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Flow Separation in Rocket Nozzles, a Simple Criteria 

Ralf H. Stark* 
German Aerospace Center, Lampoldshausen,D-74239, Germany 

Cold and hot flow tests were conducted to investigate the flow separation in rocket 

nozzles. The results are presented. A separation data base including a wide range of 

literature data is established to evaluate the influence of propellant combination and nozzle 

design on flow separation. As a result a simple separation criteria is suggested. 

Nomenclature 

p = pressure 
cf = friction coefficient 
Ma = wall Mach number 
Mades = design Mach number 
κ = adiabatic exponent 
θ = deflection angle 
σ = oblique shock angle 
u,U = velocity 
δ = boundary layer thickness 
δ* = displacement thickness 
δ** = momentum loss thickness 
a = ambient 
c = combustion chamber 
p = plateau 
w = nozzle wall 
e = exit area 
0 = total condition 
∞ = edge of boundary layer 
sep = incipient separation 
TIC = truncated ideal contour 
TOP = thrust optimized parabola 
DLR = German Aerospace Center 

I. Introduction 

he design of today’s launchers has changed from a classical tandem to a parallel configuration and the main 
stage engine therefore has to fulfill a wider range of operation conditions during ascent from sea-level to high 

altitude. A significant payload gain can be achieved if the main stage engine features a high specific impulse. As its 
contribution to the launchers total sea-level thrust, compared to the boosters, is of minor importance its nozzle is 
designed to be just full flowing under sea-level conditions to avoid flow separation resulting in undesired side loads. 
For that reason designing and test engineers need an easy to implement tool to estimate the separation location. 

DLR performed test series to investigate the flow separation in rocket nozzles10,14,19,29 under various conditions 
like cold or hot flow, with and without film cooling. Of interest are the position of the separation, its length, its flow 
structure, its fluctuating nature and its increased heat load. Methods of flow separation visualization were evaluated 
and developed. Comparing the obtained flow separation data to values of common separation criteria a difference 
was observed. An upgraded separation data base combined with the obtained test data is used to define a simple 
separation criteria. 
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II. Experimental Program 

Two exemplary test campaigns illustrate the investigation of flow separation and its visualization. 

A. Cold Flow Tests 

A test campaign was conducted to evaluate the capability of the optical pressure measurement method PSP 
(Pressure Sensitive Paint) to detect the location of flow separation30. The subscale cold flow tests were performed at 
test facility P6.217 using dry nitrogen as operating gas. The advantage of nitrogen compared to air is the absence of 
water vapor that tends to condense. Nitrogen can be easily modeled in attendant CFD calculations as a perfect gas.  

PSP bases on the physical properties of 
luminophores: Activated by light these 
organic molecules can achieve a higher 
energetic level. Luminophores return to their 
basic level by emitting light (fluorescence). 
The deactivation can also be effected by 
collisions of suitable molecules like oxygen. 
In this case the luminophores react with 
phosphorescence. 

During test the region of the attached 
nitrogen flow pronounces bright (fig. 1), 
whereas the separated backflow region 
clouds. The intensity change marks the 
separation of the boundary layer, fading into 
the shear layer of the free jet. In combination 
with the constant vacuum wall pressure 
profile (Pw/P0) a related wall pressure can be 
obtained. 

The test data evaluation showed that PSP 
detects the downstream border of the 
fluctuating separation zone. Compared to wall 
pressure measurements, where the lowest 
value determines the position of the incipient 
separation (fig. 8), PSP overestimates the 
location of the flow separation (fig. 2). 

B. Hot Flow Tests 

In cooperation with EADS ST and Volvo 
Aero Corporation hot-firing tests were 
conducted at test facility P815. The objective 
was to establish a data base of wall pressure 
and wall heat flux for separated nozzle flows. 
Three configurations were tested, including 
regenerative and film cooled nozzles. The 
tests were performed with hydrogen-oxygen 
mixture ratios from 5 to 7.6 and combustion 
chamber pressures up to 11.5 MPa. 

C. Separation data base 

The obtained cold and hot gas data as well 
as actual publications23,26,34,35,37 enhance a 
separation data base that was introduced by 
M. Frey11, including a wide literature 
survey2,3,6,8,9,13,20,24,32,36. 

  
Figure 1.  PSP test specimen (left), test run (right) 
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Figure 2.  Comparison of wall pressure and PSP data 
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Figure 3.  Flow separation with and without film-cooling 
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 Dumnov (Air; 10° Cone)  Girard (Air; TIC, a=24°, ß=3°)

 Tomita (N2; Compressed TIC, SSLC)  Tomita (N2; Compressed TIC)

 J2S (Air; Par., a=34°, ß=7°)  J2S (H2/O2; Par., a=34°, ß=7°)

 Lawrence (Air; planar Nozzle)  Lawrence (Air; 9° Cone)

 Lawrence (Air; 15° Cone)  Lawrence (Air; 30° Cone)

 Lawrence (Air; 30° Cone + Tube)  Lawrence (Air; TIC, a=17°, ß=0°, Ma=4)

 Lawrence (Air; TIC, a=23°, ß=9°, Ma=5)  Lawrence (Air; TIC, a=23°, ß=0°, Ma=5)

 Bloomer (JP-4/O2; 20° Cone)  Bloomer (JP-4/O2; 25° Cone, s.)

 Bloomer (JP-4/O2; 25° Cone, l.)  Bloomer (JP-4/O2; 30° Cone)

 Farley (Air; TIC, a=23°, ß=10°)  Farley (Air; TIC, a=23°, ß=12°)

 Farley (Air; TIC, a=23°, ß=17°)  Farley (Air; TIC, a=21°, ß=3°)

 Farley (Air; TIC, a=21°, ß=6°)  Farley (Air; TIC, a=21°, ß=9°)

 Farley (Air; TIC, a=21°, ß=13°)  Foster (Aniline/Saltp.; 15° Cone, s.)

 Foster (Aniline/Saltp.; 15° Cone, l.)  Foster (Aniline/Saltp.; 10° Cone)

 Foster (Aniline/Saltp.; 20° Cone)  Foster (Aniline/Saltp.; 30° Cone)

 Sunley (JP-4/H2O2; 17° Cone, s.)  Sunley (JP-4/H2O2; 17° Cone, l.)

 Reijasse (Air; TIC)  Reijasse (Air; TOP, Film Layer)

 Takahashi (N2; T IC)  McAmic (JP-4/O2; Bell Nozzle)

 Suggested Criteria  Tsunoda (Air; planar Cone + Tube)

 Schmucker Criteria

 
Figure 4. Separation data base 
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III. Discussion of Results 

The obtained cold gas test data (fig. 2) 
clearly fall below the expected trend and 
illustrate that common separation criteria like 
Schmucker’s under predict the separation 
location. The hot gas data differ less but show 
an increasing difference with increasing wall 
Mach number Masep too (fig. 3). The hot gas 
separation is superimposed by total pressure 
fluctuations causing a comparatively high 
variance of wall pressure data psep/pa. This 
interaction is damped if a cooling film is 
injected. The data also point out that this film 
causes a premature separation. With 
proceeding evolution the film looses its 
efficiency and the flow separation normalizes. 

Examining the data base the distribution 
of hot and cold flow data don’t differ (fig. 5), 
except a small region around Mach 3.5 where 
data are dominated by the obtained hot gas 
data. The wall Mach number reproduces the 
influence of the adiabatic exponent κ (and 
therefore the propellant combination) on the 
separation location in a sufficient manner. 

In Fig. 6 the data are split up to visualize 
the influence of injected film layers and 
attached tubes. Apparently attached tubes 
cause a delayed separation. Especially 
Tsunoda’s data differ. These data were 
verified using a small blow down wind 
channel build up for DLR education purpose. 
Its planar conical nozzle is three times 
smaller scaled than Tsunoda’s setup. It was 
enhanced with a flat plate to achieve a tube 
like characteristic. The spacing of the 
available wall pressure sensors allows only 
one measuring point in the relevant Mach 
number interval. This single data point 
overlaps with Tsunoda’s data. 

An inverse influence on separation can be 
observed for film layers. As already 
mentioned the obtained hot gas data indicate 
a premature separation. This is verified by the 
cold flow data of Reijasse26. A comparable 
film layer influence is reported by Dumnov6 
and well known from Europe’s Vulcain 2 
rocket engine. 

An influence of the nozzle design on 
separation is not given (fig. 7). 

Based on the data of fig. 4 the following 
separation criteria is suggested: 

sepa
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Map

p

⋅
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Where pa is the ambient pressure, psep is the wall pressure of the incipient separation and Masep the related wall 
Mach number. 
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Figure 5. Cold and hot flow tests 
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Figure 6. Film layer injection and attached tubes 
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Figure 7. Nozzle design 
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IV. Conclusions 

Cold as well as hot flow subscale tests were conducted and presented. The obtained separation location data 
don’t match with the expected values. For this reason an existing separation data base was enhanced to setup a 
separation criteria. The data show no evident influence of propellant combination or basic nozzle design on flow 
separation. The separation is affected by attached tubes and injected film layers. 

Flow separation is a result of adaptation on ambient conditions. Even though this adaptation can be divided in 
two regions (the oblique shock recompresses the wall pressure psep to plateau pressure pp, followed by a system of 
recompression waves in the separated backflow region where plateau pressure pp is adapted to ambient condition pa, 
fig. 8) it is not necessary to establish a separation criteria that considers this dichotomy, as suggested by some 
authors1,4,5,11,16,18,20,25,33. For designing purpose it is sufficient to derive the lowest achievable wall pressure for given 
system parameter like ambient pressure pa, total pressure p0 and nozzle contour. The suggested separation criteria 
fulfils this requirement. 

As an appendix some separation criteria are given. 
 

Appendix 

 
 
 

 

 
 

Figure 8. Free Shock Separation in over-expanding rocket nozzles (taken from Ref.11) 
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