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1.  Introduction
Flow resistance in open channels, that is, the friction that the channel boundary exerts on the flow, is a funda-
mental hydraulic parameter defining many aspects of the behavior of a river channel (Kalathil & Chandra, 2019; 
Powell, 2014; Shobe et al., 2021). The roughness of the channel boundary relative to the depth of the flow is one 
of the primary influences on flow resistance (Cheng, 2017; Ferguson, 2007; Nitsche et al., 2012; Powell, 2014), 
and river channels can be broadly divided into two categories based on boundary roughness.

The first category are those channels where the flow is significantly deeper than the scale of the boundary 
roughness, for example, deep relative to the characteristic grain size or bedform height. In these flows, the fluid 
momentum is dissipated in a roughness boundary layer that is thin relative to the full flow depth. The small scale 
of the roughness boundary layer relative to the depth of the flow ensures that the spatial variability in flow resist-
ance is low, allowing the flow to reasonably be treated as steady and uniform. Overall, the effect of the boundary 
layer on the flow is well captured by a simple adjustment to the log law of the wall depth-velocity profile based 
on a roughness length-scale. Although the details of how any particular boundary configuration gives rise to 
a particular roughness length-scale are still poorly understood (Brereton et  al.,  2021; Chung et  al.,  2021), a 
length-scale of ∼3D84 is commonly used for natural channels (Bathurst, 1985; Lamb et al., 2017a). The D84 is 
the grain diameter larger than 84% of the grains on a bed, and is commonly used to characterize the grain sizes 
in a river channel.

This is in contrast to the second category where the boundary roughness length-scale is as large or larger than the 
flow depth due to roughness elements such as immobile boulders, often found in steep mountain environments. 
The flow resistance for these channels is high and generally underpredicted by models developed for relatively 
smooth boundaries (Kalathil & Chandra, 2019; Powell, 2014; Shobe et al., 2021). Because the roughness bound-
ary layer occupies much or all of the flow depth, the poor understanding of flow within this layer becomes 
especially problematic. In addition, the flow resistance tends to be spatially variable, varying from one channel 
cross-section to another, and the flow is unlikely to be steady or uniform. Despite significant research on the 
topic, there is not a widely accepted theory of flow resistance for channels with large roughness, for example, 
boulder-mantled channels (Ferguson, 2007; Nitsche et al., 2012; Powell, 2014; Schneider et al., 2015; Shobe 
et al., 2021).

Many theoretical treatments of flow resistance in relatively shallow, rough channels attribute the increased flow 
resistance to form drag on large roughness elements (Nitsche et al., 2012; Shobe et al., 2021), which results from 
the need for water to flow around roughness elements. Features such as boulders, step and pool morphology, 
and large woody debris are often cited as potential sources of form drag (Powell,  2014). Even the relatively 
simple case of flow around isolated immobile boulders on a planar bed produces complicated, heterogeneous, and 
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unsteady flow fields (Papanicolaou & Tsakiris, 2017). To account for this properly in this study, a flow resistance 
model is developed using a double-average approach specifically designed to deal with spatial variability (Nikora 
et al., 2001). The resulting equations are averaged over the channel width and reach, allowing the flow to be 
treated as steady and uniform while still properly accounting for large boundary roughness.

The double-average approach has generally been applied at the local scale. It is used to compare theoretical expec-
tations to experimental data that are spatially highly variable. Here local scale refers to a downstream-oriented 
vertical slice in a channel were flow variables are double-averaged over a volume that is small compared to the 
size of the channel. Double-averaging reveals consistent patterns in the flow that cannot be perceived in any one 
location, much like Reynolds (time) averaging reveals consistent patterns in turbulent flow despite short-term 
temporal variability due to turbulent fluctuations. Although the utility and importance of the double-average 
approach is clearly appreciated in the context of open channel flow (Brereton et al., 2021; Dey & Das, 2012; 
Kuwata & Kawaguchi, 2019; Nikora et al., 2001, 2007), it is the author's perspective that it is underutilized in the 
context of channel-scale variables. Here the channel scale refers to double-averaged variables which have been 
further averaged across the channel width and depth. This limits the ability to connect advances in open channel 
flow theory made through the double-average approach to field observations of natural rivers, which generally 
consist of measurements of channel-scale variables.

Here a connection is made between double-averaged local variables such as flow velocity and porosity, and 
channel-scale variables including hydraulic geometry (width, mean depth, mean flow velocity, flow resistance, 
and discharge) that are generally observable in the field. Using a shear partitioning approach guided by insight 
from the double-average approach, a semiempirical model for channel-scale flow resistance in a particular class 
of rough channels is derived. The channels in question are those where the dominant source of drag is form drag 
on large roughness elements. The model is then tested against a large data set of flow resistance in rough chan-
nels, and some of the critical variables are estimated.

2.  Material and Methods
To test the theory developed below, a data set of paired measurements of mean flow velocity, surface flow width, 
mean flow depth, D84 (bed grain size), and channel slope is compiled from the literature. The relative flow depth 
ranges from 0.15 ≤ H/D84 ≤ 100 and the grain size ranges from 0.02 m ≤ D84 ≤ 1.5 m. The data set is composed of 
data from Williams and Rosgen (1989), Lepp et al. (1993), King (2004), and the data compilation of Rickenmann 
and Recking (2011). For channels with very large boundary roughness, the definition and measurement of flow 
depth becomes more challenging (Rickenmann & Recking, 2011). Here, this is accounted for by using only sites 
with direct velocity measurements, calculating the flow depth using H = Q/UW and excluding the few data for H/
D84 < 0.2. The data set and further details on how it was compiled have been made available in a data repository 
(Deal, 2021).

A smaller data set derived from Bathurst (1985) was constructed by taking the total cross-sectional area (AT in 
Bathurst (1985)), flow cross-sectional area (A in Bathurst (1985)), relative roughness (Aw/AT in Bathurst (1985)), 
and relative submergence (d/D84 in Bathurst (1985)) all from table 2 in Bathurst (1985). The mean flow depth was 
calculated as H = Ac/W and the total cross-sectional area, AT, was calculated by taking the cross-sectional area of 
the channel plus the upstream-facing area of the boulders. The channel boundary was defined by drawing straight 
lines between low points in the flow. The frontal area normalized by the flow cross-sectional area is compared 
to the relative flow depth.

3.  Double-Averaged Navier-Stokes Approach and Definition of Channel-Scale 
Parameters
The double-averaged Navier-Stokes momentum equation (averaged in time and space) was first developed for atmos-
pheric boundary layer flows (Raupach & Shaw, 1982; Wilson & Shaw, 1977) and has since been adapted to open 
channel flow (Giménez-Curto & Lera, 1996; Nikora et al., 2001, 2007, 2013; Whitaker, 1986). Double-averaging 
is an approach that lends itself to rough boundaries where the flow may vary significantly from one channel 
cross-section to another due to large roughness elements perturbing the flow. Importantly, for open channel 
flow, it has been demonstrated that double-averaged flow over rough boundaries resembles Reynolds-averaged 
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flow over smoother boundaries (Brereton et al., 2021; Dey & Das, 2012; Nikora et al., 2001, 2004; Sarkar & 
Dey, 2010).

In the double-averaged Navier-Stokes (DANS) momentum equation, a temporal and spatial decomposition is 
assumed for the flow velocity vector, 𝐴𝐴 𝐯𝐯 = ⟨𝐯𝐯⟩ + ̃̄𝐯𝐯 + 𝐯𝐯

′ . Here v is the instantaneous velocity vector at a point 
and time (x, y, z, t), the first right hand side term is the spatially and temporally (double) averaged velocity, 
where the overbar denotes an ensemble/time average, and the brackets denote a spatial average. The second and 
third  terms are the temporal fluctuations due to turbulence, v′, and spatial fluctuations over the averaging volume, 

𝐴𝐴 ̃̄𝐯𝐯 , where by definition 𝐴𝐴 ⟨ ̃̄𝐯𝐯⟩ = 𝐯𝐯
′ = 0 . Spatial averaging occurs over the volume Vo = Ldydz centered at x, y, z. 

Generally averaging is conceptualized as being taken over planes parallel to the boundary of the flow (Nikora 
et al., 2001, 2007). However, here curved channel profiles are considered and instead spatial averages are made 
over bars of downstream length L where L ≫ dy > dz. The downstream length-scale is long enough that the 
statistics of boundary roughness converge, that is, much longer than the length-scale associated with boundary 
roughness. Further, the lateral length-scale is large enough to average over secondary circulation.

The DANS momentum equation of an incompressible Newtonian fluid for gravity-driven, steady, and uniform 
high Reynolds number flow in the x-direction down a reach-averaged slope of S = tan θ ≈ cos θ is as follows: 
(Giménez-Curto & Lera, 1996; Nikora et al., 2001, 2007)

𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙 =
𝜕𝜕

𝜕𝜕𝜕𝜕

(
𝜌𝜌𝜌𝜌⟨𝑢𝑢′𝑣𝑣′⟩ + 𝜌𝜌𝜌𝜌⟨ ̃̄𝑢𝑢 ̃̄𝑣𝑣⟩

)
+

𝜕𝜕

𝜕𝜕𝜕𝜕

(
𝜌𝜌𝜌𝜌⟨𝑢𝑢′𝑤𝑤′⟩ + 𝜌𝜌𝜌𝜌⟨ ̃̄𝑢𝑢 ̃̄𝑤𝑤⟩

)
+ ∇ ⋅

(
𝜇𝜇∇𝜙𝜙⟨𝑢𝑢⟩

)
+ 𝜙𝜙

(
⟨𝑓𝑓𝑝𝑝⟩⟩ + ⟨𝑓𝑓𝑣𝑣⟩⟩

)
,� (1)

where θ is the angle in the x-z plane between vertical and a vector normal to the boundary, ρ is the density of 
water, g is acceleration due to gravity, and μ is the viscosity of water. The porosity of the channel is represented 
by ϕ. Depending on the fraction of the averaging volume occupied by fluid versus rock, porosity takes on a value 
between 0 (100% rock-occupied) and 1 (100% fluid-occupied). It is an important parameter but at this point 
effectively unconstrained in natural channels. The variables x and u(x, y, z) are the downstream flow direction and 
velocity, y and v(x, y, z) are the cross-stream direction and velocity, and z and w(x, y, z) are the vertical direction 
and velocity. The terms 𝐴𝐴 ⟨𝑢𝑢′𝑣𝑣′⟩ and 𝐴𝐴 ⟨𝑢𝑢′𝑤𝑤′⟩ are the Reynolds stresses due to turbulent fluctuations and the terms 𝐴𝐴 ⟨ ̃̄𝑢𝑢 ̃̄𝑣𝑣⟩ 
and 𝐴𝐴 ⟨ ̃̄𝑢𝑢 ̃̄𝑤𝑤⟩ are the dispersive stresses due to spatial variations in velocity.

The terms 𝐴𝐴 ⟨𝑓𝑓𝑝𝑝⟩ and 𝐴𝐴 ⟨𝑓𝑓𝑣𝑣⟩ are pseudo body forces per unit fluid volume (Brereton et al., 2021; Nikora et al., 2019). 
The form drag force,

⟨𝑓𝑓𝑝𝑝⟩ = −
1

𝑉𝑉𝑓𝑓 ∮
𝑠𝑠

𝑝𝑝𝐱̂𝐱 ⋅ 𝐧̂𝐧𝑑𝑑𝑑𝑑𝑑� (2)

is the integral of time averaged pressure, 𝐴𝐴 𝑝𝑝 , on all streamwise normal faces of the channel boundary (the surface 
s) per unit fluid volume, where 𝐴𝐴 𝐱̂𝐱 is the unit vector in the x direction and 𝐴𝐴 𝐧̂𝐧 is the unit vector normal to s. The term 

𝐴𝐴 ⟨𝑓𝑓𝑣𝑣⟩ is the viscous drag force on the channel boundary per unit fluid volume:

⟨𝑓𝑓𝑣𝑣⟩ =
1

𝑉𝑉𝑓𝑓 ∮
𝑠𝑠

𝜇𝜇∇ 𝑢𝑢 ⋅ 𝐧̂𝐧𝑑𝑑𝑑𝑑𝑑� (3)

The total drag force per unit volume is �⟨��⟩ = �
(

⟨��⟩ + ⟨��⟩

)

 .

Integrating over the flow depth from the deepest fluid-occupied point in the x-z plane zb to the water surface zs 
and dropping viscous terms yields a standard depth-integrated momentum balance for high Reynolds number, 
open channel flow (Chauvet et al., 2014; Knight, 1996; Morvan et al., 2008; Xu et al., 2020). In addition, here all 
variables are double-averaged:

∫
𝑧𝑧𝑘𝑘

𝑧𝑧𝑏𝑏

𝜙𝜙⟨𝑓𝑓𝑑𝑑⟩𝑑𝑑𝑑𝑑 = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌 −
𝜕𝜕

𝜕𝜕𝜕𝜕 ∫
𝑧𝑧𝑠𝑠

𝑧𝑧𝑏𝑏

(
𝜌𝜌𝜌𝜌⟨𝑢𝑢′𝑣𝑣′⟩ + 𝜌𝜌𝜌𝜌⟨ ̃̄𝑢𝑢 ̃̄𝑣𝑣⟩

)
𝑑𝑑𝑑𝑑� (4)

where zk is the elevation of the top of the roughness layer, and the underbar represents a depth-averaged variable. 
The boundary stress, accounting for a laterally sloping channel boundary, is defined as the force dissipated on the 
boundary, which happens in the roughness layer
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⟨𝜏𝜏𝑜𝑜⟩ = cos 𝜑𝜑∫
𝑧𝑧𝑘𝑘

𝑧𝑧𝑏𝑏

𝜙𝜙⟨𝑓𝑓𝑑𝑑⟩𝑑𝑑𝑑𝑑𝑑� (5)

where φ is the angle in the x-y plane between vertical and a vector normal to the boundary. In this formulation, 
the shear stress is assumed to be distributed over the entire boundary, not accounting for porosity at the boundary. 
However, the boundary stress could equally be defined as 𝐴𝐴 ⟨𝜏𝜏𝑜𝑜⟩ = (cos 𝜑𝜑∕𝜙𝜙) ∫ 𝑧𝑧𝑘𝑘

𝑧𝑧𝑏𝑏
𝜙𝜙⟨𝑓𝑓𝑑𝑑⟩𝑑𝑑𝑑𝑑 , which is the boundary 

stress focused onto just the fraction of the boundary occupied by fluid.

The boundary itself can be challenging to define for very rough channels (Smart et  al.,  2002). Here the 
double-averaged boundary is defined by the clear-water-equivalent flow depth for each slice in the x-z plane 
(Kuwata & Kawaguchi, 2019), where the clear-water-equivalent flow depth is the depth of the flow assuming no 
roughness, shown as a gray solid line labelled 𝐴𝐴 𝐴𝐴𝑐𝑐 in Figure 1. This is the integral of the porosity over the flow depth

ℎ(𝑦𝑦) = ℎ𝑙𝑙 + 𝜙𝜙𝑘𝑘 = ∫
𝑧𝑧𝑠𝑠

𝑧𝑧𝑏𝑏

𝜙𝜙𝜙𝜙𝜙𝜙� (6)

where k = zk − zb is the thickness of the roughness layer, 𝐴𝐴 𝐴𝐴 = (1∕𝑘𝑘) ∫ 𝑧𝑧𝑘𝑘
𝑧𝑧𝑏𝑏

𝜙𝜙𝜙𝜙𝜙𝜙 is the depth-averaged porosity over 
the roughness layer, and hl = zs − zk is the remaining flow depth above the roughness layer.

By integrating Equation 4 across the channel width, the boundary stress averaged along the double-averaged 
channel boundary, τo, is shown to be

𝜏𝜏𝑜𝑜 = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌� (7)

Where a symmetrical channel (in a double-averaged sense) is assumed, the integral of the lateral stress sums to 
zero, and 𝐴𝐴 𝐴𝐴 = 𝐴𝐴𝑐𝑐∕𝑃𝑃𝑐𝑐 is the hydraulic radius. The same approach can be used to calculate several other important 
channel-scale variables, such as the mean flow depth for the channel, given in Figure 1 and Appendix A.

This definition of the average boundary stress and the boundary itself contrasts with that of Smart et al. (2002), 
for example, who use the volumetric hydraulic radius, which is equal to the average flow depth Rv = H = Ac/W. 
The stress defined using the flow width is a maximum bound on the double-averaged stress dissipated on the 
actual channel boundary because any curved channel perimeter will be larger than the channel width. Although 

Figure 1.  Schematic of rough channel showing both the local scale and channel scale. Local flow depth, h, and 
depth-averaged flow velocity, 𝐴𝐴 ⟨𝑢𝑢⟩ are defined as well as channel-scale width, W; mean flow depth, H; cross-sectional area, 
Ac; channel perimeter, Pc; water flux, Q; mean flow velocity, U; and upstream-facing area of ith roughness element, Afi. The 
thick dashed black line represents the channel-averaged depth (shown in both panels) and the solid gray boundary labelled 𝐴𝐴 𝐴𝐴𝑐𝑐 
represents the clear-water-equivalent depth along which the boundary perimeter length is measured (shown only in the lower 
panel).
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the volumetric hydraulic radius, Rv, is useful for being simple to measure, the hydraulic radius in Equation 7 is 
preferred here because it is consistent across channels of small and large roughness. In practice, it is likely that 
the two measures are nearly interchangeable.

4.  Flow Resistance
The flow resistance derives from the ratio of the shear stress to the dynamic pressure, 𝐴𝐴

1

2
𝜌𝜌⟨𝑢𝑢⟩

2 ,

⟨𝜏𝜏𝑜𝑜⟩∕ cos 𝜑𝜑

𝜌𝜌⟨𝑢𝑢⟩
2

=

⟨𝐶𝐶𝑓𝑓 ⟩

2
=

(
⟨𝑢𝑢⟩

⟨𝑢𝑢∗⟩

)−2

� (8)

where 𝐴𝐴 ⟨𝑢𝑢⟩(𝑦𝑦) = (1∕ℎ) ∫ 𝑧𝑧𝑠𝑠
𝑧𝑧𝑏𝑏
𝜙𝜙⟨𝑢𝑢⟩𝑑𝑑𝑑𝑑 is the local depth-averaged velocity, 𝐴𝐴 ⟨𝑢𝑢∗⟩ =

√
⟨𝜏𝜏𝑜𝑜⟩∕𝜌𝜌 cos 𝜑𝜑 is the local shear or 

friction velocity, and 𝐴𝐴 ⟨𝐶𝐶𝑓𝑓 ⟩ is the local coefficient of drag.

Using the same DANS momentum equation (Equation 1), the boundary stress has been shown to be equal to 
the sum of different sources of friction (Kuwata & Kawaguchi, 2019; Nikora et al., 2019) based on a successful 
approach for Reynolds averaged flows (Fukagata et al., 2002). Here, the formulation from Nikora et al. (2019) is 
given but both formulations are similar

⟨𝜏𝜏𝑜𝑜⟩

cos 𝜑𝜑
=

3

𝑁𝑁𝑜𝑜ℎ

[

𝜇𝜇𝜇𝜇⟨𝑢𝑢⟩ −
1

ℎ ∫
𝑧𝑧𝑠𝑠

𝑧𝑧𝑏𝑏

(𝑧𝑧𝑠𝑠 − 𝑧𝑧) 𝜌𝜌𝜌𝜌⟨𝑢𝑢′𝑤𝑤′⟩𝑑𝑑𝑑𝑑 −
1

ℎ ∫
𝑧𝑧𝑠𝑠

𝑧𝑧𝑏𝑏

(𝑧𝑧𝑠𝑠 − 𝑧𝑧) 𝜌𝜌𝜌𝜌⟨ ̃̄𝑢𝑢 ̃̄𝑤𝑤⟩𝑑𝑑𝑑𝑑 +
𝐹𝐹3𝐷𝐷

2ℎ

]

� (9)

where the first term represents the viscous drag and the second term the turbulent stress. The third term accounts 
for dispersive stresses, including both spatial variations in flow velocity due to spatially varying bed geometry 
and spatial variations due to secondary circulation. The final term collects other 3D flow terms such as spatial 
deviations in inertial and pressure forces due to local temporal and spatial accelerations in fluid velocity. These 
terms and the normalizing factor, No, are given in Appendix B.

Equation 9 and the DANS framework in general are important for several reasons. First, a single framework 
can describe drag in simple 2D flows as well as drag due to spatial pressure fluctuations and spatial and tempo-
ral fluid accelerations that may be important in very rough, 3D flows (Kuwata & Kawaguchi,  2019; Nikora 
et al., 2019). Second, it shows that even with a careful accounting of the flow, the drag can be considered a linear 
sum of different components, each attributable to a different phenomenon:

⟨𝐶𝐶𝑓𝑓 ⟩ =
∑

𝑖𝑖

⟨𝐶𝐶𝑓𝑓𝑖𝑖
⟩� (10)

where i sums over the different terms contributing to flow resistance.

The channel-scale flow resistance is the average of the local flow resistance:

𝐶𝐶𝑓𝑓 = 2

(
𝑈𝑈

𝑢𝑢∗

)−2

=

⎛
⎜
⎜
⎝

1

𝑊𝑊 ∫
𝑊𝑊 ∕2

−𝑊𝑊 ∕2

(
∑

𝑖𝑖

⟨𝐶𝐶𝑓𝑓𝑖𝑖
⟩

)−
1

2

𝑑𝑑𝑑𝑑

⎞
⎟
⎟
⎠

−2

� (11)

where 𝐴𝐴 𝐴𝐴∗ =

√
𝜏𝜏𝑜𝑜∕𝜌𝜌 =

√
𝑔𝑔𝑔𝑔𝑔𝑔 ≈

√
𝑔𝑔𝑔𝑔𝑔𝑔 . Under the assumptions that the boundary stress is, in a double-averaged 

sense, approximately constant across the channel width (𝐴𝐴 ∇⟨𝜏𝜏𝑜𝑜⟩ ≈ 0 and 𝐴𝐴 𝐴𝐴∗ ≈ ⟨𝑢𝑢∗⟩ ) and that the majority of the 
resistance comes from the bottom roughness and not channel walls, this can be simplified to 𝐴𝐴 𝐴𝐴𝑓𝑓 ≈

∑
𝑖𝑖
⟨𝐶𝐶𝑓𝑓𝑖𝑖

⟩ and 
the channel-scale flow resistance can be cast as follows:

𝑈𝑈

𝑢𝑢∗
=

1
√

1

2

∑

𝑖𝑖

⟨𝐶𝐶𝑓𝑓𝑖𝑖
⟩� (12)

This is strongly reminiscent of the empirical variable power equation (VPE) (Ferguson, 2007):

𝑈𝑈

𝑢𝑢∗
=

1
√

1

2
𝐶𝐶𝑓𝑓smooth

+
1

2
𝐶𝐶𝑓𝑓rough

; 𝐶𝐶𝑓𝑓smooth
=

2

𝑎𝑎
2

1

(
𝐻𝐻

𝑘𝑘

)−1∕3

; 𝐶𝐶𝑓𝑓rough
=

2

𝑎𝑎
2

2

(
𝐻𝐻

𝑘𝑘

)−2

� (13)
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as well as several other recent formulations for flow resistance across smooth and rough channels (Cheng, 2017; 
Rickenmann & Recking, 2011). Here 𝐴𝐴 𝐴𝐴𝑓𝑓smooth

 and 𝐴𝐴 𝐴𝐴𝑓𝑓rough
 are the channel drag coefficients for smooth and rough 

boundaries, respectively (Ferguson, 2007). These equations capture the increase in flow resistance for channels with 
rough boundaries, effectively increasing the exponent in the relationship 𝐴𝐴 𝐴𝐴∕𝑢𝑢∗ ∝ (𝐻𝐻∕𝐷𝐷84)

𝑟𝑟 as roughness increases. 
Here it is pointed out that this form probably arises more or less inevitably due to the additive nature of the coefficients 
of various sources of drag and the inverse-square relationship between flow velocity and the total drag coefficient.

4.1.  Flow Resistance in Open Channel Flow

If the profile of average flow velocity as a function of depth 𝐴𝐴 ⟨𝑢𝑢⟩(𝑦𝑦𝑦 𝑦𝑦) is known, the local drag coefficient can be derived 
by integrating 𝐴𝐴 ⟨𝑢𝑢⟩(𝑦𝑦𝑦 𝑦𝑦) with depth (Smart et al., 2002). To find 𝐴𝐴 ⟨𝑢𝑢⟩(𝑦𝑦𝑦 𝑦𝑦) , the flow can be divided into four layers 
(Nikora et al., 2001): From the water surface down there is an outer layer, a logarithmic layer, a roughness layer, and a 
subsurface layer. However, for open channel flow in natural rivers, the outer layer is often ignored and the logarithmic 
layer is generally considered to extend all the way to the surface (Schlichting & Gersten, 2015). The flow velocity in 
the logarithmic layer is well captured by the classic log law of the wall (Chung et al., 2021), which can be derived using 
the Boussinesq hypothesis and assuming a turbulent mixing length-scale that is proportional to the height above the 
bed (Keulegan, 1938). This is well known but the details and standards have continued to evolve, as nicely described 
in several recent reviews (Brereton et al., 2021; Chung et al., 2021), so a short summary is given below.

The presence of a roughness layer does not appear to modify the flow in the logarithmic layer substantially but simply 
sets the boundary condition for the logarithmic profile (Chung et al., 2021; Flack & Schultz, 2014; Lamb et al., 2017b). 
It has been well established that for rough boundaries where there is sufficiently deep flow above the highest portions of 
the roughness layer, a logarithmic layer still develops that is well described by (Brereton et al., 2021; Chung et al., 2021; 
Dey & Das, 2012; Flack & Schultz, 2014; Lamb et al., 2017b; Nikora et al., 2001, 2004, 2007 and Sarkar & Dey, 2010):

⟨�⟩
⟨�∗⟩

= 1
�
ln
(

� − �
��

)

+ �� =
1
�
ln
(

����

��
(� − �)

)

� (14)

where ks is the effective sand grain roughness and Bs is a function of 𝐴𝐴 𝐴𝐴𝐴𝐴𝑠𝑠⟨𝑢𝑢∗⟩∕𝜇𝜇 that assumes a constant value of ∼8.5 

for hydraulically rough flows 𝐴𝐴

(
𝜌𝜌𝜌𝜌𝑠𝑠⟨𝑢𝑢∗⟩∕𝜇𝜇 𝜇 100

)
 , a criterion expected to be met in effectively all natural channels. 

Integrating Bs = 8.5 into the natural log leads to a factor of 30 𝐴𝐴
(
𝑒𝑒
𝜅𝜅𝜅𝜅𝑠𝑠 ≈ 30

)
 , where it is assumed that 𝐴𝐴 𝐴𝐴 = 0.41 .

The variable d is a zero-plane displacement that accounts for modifications in the flow close to the top of the 
roughness layer due to flow in the roughness layer (Chung et al., 2021; Lamb et al., 2017b). It is generally a 
small correction that can be ignored if the flow of interest is far from the roughness layer. Using a modified 

mixing-length model Lamb et al.  (2017b) show that 𝐴𝐴 𝐴𝐴 = −𝑘𝑘𝑠𝑠𝑒𝑒
𝜅𝜅

(
⟨𝑢𝑢𝑜𝑜⟩∕⟨𝑢𝑢∗⟩−𝐵𝐵𝑠𝑠

)

 , where 𝐴𝐴 ⟨𝑢𝑢𝑜𝑜⟩ is the flow velocity at 
the top of the roughness layer. This flow velocity becomes relevant when there is significant flow through the 
roughness and subsurface layers.

In Equation 14, the roughness is represented with the effective sand grain roughness length-scale ks. If the rough-
ness is instead described with a measure of the actual boundary roughness such as the standard deviation of bed 
elevation or characteristic grain size (e.g., D50 or D84), the flow velocity can be written instead in terms of k′ and 
Bk’ where k′ is the measure of bed roughness used. This is less useful because, in general, Bk’ is not known for an 
arbitrary surface, even for hydraulically rough flows (Brereton et al., 2021), and there is not a unique relationship 
between k′ and ks (Kuwata & Kawaguchi, 2019).

The mean velocity over the logarithmic layer is as follows (Keulegan, 1938; Smart et al., 2002):

⟨�⟩
⟨�∗⟩

= 1
ℎ� ∫

��+ℎ�

��+�

1
�
ln
(

����

��
(� − �)

)

�� = 1
�
ln
(

����−1 ℎ�

��

)

+ 
(

��

ℎ�

)

� (15)

where hl is the thickness of the logarithmic layer, 𝐴𝐴 𝐴𝐴
𝜅𝜅𝜅𝜅𝑠𝑠−1 ≈ 12 and integration is from just below the effective 

sand roughness height 𝐴𝐴

(

𝑧𝑧 = 𝑘𝑘𝑠𝑠 + 𝑑𝑑 = 𝑘𝑘𝑠𝑠

(

1 − 𝑒𝑒
𝜅𝜅

(
⟨𝑢𝑢𝑜𝑜⟩∕⟨𝑢𝑢∗⟩−𝐵𝐵𝑠𝑠

)))

 . If the thickness of the logarithmic layer is much 

larger than the effective sand roughness layer (hl ≫ ks), then the thickness and average flow velocity of the loga-
rithmic layer become good approximations of the entire flow depth.
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Figure 2 shows Equation 15 fit to the flow resistance data set described in Section 2 for relative flow depths 
greater than H/D84 ≥ 3 using a nonlinear least squares method. The flow resistance model fits the data well, as 
expected, and the best fit value for γ = ks/D84 is γ = 3.7 ± 0.14. Figure 2b shows the best fit value of γ when the 
data are fit over a moving window of just one order of magnitude, demonstrating that it is approximately in the 
range 3 ≤ γ ≤ 4.5 and does not depend strongly on the bounds of the fit data.

4.2.  Flow Resistance for Rough Boundaries

At some point, as the roughness layer occupies a larger and larger fraction of the flow depth, the logarithmic 
layer will disappear and the bulk flow velocity is determined by flow in the roughness and subsurface layers. The 
logarithmic layer is expected to persist until hl/k ≈ 15 (Flack & Schultz, 2014); however, experiments have shown 
that it can be observed for relative flow depths as small as hl/k ≈ 1 (Lamb et al., 2017b). Regardless of whether the 
logarithmic layer persists or not, when the roughness layer thickness is a large fraction of the overall flow depth, 
equating the logarithmic layer with the entire flow depth will become a poor approximation and a transition to 
roughness and subsurface layer dominated flow resistance will begin.

Flow in the roughness layer and subsurface layer is not as well understood as in the logarithmic layer, though 
under certain conditions particular depth-velocity profiles are predicted and observed, such as linear or exponen-
tial profiles (Nikora et al., 2004). Similarly, there are some predictions of flow through the subsurface layer, prin-
cipally depending on non-Darcy (i.e., turbulent) flow through porous media, modeled by the Darcy-Forchheimer 
equation (Lamb et al., 2017b; Luo et al., 2022). Despite these promising results, research has not consolidated 
enough for a simple, useable, and well-tested model of mean flow velocity in the roughness and subsurface layers 
to emerge.

In the absence of a useable theory, empirical power-law models are used to capture the flow resistance in channels 
with rough boundaries (Ferguson, 2007; Rickenmann & Recking, 2011). These models generally take the form

𝐶𝐶𝑓𝑓 = 𝑘𝑘𝑓𝑓

(
𝐻𝐻

𝑘𝑘𝑠𝑠

)−2𝑟𝑟

� (16)

where r is observed to be approximately 1 in compilations of natural channels with rough boundaries 
(Ferguson, 2007; Rickenmann & Recking, 2011; Smart et al., 2002).

Using a shear partitioning approach guided by insight from the DA approach, a semiempirical prediction for the 
value of the exponent r is laid out below. The prediction should be valid in channels where the majority of the 
drag comes from pressure drag on large roughness elements, referred to as boulders. To do this, the dissipation 
of momentum on the boundary can be divided into the momentum dissipated throughout the flow on boulders, 
if any exist, denoted by τr, plus the momentum dissipated close to the boundary of the channel, denoted by τb.

Figure 2.  Comparing log law of the wall depth velocity model to flow resistance data. Panel A shows a best fit of Equation 15 to the data set described in Section 2 for 
relative flow depths of H/D84 ≥ 3. The only fit parameter is γ = 3.7 ± 0.14, where the uncertainty represents one standard error of the best fit. Panel B shows the best 
fit γ value over a moving window of one order of magnitude (±1/2 order of magnitude centered on each H/D84 value). The blue line shows the best fit value, the gray 
region shows the bounds of ± one standard error, and the black line shows the range of data for which there were data over the entire one order of magnitude window.
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Note that in both regions, momentum is dissipated through a combination of form and skin drag. However, in this 
way, the detailed approaches (Kuwata & Kawaguchi, 2019; Nikora et al., 2019) can be reconciled with intuitive 
approaches that partition drag. In this perspective the average boundary stress is

𝜏𝜏𝑜𝑜 =
1

𝑃𝑃𝑐𝑐 ∫
𝑊𝑊

2

−
𝑊𝑊

2

[

∫
𝑧𝑧𝑐𝑐

𝑧𝑧𝑏𝑏

𝜙𝜙⟨𝑓𝑓𝑑𝑑⟩𝑑𝑑𝑑𝑑 + ∫
𝑧𝑧𝑠𝑠

𝑧𝑧𝑐𝑐

𝜙𝜙⟨𝑓𝑓𝑑𝑑⟩𝑑𝑑𝑑𝑑

]

𝑑𝑑𝑑𝑑 = 𝜏𝜏𝑏𝑏 + 𝜏𝜏𝑟𝑟� (17)

where zc is a depth close to the boundary that distinguishes between boundary drag and drag on boulders.

If there are boulders or other large roughness elements protruding into the flow, the physical mechanisms 
responsible for the spatial distribution of flow velocities are captured by Equation 9. However, the dissipation 
of momentum on the large roughness elements can be roughly estimated using the average pressure force on 
upstream-facing roughness elements per unit volume, Fp

𝜏𝜏𝑟𝑟 =
1

𝑃𝑃𝑐𝑐 ∫
𝑊𝑊

2

−
𝑊𝑊

2

∫
𝑧𝑧𝑠𝑠

𝑧𝑧𝑐𝑐
∮
𝑠𝑠

−𝑝𝑝𝐱̂𝐱 ⋅ 𝐧̂𝐧

𝑉𝑉𝑜𝑜

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
1

𝑃𝑃𝑐𝑐 ∫
𝑊𝑊

2

−
𝑊𝑊

2

(
ℎ𝜙𝜙⟨𝑓𝑓𝑝𝑝⟩ + 𝜖𝜖𝑜𝑜

)
𝑑𝑑𝑑𝑑 =

𝑐𝑐𝑜𝑜

𝑃𝑃𝑐𝑐

(
𝑊𝑊𝑊𝑊𝑊𝑊𝑝𝑝 +𝑊𝑊 𝑊𝑊𝑜𝑜

)
� (18)

This assumes that the drag force results predominantly from form drag, 𝐴𝐴 ⟨𝑓𝑓𝑝𝑝⟩ , which may not be completely valid, 
even in very rough channels (Nikora et al., 2019). Two further approximations are made here. The first approxi-
mation is that the depth-integrated pressure force per unit fluid volume, 𝐴𝐴 𝐴𝐴𝐴⟨𝑓𝑓𝑝𝑝⟩ , can be substituted for the pres-
sure force per unit fluid volume integrated from zc to zs. This approximation becomes reasonable if the boundary 
elevation zc is close to the bed elevation zb. This leads to the term 𝐴𝐴 𝐴𝐴𝑜𝑜 , which is assumed to be small.

The second approximation is that 𝐴𝐴 𝐴𝐴𝐴𝐴𝑝𝑝 ≈ ∫𝑊𝑊 ∕2

−𝑊𝑊 ∕2
ℎ𝜙𝜙⟨𝑓𝑓𝑝𝑝⟩𝑑𝑑𝑑𝑑 , which is only strictly true if 𝐴𝐴 𝐴𝐴⟨𝑓𝑓𝑝𝑝⟩ does not depend on 

depth. This is dealt with by adding an unknown coefficient that compensates for how 𝐴𝐴 𝐴𝐴⟨𝑓𝑓𝑝𝑝⟩ varies with distance 
from the bed. This added coefficient will depend strongly on the geometry of the boundary and the flow.

The average pressure force on upstream-facing area of boulders per unit volume can be written as follows:

𝐹𝐹𝑝𝑝 =
𝐶𝐶𝐷𝐷

𝜌𝜌

2
𝑈𝑈

2
𝑝𝑝 𝐴𝐴𝑓𝑓

𝐻𝐻𝐻𝐻𝑜𝑜

� (19)

where Af is the upstream-facing area in an average cross-section of downstream extent ks, Ao = Wks is the channel 
bed area associated with an average channel cross-section, CD is the average drag coefficient on a boulder, and

𝑈𝑈
2

𝑝𝑝 =
1

𝑊𝑊 ∫
𝑊𝑊 ∕2

−𝑊𝑊 ∕2

1

ℎ ∫
𝑧𝑧𝑠𝑠

𝑧𝑧𝑐𝑐

1

𝑉𝑉𝑜𝑜 ∮𝑠𝑠

𝑢𝑢
2

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� (20)

is the effective velocity that should give the correct drag when multiplied by the upstream-facing area in a channel 
reach. Here it is assumed that this velocity scales with the mean channel-scale velocity, 𝐴𝐴 𝐴𝐴𝑝𝑝 =

√
𝑐𝑐1𝑈𝑈 , though the 

coefficient will necessarily depend on the distribution of velocity and roughness element surface area with depth; 
therefore c1 should be highly sensitive to the channel geometry.

With these approximations, and using the relationships 𝐴𝐴 𝐴𝐴𝑜𝑜 = 𝜌𝜌𝜌𝜌
2

∗
 and 𝐴𝐴 𝐴𝐴𝑓𝑓 = 2(𝑢𝑢∗∕𝑈𝑈 )

2 :

𝜏𝜏𝑟𝑟 ≈ 𝑐𝑐𝑜𝑜𝐻𝐻𝐻𝐻𝑝𝑝 = 𝐶𝐶𝐷𝐷

𝐴𝐴𝑓𝑓

𝐴𝐴𝑜𝑜

𝑐𝑐𝑜𝑜𝑐𝑐1𝜌𝜌

2
𝑈𝑈

2
= 𝜏𝜏𝑜𝑜

𝑐𝑐𝑜𝑜𝑐𝑐1𝑐𝑐𝑑𝑑

𝐶𝐶𝑓𝑓

𝐴𝐴𝑓𝑓

𝐴𝐴𝑜𝑜

(
𝐻𝐻

𝐷𝐷84

)−
3

2

� (21)

where the drag coefficient on a single boulder is approximated as 𝐴𝐴 𝐴𝐴𝐷𝐷 = 𝑐𝑐𝑑𝑑(𝐻𝐻∕𝐷𝐷84)
−3∕2 (Lamb et al., 2017a). 

This is an empirical model for the drag coefficient based on observations of a single roughness element protrud-
ing from the bed. The experiments of Lamb et al.  (2017a) use only single grain size, D, which is not strictly 
comparable to D84 used here. Therefore the coefficients and range of applicability will be different than in Lamb 
et al. (2017a). The range of relative flow depths (𝐴𝐴 𝐴𝐴∕𝐷𝐷84 ) where this model is applicable is likely to be larger, as 
D84 does not represent the largest grain size, so D84 < D.

Using geometrical arguments (Appendix C), the upstream-facing boulder area per unit planform channel area, 
also known as the frontal solidity, λf (Chung et al., 2021), is
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𝜆𝜆𝑓𝑓 =
𝐴𝐴𝑓𝑓

𝐴𝐴𝑜𝑜

= 𝑠𝑠𝑠𝑠𝑝𝑝

(
𝐻𝐻

𝛾𝛾𝛾𝛾84

)1−𝑎𝑎

� (22)

where λp is the planform boulder area per unit planform channel area, also known as planform solidity (Chung 
et al., 2021), s is a factor that depends on the average boulder shape, and a controls how the upstream-facing boul-
der area increases when the channel becomes rougher. As illustrated in Figure 3, if the flow resistance depends 
on a few boulders significantly larger than the flow depth, the expectation is that the upstream-facing area scales 
with ksH and a = 0. If instead the area lost by large boulders protruding more and more from progressively shal-
lower flows is compensated by smaller roughness elements, the expectation is that 𝐴𝐴 𝐴𝐴𝑓𝑓 ∼ 𝑘𝑘

2

𝑠𝑠 and a = 1.

If the drag predominantly comes from drag on roughness elements throughout the depth of the flow (e.g., τo ≈ τr), 
then Equation 21 can be combined with Equation 22 to yield

𝐶𝐶𝑓𝑓 = 𝑐𝑐𝑜𝑜𝑐𝑐1𝑐𝑐𝑑𝑑𝑠𝑠𝑠𝑠𝑝𝑝𝛾𝛾
𝑎𝑎−1

(
𝐻𝐻

𝐷𝐷84

)−

(
𝑎𝑎+

1

2

)

� (23)

and consequently

𝑈𝑈

𝑢𝑢∗
≈

1
√

1

2
𝑐𝑐𝑜𝑜𝑐𝑐1𝑐𝑐𝑑𝑑𝑠𝑠𝑠𝑠𝑝𝑝𝛾𝛾

𝑎𝑎−1

(
𝐻𝐻

𝐷𝐷84

) 1+2𝑎𝑎

4

� (24)

5.  Results
To estimate the value of a in natural channels, it can also be shown that the average upstream-facing roughness 
area per unit channel cross-section area is (Appendix C):

𝐴𝐴𝑓𝑓

𝐴𝐴𝑐𝑐

= 𝑠𝑠𝑠𝑠𝑝𝑝

(
𝐻𝐻

𝛾𝛾𝛾𝛾84

)−𝑎𝑎

� (25)

Using a data set of Af and Ac from Bathurst (1985), I find that there is a consistent power-law relationship between 
Af/Ac and H/D84 and that a = 1.10 ± 0.03 and sλpγ 1.1 = 0.63 ± 0.01, see Figure 4a.

Using the larger data set discussed in Section  2, a power-law is fit to the flow resistance observations with 
relative flow depths between 0.2 ≤ H/D84 ≤ 2 using a nonlinear least squares method, for a best fit exponent of 

Figure 3.  Schematic of river channel with large roughness elements, for example, boulders looking downstream (top) and 
from above (bottom). Shown is the elevation zc around which the shear partitioning is based, the difference between boulders 
whose upstream-facing area should scale with Hks and those who should scale with 𝐴𝐴 𝐴𝐴

2
𝑠𝑠 , and the definition of the boulder 

planform density based on an average spacing of λ (see Appendix C).
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r = 0.74 ± 0.03, see Figure 4b. To test the effect of the chosen data limits on the value of the exponent, Figure 4c 
shows the best fit exponent when only data within a moving window of one order of magnitude are used. For 
relative flow depths from 1/2 ≤ H/D84 ≤ 2, r ≥ 3/4.

Figure 4.  Panel A shows the best fit of the ratio of upstream-facing roughness element area in an average cross-section, Af, to 
the flow area in an average cross-section, Ac, as a function of the relative flow depth using a nonlinear least squares method. 
Panel B shows a power-law best fit to the flow resistance observations from the larger data set discussed in Section 2 with 
relative flow depths smaller than H/D84 ≤ 2 using a nonlinear least squares method. The best fit exponent is r = 0.74 ± 0.03. 
In panel C, to test the effect of choosing an upper limit for the fit data, the data are fit in a moving window of one order of 
magnitude. The blue line shows the best fit value, the gray region shows the bounds of ± one standard error, and the black 
line shows the range of data for which there were data over the entire one order of magnitude window.
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The value of r predicted from fitting a to the Bathurst (1985) data set is r = 0.8 ± 0.02, which is approximately in 
line with the observed range of r for rough boundaries, as well as the value of r found by others (Ferguson, 1986; 
Rickenmann & Recking, 2011; Smart et al., 2002).

Using the above values, the flow resistance coefficients for smooth and rough channels can be defined as follows:

𝐶𝐶𝑓𝑓smooth
= 2

(
1

𝜅𝜅
ln

(

3.3
𝐻𝐻

𝐷𝐷84

)

+
𝐷𝐷84

𝐻𝐻

)−2

� (26)

where the 𝐴𝐴  (𝐷𝐷84∕𝐻𝐻) term is taken to be simply D84/H and

𝐶𝐶𝑓𝑓rough
= 𝑐𝑐𝑜𝑜𝑐𝑐1𝑐𝑐𝑑𝑑𝑠𝑠𝑠𝑠𝑝𝑝𝛾𝛾

𝑎𝑎−1

(
𝐻𝐻

𝐷𝐷84

)−

(
𝑎𝑎+

1

2

)

=
2

2.192

(
𝐻𝐻

𝐷𝐷84

)−1.6

� (27)

where a = 1.1. The above two models can be combined using Equation 12. Theoretically, the unified model 
should consist of the inverse of the square root of the sum of squared terms. However, using a higher power gives 
a model that transitions more rapidly from one end member model to the other, and fit the data better. In the 
interest of a more functional model, here the fourth power is used:

𝑈𝑈

𝑢𝑢∗
=

1

4

√
(

1

𝜅𝜅
ln

(
3.3

𝐻𝐻

𝐷𝐷84

)
+

𝐷𝐷84

𝐻𝐻

)−4

+ .043

(
𝐻𝐻

𝐷𝐷84

)−3.2� (28)

The comparison between this unified model and the data set is shown in Figure 5.

6.  Discussion
Despite the caveat that the Bathurst (1985) data set is quite small, the fit values of a = 1.10 and sλpγ 1.1 = 0.63 lead 
to some interesting interpretations. The observation that a ≈ 1 implies that the upstream-facing roughness area of 
an average roughness element increases as 𝐴𝐴 ∼ 𝑘𝑘

2

𝑠𝑠 . This means that as large boulders or other roughness elements 
protrude from the flow for progressively shallower flows, the lost area is supplemented by other sources. This 
also implies that the upstream-facing roughness area per unit channel width normalized by the roughness length-

scale (i.e., per average cross-section) is a constant 𝐴𝐴

(
𝐴𝐴𝑓𝑓

𝑘𝑘𝑠𝑠𝑊𝑊
≈ 0.15

)
 .

Similarly, when a ≈ 1, the frontal and planform solidities are directly proportional to one another, and this rela-
tionship depends only on the details of boulder shape, rather than on any properties of the flow, such as relative 
flow depth. The frontal and planform solidity have been shown to be important in determining the drag properties 

Figure 5.  Panel A shows the fit of the flow resistance models for smooth channels (Equation 26), rough channels (Equation 27) and the proposed unified model 
(Equation 28) compared to the compiled dataset of flow resistance in natural rivers. Panel B shows the best fit value of the exponent 𝐴𝐴 𝐴𝐴 fit as in Figure 4c compared to 
the value of 𝐴𝐴 𝐴𝐴 predicted by Equation 28.
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of a boundary (Chung et al., 2021), and it would be significant if their relationship to one another were both 
constrained and independent of details of the flow in natural channels.

In addition the value of frontal solidity can be inferred from the coefficient of the best fit in Figure 4a, which 
gives λf ≈ sλp ≈ 0.63/γ ≈ 0.15–0.2. This assumes that the value of γ fit for relatively deep flows holds for rela-
tively shallow flows as well. Interestingly, if this value is correct, it is in the range of values for frontal solidity 
that produce maximal flow resistance (Chan et al., 2015; MacDonald et al., 2018). Beds with either significantly 
higher or lower roughness element density exhibit lower flow resistance. If there is a mechanism whereby chan-
nels optimize for maximum flow resistance, one would expect 0.1 ≤ λf ≤ 0.3.

Natural surfaces often have special properties such as being fractal or self-affine (Cox & Wang, 1993; Power & 
Tullis, 1991; Stewart et al., 2019). Also, natural channels are regularly modified by the flow, potentially driving 
them to exhibit similar properties across different rivers (Aberle & Nikora, 2006) by, for example, maximizing or 
minimizing certain properties. In addition to the interesting relationships between frontal and planform solidity and 
flow resistance, there are several other lines of evidence to support the viewpoint that natural channels converge on 
similar drag behavior. Such effects could potentially simplify the prediction of flow resistance in rough channels.

First, it has been established that a simple measure of bed morphology such as maximum or standard deviation 
of bed elevation cannot fully describe the bed roughness (Brereton et  al.,  2021; Chung et  al.,  2021; Kuwata & 
Kawaguchi, 2019). Based on this alone, it is unlikely that there is a unique relationship between characteristic grain size 
or the standard deviation of bed height and ks for natural river channels. Yet, the fact that a relatively consistent, albeit 
noisy, relationship is frequently observed (the oft quoted ks ≈ 3D84 (Hey, 1979; Lamb et al., 2017b; Figure 2) suggests 
some amount of convergence in the bed morphology of natural rivers (Aberle & Nikora, 2006; Stewart et al., 2019).

Also in support of these ideas is the fact that the model derived above, which has many approximations, seems 
to match well with observations. Several of the approximations made, such as relating the mean flow velocity, U, 
to the average flow velocity impinging on roughness elements, Up, should be highly sensitive to bed geometry. 
The observation that the exponent a in the Bathurst (1985) data set and the exponent r in the larger data set of 
flow resistance match according to Equation 23 implies that the coefficients c1, cd, s, and γ are not changing too 
strongly as channels become rougher. There is spread in flow resistance for any given channel at a given relative 
flow depth, so it may be that bed geometries are changing from channel to channel. However, this variability 
occurs around a well-behaved trend in the data, implying the existence of some consistent, approximate patterns.

The model of drag on isolated boulders from Lamb et al. (2017a) is critical for producing the observed match 
between the exponents a and r. This is a fully empirical model based on flume experiments with relatively simple 
geometry that has not been tested in natural channels. While this is an important caveat, other measures of drag on 
individual grains, although more indirect, have made qualitatively similar observations that the drag coefficient 
increases as the relative flow depth decreases (Carling et al., 2002; Lawrence, 2000). Still, changes in the model 
proposed by Lamb et al. (2017a) due to more data or more realistic conditions will result in direct changes to the 
model proposed in Equation 23.

It is important to note that the model proposed above should not describe all rough channel bed configurations. 
Flow resistance due to form drag on isolated large roughness elements such as boulders is just one of a variety of 
ways to produce flow resistance in rough channels (Powell, 2014). Lamb et al. (2017b), for example, describe a 
rough channel with no large roughness elements protruding into the flow and predict a model for flow resistance 
that also explains the observations in Figure 4b, but for different reasons.

The data set presented in Bathurst (1985) is particularly detailed in that it allows for the estimation of Af. Though 
it is small, so the interesting and potentially significant implications of the results in Figure 4a could be taken 
more seriously if tested against a larger data set. This would be an ideal direction for future work.

Finally, the concept of steady and uniform in a double-average sense implicitly makes the assumption that even in 
very rough channels, the effect of the roughness on the flow, in terms of spatial pressure, velocity, and accelera-
tion fluctuations, converges to an average over large enough downstream length-scales. Certain geometries, such 
as a consistent downstream increase or decrease in channel slope, cannot be meaningfully described as steady 
and uniform. Therefore, although the double-average approach allows for the concept of steady, uniform flow to 
be applied to a much wider range of natural channels, there are limitations to where it can simplify understanding 
of open channel flow.
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7.  Conclusions
Using a shear partitioning approach guided by insight from the double-average approach, a model is derived 
for channel-scale flow resistance for channels where the dominant source of drag is form drag on boulders. The 
model is then tested against a large data set of flow resistance in rough channels, and values for important expo-
nents and coefficients are shown to be consistent with both observations as well as previous estimates.

Notably, several of the coefficients in the proposed model should depend on the channel geometry. Yet the obser-
vations imply that these coefficients do not vary strongly between different channels. This suggests that there 
may be characteristics of natural river channels with rough boundaries that are relatively uniform across different 
channels, leading to consistency in the behavior of flow resistance. This demonstrates that when averaged over 
the correct length-scale, the effects of significant spatial variability, even at scales as large as the channel width, 
can converge to a uniform and perhaps predictable effect.

Appendix A:  Channel-Scale Variables
The average boundary stress, τo, is found by integrating the shear stress across the channel width

𝜏𝜏𝑜𝑜 =
1

𝑃𝑃𝑐𝑐 ∫
𝑊𝑊 ∕2

−𝑊𝑊 ∕2

⟨𝜏𝜏𝑜𝑜⟩

cos 𝜑𝜑
𝑑𝑑𝑑𝑑� (A1)

where the perimeter is defined as (and noting that 𝐴𝐴 1∕ cos 𝜑𝜑 =

√

1 + (𝑑𝑑𝑑∕𝑑𝑑𝑑𝑑)
2 )

𝑃𝑃𝑐𝑐 = ∫
𝑊𝑊 ∕2

−𝑊𝑊 ∕2

√

1 +

(
𝑑𝑑𝑑

𝑑𝑑𝑑𝑑

)2

𝑑𝑑𝑑𝑑� (A2)

The hydraulic radius is defined as the ratio of the channel cross-sectional area to channel perimeter R = Ac/Pc 
where cross-sectional area is

𝐴𝐴𝑐𝑐 = ∫
𝑊𝑊 ∕2

−𝑊𝑊 ∕2

ℎ𝑑𝑑𝑑𝑑𝑑� (A3)

The lateral stress is defined as the sum of the lateral turbulent and dispersive stresses

⟨𝜏𝜏𝑥𝑥𝑥𝑥⟩ = −𝜌𝜌

(
⟨𝑢𝑢′𝑣𝑣′⟩ + ⟨ ̃̄𝑢𝑢 ̃̄𝑣𝑣⟩

)

� (A4)

Further 𝐴𝐴 ⟨𝜏𝜏𝑥𝑥𝑥𝑥⟩ = (1∕ℎ) ∫ 𝑧𝑧𝑠𝑠
𝑧𝑧𝑏𝑏
𝜙𝜙⟨𝜏𝜏𝑥𝑥𝑥𝑥⟩𝑑𝑑𝑑𝑑 is the depth-averaged lateral shear stress, where the depth-averaging is denoted 

with an underbar.

Using the above definitions and integrating the momentum balance across the channel width, W, yields a standard 
expression for open channel flow

𝜏𝜏𝑜𝑜 =
1

𝑃𝑃𝑐𝑐 ∫
𝑊𝑊 ∕2

−𝑊𝑊 ∕2

(
𝜌𝜌𝜌𝜌𝜌𝜌𝜌 + ⟨𝜏𝜏𝑥𝑥𝑥𝑥⟩

)
𝑑𝑑𝑑𝑑 = 𝜌𝜌𝜌𝜌𝜌𝜌

𝐴𝐴𝑐𝑐

𝑃𝑃𝑐𝑐

= 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌� (A5)

where a symmetrical channel (in a double-averaged sense) is assumed and the integral of the lateral stress sums 
to zero.

The same approach can be used to calculate several other important channel-scale variables, such as the mean 
flow depth for the channel, (all given in Figure 1)

𝐻𝐻 =
1

𝑊𝑊 ∫
𝑊𝑊 ∕2

−𝑊𝑊 ∕2
∫

𝑧𝑧𝑠𝑠

𝑧𝑧𝑏𝑏

𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙 =
𝐴𝐴𝑐𝑐

𝑊𝑊
� (A6)

the average water flux,

𝑄𝑄 = ∫
𝑊𝑊 ∕2

−𝑊𝑊 ∕2
∫

𝑧𝑧𝑠𝑠

𝑧𝑧𝑏𝑏

𝜙𝜙⟨𝑢𝑢⟩𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� (A7)
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and the average flow velocity,

𝑈𝑈 =
1

𝑊𝑊𝑊𝑊 ∫
𝑊𝑊 ∕2

−𝑊𝑊 ∕2
∫

𝑧𝑧𝑠𝑠

𝑧𝑧𝑏𝑏

𝜙𝜙⟨𝑢𝑢⟩𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑄𝑄

𝐴𝐴𝑐𝑐

� (A8)

Appendix B:  Drag Terms
The additional drag terms, as defined by Nikora et al. (2019), are

𝐹𝐹3𝐷𝐷 = ∫
𝑧𝑧𝑠𝑠

𝑧𝑧𝑏𝑏

(𝑧𝑧𝑠𝑠 − 𝑧𝑧)
2

(
𝜕𝜕𝜕𝜕⟨𝑝𝑝⟩

𝜕𝜕𝜕𝜕
−

1

ℎ ∫
𝑧𝑧𝑠𝑠

𝑧𝑧𝑏𝑏

𝜕𝜕𝜕𝜕⟨𝑝𝑝⟩

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑

)

𝑑𝑑𝑑𝑑� (B1)

+∫
𝑧𝑧𝑠𝑠

𝑧𝑧𝑏𝑏

(𝑧𝑧𝑠𝑠 − 𝑧𝑧)
2

(

𝜌𝜌𝜌𝜌

(
𝜕𝜕⟨𝑢𝑢⟩

𝜕𝜕𝜕𝜕
+ ⟨𝑣𝑣⟩ ⋅ ∇⟨𝑢𝑢⟩

)

−
1

ℎ ∫
𝑧𝑧𝑠𝑠

𝑧𝑧𝑏𝑏

𝜌𝜌𝜌𝜌

(
𝜕𝜕⟨𝑢𝑢⟩

𝜕𝜕𝜕𝜕
+ ⟨𝑣𝑣⟩ ⋅ ∇⟨𝑢𝑢⟩

)

𝑑𝑑𝑑𝑑

)

𝑑𝑑𝑑𝑑� (B2)

+∫
𝑧𝑧𝑠𝑠

𝑧𝑧𝑏𝑏

(𝑧𝑧𝑠𝑠 − 𝑧𝑧)
2

[
𝜕𝜕

𝜕𝜕𝜕𝜕

⟨

𝜇𝜇
𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕

⟩

𝑠𝑠

+
𝜕𝜕

𝜕𝜕𝜕𝜕

⟨

𝜇𝜇
𝜕𝜕𝑣𝑣

𝜕𝜕𝜕𝜕

⟩

𝑠𝑠

+
𝜕𝜕𝜕𝜕⟨𝜏𝜏𝑥𝑥𝑥𝑥⟩

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕⟨𝜏𝜏𝑥𝑥𝑥𝑥⟩

𝜕𝜕𝜕𝜕
� (B3)

−
1

ℎ ∫
𝑧𝑧𝑠𝑠

𝑧𝑧𝑏𝑏

(
𝜕𝜕

𝜕𝜕𝜕𝜕

⟨

𝜇𝜇
𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕

⟩

𝑠𝑠

+
𝜕𝜕

𝜕𝜕𝜕𝜕

⟨

𝜇𝜇
𝜕𝜕𝑣𝑣

𝜕𝜕𝜕𝜕

⟩

𝑠𝑠

+
𝜕𝜕𝜕𝜕⟨𝜏𝜏𝑥𝑥𝑥𝑥⟩

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕⟨𝜏𝜏𝑥𝑥𝑥𝑥⟩

𝜕𝜕𝜕𝜕

)

𝑑𝑑𝑑𝑑

]

𝑑𝑑𝑑𝑑� (B4)

where the first term describes the deviations from depth-averaged pressure force, the second term describes the 
deviations from depth-averaged inertial forces, and the third term describes the deviations from depth-averaged 
fluid forces (Nikora et al., 2019).

The prefactor is

𝑁𝑁𝑜𝑜 =
1

2

(
3

ℎ2𝜙𝜙⟨𝜏𝜏𝑜𝑜⟩ ∫
𝑧𝑧𝑘𝑘

𝑧𝑧𝑏𝑏

(𝑧𝑧𝑠𝑠 − 𝑧𝑧)
2
𝜙𝜙⟨𝑓𝑓𝑑𝑑⟩𝑑𝑑𝑑𝑑 +

3

ℎ3 ∫
𝑧𝑧𝑠𝑠

𝑧𝑧𝑏𝑏

(𝑧𝑧𝑠𝑠 − 𝑧𝑧)
2
(1 − 𝜙𝜙)𝑑𝑑𝑑𝑑 −

(
𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑏𝑏

ℎ

)3
)

� (B5)

where the first term is a drag length-scale (Nikora et  al.,  2019) and the second term is a roughness-depth 
length-scale (Nikora et al., 2019). It reduces to 𝐴𝐴 𝐴𝐴𝑜𝑜  = 1 for simple 2D deep flows.

Appendix C:  Frontal and Planform Solidity
The total upstream-facing area Af and planform area Ap of a representative channel cross-section with N boulders 
can be written as follows:

𝐴𝐴𝑓𝑓 =

𝑁𝑁∑

𝑖𝑖

𝐴𝐴𝑓𝑓𝑓𝑓 = 𝑁𝑁⟨𝐴𝐴𝑓𝑓𝑓𝑓⟩; 𝐴𝐴𝑝𝑝 =

𝑁𝑁∑

𝑖𝑖

𝐴𝐴𝑝𝑝𝑝𝑝 = 𝑁𝑁⟨𝐴𝐴𝑝𝑝𝑝𝑝⟩� (C1)

where Afi and Api are the upstream-facing and planform area of the ith boulder and 〈Afi〉 and 〈Api〉 are the 
average upstream-facing and planform area of the boulders in a reach. The average planform area of a boulder is

⟨𝐴𝐴𝑝𝑝𝑝𝑝⟩ = 𝑠𝑠1𝑘𝑘
2
𝑠𝑠� (C2)

where s1 is a shape factor relating the planform area of a boulder to the roughness length-scale, ks. The average 
number of boulders, N, can be related to the planform boulder density, also known as the planform solidity λp 
(Chung et al., 2021)

𝜆𝜆𝑝𝑝 =
𝐴𝐴𝑝𝑝

𝐴𝐴𝑜𝑜

=
𝑠𝑠1𝑘𝑘

2
𝑠𝑠

𝜆𝜆2
=

𝑁𝑁𝑁𝑁1𝑘𝑘
2
𝑠𝑠

𝐴𝐴𝑜𝑜

� (C3)

where λ is the average spacing between boulders and Ao = Wks is the planform area of the channel boundary 
associated with a channel cross-section.
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The average upstream-facing area of a single roughness element should scale with ∼�2
� or ∼ksH, or something 

in-between, depending on the flow depth and the shape of the boulders. This can be written as follows:

⟨𝐴𝐴𝑓𝑓𝑓𝑓⟩ = 𝑠𝑠2𝑘𝑘
2

𝑠𝑠(𝐻𝐻∕𝑘𝑘𝑠𝑠)
1−𝑎𝑎� (C4)

where 0 ≤ a ≤ 1 and s2 is a shape factor relating the drag area of the average element to the length-scale ks. There-
fore the frontal solidity is

𝜆𝜆𝑓𝑓 =
𝐴𝐴𝑓𝑓

𝐴𝐴𝑜𝑜

=
𝐴𝐴𝑝𝑝

𝐴𝐴𝑜𝑜

𝐴𝐴𝑓𝑓

𝐴𝐴𝑝𝑝

= 𝑠𝑠𝑠𝑠𝑝𝑝

(
𝐻𝐻

𝛾𝛾𝛾𝛾84

)1−𝑎𝑎

� (C5)

where the shape factors have been combined into s = s2/s1. Finally the upstream-facing boulder area per unit 
channel cross-sectional area is

𝐴𝐴𝑓𝑓

𝐴𝐴𝑐𝑐

=
𝐴𝐴𝑓𝑓

𝐴𝐴𝑜𝑜

𝐴𝐴𝑜𝑜

𝐴𝐴𝑐𝑐

= 𝑠𝑠𝑠𝑠𝑝𝑝

(
𝐻𝐻

𝛾𝛾𝛾𝛾84

)1−𝑎𝑎

𝑊𝑊 𝑊𝑊𝑠𝑠

𝑊𝑊𝑊𝑊
= 𝑠𝑠𝑠𝑠𝑝𝑝

(
𝐻𝐻

𝛾𝛾𝛾𝛾84

)−𝑎𝑎

� (C6)

List of Notation
ρ	 density of water
g	 acceleration due to gravity
S = cos θ	 downstream channel slope
cos φ	 lateral channel slope (toward channel centerline)
μ, ν	 dynamic and kinematic viscosity of water
κ	 von Kármán constant
u, v, w	 instantaneous flow velocity in the x, y, and z direction, respectively

𝐴𝐴 ⋅ , 〈⋅〉, 𝐴𝐴 ⟨⋅⟩ , 𝐴𝐴 ⟨⋅⟩	 symbols to denote time average, spatial average, double-average, and depth- and double-averaged, 
respectively

u, 𝐴𝐴 ⟨𝑢𝑢⟩ , 𝐴𝐴 ⟨𝑢𝑢⟩ , U	 instantaneous, double-averaged, double- and depth-averaged (local-scale), and double-, depth-, 
and width averaged flow velocity (channel-scale)

zb, zs, zk	 lowest and highest fluid-occupied elevation, and highest elevation of roughness boundary layer in 
a downstream x-z slice of channel, respectively

ks	 equivalent sand grain roughness
Bs	 equivalent sand grain roughness correction to logarithmic law of the wall
D84	 grain size of 84th percentile in a channel
γ = ks/D84 ≈ 3.5	 ratio of equivalent sand grain roughness to grain size of 84th percentile
h, H	 averaged flow depth, local- and channel-scale, respectively
W	 average channel width at the surface
Ac = HW	 double-averaged channel cross-sectional area
Q = HUW	 channel water flux
Pc	 double-average channel perimeter
R = Ac/Pc	 hydraulic radius
Rv = H = Ac/W ≥ R	volumetric hydraulic radius
L	 downstream length of double-averaging volume
Vo	 volume of double-averaging region
Vf	 volume of double-averaging region occupied by fluid
ϕ = Vf/Vo	 average porosity (fraction of double-averaging volume occupied by fluid normalized by total 

volume)
Ao = Pcks	 planform area of average channel cross-section

𝐴𝐴 ⟨𝑓𝑓𝑣𝑣⟩, ⟨𝑓𝑓𝑣𝑣⟩ 	 viscous drag force per unit volume at different scales
𝐴𝐴 ⟨𝑓𝑓𝑝𝑝⟩, ⟨𝑓𝑓𝑝𝑝⟩, 𝐹𝐹𝑝𝑝 	 pressure drag force per unit volume at different scales
𝐴𝐴 ⟨𝑓𝑓𝑑𝑑⟩, ⟨𝑓𝑓𝑑𝑑⟩ 	 total drag force per unit volume at different scales
𝐴𝐴 ⟨𝜏𝜏𝑜𝑜⟩, 𝜏𝜏𝑜𝑜 	 local- and channel-scale boundary shear stress
𝐴𝐴 ⟨𝑢𝑢∗⟩, 𝑢𝑢∗ =

√
𝜏𝜏𝑜𝑜∕𝜌𝜌 	 local- and channel-scale shear velocity

𝐴𝐴 ⟨𝐶𝐶𝑓𝑓 ⟩, 𝐶𝐶𝑓𝑓 = 2𝜏𝜏𝑜𝑜∕𝜌𝜌𝜌𝜌
2   local- and channel-scale coefficients of drag
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CD	 coefficient of form drag on a single grain
Up	 flow velocity averaged over all roughness elements in reach
c1	 coefficient relating Up to channel-scale average flow velocity U
r	 exponent of power-law flow resistance model for rough boundaries
a	 exponent controlling rate of change in upstream-facing boulder area, Af, with relative flow depth, 

H/D84
𝐴𝐴 𝑝𝑝 	 time averaged pressure on roughness elements

N	 average number of roughness elements in channel cross-section
λ	 average spacing of large roughness elements
Afi, 〈Afi〉	 upstream-facing area of ith roughness element and average upstream-facing area of roughness 

element
𝐴𝐴 𝐴𝐴𝑓𝑓 =

∑𝑁𝑁

𝑖𝑖
𝐴𝐴𝑓𝑓𝑓𝑓 = 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓   total upstream area of roughness elements in channel cross-section

Api, 〈Api〉	 planform area of ith roughness element and average planform area of roughness element
𝐴𝐴 𝐴𝐴𝑝𝑝 =

∑𝑁𝑁

𝑖𝑖
𝐴𝐴𝑝𝑝𝑝𝑝 = 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 	 total planform area of roughness elements in channel cross-section

𝐴𝐴 𝐴𝐴1 = ⟨𝐴𝐴𝑝𝑝𝑝𝑝⟩∕𝑘𝑘
2

𝑠𝑠 	 shape factor relating average planform area of large roughness elements to equivalent sand grain 
roughness

𝐴𝐴 𝐴𝐴2 = ⟨𝐴𝐴𝑓𝑓𝑓𝑓⟩∕𝑘𝑘
1+𝑎𝑎

𝑠𝑠     shape factor relating average upstream-facing area of large roughness elements to equivalent 
sand grain roughness

s = s2/s1	 combined shape factors
λp	 fraction of planform channel area occupied by boulders per unit channel planform area, a measure 

of boulder density
λf	 fraction of cross-sectional channel area occupied by boulders per unit channel planform area, a 

measure of boulder density

Data Availability Statement
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