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We analyze the reversals of the large-scale flow in Rayleigh-Bénard convection both through particle

image velocimetry flow visualization and direct numerical simulations of the underlying Boussinesq

equations in a (quasi-) two-dimensional, rectangular geometry of aspect ratio 1. For medium Prandtl

number there is a diagonal large-scale convection roll and two smaller secondary rolls in the two

remaining corners diagonally opposing each other. These corner-flow rolls play a crucial role for the large-

scale wind reversal: They grow in kinetic energy and thus also in size thanks to plume detachments from

the boundary layers up to the time that they take over the main, large-scale diagonal flow, thus leading to

reversal. The Rayleigh vs Prandtl number space is mapped out. The occurrence of reversals sensitively

depends on these parameters.

DOI: 10.1103/PhysRevLett.105.034503 PACS numbers: 47.27.�i

Spontaneous flow reversals occur in various buoyancy

driven fluid dynamical systems, including large-scale flows

in the ocean, the atmosphere, or the inner core of stars or

the Earth, where such reversals are associated with the

reversal of the magnetic field. The paradigmatic example

for buoyancy driven flow is the Rayleigh-Bénard system,

i.e., a fluid-filled cell heated from below and cooled from

above; see, e.g., the recent reviews [1,2]. In this system

flow reversals have been detected and statistically ana-

lyzed, mainly through measurements of the temperature

at one [3] or several points [4,5] in the flow or at the walls

and more recently through flow visualization with particle

image velocimetry (PIV) [6,7]. Various models have been

developed to account for the reversals, either of stochastic

nature [8,9] or based on simplifying (nonlinear) dynamical

equations [10,11], which show chaotic deterministic be-

havior. Most of the experimental studies have so far been

done in a cylindrical cell, where the complicated three-

dimensional dynamics of the convection role (see, e.g.,

[12,13] and Sec. VIII of [1]) complicates the identification

of the reversal process.

In the present Letter, we restrict ourselves to the study of

flow reversals in (quasi-) two-dimensional (2D) rectangu-

lar geometry: experimentally to Rayleigh-Bénard (RB)

convection in a flat cell and numerically to direct numerical

simulations (DNS) of the two-dimensional Oberbeck-

Boussinesq equations, for which reversals have been ob-

served already in [14]. This approach offers three advan-

tages: (i) The flow reversal in quasi-2D is less complicated

than in 3D (and therefore, of course, may be different);

(ii) the visualization of the full flow is possible; and (iii) a

study of a considerable fraction of the Rayleigh number Ra

vs Prandtl number Pr phase space becomes numerically

feasible.

The experiments were made in rectangular, quasi-2D

cells [15]. To extend the range of Ra, two cells of nearly

identical geometry are used. The larger (smaller) cell has a

horizontal cross section of 24:8� 7:5 ð12:6� 3:8Þ cm2,

and the height of the larger (smaller) cell is H ¼
25:4 cm (H ¼ 12:6 cm), giving an aspect ratio � � 1 in

the plane of the main flow (and an aspect ratio of about 0.3

in the direction perpendicular to it). The fluid is water with

a mean temperature of 28 �C, corresponding to Pr ¼ 5:7.
For direct visualization of flow reversals, PIV is used for a

few selected Ra. The PIV measurement in this system has

also been described previously [15]. To study the statistical

properties of the reversals over long time periods, we

measure the temperature contrast �T between two thermal

probes embedded, respectively, in the left and right sides of

either the top or the bottom plates. Reversals of the upward

going hot plumes and downward going cold plumes corre-

spond to the switching between the right and left sides of

the system, �T therefore is indicative of reversals.

The numerical code is based on a fourth-order finite-

difference discretization of the incompressible Oberbeck-

Bousinesq equations and has been described in [16]. The

grid resolution has been chosen according to the strict

requirements as formulated in [17]. As in experiment

also the numerical flow is wall bounded, i.e., we use no-

slip boundary conditions at all solid boundaries: u ¼ 0 at

the top (z ¼ H) and bottom (z ¼ 0) plates as well as on the

side walls x ¼ 0 and x ¼ H. For the temperature at the side

walls heat-insulating conditions are employed and Tb �
Tt ¼ � is the temperature drop across the whole cell.
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Times are given in multiples of the large eddy turnover

time tE, defined by tE: ¼ 4�=hj!cðtÞji, where !c denotes

the center vorticity.

We start by showing qualitative features of the reversal

process using examples from both numerical simulations

and experiments. Figure 1 shows snapshots of the tempera-

ture and velocity fields from DNS and those of the velocity

field from experiment just before, during, and after the

large convection roll reversal. Corresponding videos can

be viewed from the supplementary materials [18]. Visually,

the reversal process can be easily detected. To automatize

this we measure the local angular velocity at the center of

the cell; however, with this method some plumes passing

through the center can lead to erroneous reversal counting.

A better way is to rely on a global quantity, e.g., the global

angular momentum (which has been successfully used for

reversal characterization in 2D Navier-Stokes turbulence

[16,19]). This is defined as LðtÞ ¼ h�ðz�H=2Þuxðx; tÞ þ
ðx�H=2Þuzðx; tÞiV , where h. . .iV represents averaging

over the full volume. The time dependence of L from

simulation and experiment, as shown, respectively, in

Figs. 1(d) and 1(h), indeed nicely reveals the reversal

through a sign change.

From the movies corresponding to Fig. 1 [18] the basic

role of the corner flows in the reversal process can be

observed: While the main roll is diagonally orientated in

the cell, smaller counterrotating rolls develop in diago-

nally opposing corners. They are energetically fed by

detaching plumes from the boundary layers (BL) trapped

in the corner flows, leading to their growth. Once the two

corner flows have reached a linear extension of �H=2
[Fig. 1(b) and moment (b) in Figs. 1(d) and 1(f) and mo-

ment (f) in Fig. 1(h)], they destroy the main convection roll

and establish another one circulating in the opposite

direction.

The heights hðtÞ of the corner flows are measured by first

fitting the temperature profile at the respective sidewall

with splines, and then identifying the position of the steep-

est gradient of TðzÞ: From movies and snapshots we judge

that this is an excellent measure for the height hðtÞ of the
corner flow. Time series of hðtÞ, together with the (re-

scaled) center vorticity !cðtÞ as quantitative measure of

the strength of the large-scale convection roll, are shown in

Fig. 2. It is seen that after a reversal [as indicated by a sign

change in !cðtÞ] the respective corner flow grows roughly

linearly in time, before it reaches the half-height hðtÞ=H �
1=2 and breaks down, leading to flow reversal. However,

the growth of the corner flow need not always lead to a

reversal of the large-scale convection roll: There are cases

in which the corner flow loses energy due to some plume

detachment from it, leading to full recovery of the large-

scale convection roll in its original direction (e.g., at

FIG. 1 (color online). Top panel: Snapshots of the temperature (color) and velocity (arrows) field and time trace of angular

momentum from numerical simulations (Ra ¼ 108 and Pr ¼ 4:3). Bottom panel: Snapshots of the velocity field and time trace of

angular momentum from experiment (Ra ¼ 3:8� 108 and Pr ¼ 5:7). (a), (b), and (c) show the instantaneous dimensionless

temperature ðT � TtÞ=� distribution. (d) shows the temporal change of the dimensionless angular momentum LðtÞ=L0, where L0 is

the maximum of the absolute value of L. The positive and negative signs indicate the anticlockwise and clockwise circulations,

respectively. (e), (f), and (g) show the PIV-measured instantaneous velocity field and (h) the normalized instantaneous angular

momentum LðtÞ=L0. The color bar indicates the magnitude of the velocity (in unit of cm/sec). The snapshots in (a), (b), and (c) give

numerical, and those in (e), (f), and (g) give experimental examples of the large-scale circulation before, during, and after a reversal

process, as indicated in (d) and (h), respectively. Note that (b) and (f) show clearly the key role played by the growth of the corner rolls

in the reversal process. Corresponding movies are offered in the supplementary material [18].
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t=tE � 1300 in Fig. 2). Also in experiment we have ob-

served such unsuccessful buildups of the corner flow.

Below we will try to quantify the energy gains and losses

of the corner flows.

The mean time interval h�i between successive reversals
is shown in Fig. 3. First, we clearly see that experiment and

simulation are in very good agreement. The figure shows

that h�i=tE at most weakly depends on Ra up to Ra � 2�
108, but for larger Ra rapidly increases with increasing Ra,

i.e., reversals occur less and less frequently. The numbers

mean that there are only very few reversals: of order one

per hour in the Ra� 108 range down to one within two

days in the Ra� 109 range. For Ra � 5� 108 no reversals

could be detected any more in our numerical simulations,

even for an averaging time of 2600 large eddy turnovers

(see accompanying movie [18]). In experiment two rever-

sals could still be observed at Ra ¼ 1:6� 109 (presumably

due to the longer observation time in experiment which

goes beyond 10 000 large eddy turnovers, corresponding to

four days), but these also cease for larger Ra.

These findings led us to map out a considerable fraction

of the Ra-Pr parameter space. The results for both the

simulations and the experiments are shown in Fig. 4. One

sees a rather complicated structure. But given the limited

amount of data, experiment and simulation are in general

agreement, especially considering the fact that the simula-

tions are for the true 2D case whereas the experiments run

in a quasi-2D cell. It should again be pointed out that the

experimental data point with the highest Ra ð¼ 1:6� 109Þ
that still shows a reversal has an extremely low reversal

rate (0.5/day), which corresponds to waiting for �5500

large-scale turnover time for a single reversal to occur.

From Fig. 4 we conclude that not only for too large Ra

(as compared to above case of Fig. 1 with Ra ¼ 108 and

Pr ¼ 4:3) the reversals do not occur any more, but also for

too large or too small Pr. How to physically understand this

complicated behavior? The key towards an understanding

lies, from our point of view, in the role of the corner flows,

and is based on a detailed observation of many movies at

various Ra and Pr (see accompanying material [18]). As

0

0.2

0.4

0.6
h

/H

1200 1250 1300 1350
−1

0

1

t/t
E

ω
c
/ω

c
,0

FIG. 2 (color online). Time series of the center vorticity !cðtÞ
(rescaled by its maximum) (lower panel) and the heights hðtÞ of
the lower left [blue (above positive !c)] and right [red (above

negative !c)] corner flows, revealing their approximate linear

growth. Not all growth processes need to lead to an immediate

successful reversal, as seen for t=tE � 1300. Ra ¼ 108, Pr ¼
4:3.
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FIG. 3 (color online). Log-log plot of the Ra dependence of the

mean time intervals h�i between successive reversals, normal-

ized in terms of the large eddy turnover time tE. Filled symbols

are from experiment and open symbols from simulation. The

error bar originates from the statistics of the reversals; for the

numerical case it is smaller than the symbol size.
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FIG. 4 (color online). Phase diagrams in the Ra-Pr plane. Red

symbols (which are the symbols with 5< Pr<6) are from

experiment and the black ones from DNS. Circles correspond

to detected reversals [23], crosses to no detected reversals, in

spite of excessive simulation (or observation) time. The straight

lines are guides to the eye; they have (from left to right) slopes

0.25 and 1.00.

PRL 105, 034503 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
16 JULY 2010

034503-3



stated above, the corner-flow rolls are fed by plumes

detaching from the plates’ boundary layers. For too small

Pr (i.e., too large thermal diffusivity) the thermal energy

they carry is lost through thermal diffusion. On the other

hand, for too large Pr (i.e., too large kinematic viscosity)

the thermal BL is nested in the kinematic BL and the

thermal coupling of the corner flow towards the thermal

BL is hindered. In both cases the buildup of the corner flow

and thus the reversals are suppressed. The situation is

similar to the one in rotating RB, where Ekman vortices

form, sucking heat out of the thermal BL and enhancing the

heat flux. Also here there is an optimal Pr � 10 for which

the Nusselt number is maximal, and for larger or smaller Pr

the very same above mechanisms hinder efficient heat

transport [20].

We now quantify this argument. The heat influx feeding

the corner flow scales as Jin � ��H�1Nu. The outflux of

thermal and kinetic energy is either of diffusive or of

convective origin. We model it as Jout ¼ Jdiffout þ Jconvout .

Flow reversal is prevented if Jout > Jin. The convective

outflux, which is dominant for large Pr, is modeled by

Jconvout � Jin�u=�� � ��H�1Nu2=
ffiffiffiffiffiffi

Re
p

. The diffusive out-

flux is Jdiffout � �t�H
�1Nu with some effective, turbu-

lent thermal diffusivity �t ¼ �t= Pr�Pr�1U4=��
�Pr2Re4=ðNuRaÞ, where we have assumed Prt � Pr and

employed the k-�model [21] for the turbulent viscosity �t.

For dominant diffusive outflux (thus low Pr), suppres-

sion of reversals occurs at �t � �. The threshold is

given by the scaling relation NuRa� Pr2Re4. Inserting

Nu(Ra, Pr) and Re(Ra, Pr) either from experiment or

from the unifying theory of Refs. [22], one obtains a

relation between the critical Prandtl number Prcrit and the

critical Rayleigh number Racrit at which reversals stop.

Depending on whether regime Iu, IIu, or IVu of

Refs. [22] is dominant, we obtain Prcrit � Ra
	
crit
, with 	 ¼

3=5 or 2=3, respectively, which correctly reflects the trend

in Fig. 4.

For large Pr the convective outflux will be dominant.

Here the threshold condition is �� �Nu=
ffiffiffiffiffiffi

Re
p

, which with

Nu(Ra, Pr) and Re(Ra, Pr) in regime Iu of Refs. [22] leads

to an Ra-independent Prcrit, beyond which no reversals are

possible. The reality of Fig. 4 is clearly more complicated

[23], but at least the general trends are consistent with this

explanation.

Finally, we note that we also performed experiments and

simulations for � ¼ 0:85. Even for this relatively small

change in � the overall flow dynamics is very different and

much more complex as compared to the case of � ¼ 1. Just

as the important role the corner flows play for reversals,

this finding demonstrates the strong effect of the cell

geometry on the overall flow dynamics in the � ¼ Oð1Þ
regime. In full 3D geometries, it may be less pronounced,

but it certainly is present, too, see also Ref. [24]. It remains

remarkably that the rich structure in the (Ra, Pr, �)

parameter space for reversals is hardly reflected in Nu

and Re.

We thank E. Calzavarini for discussions and codevelop-

ing the code. Moreover, we acknowledge support by the

Research Grants Council of Hong Kong SAR

(No. CUHK403806 and No. 403807) (R. N., S. Q. Z.,

H.D.X., K. Q.X.), and by the research programme of

FOM, which is financially supported by NWO

(R. J. A.M. S., D. L.).

*d.lohse@utwente.nl

[1] G. Ahlers, S. Grossmann, and D. Lohse, Rev. Mod. Phys.

81, 503 (2009).

[2] D. Lohse and K.-Q. Xia, Annu. Rev. Fluid Mech. 42, 335

(2010).

[3] K. R. Sreenivasan, A. Bershadski, and J. Niemela, Phys.

Rev. E 65, 056306 (2002).

[4] E. Brown and G. Ahlers, J. Fluid Mech. 568, 351 (2006).

[5] E. Brown and G. Ahlers, Phys. Rev. Lett. 98, 134501

(2007).

[6] H.-D. Xi and K.-Q. Xia, Phys. Rev. E 75, 066307 (2007).

[7] H.-D. Xi and K.-Q. Xia, Phys. Rev. E 78, 036326 (2008).

[8] R. Benzi, Phys. Rev. Lett. 95, 024502 (2005).

[9] E. Brown and G. Ahlers, Phys. Fluids 20, 075101 (2008).

[10] C. Resagk et al., Phys. Fluids 18, 095105 (2006).

[11] F. Fontenele Araujo, S. Grossmann, and D. Lohse, Phys.

Rev. Lett. 95, 084502 (2005).

[12] H. D. Xi et al., Phys. Rev. Lett. 102, 044503 (2009).

[13] E. Brown and G. Ahlers, J. Fluid Mech. 638, 383 (2009).

[14] J. Schmalzl, M. Breuer, and U. Hansen, Geophys.

Astrophys. Fluid Dyn. 96, 381 (2002).

[15] K.-Q. Xia, C. Sun, and S.-Q. Zhou, Phys. Rev. E 68,

066303 (2003).

[16] K. Sugiyama, E. Calzavarini, S. Grossmann, and D.

Lohse, J. Fluid Mech. 637, 105 (2009).

[17] R. J. A.M. Stevens, R. Verzicco, and D. Lohse, J. Fluid

Mech. 643, 495 (2010).

[18] See supplementary material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.105.034503 for mov-

ies of the flow reversals in the quasi-two-dimensional

Rayleigh-Bénard convection for the parameters of Fig. 1.

[19] G. J. F. van Heijst, H. J. H. Clercx, and D. Molenaar,

J. Fluid Mech. 554, 411 (2006).

[20] R. J. A.M. Stevens, H. J. H. Clercx, and D. Lohse, New J.

Phys. 12, 075005 (2010).

[21] S. B. Pope, Turbulent Flows (Cambridge University Press,

Cambridge, 2000).

[22] S. Grossmann and D. Lohse, J. Fluid Mech. 407, 27

(2000); Phys. Rev. Lett. 86, 3316 (2001); Phys. Rev. E

66, 016305 (2002).

[23] For small Ra and large Pr (upper left corner of the phase

diagram Fig. 4) the flow is plume dominated, has a very

large coherence length, and no developed rolls exist.

However, the angular momentum has zeros.

[24] Z. A. Daya and R. E. Ecke, Phys. Rev. Lett. 87, 184501

(2001).

PRL 105, 034503 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
16 JULY 2010

034503-4

http://dx.doi.org/10.1103/RevModPhys.81.503
http://dx.doi.org/10.1103/RevModPhys.81.503
http://dx.doi.org/10.1146/annurev.fluid.010908.165152
http://dx.doi.org/10.1146/annurev.fluid.010908.165152
http://dx.doi.org/10.1103/PhysRevE.65.056306
http://dx.doi.org/10.1103/PhysRevE.65.056306
http://dx.doi.org/10.1017/S0022112006002540
http://dx.doi.org/10.1103/PhysRevLett.98.134501
http://dx.doi.org/10.1103/PhysRevLett.98.134501
http://dx.doi.org/10.1103/PhysRevE.75.066307
http://dx.doi.org/10.1103/PhysRevE.78.036326
http://dx.doi.org/10.1103/PhysRevLett.95.024502
http://dx.doi.org/10.1063/1.2919806
http://dx.doi.org/10.1063/1.2353400
http://dx.doi.org/10.1103/PhysRevLett.95.084502
http://dx.doi.org/10.1103/PhysRevLett.95.084502
http://dx.doi.org/10.1103/PhysRevLett.102.044503
http://dx.doi.org/10.1017/S0022112009991224
http://dx.doi.org/10.1080/0309192021000049929
http://dx.doi.org/10.1080/0309192021000049929
http://dx.doi.org/10.1103/PhysRevE.68.066303
http://dx.doi.org/10.1103/PhysRevE.68.066303
http://dx.doi.org/10.1017/S0022112009008027
http://dx.doi.org/10.1017/S0022112009992461
http://dx.doi.org/10.1017/S0022112009992461
http://link.aps.org/supplemental/10.1103/PhysRevLett.105.034503
http://link.aps.org/supplemental/10.1103/PhysRevLett.105.034503
http://dx.doi.org/10.1017/S002211200600886X
http://dx.doi.org/10.1088/1367-2630/12/7/075005
http://dx.doi.org/10.1088/1367-2630/12/7/075005
http://dx.doi.org/10.1017/S0022112099007545
http://dx.doi.org/10.1017/S0022112099007545
http://dx.doi.org/10.1103/PhysRevLett.86.3316
http://dx.doi.org/10.1103/PhysRevE.66.016305
http://dx.doi.org/10.1103/PhysRevE.66.016305
http://dx.doi.org/10.1103/PhysRevLett.87.184501
http://dx.doi.org/10.1103/PhysRevLett.87.184501

