

somehow, perhaps with a third, even more accurate device, but at some point we will run 

out of increasingly accurate measuring devices, and we will have to calibrate our 

reference device some other way, preferably by measuring the quantity of interest using 

more direct and simplified means [39].  Examples of secondary flow standards include 

turbine meters and critical flow Venturi (sonic nozzle) meters. To calibrate the 

flowmeter, the measurement uncertainty is the upper limit of the measurement error and 

often the most important issue that must be taken in account [39]. This error may have 

different sources so that based on the type of flowmeter, liquid and application, different 

calibration methods and calibration equipment are required for best results [40]. 

Furthermore, for each application, a particular flowmeter type may have different 

measurement uncertainty. As presented in [41], the uncertainty of the differential 

pressure flow meter type that used for a feed water flowmeter is 1.76%, while this error is 

reduced by replacing this flow meter with an ultrasonic flow meter having an uncertainty 

of 0.25% [42]. To reduce the measurement uncertainty, a new calibration facility was 

presented in Japan [43]. At these calibration facilities, the calibration of the feed water 

flow meter in the nuclear power plant has been discussed in order to carry out an uprate 

of thermal output (Okamoto and Kikura [43], [44]). 

Based on the existing calibration procedures, one may found out that depending on 

the flow measurement method these processes are performed in different way. One 

common calibration strategy which is utilized in the cross correlation flow meters is 

curve fitting which uses extrapolation approach [45]. In this work, this approach is 
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developed in a cross correlation flowmeter based on the measurement and processing of 

correlated thermal signals. As a water-based test apparatus at the lab was constructed, the 

calibration results are verified by experiments. In this flow measurement system, we 

observed that the accuracy of the measured flow is restricted to the time response of the 

thermocouples. In addition, measuring higher flow rates like 5 gpm (gallon per minute) 

requires a larger transit-time span that can not be achieved from a limited physical system 

dimensions. These problems are investigated through this calibration work. 

This chapter is organized as follows. In section two the flow velocity profile and flow 

rate calculation are discussed. In section three the flow rate range and resolution are 

presented. Section four introduces calibration factor estimation. Section five presents the 

experiments. Section six gives the results and discussions. Finally, section seven draws 

the conclusions. 

3.2. Flow Velocity Profile and Flow Rate Calculation  

In turbulent flow as we deal with it in this work, far away from the pipe wall, the flow 

is free from the friction that is the velocity is maximum. On the wall, the flow moves at the 

same velocity as the wall or 0V . For turbulent flow an approximate curve-fit is given by 

[6], 

                                            nDr
n

nn
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rV /1
2 )/21(
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)12)(1()(



                                    (3.1) 

where )(rV is the flow velocity at radial position r, D is the pipe diameter, V is the mean 

velocity , and n is a constant number which is related to the Reynolds number. In our 

work, for the corresponding Reynolds number which is between 41004.1  and 51004.1  , 

n is equal to 6.6. 
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To obtain the flow velocity profile in our flow measurement system, we measured the 

velocity at several radial positions for flow rate range between 0.5 and 4 gpm. Using 

these data, an experimental equation is derived for the mean velocity which is given in 

section 3.6.  

To derive flow rate from the velocity, the following equation is applied,  

                                                          AVKQ                                                          (3.2) 

where Q is the flow rate, K is the calibration factor, V  is the mean velocity, and A is the 

cross section of the pipe.  

3.3. Flow Rate Range and Resolution  

The time response of the thermocouples is one of limitations in the transit-time based 

flow measurement system. In this experiment, the thermocouples have found to have the 

time constant of 1.4 seconds. We observed that by sampling frequency above 10 Hz, the 

thermocouples give repetitive data. Therefore we fixed the sampling frequency to 10 Hz.  

To derive the flow rate from the estimated time delay between thermal signals, the 

following equation is applied,  

                                                      
4

2DLVAQ 
                                                    (3.3) 

where Q and A are given in Eq. (3.2), V is the flow velocity, L is the distance between 

two thermocouples,  is the time delay between the two thermal signals, and D is the 

internal diameter of the pipe.  

For this system, using physical setting of mD 02087.0 and mL 5.0  ,  

                                               )/(
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                                              (3.4) 
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Since the cross correlation function is calculated in sampled-data format, the highest 

flow rate is achieved when the detected peak point is one. As the sampling frequency is 

10 Hz, the corresponding time delay to this peak point is 0.1 second. Therefore,   

gpmsmQ 11.27/1071.1
1071.1 33

min

4

max 


 



  

gpmsm 32.15850/1 3   

If the detected peak point in the time delay estimation method deviates from a number 

to the adjacent number, the deviated flow will be,   
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                              (3.5)                         

where sf is the sampling frequency and n is the sample offset delay between two thermal 

signals.  

Using the calculation given in Eq. (3.4), 
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Table 3.1 shows some numerical results for the resolution of the calculated flow  

versus flow range.  

 

Table 3.1. Resolution of the calculated flow versus flow range. 

Q (gpm) 0.5 1 1.5 2 2.5 3 3.5 4 
Q  (gpm) 0.0094 0.0383 0.0879 0.1593 0.2540 0.3733 0.5188 0.6923 

 

In general, Eq. (3.6) is expressed as,   
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                                               (3.7) 
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Figs 3.1 and 3.2 show some numerical results for the resolution of the calculated flow  

versus flow range for different settings of the thermocouple spacing and the pipe 

diameter. 
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Fig. 3.1. Resolution of the calculated flow versus flow range for different pipe diameters  

               and thermocouple spacing of 0.5 m. 
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Fig. 3.2. Resolution of the calculated flow versus flow range for different thermocouple   

               spacing and pipe diameter of 2 cm. 
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3.4. Calibration Factor Estimation 

As seen in the Eq. (3.3) the calculated flow is sensitive to the pipe geometry and the 

thermocouple spacing.  However, since the measured flow is based on the temperature 

fluctuations which makes a very small change in the temperature profile, these quantities 

can be assumed to be fixed. Moreover, since the roughness of the wall paper does not 

affect the temperature profile, therefore the calibration factor is not sensitive to this 

factor. Therefore the only factor that is taken in account for calibration factor estimation 

is the measurement error due to either the background noise or the time delay estimation 

techniques errors. To minimize this error two fitting models are examined.    

3.4.1. Linear Fitting 

The simplest way to estimate the calibration factor is to apply linear fitting. In this 

case, the calculating formula for instantaneous flow Q is [46], 

                                                        mKQcQ                                                         (3.5) 

where CQ  and mQ is the calibrated and measured flow rate, respectively, and K is the 

calibration factor which is obtained through calibration procedure.  

The optimum value of the unknown parameter K is obtained by minimizing the sum 

of the square errors as [47], 
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                                         (3.6) 

where N is the number of calibration point, rQ is the reference flow rate which is read 

form the standard flowmeter, and )(kQm is the measured flow rate. 

By taking the derivative of error equation with respect to K and setting the obtained 

equation to zero, the calibration factor is achieved. That is,   
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3.4.2. Non-linear Fitting 

Based on several realizations, it was observed that the measured flow is not linearly 

proportional to the reference flow. This suggests to apply the polynomial curve fitting as 

follows, 

                                          0
1

1 ... kQkQkQ P
mp

P
mpc  

                                    (3.8)                          

 where ik are coefficients to be estimated .  

3.5. Experiments 

Experimental data obtained from the test apparatus was used for estimation of 

calibration factor. To do so, firstly, some experiments were performed to find the flow 

velocity profile and the best redial poison for placing the thermocouple tips. Here, the 

thermocouples are placed at different radius point from 0 (the pipe center) to 0.8 (close to 

the pipe wall), the sampling window size is set to 400 and the sampling frequency is 10 

Hz. Figs. 3-5 show the flow velocity profile for the reference flow of 0.5 to 4 gpm.  
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Fig. 3.3. Flow velocity versus radius point 
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Fig. 3.4. Flow velocity versus radius point 
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Fig. 3.5. Flow velocity versus radius point 
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3.6. Results and Discussions 

To choose the best location of the thermocouples tips across the pipe, two 

considerations are taken in account: (i) the normalized mean square error of measured transit-

times and (ii) the relationship between the measured flow velocities at each location with 

the mean flow velocity. From the Table 3.2, it is seen that the normalized mean square 

errors for radius points less than 0.7 are likely the same. Therefore, from the accuracy 

point of view any location interior this radial position can be chosen for the thermocouple 

tips location. Also, from the Figs. 3.3-3.5, it is seen that the flow velocity over radius 

interval point [0, 0.3] are not changed much so that the mean velocity over this interval is 

close to the velocity measured at each point. That is, 

                                                RrVrV 3.00)(                                          (3.9) 

Therefore, any location interior this radial position gives easy calculation for 

measurement.  

Table 3.2. The normalized mean square error of measured transit-times versus radius point 

Flowrate (gpm)      0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
1.0 0.0029 0.0029 0.0035 0.0037 0.0027 0.0034 0.0044 0.0032 
2.0 0.0035 0.0035 0.0045 0.0038 0.0040 0.0043 0.0056 0.0064 
2.8 0.0152 0.0145 0.0173 0.0198 0.0128 0.0167 0.0267 0.0367 
3.9 0.0189 0.0194 0.0230 0.0213 0.0313 0.0278 0.0898 0.0691 

 

The first calibration factor estimation was done by applying linear fitting method. As 

shown in Table 3.3, the calibration factor is increased with the flow rate which implies 

that the measured flow rate is not linearly proportional to the actual flow rate. The other 

calibration experiment is to apply a polynomial function to the measured data. Tables 3.4 

and 3.5 show the results for the polynomial of order 2 and 3, respectively. It shows that 

the second order approximation gives more accurate results. To test the repeatability of 
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the measurements and results, we use 3 sets of experimental data which recorded in 3 

different times. As shown in Fig. 3.6, the fitting curve remains nearly the same for each 

set of measurement which means that the fitted curves is able to extrapolate the 

experimental data.  

Another investigation of calibration test is the dependency of the flow rate on the 

Reynolds number, as the flow is turbulent. Here, the calibration factor is expressed in 

terms of the Reynolds number. According to equation

Vd

Re , where V is the flow 

velocity, for this system we have, 
1

1057.01004.11004.1Re 444 
L

V . Using 

Eq. (3.5) and measurement results for the second polynomial fitting, one may get,  
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where CF is calibration factor, mQ  and aQ are the measured and the reference flow rate, 

respectively. The results for the second order model are shown in Figs. 3.6 -3.8.  

 

Table 3.3. Ratio of the measured flow to reference flow 

Reference 
Flow (gpm) 

Measured 
Flow (gpm) 

Ratio of the Measured 
Flow to the Reference Flow 

1.06 1.3735 1.3735 
2.02 3.0229 1.5114 
2.85 4.5487 1.5116 
3.92 6.9423 1.7358 

 

Table 3.4. Second order polynomial fitting results 

 

 

Experiments 
2k  1k  0k  MSE 

1 0.4142 0.0524 1.1294 0.0321 
2 0.3874 0.2688 0.7424 0.0319 
3 0.4033 0.1019 1.0817 0.0331 
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Table 3.5. Third order polynomial fitting results 
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Fig. 3.6. Second order polynomial fitting  
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Experiments 
3k  2k  1k  0k  MSE 

1 0.0133 0.3073 0.3590 0.7771 0.0354 
2 0.0062 0.3484 0.3134 0.7867 0.0430 
3 0.0241 0.2268 0.4892 0.7691 0.0482 
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Fig. 3.8. Mean square error of measured flow 
 

3.7. Conclusions 

    A polynomial model of calibration for cross correlation flowmeter was developed 

which predicts the output of the flowmeter based on the estimated transit-time of 

correlated thermal signals. The model was verified using experimental data recorded in 

the lab calibration facility. The dependency of the calibration factor on the Reynolds 

number and the flow range were expressed. While experimental data for limited 

Reynolds number were used for the calibration, the model may provide a basis for a 

procedure to extrapolate lab measurements to the higher Reynolds numbers in realistic 

applications.  
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CHAPTER 4 

ULTRASONIC FLOWMETERS 

In this chapter, firstly, a brief background of ultrasonic flowmeters is given. Next, a 

theoretical study with computer simulations on the effect of the pipe surface roughness 

on the accuracy of the ultrasonic flow measurements is presented.  

4.1. Theoretical Background 

Ultrasonic flowmeters works in general with two different principles: (i) Doppler 

effect ultrasonic flowmeter and (ii) transit time ultrasonic flowmeter. A brief description 

of these flowmeters are given as follows,  

4.1.1. Doppler Effect Ultrasonic Flowmeter  

In this technology, an ultrasonic beam is transmitted to the flow. When this beam is 

reflected by suspended particles or gas bubbles in flow, its frequency is shifted. This shift 

in frequency is proportional to the flow velocity as follows [48],   

                                                      cos2/)( ttr fffcv                                                (4.1) 

where rf is received frequency, tf  is transmitted frequency, v  is flow velocity,   is the 

angle between the transmitted beam and the flow axis, and c is the sound velocity in the 

flow. Fig. 4.1 shows a schematic of this flowmeter.  

 

 

 

 

 

Fig. 4.1. A schematic of the Doppler effect ultrasonic flowmeter. 
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This method requires some reflecting particles such as gas bubbles or solid particles 

to act as scatterers of ultrasound beam in the flow [48].  

- Advantages of the Doppler Effect Ultrasonic Flowmeter [49]-[51] 

Doppler meters may be used in such environments that other meters are not capable 

of working such as raw sewage, sludge, slurries, paper pulp, tar, sands, and oil-water-gas 

mixtures slurries and aerated liquids. The main advantages can be summarized to:  

▪ can be mounted outside the pipes 

▪ has less obstruction with flow 

▪ has low flow cut off  

▪ can be used in corrosive environment 

▪ relatively consumes low power 

- Limitations of Doppler Effect Ultrasonic Flowmeters [48] 

The major limitations in the Doppler flowmeters are the nature, size, and spatial of 

the particles or bubbles in the flow which are required for scattering. This leads to 

variation and attenuation of the ultrasonic beam. The flowmeter senses the velocity of the 

scatters and due to slippage it might not correspond to the flow velocity. Also, the 

relationship between the scatter velocity and the mean flow velocity is unknown. 

Furthermore, any disturbance, bends, valves, pipe work and probes may cause vortices 

which can make error in reading [48]. Also, the measurement is sensitive to the physical 

properties of flow, sound, and scatterers such as the conductivity of the sound, the density 

of reflectors, the temperature of flow, and the flow profile. If the particles in the pipe are 

not uniformly distributed in the pipe cross section, it may result in error in flow reading. 

These problems limit Doppler flowmeter in highly accurate measurement applications. 
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4.1.2. Transit-time Ultrasonic Flowmeter 

In this technology, two transducers transmit and receive signal sounds between the 

two transducers and measure the transit-time between the two transducers (Fig. 4.2). The 

difference in the downstream and upstream transit-times is directly proportional to the 

flow velocity as shown in the following,  

 

 

 

 

 

 

 

Fig. 4.2. A schematic of the transit-time ultrasonic flowmeter. 

 

                                                        )cos/( vcLtd                                                   (4.2) 

                                                        )cos/( vcLtu                                                   (4.3) 

where dt  is the downstream transit-time, ut  is the upstream transit-time, L is the distance 

between transducers, c is the sound velocity, and   is the angle between the transmitted 

beam and the flow axis.   

By combining Eq. (4.2) and (4.3) and considering vc  , one may get,  

                              2222 /cos2)cos/(cos2 cvLvcvLttt ud                          (4.4) 

- Advantages of Transit-time Ultrasonic Flowmeters over Doppler Flowmeter [48] 

▪ no need reflector particles inside the pipe.  
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▪ unaffected by  the size and density of any particle inside the pipe 

- Advantages of Doppler Flowmeter over Transit-time Flowmeters [50]  

▪ less sensitivity to the internal surface roughness of the pipe 

▪ less sensitivity to Reynolds number 

▪ uninfluenced by the velocity profile across the pipe 

 ▪ capable of directly measuring instantaneous flow velocities   
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4.2. A Review of Experimental Works 

This section summarizes a few experimental works which have been presented in the 

following literatures,  

A. [49]: 

    This work concentrated on realization of flow velocity profile for measurements of 

liquid metal lead–bismuth eutectic (LBE), flow velocity profile in the spallation neutron 

source target model by the ultrasonic Doppler flowmeter. It reports that either wetting 

property of LBE with stainless steels or performance of supersonic probes at high 

temperatures is poor. To enhance the intensity of reflected ultrasonic wave, the surface 

treatment of LBE container was examined. It was found that the solder coating was 

effective.   

B. [50]:  

In this work the Doppler ultrasonic flowmeter is applied at hydraulic power stations. 

It mentions that the ultrasonic the Doppler flow meters are suitable tools to measure flow 

rates in steel penstocks. This work reports that the transit-time ultrasonic flowmeters 

require a meter factor which is heavily influenced by the velocity profile across the pipe. 

Occasionally, after the recalibration of an ultrasonic flowmeter a shift of the calibration 

factor has been observed [51]. The suspected cause of this shift is the sensitivity of the 

ultrasonic flow meter to flow profile changes [52]. The flow profile depends on the 

internal pipe wall roughness which can be affected over time by wear, pitting, corrosion, 

or internal contamination [10]. In contrast, the ultrasonic Doppler flowmeter does not 

require this kind of correction factor. Here, the transducer is installed on the outside 

surface of the pipe, (Figs 4.3 and 4.4).   
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In order to obtain sufficiently strong ultrasonic echoes, some important parameters in 

selecting a Ultrasonic flowmeter are the pipe size, wall thickness and flow velocity. For 

large piping, the Nyquist constraint balancing between maximum measurable depth and 

maximum measurable velocity becomes very challenging. Table 4.1 illustrates the typical 

ultrasonic setting in this field test. 

 

Table 4.1. Ultrasonic setting in the field test 

Ultrasonic Parameters Value 
Basic Frequency 400-500 kHz 

Pulse repetition frequency 300-500 Hz 
Cycle per Pulse 8-12 waves/pulse 
Chanel distance 10-15 mm 

Sampling interval per profile 250-500 ms 
Number of data points per profile 128 

Number pulse repetitions 128 
Transducer driving voltage 30 Vp-p 

 

 

 

Fig. 4.3. Schematic diagram of the ultrasonic transducer installed on the pipe surface. 
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Fig. 4.4. Ultrasonic transducer and wedge which are installed on the outside surface of   

               the pipe.  

 

C. [53] 

In this work the fabrication, evaluation and several applications of high performance 

clad metallic buffer rods for ultrasonic transducer at elevated temperatures is developed. 

Some applications with high temperature operating ranges are reported, e.g. 7008 Co  for 

aluminum (Al) die casting [53], 200–4008 Co  for polymer extrusion [10], and 15008 Co  

for molten glass [54] and steel [52]. The performance of high temperature piezoelectric 

ultrasonic such as lithium niobate, and particularly that of the couplant, is inadequate 

above approximately 4008 Co . Therefore, the ultrasonic transducer with buffer rods is 

preferable for process monitoring at high temperatures. In this approach, one probing end 

of the buffer rod is in contact with the material, and the other end can be cooled by water 

or air.   

D. [55]: 

In this work, the clamp-on transit-time and cross-flow-type ultrasonic flowmeters, 

which are strapped onto the outside of a pipe, are introduced to nuclear power plants. It is 
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reported that these methods require flow profile factors determining the theoretical 

velocity profiles, and strongly depend on the real flow profiles. As these factors are 

affected by turbulent flows and inner surface wear in the pipe under aging phenomena, a 

new flow metering system in a circular pipe, an ultrasonic velocity profile method has 

been developed [54], [56]. In this method, the instantaneous velocity profiles across the 

pipe is directly measured, next, the flow rate is calculated using the integration over space 

of the averaging velocity profiles [57], [58]. 

4.3. Effects of Surface Roughness on Clamp-On Ultrasonic Flowmeters 

In corrosive environments such as nuclear power plants, clamp-on ultrasonic 

flowmeters which are not in touch with the flow can be applied [57]-[60]. These meters 

are available in two formats: transit time and Doppler. Both technologies feature clamp 

on designs based on the transducer which detect flow rates from outside the pipe. As 

power plants age significantly, the readings of flowmeters in reactor feed water systems 

drift due to the changing flow profile [59]. The flow profile depends on the internal pipe 

wall roughness which can be affected over time by wear, pitting, corrosion, or internal 

contamination [61]. Pipe surface roughness is a major contributor to the flow profile 

which changes unpredictably from smooth to rough Therefore, the measurement accuracy 

of ultrasonic flowmeters which in the sound wave incident to the internal surface pipe is 

sometimes questionable in the large high-pressure, high-temperature piping in actual 

power plants [59].  

As shown in Fig. 4.5, when measuring the transit-time between upstream and 

downstream ultrasonic signals, the ultrasonic beam deflection deviated by the internal 

pipe wall roughness which is called carry-along (sound drift) effect. This leads to two 
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problems: (i) in the case of high beam deviation, excessive bending of the beam path 

causes the beams to miss the opposing transducer and (ii) as reported in [54], deviation of 

ultrasonic incidence angles and radiation angles shown in Fig. 6 have a significant impact 

on flow measurement accuracy. When using the Doppler ultrasonic meter, although the 

first problem is not revealed, as seen in Fig. 4.5 the reflected beam may not reach the 

transducer in case of large pipe surface roughness.        

 

 

 

 

 

 

 

 

Fig. 4.5. Ultrasonic beam sound paths through the pipe: the solid path is for the smooth surface 

and the dashed path is for the rough surface.  

 

The effect of pipe surface roughness on ultrasonic meter performance has been 

studied in a few literatures [62]-[66]. However, the problem formulation for the effect of 

wall changes on ultrasonic meters was not available. In this work, to investigate the 

influence of surface roughness, a theoretical model relevant to the effect of pipe surface 

roughness on the velocity profile calculated by transit-time as well as Doppler ultrasonic 

flowmeter is presented.  
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4.3.1. Transit-time Ultrasonic Flowmeter 

In the corrosive application, on the interior surface that is exposed to the flow an 

oxidized layer is formed. For simplification, we consider one equivalent layer composed 

of oxidized and wall so that only two interfaces between media are used in the analysis. 

For the smooth interface, the ultrasonic beam travels in a route as shown in Fig 4.6. In 

this case, we have, 
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where t is the angle of incidence in the transducer,  w  is the angle of refraction in the 

pipe wall, f  is the angle of incidence in the flow, tC , wC , and fC  are the speed of 

sound in the transducer, pipe wall and flow, respectively.  

 

 

 

 

 

 

 

Fig. 4.6. Ultrasonic beam path through pipe with smooth surface. 

 

To consider the effect of corrosion on the interface between the pipe wall and the 

flow, as an irregularly striped pattern may form on the pipe’s inner surface, there is not 
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any deterministic or even a special random pattern to model this roughness. One simple 

assumption is to model the roughness pattern by a uniform distribution described as 

follows, 

                                                               111 sinkh                                                       (4.7)                         

                                                              222 sinkh                                                       (4.8)                         

where 1k and 2k  are deterministic parameters and 1  and 2  are independent random 

variables with probability density functions of,  

                                    




 


Otherwise

ff
0

22

1
)()( 21


                            (4.9)                        

where maxh is the maximum level of the surface roughness. 

 

 

 

 

 

 

 

 

Fig. 4.7. Ultrasonic beam sound paths through the pipe: the solid path is for the smooth surface 

and the dashed path is for the rough surface.  

 

For the above pipe side, one may have, 
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                                                            )tan(2 fDd                                                   (4.11)                         

                                                    )tan()( 11   fhDd                                           (4.12)                         

Using Snell law, 
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Therefore,     
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For the bellow side of pipe, one may have, 
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where 2w is the angle of refraction in the pipe wall in case of rough surface.   
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- Calculation of maximum acceptable roughness level       

If the deviation of ultrasonic beams is large, the opposite transducer may not sense 

the transmitted beam. To find the maximum acceptable roughness level such that the 
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deviated beams are received by the opposite transducer, we should have, 

   21 lll  . 

Since 1  , 2 , 1h , and 2h  are random variables, the obtained beam drifts 1l and 

2l will be also random variables. To find the total beam drift that is the sum of random 

variables 1l and 2l , a statistical analysis is done which is presented in Appendices A 

and B. 

- Calculation of the flow velocity error due to deviation of ultrasound beams      

For the smooth surface pipe the the respective downstream and upstream transit times 

downT and upT , and the flow speed SV  are given by, 
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where  is the angle between downstream beam and the flow axis.  

In the rough surface pipe, as seen in Fig 4.7, the ultrasound beams are bended. In this 

case, the respective downstream and upstream beams get deviated by 1  and 2  which 

are resulted in changing   to 1   and 2  . Therefore, the respective downstream and 

upstream transit times, and the flow speed are changed to,   
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where  
RupT  and  RdownT are the respective upstream and downstream transit-times in the 

rough surface pipe.  

Therefore, the change in the flow speed will be, 
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To measure the difference between the smooth and rough pipe flow speeds, V , as 

the change in the flow speed are due to two independent beam deviations 1  and 2 , the 

root mean square error of V can be described as,   
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where 1V and 2V are the difference between the smooth and rough pipe flow speeds 

due to 1  and 2 , respectively.  

Since 1V and 2V are functions are two random variables 1  and 2 , to measure the 

statistical errors, the corresponding probability density functions are calculated using the 

method presented in Appendices A and B.    

4.3.2. Doppler Effect Ultrasonic Flowmeter 

A schematic of the Doppler ultrasonic flowmeter is illustrated in Fig. 4.8. Transducer 

A emits a narrow beam of sound into flow at an angle   to the flow axis. Interaction with 

some bubbles or particles in the flow within the incident beam results in isotropic 
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scattering of the incident beam. Transducer B receives the scattered beam which 

undergoes a frequency shift df  proportional to flow velocity v according to the well-

known Doppler equation [67], 

                                                            
cos2 e

fd
S f

Cf
V                                                    (4.29)                         

where SV  is the flow speed in smooth surface pipe, fC  is the speed of sound in the flow, 

and ef  is the emitted frequency by transducer A.    

- Calculation of the flow velocity error due to deviation of ultrasound beams      

As the ultrasound beams are bended due to the roughness of surface, the angle 

between emitted beam and the flow axis  is changed. This makes error in the calculated 

velocity given by Eq. (4.29).  As seen in Fig. 4.7, in the case of surface roughness, the 

angle between emitted beam and the flow axis gets deviated by 1  results in changing of 

this angle from   to 1  . Therefore the velocity of the flow given in Eq. (4.29) is 

changed to, 
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Since 1 is a random variable, V will be also a random variable. The deviation of 

V can be found by using the statistical analysis given in Appendices A and B.  
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Fig. 4.8. Schematic diagram of the Doppler ultrasonic transducer. 

 

4.4. Simulation Results 

In this study, to analyze only the effect of surface roughness on the ultrasonic, we 

made a few assumptions and some certain numerical settings as follows, 

i) The temperature distribution in the wedge is uniform so that the ultrasound 

beam has no deflection within the wedge. 

ii) The incidence angle which is determined by the wedge is critical angle for the 

mode conversion of longitudinal waves into shear waves at the interface 

between wedge and pipe. In this study, to produce minimum beam divergence 

and strong shear wave in the flow, the incidence angle in wedge is set to 26˚.  

iii) We assumed that the emitted beam is strong enough so that the noise caused 

by multiple reflections in the pipe wall and flow are eliminated.  

iv) The diameter of the transducer is considered large enough to be assumed as a 

plane wave in Snell law. 

v) The pipe diameter is considered so large compared with the wedge. Therefore 

the contact area of the wedge bottom with the pipe wall is an ideal line 
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contact. In this study, the respective wedge width and pipe diameter are set to 

30 mm and 500 mm.   

In this work, water and steel were considered for the flow and pipe, respectively. We 

plot the graphs for the beam drift and velocity variation due to deviation of ultrasonic 

beam with different Reynolds numbers. From Fig. 4.9 we can see that the higher 

Reynolds number comes with larger beam drifts in transit-time ultrasonic type. Also, it is 

seen that the beam drift is linearly increased with the surface roughness by 

around 4108.0  . After this roughness level, this drift is substantially increased in 

nonlinear way.  

Figs. 4.10 and 4.11 show the variation of calculated flow velocity with respect to the 

surface roughness with different Reynolds numbers. We see that the transit-time 

ultrasonic flowmeter is more affected by the surface roughness compared to the Doppler 

type. Also, in both cases, the Reynolds number has the same influence on the accuracy of 

the calculated flow velocity so that with the same roughness level, the calculated flow 

velocity has less accuracy for higher Reynolds number.   

 

0 0.2 0.4 0.6 0.8 1

x 10
-4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Normalized Roughness

S
D

 o
f 

N
o

rm
a

liz
e

d
 B

e
a

m
 D

ri
ft

 

 

Re=5,000,000
Re=15,000,000
Re=25,000,000

 

Fig. 4.9. Standard deviation of normalized beam drift in transit-time ultrasonic flowmeter. 
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Fig. 4.10. Standard deviation of velocity error in transit-time ultrasonic flowmeter. 
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Fig. 4.11. Standard deviation of velocity error in Doppler ultrasonic flowmeter. 
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4.5. Conclusions 

In this chapter, a brief review on the ultrasonic flowmeter technologies was presented. 

In addition, computer simulations for the effect of surface roughness on the performance 

of these flowmeters were done. It was conducted that the Doppler flowmeter is less 

sensitive to this problem compared to the transit-time type.  
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CHAPTER 5 

  FUTURE DIRECTON ISSUES 

The future direction issues are summarized as,  

• Changing the physical setting of the flow measurement system such as the pipe 

diameter and the thermocouple spacing to examine the rangeablity and 

repeatability of the flowmeter. 

•  Adding more thermocouples to take advantage of multiple sensing.  

• Applying this flowmeter to other corrosive environments such as underground 

hydrocarbon reservoirs and storages.  

• Applying the proposed signal processing methods to the cross-correlation 

ultrasonic flowmeter 
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APPENDIX A 

A Method for the Probability Density Function (pdf) Calculation 

Let u and v denote random variables with known pdf )(ufU  and )(vfV , respectively. 

Let ),( vugy   be the real-valued functions of the real variables u and v. For the sake of 

simplicity and without loss of generality, it is assumed that )(ufU and )(vfV are uniform 

distributions with following pdfs,  
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To obtain the pdf of ),( vug the following steps are accomplished, 

Step1: Generating numbers on intervals (0, a ) and (0, b) based on the pdfs 

)(ufU and )(vfV .  

In this step, for each random variable u and v, N numbers are generated. The sample 

interval is determined by the corresponding pdfs of the random variables. Here, for the 

uniform distribution over interval (0, a ) the sample interval is fixed and equal to 
N

a
.  

Step 2: Mapping the numbers generated in step 1 to a real surface using 

function ),( vugy    

Step 3: Mapping each point of the surface obtained in step to a line and arranging them in 

ascending order such that the respective minimum and maximum points of this surface go 

to the starting and ending point of this line.   
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Step 4: Splitting the line obtained in step 2 into M equal small elements and counting the 

number of points that fall on each element. Note that M must be chosen large enough 

such that on all elements at least one point falls.  

If im is the middle point of element i, and in  is the number of points that falls on this 

element, then the pdf of ),( vug  at im  can be approximated by, 
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Proof: 

Assume that s and t are boundary points on the element i, 
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Also we have, 
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Combining Eq (27) and (28) gives the proof.  
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APPENDIX B 

Calculation of the pdf of beam drifts 

As random variables 1l and 2l are independent, we can calculate them separately. 

To do so, the following method is applied. 

 To obtain the probability density function of l , that is sum of random variables 

1l and 2l , one may have,  
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where ),( 21, 21
llf LL  is the joint probability density function of random variables 

1l and 2l  , that is find by: 
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where )( 11
lf L  and )( 22

lf L   are calculated using the method in Appendix A.  
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