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Abstract

In this paper the following extension of the classical flow-shop prob-
lem is considered: Between each two successive machines a buffer of
limited capacity is given in which jobs can be stored. After finishing
processing on a machine, a job either directly has to be processed on
the following machine or it has to be stored in the buffer between these
machines. If the buffer is completely occupied the job may wait on its
current machine but blocks this machine for other jobs. The objective
is to determine a feasible schedule minimizing the makespan.

To model such a problem setting, the classical disjunctive graph model
for shop problems is extended. A tabu search procedure is described
where neighborhoods based on an extension of the classical block
approach theorem are used. Computational results for extended flow-
shop benchmark instances are presented.
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1 Introduction

Classical shop scheduling problems considered in the literature mainly deal with
the task of scheduling the jobs on the machines taking into account restrictions
given for the jobs and/or machines. However, in practice often further aspects
(e.g. transportation of jobs between machines or storing them between processing
on different machines) have to be taken into account to model the situation in a
shop.

In this paper we focus on the storing aspect in a flow-shop environment. Since
in a flow-shop all jobs visit the machines in the same order, we have to consider
only storage facilities between consecutive machines in this order. We assume
that between each pair of consecutive machines a buffer of limited capacity is
available. After processing of a job on a machine, this job either directly has to
be processed on the next machine or it has to be stored in the buffer between
the two machines. If neither of these two alternatives are possible (the buffer
is full and the next machine is occupied) the job has to wait on its current
machine and blocks the machine. This blocking will be finished if the job, which
momentarily is processed on the next machine, leaves that machine. At that time
a job from the buffer or the job which blocks its machine may start processing
on the next machine. We call the resulting problem a flow-shop problem with
intermediate buffers.

In the literature (contrary to classical flow-shop problems) only few results on
flow-shop problems with intermediate buffers can be found. All known results
concern the makespan objective. Papadimitriou and Kanellakis [1980] showed
that the flow-shop problem with intermediate buffers is strongly AP-hard even
for two machines only. Leisten [1990] presents some priority based heuristics,
both, for the permutation and for the general flow-shop problem with intermedi-
ate buffers. Recently, Smutnicki [1998] and Nowicki [1999] developed tabu search
approaches for the permutation flow-shop problem: Smutnicki considered the
two machine case with buffers, whereas Nowicki generalizes the approach to an
arbitrary number of machines.

In this study we generalize the approach of Nowicki [1999] to the case where
different job-sequences on the machines are allowed. The base of the presented
tabu search approach is a polynomial procedure which calculates for a given se-
quence of job permutations a feasible, left-shifted schedule. Using this procedure
we consider the set of all m permutations specifying the sequences in which the
jobs are scheduled on the machines as search space.

The paper is organized as follows. After giving in the next section a formal
definition of the flow-shop problem with intermediate buffers, in Section 3 we
present the polynomial procedure for calculating the best schedule respecting



given job orders on the machines. Afterwards, in Section 4 the main issues of the
developed tabu search approach are discussed and in Section 5 some technical
remarks and computational results are presented. The last section contains some
concluding remarks.

2 Problem Formulation

The flow-shop problem with intermediate buffers is a generalization of the clas-
sical flow-shop problem and may be formulated as follows:

Given are m machines My, ..., M,, and m — 1 buffers B; between machines M;
and M;,; with a capacity of b; units (¢ = 1,...,m — 1). On these machines n
jobs 7 =1,...,n have to be processed. Each job j consists of m operations O;;
(¢ = 1,...,m) and operation O;; has to be processed on machine M; without
preemption for p;; > 0 time units. Between the operations of each job there are
precedence relations in form of a chain O;; — O — ... = Op;.

A feasible schedule of the jobs is given by an assignment of starting times S;;
(and, thus, completion times Cj; = S;; + p;;) to operations O;; (i =1,...,m;j =
1,...,n) such that

1. the precedence relations within the jobs are respected (Cj; < Siy15),

2. each machine processes only one job at any time ([S;;, Ci;[N[Si, Cix[= 0 for

j#k),
3. in each buffer B; at most b; jobs may be stored at the same time, and

4. the blocking-restrictions are respected. (The last two restrictions are ex-
plained in more detail after the next paragraph).

In this paper we restrict ourselves to the objective of minimizing the makespan,
i.e. we want to determine a feasible schedule minimizing the makespan C,.x =
rglgmlx C;, where () is the finishing time C,,; of the last operation O,,; of job j.

It remains to describe the buffer and blocking restrictions for feasible schedules
in more detail: If a job j finishes processing on machine M; before it can start
on Mi+1 (1e Cij < Si-l-l,j) then dllI'ng time period [Cijasi—l—l,j] this JOb either
has to wait on machine M; or it has to be inserted into the intermediate buffer
B;. If buffer B; is filled completely by other jobs and machine M;, is busy, job
J has to wait on machine M;. While waiting on M;, job 7 blocks this machine, so
that no other job can be processed on M; during this time period. Since all the
jobs which are in buffer B; have to be processed next on machine M;, jobs may
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leave the buffer B; only when machine M;,; becomes available. A job leaving the
buffer may be replaced by job j. Alternatively, all jobs may stay in the buffer
and job j may move to machine M, ;. Thus, the blocking of machine M; by job
j ends when the next job starts its processing on machine M;, .

In the next section we will show how these buffer and blocking restrictions
may be handled if the job sequences on the machines are given.

3 Construction of a feasible schedule for given
job sequences on the machines

In this section we characterize all possible job sequences on the machines that are
compatible with the given buffer capacities. After that, we propose a polynomial
procedure for solving the following problem: Given compatible permutations of
the jobs on the machines, find a left-shifted schedule respecting the blocking-
restriction. This problem is solved by longest path calculations in a suitable
graph which we call solution graph.

3.1 Characterization of the set of feasible solutions

In the classical flow-shop situation each arbitrary combination of permutations of
the jobs on the machines leads to a feasible schedule. However, if limited buffers
are given, not all combinations of job permutations yield a feasible schedule. In
the following, we characterize the set of all m-tuples of job permutations leading
to a feasible schedule in the case of limited buffers.

Let (7',...,7™) be an m-tupel of permutations of n jobs, where the permuta-
tion 7t = (7(1),7%(2),..., 7 (n)) specifies the order of the jobs on machine M.
Subsequently, we call such an m-tupel solution.

We say that the permutations 7% and 7*t! are compatible with the buffer
capacity b;, if a feasible schedule with job orders 7* on M; and 7! on M;,,
exists, which respects the buffer capacity b;,. If 7 and 7**! are compatible with
b; for each i = 1,...,m — 1 then we call (7%,...,7™) a feasible solution.

For the further considerations we assume w.l.o.g. that on machine M; the jobs
are scheduled in the order 1,...,n, i.e. 7* = (1,2,...,n) and that b; < n for
i=1,...,m—1.

Next, we show that a job which is processed in the k-th position on M;,; has to
be processed at or before position b; + k on M;.



Lemma 1 : The permutations 7° = (1,2,...,n) and 7t = (41, 2,..., jn) are
compatible with the buffer capacity b;, iff

gk e{l,...;b;+k} forall ke{l,...,n}

Proof: First, assume that the permutation 7*! is not of the above form, i.e. there
exists a k with j, > b; + k. Thus, on machine M; at least the jobs 1,2,...,b; +k
have been processed before job j; is scheduled. On the other hand, on machine
M only the jobs ji, jo, ..., jx—1 have been finished before job jr. Thus, there
are at least b; + k — (k — 1) = b; + 1 jobs waiting in buffer B; at the same time.
Consequently, the buffer capacity of B; will be exceeded and 7* and 7**! are not
compatible with b;.

Now, consider an arbitrary permutation 7'*! which is of the above form. We
show that the buffer capacity will not be exceeded at any time point.

Let k < n—b,. Since j, < b;+k holds, at most b; +k —1 jobs have been scheduled
before job j, on machine M;. Therefore, at most b; +k —1— (k—1) = b; jobs are
waiting in buffer B; when job j, starts processing on M;,;. Consequently, the
buffer capacity is not violated for all time points when jobs 7i,..., j,—p—1 start
processing on M.

Clearly, in the case k > n — b; the buffer capacity of b; units is sufficient for the
last b; +1 jobs jn—b;s-- - Jn- O

Based on the result of Lemma 1, it is possible to determine the number of feasible
solutions for a flow-shop problem with buffers.

Theorem 1 : For the problem of scheduling n jobs in an m machine flow-
shop problem with buffer capacities b1,...,b,,_1, where 0 < b, < n holds for

i =1,...,m — 1, the number of different feasible solutions Ny, is given by
m—1
Nbuf = nl H bz' (bl + 1)n_bi.
i=1

Proof: Obviously, the jobs can be scheduled in n! different orders on M;. For
each fixed permutation 7!, according to Lemma 1, we get for 72 the following
restrictions:

() € {7 (1), ..., 7' (b + HI\{7(),..., (G -1} for j=1,...,n—b
and

() e {1,...,n)\{7*(1),...,7*(i — 1)} for j=n—b+1,...,n.



Thus, we have by +j — (j — 1) = by + 1 different possibilities for each job 72(3)
with j =1,...,n—b; and n — j + 1 different possibilities for each job 7%(j) with
j=mn—"0b; +1,...,n. Summarizing, this yields (b; +1)" " -b; - (by —1)-...-1 =
(by + 1) - by! possible permutations 72 for each fixed permutation 7*. If we
continue this argumentation for each following machine, the result of the theorem
follows. O

. From the result and the proof of Theorem 1 we immediately get

Corollary 1 :

1. Ifb =n—1orb;=nholdsforalli =1,...,m—1, we get Ny,; = (n!)”™ and
the flow-shop problem with buffers reduces to a classical flow-shop problem.

2. If b = 0 holds for all s = 1,...,m — 1, we get N,y = n! and the flow-
shop problem with buffers reduces to a permutation flow-shop problem
with blocking-restriction.

Thus, the buffer capacities somehow determine how much the structure of a
solution may differ from a permutation solution.

3.2 The solution graph model

In the following we consider a situation where the orders of the jobs on the ma-
chines are fixed. We present a polynomial procedure, which calculates a feasible
left-shifted schedule respecting the given orders. For classical flow-shop problems
the calculation of such a schedule is straightforward, since each operation may
start directly after its job and machine predecessor operations are finished. For
the problem with intermediate buffers the situation becomes more complicated
since also the blocking restrictions have to be taken into account. The presented
solution approach extends approaches of Smutnicki [1998] and Nowicki [1999],
who consider a permutation flow-shop problem with two machines and one inter-
mediate buffer and a permutation flow-shop problem with an arbitrary number
of machines and intermediate buffers. The approaches of Smutnicki and Now-
icki are based on a construction of a schedule for a given sequence of jobs using
longest paths calculations in a corresponding directed graph.

Let (w!,...,7™) be the given feasible solution. Providing such a feasible so-
lution, one can always find a feasible schedule respecting the given job orders.
We describe how to calculate a schedule which processes the jobs according to
the sequences 7',...,7™ on machines M,,..., M,,, which meets the blocking-

restrictions, and in which the jobs are finished as early as possible (left-shifted
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schedule). As the finishing times C; of all jobs j are minimal, we get a feasible
schedule with minimal makespan for the given job sequences.

Let us consider an operation O;;, which has to be processed at the k-th position
on machine M; (i.e. 7'(k) = j). Operation O;; has to start after the previous
operation of its job, O; 1 ;, and after its machine predecessor O; i) have been
finished. This is the case iff the condition

Sij > max{Cj_1, C; rik—1)} (3.1)
is respected.

Furthermore, we have to make sure that machine M; is not blocked by the machine
predecessor O; rig—1y. As already mentioned in Section 2, operation O; ri(;1)
blocks machine M; if b; jobs are in the buffer B; and machine M;, is still busy.
This blocking ends at the time where a new job starts on M;,,. This new job
which starts is the job at position k —1 —b; on M, ;. Therefore, if Kk —1—0; > 0,
we also have to guarantee that operation O;; does not start before the job at
position £ — 1 — b; on machine M, starts, i.e.

Siﬂri(k) > Sz‘+1,7ri+1(k717bi) if k—1—06;>0 (3.2)

Obviously, conditions (3.1) and (3.2) on the starting times guarantee that all
restrictions for scheduling the jobs are satisfied (see also Leisten [1990]).

To construct a schedule, where each operation starts as early as possible and re-
spects the above conditions, we make use of a solution graph (see Smutnicki
[1998] and Nowicki[1999]). For the solution (7',...,7™), the solution graph
G(r',....,m™) = (V,A; U Ay U A3) is defined as follows: The set of vertices
V' represents the set of all operations of all jobs. In addition, there is a source
node o € V and a sink node * € V indicating the beginning and the end of the
schedule (i.e. V ={0;;|i=1,...,m;j=1,...,n} U{o,*}). The vertices repre-
senting operations are weighted with the processing times of the corresponding
operation, whereas the two dummy vertices o and * get weight 0. The arc set of
the graph represents the above mentioned timing restrictions between the oper-
ations, i.e. an arc r — s between two operations r and s induces that operation
s cannot start before operation r is finished (finish-start relations) or that oper-
ation s cannot start before operation r has been started (start-start relations).
The graph contains three types of arcs:

e The job arcs (r,s) € A; reflect the precedence relations Oy; — Oq; —
... = Oy,; between the operations of each job j =1,...,n. They represent
finish-start relations.

e The machine arcs (r,5) € Ay are of the form o — O, i) = O i) —
oo = Ojgigny = * for e = 1,...,m. They ensure that jobs are processed in
the order 7 on machine M;. They represent finish-start relations.
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Figure 1: An example of the graph G(r!,..., 7™)

e The buffer arcs (r,s) € A3 guarantee that the blocking-restrictions are
respected. They are defined by

Oi+1’7ri+l(j) — Oi,ni(j+1+bi) (Z = ]_, e, — ]_,
jzl,...,n—l—bi)

The corresponding relations are start-start relations.

Figure 1 shows an example of the graph G(r',...,7™) for a problem with three
machines, six jobs and buffer capacities b = 1 and b, = 2. The numbers in
the circles denote the indices of the corresponding operations. In each row the
operations that have to be processed on the same machine and the corresponding
machine arcs are represented. Additionally, all buffer arcs and all job arcs are
shown.

In the following Theorem, we show that the solution graph G(z!,...,7™) is
acyclic if and only if the solution (7',...,7™) is feasible, i.e. if it is compatible
with the buffer capacities. Here, G(n’, 7'*!) is the subgraph of G(r!,..., 7™)
which contains all vertices representing operations that have to be processed on
machines M; and M;,, and all arcs connecting these operations.

Theorem 2 : The following statements are equivalent:

(a) Foreachi=1,...,m—1 the permutations 7* and 7! are compatible with
the buffer capacity b;.

(b) For each i =1,...,m — 1 the graph G(7*, 7"™!) has no cycle.

(c) The graph G(r',...,7™) has no cycle.
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Figure 2: Situation, in which 7% and 7**! are not compatible with b,
Proof: The graph G(r',...,7™) contains for each machine i a chain of machine

arcs. All other arcs (buffer and job arcs) occur between successive machines.
This special structure directly induces that (b) and (c) are equivalent.

Next, we show that (a) and (b) are equivalent. First assume that (b) does not
hold. Tt is straightforward to see that in this case G(7%, 7*"') must contain a
cycle with precisely one job arc and one buffer arc. Since the buffer arc connects
operations from machine ¢ + 1 to machine ¢ which differ by b; + 1 positions, we
only get a cycle if the job arc connects operations which differ at least the same
number of positions in the opposite direction. This contradicts Lemma 1.

To show that statement (a) follows from (b), we assume that the permutations
7' and 7*! are not compatible with b;. Thus, according to Lemma 1 there
exists a job k < m — b; such that j, > b; + k, where 7 = (1,...,n) and 7! =
(J15-+-+7n). The job arc corresponding to job ji together with the buffer arc from
the operation in position k£ on M;,; to the operation in position k£ +b; + 1 on M;
and certain machine arcs on M; form a cycle in G(7*, 7). Such a situation is
shown in Figure 2. a

To get a unique meaning of the arcs, we may interpret a buffer arc between two
operations O;;; ; and Oy, (which is a start-start relation) as a finish-start relation
with length —p;, ;. By using these length for the buffer arcs and by defining the
length of the remaining arcs as 0, a feasible, left-shifted schedule respecting the
job orders 7!, ..., 7™ can be achieved by longest path calculations in the solution
graph G(r',...,7™): We define the length L(P) of a path P = (iy,..., i) with
i; € V by the sum of the lengths of the arcs (i;_1,4;) (7 =2,..., k) plus the sum
of the processing times of the operations corresponding to the vertices i, ..., 1
on the path (note that iy is excluded). Let S(7!, ..., 7™) be the schedule in which
the starting time of an operation ¢ is equal to the length of the longest path from

the source o to the vertex representing ¢ in G(n!,... ™). Then, S(7!,..., 7™)
is a feasible, left-shifted schedule with minimal makespan respecting the given
job orders 7', ..., ™. The makespan Cpa (7', ..., 7™) of S(x!, ..., 7™) is equal

to the length of a longest o — x-path in G(7!,...,7™). Such paths are called
critical paths.



Because the acyclic graph G(7!,...,7™) contains at most O(nm) arcs, the cor-
responding schedule can be calculated in O(nm) time. In Section 4.3, we will
describe how the longest path calculations can be implemented efficiently.

Based on the results of this section, we may solve the flow-shop problem with
intermediate buffers by enumerating all feasible solutions and calculating for each
feasible solution the makespan of the best schedule respecting the given job orders.
However, since the number of feasible solutions grows exponentially, this approach
would in reasonable time lead to a solution only for small instances. Taking into
account that the problem is A/P-hard, in the remaining part of the paper we
will present a local search approach with the set of all feasible solutions as search
space.

4 A Local Search Approach

In this section we describe a local search approach for the flow-shop problem with
intermediate buffers. As indicated in the previous section we restrict the search
space to all m-tuples of permutations which are compatible with the buffer ca-
pacities. In connection with local search methods the definition of an appropriate
neighborhood structure on the search space is an important issue. In Subsection
4.1 we describe suitable neighborhood structures for the flow-shop problem with
intermediate buffers. These neighborhoods incorporate structural properties of
the problem. Afterwards, in Subsection 4.2 we present a tabu search approach
using these neighborhoods. The decision to chose a tabu search approach resulted
from the success of this method for shop problems (see, e.g., Aarts et al. [1994],
Nowicki & Smutnicki [1996a,1996b]).

4.1 Neighborhood Structures

Neighborhood structures define the way in which a local search approach may
navigate through the search space. Furthermore, for a tabu search approach the
computing time to chose a neighbor from the neighborhood of the current solution
depends on the size of the neighborhood. Thus, neighborhoods should be defined
in such a way that they help to lead the search process to good solutions and
that the set of neighbors of a solution does not get too large.

To derive such neighborhood structures, we first will state a theorem which gives
necessary properties of solutions which may improve a given solution. This result
is based on a so-called block approach. Such an approach was first proposed for
the single-machine problem 1 | r; | Ly (Grabowski et al. [1986]). Later it was
successfully adapted to some other scheduling problems (like the job-shop or flow-
shop problem, cf. Brucker et al. [1994], Nowicki & Smutnicki [1996a,1996b]). In
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the search process only solutions having the stated necessary properties will be
considered as neighbored solutions.

Let a feasible solution (7',...,7™) be given and let P(r',...,7™) be a critical
path in the solution graph G(x',... , m™). A sequence B = (uy,...,u;) of succes-
sive operations on P (7!, ..., 7™) is called a block if the following two properties

are satisfied:

e The sequence contains at least two operations (i.e. & > 2).

e The sequence represents a maximal number of operations to be processed
consecutively on the same machine.

Let the incoming arc of block B = (uj,...,u) bethe arcon P(x!,... ™)
which terminates at the vertex representing wu;, and let the outgoing arc of
block B be the arc on P(r',...,7™) which emanates from the vertex represent-
ing u;. Obviously, the incoming and outgoing arc of each block must be a job
arc or a buffer arc (in this terminology we will consider arcs (o,4) and arcs (i, *)
as job arcs).

The following theorem is the basis for defining suitable neighborhoods on the set
of all feasible solutions.

Theorem 3 : Let (7!,...,7™) and (7',...,7™) be two arbitrary feasible solu-
tions, and let P(7!, ... ™) be a critical path in the solution graph G(7!,..., 7™).
If Croax (7!, .., ™) < Chax(m', ..., @™) holds, then at least one of the following
conditions must be satisfied for some block B = (uy, ..., ug) of P(x',... ,7™):
(Assume that block B is processed on machine M;, such that operation w; is
processed in 7' at position e and operation wuy, at position e +k — 1.)

1. If the incoming and the outgoing arc of B are job arcs, then one operation
from {us,...,ux} is processed in 7" before operation u; or one operation
from {wuq,...,ur 1} is processed in 7" after operation wy.

2. If the incoming and the outgoing arc of B are buffer arcs, then:

e+k—2 e+k—2
> PirG) < D Piai):
Jj=e Jj=e

3. If the incoming arc of B is a buffer arc and the outgoing arc of B is a job

arc, then:
e+k—2

f-1
D DiiG) < D Pimi(),
j:e j:e

where operation uy, is processed on M; at position f in 7.

11



4. If the incoming arc of B is a job arc and the outgoing arc of B is a buffer

arc, then:
e+k—2 e+k—2

> PirG) < D PimiG)
Jj=9 Jj=e
where operation u; is processed on M; at position g in 7.

(If f—1 < e in Condition 3 or e+ k — 2 < g in Condition 4 holds we assume the
value of the corresponding sum to be 0.)

, 1 my _ 1,1 1 k ook k
P_roof. Let P(m',...,m™) = (0,U],Upy -y Upy oy UL, Usy oy Uy 5 %), Where
ul, .. .,uin]_ (j = 1,...,k) denotes a maximal number of operations to be pro-

cessed consecutively on the same machine (i.e. a block if m; > 1).

We decompose path P(z!, ..., 7™) into subpathes of the form P/ = (u], ..., uin])

for j=1,...,k P} = (u{nj,uf’l) for j=1,...,k =1, and Py = (uf, ,*). Using
this decomposition, the length of P(x!, ..., 7™) can be expressed as follows:

L(P(xt,...,7™)) = L(P}) + L(P}) 4 ... + L(PF) + L(PF) = Crax (7, ..., 7™).

Now assume, that a feasible solution (7!,...,7™) with Chax(7,...,7™") <
Chax(T!, ..., m™) exists and none of the four conditions given in the theorem is
satisfied for any block of P(r!, ..., 7™). In the following, we construct a path P =
(P!, P}, P2 P2,..., Pk PF) from u! to % in G(7',...,7™) with length L(P) >
L(P(x', ..., ™)) which is a contradiction t0 Crax (7!, ..., T™) < Cax(mh, ..., 7™).

For the construction of a path P, the basic idea is that P should contain the

same job arcs as P(r',...,7™) and the buffer arcs, which correspond to the
same buffer arcs of P(x',...,7™) (i.e. those which connect the same positions in
the permutations). In detail, the subpathes P}, ..., PF~1 are defined as follows:

o If u{nj — ul™ is a job arc, P} = (u{'nj,u{ﬂ) = P} and, thus, the length of

Pf in G(7',...,7™) is given by L(P{) = L(P]) = p,; .

J

o If uf, — w]™ is a buffer arc and operation uf,, is processed on M; at

position € + m; — 1 in 7*, then P] = (Oii(etm;—1)5 Qi1 71 (e-pmy+bi_1)- PJ

corresponds to the same buffer arc as PQj , but in general, it is different to

P2j since the operations on the corresponding positions will have changed.

However, since both subpathes contain only one buffer arc, we have L(PQJ )=
0=L(P)).

Subpath P} is defined as a longest path from uy, to s in G(7',...,@™). Obvi-
ously, we get L(PF) > Pu, = L(PF).

12



The subpaths P/: j = 1,...,k are defined as longest path in G(7t,...,7™)
between the end vertex of P] and the start vertex of Pj (the path P1 starts at
the vertex uj).

In the following, we will show that path IBf is at least as long as path Pj for
j=2,...,k—1. If P/ consists of a single operation, path P/ has length 0, and
therefore L(PJ ) > L(P]) holds in this case. Otherwise, P/ corresponds to a block
B = (ul,...,ul, ;) of P(rt,...,7™). Depending on whether the incoming and
outgoing arc of Bj is a JOb or a buffer arc, we can conclude for the length of
subpath P] the following: (Again, assume that block B; is processed on machine
M; and that operation u} is processed in 7 at position e and operation uZn]_ at

position e +m; — 1.)

a) If the incoming and outgoing arc of B; are job arcs, according to Condition
g outgong j J g
1 no operation of uy, ..., u;, _; is processed in 7' before the first operation

ul or after the last operation uZn]_ of block B;. Therefore each operation
of {ug, ..., up,, 1} is processed in 7* between operations u{ and u{nj and,
thus, in G(7',...,7™) a path from u] to u{nj containing all vertices from
{ud, ..., up, _1} exists. Since u{ and uinj are the first and last operation of
subpath P/ this yields L(P{) > L(P}).

(b) If the incoming and outgoing arcs of B; are buffer arcs, then in (7%,...,7™)
they connect the same positions as in (w',...,7™). Thus, the start vertex
of path P/ represents operation O; zi(.) and the end vertex of path P/ rep-

resents operation Oj zi(eym;—1). Since Condition 2 does not hold, we have
e+m;—2 e+m; 72

L(P]) > Z Piiw) > Ee Piitw) = L(P]).

(c) If the incoming arc of Bj is a buffer arc and the outgoing arc of Bj; is a job
arc, the start vertex of path P/ represents operation O; zi() and the end
vertex of path P/ represents operation u{nj Denoting by f the position on

. ) . f-1
which operation uj, is processed on M; in 7' we have L(P)> Y pigiw) >
v=e

et+m;—2

> Dimi) = L(P!) since Condition 3 does not hold.

(d) If the incoming arc of B; is a job arc and the outgoing arc of B; is a
buffer arc, the start vertex of path P” represents operation u] and the end
vertex of path Pf represents operation O zi(eym;—1)- Denoting by g the
position on which operation u] is processed on M; in 7 we have L(P/) >
e+m;—2 e+m;—2

Yo Digiw) = 2 Pigi) = L(P!) since Condition 4 does not hold.
v=g v=e

13



Summarizing, we get L(P{) > L(P{) for j = 2,...,k — 1, L(P§) > L(P}), and

k

1 2
L(P)) = L(PJ) for j =1,...,k — 1. Thus, we have Cy (7!, ..., 7™) > L(P) >
O

L(P(rt, ..., 7)) = Chax(7!, ..., ®™), which is a contradiction.
Based on this theorem which gives necessary conditions for a solution (7', ..., ™)
to be better than (7!,...,7™) in the following we will define neighborhood struc-

tures for the given problem. As basic operators to move from one feasible solution
to another one we will use shift operators. They perform a shift of a job from its
position in one of the permutations to another position in the same permutation
and leave all other permutations unchanged.

Let (m!,...,7™) be a feasible solution and B = (uy,...,u;) be a block on a
critical path in the corresponding solution graph. Assume again that block B is
processed on machine M, such that operation u; is processed in 7 at position e
and operation u at position e + k£ — 1. Depending on the type of the incoming
and outgoing arc of B, Theorem 3 yields different possibilities how to change
(ml,...,7™) in order to get a possibly better solution (7!,...,7™):

If the incoming and outgoing arc of B are job arcs, then one operation of block
B, different from the first operation in B, must be shifted before block B or one
operation of block B, different from the last operation in B, must be shifted after
block B. In order to produce not too many neighbors, we only consider shifts of
an operation of B directly before the first or directly after the last operation of
B.

If the incoming and the outgoing arc of B are buffer arcs, we have to change 7,
such that the sum of processing times of the operations in the positions from e to
e + k — 2 will reduce. We consider shifts of operations of B to positions outside
the block and shifts of operations outside B into the block. In both cases, exactly
one operation enters the block and one operation leaves the block. In order to
reduce the length of the block, we have to ensure that the processing time of the
entering operation is smaller than that of the leaving operation. Again, we only
consider shifts directly before or after the relevant operation.

If the incoming arc of B is a buffer arc and the outgoing arc of B is a job arc
or if the incoming arc of B is a job arc and the outgoing arc of B is a buffer
arc, the promising shifts compose of the above discussed shifts. Based on these
considerations, we introduce the following neighborhood N;.

Neighborhood N;: Let (7!, ..., 7™) be a feasible solution, and let P(7!, ..., ™)
be a critical path in G(r',...,7™). Furthermore, let B = (uy,...,u;) be an ar-
bitrary block of P(r!,..., 7™) which is processed on machine M;, such that op-
eration u; is processed in 7' at position e and operation uj at position e + k — 1.
Let v be the operation which is processed in 7 at position e — 1.
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Neighborhood Nj (7!, ..., ™) consists of all feasible solutions (r!,..., 7" ! 7,

7l .., 7™) which can be constructed by one of the following shifts:

1. If the incoming arc of B is a job arc, then one operation of block B, different
from the first operation in B, is shifted at the beginning of block B (i.e.
directly before operation u,).

2. If the incoming arc of B is a buffer arc, then

(a) one operation w # uy of B with p, > p, is shifted directly before
operation v, or

b) one operation w with p,, < p,, which is processed in 7 at a position
( p Pw < Puy p p
before block B is shifted directly after operation u;.

3. If the outgoing arc of B is a job arc, then one operation of block B, different
from the last operation in B, is shifted at the end of block B (i.e. directly
after operation uy,).

4. If the outgoing arc of B is a buffer arc, then

(a) one operation w of B with p,, > p,, is shifted directly after operation
U, Or

(b) one operation w with p,, < p,, , which is processed in 7 at a position
after block B is shifted directly before operation uy_;.

These operators are applied to every block B on the chosen critical path P.
Formally, the neighborhood N can be defined by the following two operators:

e rshift(i,j,k) for j < k is shifting job 7'(j) directly after job 7%(k) in
permutation 7¢, and

o Ishift(i,j, k) for j > k is shifting job 7*(j) directly before job 7’(k) in
permutation 7.

Here, i € {1,...,m} is equal to the machine where the block is processed. Fur-
thermore, block B determines the relevant indices j,k € {1,...,n}.

First numerical tests indicated that for neighborhood N; the number of neighbors
was often very small, such that a diversification of the search was week. The
reason here is that if a shift is applied to a feasible solution, the new solution
may not be compatible with the given buffer capacities. Such a situation is shown
in Figures 3 and 4, where the corresponding parts of the solution graph before and
after applying the operator rshift(i, j, k) are represented. In fact, the smaller
the buffer capacities are, the more moves lead to infeasible neighbors.
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Figure 4: Situation after applying the operator rshift(i, j, k)

To overcome this problem of infeasibility of neighbors, we introduce another
neighborhood N3. Before presenting the neighborhood, we characterize the shifts
which lead to feasible solutions again.

Lemma 2 :
When applying the operator rshift(i,j, k) to the feasible solution (7',..., 7™)
the resulting solution is feasible if and only if

_ () # 7Nl +bi)  for
TG = b +1) # 7(j) for

When applying the operator Ishift(i,j, k) to the feasible solution (7!,... 7™)
the resulting solution is feasible if and only if

Wl(j) 7é Fifl(l) for l:k+bi_1+1,...,j+bi_1 and
(1 —b) # () for 1=k, ....,j—1

Proof: When applying the operators rshift(i, j, k) or Ishift(i, j, k) to the fea-

sible solution (7!,...,7™), permutation 7° is changed into #*. The resulting

solution (7!, ... w*=! 7 w1 .. 7™) is feasible, iff 7*~! and 7 are compatible
with b;,_; and 7* and 7**! are compatible with b;. According to Theorem 2 this
is valid, iff the subgraphs G (7', 7*) and G(7*,7*"!) does not contain any cy-

cle. Applying the operator rshift(i, j, k) to the feasible solution (7!,... 7™),
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only job arcs terminating at an operation in position | € {j + 1,...,k} in 7
with 7'(l) = 7" (I + b;_;) can produce a cycle in G(7*, 7). A cycle in sub-
graph G(7%, 7"!) can only come up, if the job arc emanating from the oper-
ation in position j in 7 terminates in 7'f! at an operation in the positions
j—bi,j—bi+1,....k—b;— 1. Thus, G(7*~ ', 7#*) and G(7*, 7"*') are acyclic in
this case, iff the first of the above inequalities are fulfilled. Similarly, conditions
are derived for the case of the operator [shift(i, j, k) as well. O

Lemma 2 gives a criterion whether applying the operators rshift(i,j, k) or
Ishift(i, j, k) to a feasible solution (7!, ..., 7™) leads to a feasible solution again.
To face the problem of infeasibility of neighbors we alter A in a new neighbor-
hood N,. The idea of N, is to carry out the promising shift (according to condi-
tions 1.—4. in the definition of neighborhood N7) and to use a so-called repair tech-
nique afterwards: If applying an operator rshift(i, j, k) or Ishift(i, j, k) results in
an infeasible solution, we iteratively repair the permutations 7~ 72, ... 7! as
well as the permutations 7'*%, 772 .. 7™ until we finally get a feasible solution.
In the following, we will describe this correction procedure in detail:

First let us assume that applying the operator rshift(i,j,k) to (z',...,7™)
leads to an infeasible solution (r!,... 7" 1 7% 7+t .. 7™). Thus, according
to Lemma 2 one or both of the following statements a) or b) must be fulfilled:

a) m(l) = 7 '(I + b;_1) holds for at least one index [ € {j +1,...,k}, i.e.
permutations 7'~ and 7 are not compatible with b;_;.

b) 7 (j —b; +1) = 7*(j) holds for (exactly) one index [ € {0,...,k—7j— 1},
i.e. permutations 7' and 7**! are not compatible with b;.

Consider case b) first. In this case we change permutation 7' into ™' by
shifting job 7**!(j — b; +1) to the right on position k — b;. It is easy to prove that
now the permutations 7* and 7' are compatible with b;. (The relevant jobs in
permutations 7! and 7**! at positions j+I+1,...,kand j—b;+1+1,..., k—b; are
all moved one position to the left.) If after changing 7*** to #**! the permutations
71 and 72 are not compatible with buffer capacity b;,, we iteratively repeat
the correction procedure.

Now, consider case a). In 7°~ !, we interchange from left to right all jobs 7 (I +
b; 1) and 7~ '(l + b;_ — 1) with indices [ € {j + 1,...,k} for which 7'(l) =
7= (I+b;_1) holds. In this way, we get a permutation 7°~', such that 7¢ and 7~!
are compatible with b; ;. If now permutations 7'~' and 7*~2 are not compatible
with b;_s, we iteratively repeat this interchange procedure.

Similarly, we can define a corresponding correction procedure if applying the op-
erator [shift(i, j, k) results in an infeasible solution. Summarizing, we introduce
the following neighborhood N5.
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Neighborhood MN,: Let (7!,...,7™) be a feasible solution. Neighborhood
Na(mt, ..., m™) consists of all feasible solutions (7!, ..., #™) where 7 was con-
structed using the criteria of possible improvement (see conditions 1.-4. in the
definition of neighborhood N}) and where 7' ... 77! as well as #'™', ... 7™
were changed (if necessary) into permutations 7', ..., 7#*~" and 7' ... #™ with

the above described correction technique.

Neighborhood N3 contains N as a subneighborhood (i.e. Ni(x!,...,7™) C
No(rh, ... 7™) for each solution (7',...,7™)). The size of both neighborhoods
is polynomially bounded by mn? because the number of shifts on each machine
is bounded by n?.

An important property of a neighborhood is the opt-connectivity which means
that from each feasible solution an optimal solution can be reached by a finite
sequence of moves within the neighborhood. We have constructed a sophisticated
example which shows that the neighborhood A, is not opt-connected. In this
example, we present a solution of the flow-shop problem with intermediate buffers
which is not optimal and possesses no neighbor with respect to neighborhood N5.
As this example contains many jobs and is rather complex, we do not describe
it here. Although the neighborhood N3 is not opt-connected, we use it in our
local search approach, since the computational results for the neighborhood N,
are very satisfying and the constructed counterexample indicates that only in
extreme cases disconnected components occur.

4.2 A Tabu Search Approach

In this section, we describe a tabu search approach for the flow-shop problem with
intermediate buffers which is based on the neighborhood structures presented in
the previous section.

The tabu search method is a metaheuristic approach which was designed by
Glover [1989,1990]. In each iteration of this local search method the current
solution is usually replaced by the best solution in its neighborhood. Contrary
to the iterative improvement method, also non-improving solutions are accepted
during the search process. Thus, it is possible to leave local minima. In order to
avoid cycling, a so-called tabu list is used which stores attributes characterizing
solutions that should not be considered again for a certain length of time. All
moves to solutions characterized by these attributes are forbidden (tabu). A
disadvantage of this procedure is that solutions which have never been visited may
also be forbidden by the tabu list. To cancel the tabu status on a move so-called
aspiration criteria are introduced. They allow the acceptance of neighbors
even if they are forbidden due to the tabu status. For example, a move should
always be accepted if it improves the best solution found so far.
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Besides the tabu list, which has the function of a short-term memory, often also
a long-term memory is kept which is used for diversification. In this long-term
memory promising solutions which have been found during the search process
are stored. If during the search process the best solution found so far has not
been improved for a certain number of iterations, the tabu search is stopped
and restarted with a solution from this long-term memory (diversification). The
whole tabu search procedure terminates after a maximal number of restarts has

been finished.

In the following we will describe how these general concepts are applied in our
tabu search algorithm for the flow-shop problem with intermediate buffers. The
attributes of a solution (7!, ..., 7™) stored in the tabu list and the tabu conditions
will be explained first.

If an operator rshift(i, j, k) or Ishift(i, j, k) is applied to a sequence of m per-
mutations (7', ..., 7™), besides the objective value Cpax (7', ..., 7™) we store the
pair of jobs (7(j), 7*(k)) as an attribute, which characterizes the order of jobs in
permutation 7 before applying the operator:

e for the operator rshift(i,j,k) we use the shifted job 7'(j) and its new
predecessor 7¢(k) as an attribute, i.e. we store (7(j), 7'(k)), and

e for the operator Ishift(i,j, k) we use the shifted job 7'(j) and its new
successor (k) as an attribute, i.e. we store (7°(k), 7(5)).

A neighbored solution (7!,...,7™) of a solution (7!,...,7™) is defined as tabu

if the permutation 7 # 7’ results from 7' by reconstructing the order of a pair
of jobs belonging to the tabu list. More specifically, (7!, ...,7™) is tabu if

o (7,..., @) is constructed from (7!,..., 7™) by the operator rshift(i, j, k)
and a pair (7'(l), 7'(j)) with [ € {j+1,...,k} is contained in the tabu list,
or

o (7!,...,@™) is constructed from (7!, ..., 7™) by the operator Ishift(i, j, k)

and a pair (7'(j), 7%(l)) with [ € {k,...,j—1} is contained in the tabu list.

A neighbored solution (7!, ..., 7™) satisfies the aspiration criterion if its make-
span Cax (7!, ..., 7™) is smaller than the makespan of all solutions with at-
tributes belonging to the tabu list which declare the new solution tabu.

We use a fixed-length tabu list which is emptied if in some iteration of the search
a new globally best solution is found. The length of the list is chosen dependent
on the number of operations in the current instance.
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For selecting a non-tabu neighbor of a given solution, we follow the most com-
monly used best-fit strategy, i.e. in each iteration we choose a non-tabu neighbor
(7, ..., 7™) with minimal Cax (7', ..., 7™)-value.

Our diversification method is based on the following restart technique: The tabu
search is stopped if for a certain number of iterations (maxWorse) the best
found solution has not been improved and restarts the search with the second
best (third best and so forth) shift from the current best globally found solution.
After returning a maximal number (maz Returns) to the same best solution and
restarting the search from it with a shift in a different direction, the whole tabu
search procedure is stopped.

As initial solution of the tabu search method, we calculate a permutation solution
since such solutions are feasible for arbitrary buffer configurations. To do so, we
use a relatively fast generalization of an algorithm which was proposed by Nawaz
et al. [1983] for the permutation flow-shop problem with infinite buffer capacities:
The jobs are considered in the order of non-increasing total processing times. We
insert the next job at that position in the sequence of already scheduled jobs
where the makespan under consideration of limited buffer capacity is minimized.
Leisten [1990] showed that this constructive algorithm for the flow-shop problem
with limited buffers provides the best results for problems with more than two

machines (even if it is compared with heuristics where the passing of jobs is
allowed).

4.3 Efficient calculation of longest paths

In our proposed local search approach the procedure to calculate the best schedule
given a fixed m-tupel of permutations plays a central role, as it is used to calculate
the objective value of the solutions. Therefore, an efficient implementation of the
longest path calculation in the solution graph is essential for an efficient local
search approach.

Regarding the solution graph the only point, where some computational effort can
be saved, concerns the order in which the operations are evaluated. In a standard
implementation one always has to do some book-keeping to detect vertices for
which already all predecessors have been evaluated and, thus, may be evaluated
next. However, due to the special structure of the solution graph of a feasible
solution, we can determine an order in which the vertices may be evaluated and
which is independent of the given feasible solution. Clearly, a vertex cannot be
evaluated before its machine-, job- and bufferarc-predecessor are evaluated. The
order we use is characterized by the following iterative strategy which we call
the Lowest Machineindex-Rule: In each step, we consider the set M which
contains the operations where the machine- and bufferarc-predecessor (if they
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exist) have already been evaluated. Initially, M contains all first operations of
all machines. From the set M the operation is evaluated next which is scheduled
on the machine with the lowest index.

According to this rule, all machine and buffer arcs are respected explicitly. That
the order determined by this rule also respects the precedence relations given
by the job arcs can be seen as follows: Assume that there exists a job arc from
operation j on M; to operation k£ on M, i.e. operation j has to be evaluated
before operation k. Due to the lowest machineindex-rule, operation k£ on M;,
only would precede operation j on M;, if a path consisting of a buffer arc and
machine arcs from £ to j would exist. Thus, together with the job arc from j to

k this path would form a cycle in the solution graph and the solution would not
be feasible.

Next, we explain more precisely in which order the operations are evaluated ac-
cording to the lowest machineindex-rule: At first, operations on M; are evaluated
until the first operation on M; has a bufferarc-predecessor. This is the case on
position b; + 2. Now, the first operation of M, is evaluated before the opera-
tion on position b; + 2 on M, is evaluated. Then, operations on M, and M, are
evaluated alternately until the first operation on M, has a bufferarc-predecessor.
Then, operations on Mjs, My and M; are evaluated alternately and so forth.

For the example in Figure 1 the lowest machineindex-rule leads to the following
evaluation order of the operations:

11,12,22,13, 21,14, 23, 15, 33, 25, 16, 31, 24, 34, 26, 36, 35, 32, .

Note, that this order is only dependent on the given buffer capacities. Thus,
given an instance of a flow-shop problem with intermediate buffers we use the
same evaluation order for each feasible solution of the instance. Computational
tests have shown that using this fixed order instead of book-keeping the number
of not evaluated predecessors speeds up the longest path calculation considerably.

Furthermore, the fixed evaluation order has another advantage concerning the
evaluation of neighbored solutions. Based on the makespan computation of a
given solution, the makespan of neighbors of this solution can be computed very
effectively. This is done in two steps: In the first step, we determine the first
position p in the evaluation order where different operations in the given and the
neighbored solution are scheduled. In the second step, the starting times of the
operations until position p are taken from the given solution and the starting times
of the operations on position p and later are recalculated. If a single shift leads
to the neighbored solution, the specific position p in the evaluation order can be
determined in constant time. If a correction step is necessary, we have to consider
the earliest position on each machine which is concerned by the correction. One
of these at most m positions specifies p.
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Clearly, the larger the position in the evaluation order where the solutions differ
the first time, the less new calculations are needed. Computational tests have
shown that using this evaluation technique for neighbored solutions saves a lot
of computational time.

5 Computational Results

In this section we report on some computational results achieved with the de-
scribed tabu search algorithm. We implemented the procedure in C and tested it
on a SUN-Enterprise 450 (4x 250 MHz-CPU, 2 GB RAM) with operating system
Solaris 2.5.

As no test instances are available for the flow-shop problem with intermediate
buffers, we modified m x n benchmark problems for the classical flow-shop prob-
lem, where m denotes the number of machines and n the number of jobs. We
used different instances from Taillard [1993] with up to 10 machines and 100 jobs.
The instances are divided into 8 different classes, where each class contains 10
instances of the same dimension. The processing times of the operations in all
instances are from the interval [1,99].

To each of the test instances we added different types of buffer configurations. In
order to compare our results with the known results for the classical flow-shop
problem, we first set the buffer capacity equal to n —1 for all buffers which means
the flow-shop problem with buffers reduces to a classical flow-shop problem (b; =
o0). On the other hand we considered the situation where after each machine
no buffer is available (b; = 0). In this case we have a permutation flow-shop
problem with blocking-restrictions. Furthermore, we considered instances where
all buffers have the same capacity of b; = 1 and b; = 2 units fore =1,...,m — 1.
We did not consider instances with different buffer sizes since first computational
tests with those instances provided no new insight. Thus, altogether we used
8- 10 -4 = 320 test instances.

Each of these instances was tested with the following parameter combinations:
maxWorse = 500, maxReturn = 1, 3,5 and maxzWorse = 1000, mazx Return =
1,3,5 and maxWorse = 3000, maxrReturn = 1,3 and maxzWorse = 10, 000,
maxReturn = 1. All test results (best found makespan and computational time
for each test run) can be found on the web-site
http://www.mathematik.uni-osnabrueck.de/research/OR/software.html
The makespan of the initial solution and the best found makespan over all test
runs for the different buffer capacities are also documented on this web-site.

In the following, we give an overview of the results. In Section 5.1 we evaluate
the quality of the proposed local search approach. In Section 5.2 we indicate the
influence of the buffer capacities on the makespan of the best found solution.
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5.1 Quality of the local search approach

For the flow-shop problem with intermediate buffers, no methods to compute
lower bounds for the optimal makespan are available. But, in the case of b; = oo
the flow-shop problem with buffers reduces to a classical flow-shop problem. Thus,
we can compare the computational results for this case with the results from the
literature (see Vaessens [1996], OR Library).

In the following, we compare the best makespan Cj,, found by the tabu search
with the best known makespan Cl,.,; for an instance. For 30 of the 80 instances
the solution C., is proven to be optimal. Almost all of the results Ch.y; were
achieved using branch & bound techniques. Notice that often, the best known
solutions for these flow-shop instances do not vary very much from permutation
solutions or even are permutation solutions.

In order to estimate the quality of the tabu search procedure we determined the

reduction
Cstart - Ctabu

Cstart - C’best

of the gap between the initial permutation solution Cys and the best known
solution. In Table 1 the average reduction red and the mean computational time
CPU (in minutes : seconds) over all 10 test instances of one problem class is
shown.

red = 100 -

Table 1 shows that for the small instances (5% 20, 10 x 20, 5x50) and a parameter
configuration of maxWorse = 3000 and maxReturns = 3 the gap between
initial makespan and best known makespan was reduced by approximately 25%
to 38%. Further tests showed that these reduction values could be improved to
40% to 50% for the small instances when a configuration maxzW orse = 3000 and
maz Return = 10 was chosen (which took four times longer).

For the larger instances, the reduction values are considerably less than for the
small instances: For maxWorse = 3000 and max Returns = 3 there was achieved
a reduction of 5% to 15%, which was improved to 10% to 20% when the parameter
maxReturns was increased to 10 (CPU-time was also approximately four times
longer in this case). This is mostly due to the higher makespan values compared
to those of the smaller instances.

Altogether, for 3 of the 80 instances, the best known makespan was reached. The
relative deviation 100 - (Cyapy — Chest)/Chest 0f the best found makespan from the
best known makespan amounts averagely 2.45% over all test instances, where the
relative deviation of the starting solution from the best known makespan amounts
averagely 3.65%.

Summarizing, for the classical flow-shop problem the tabu search seems to yield
quite good solutions in reasonable computational times, especially when consid-
ering that the tabu search approach was not designed for the classical flow-shop
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500 1000 3000 10,000

m n 1 3 5 1 3 5 1 3 1
5 20| red 9.34 15.86 21.68 | 12.32 19.50 22.63 1| 29.76 32.54 32.01
CPU | 0:02 0:05 0:09] 0:04 0:10 0:19| 0:15 0:37 0:47
10 20| red | 14.32 17.19 23.19 | 14.32 17.19 23.19 ] 20.92 25.61 26.78
CPU | 0:03 0:11 0:19| 0:07 0:22 0:39] 0:32 1:17 1:41
20 20| red 576 7.29 10.39| 5.76 7.29 10.39| 5.76 7.29 5.76
CPU | 0:06 0:17 0:27] 0:13 0:35 0:58 | 0:42 1:48 2:23
5 50| red | 2281 33.40 34.74|27.11 3550 36.83|27.11 37.87 27.11
CPU | 0:11  0:25 0:38 | 0:21 0:49 1:15| 0:37 241 2:56
10 50| red 748 9.43 10.15| 7.48 9.99 10.52 | 9.50 14.32 12.54
CPU | 0:17 0:43 1:06 | 0:33 1:26 2:06| 1:31 5:11 6:26
20 50| red 475 6.18 761 | 4.75 6.18 7.6l | 4.79 6.22 4.79
CPU | 0:32 1:24 2:28 | 1:02 2:41 447 | 3:18 7:56 10:44
5 100 | red 3.17 344 344 | 317 3.44 3.44 | 4.76 5.89 11.27
CPU | 0:31 1:04 1:35| 1:.04 2:12 3:15| 3:10 6:55 11:28
10 100 | red 535 5.8 6.05| 535 58 7.06| 5.35 6.16 5.35
CPU | 0:58 1:57 3:04| 1:51 3:55 6:41 | 5:33 11:10 18:07

Table 1: Mean reduction red for the case b; = oo and different parameter config-
urations

problem and that the compared values Cj.s; were achieved with branch & bound
methods.

Next, we evaluate the quality of the tabu search for instances with a buffer
capacity equal to b; = 0, 1 and 2. In order to compare the results achieved with
or without the restart technique, we consider the tests for the parameter setting
maxWorse = 1000, max Returns = 5 and maxW orse = 3000, mazx Returns = 1,
which took a comparable computational time according to Table 1.

Since in the case b; = 0, 1 and 2 no lower bounds for the optimal makespan are
available, we determined the relative improvement

(jstart - (j¥abu

vmp = 100 - C
start

of the makespan of the initial permutation solution C;,,;. The initial solution was
calculated by a generalization of a heuristic of Nawaz et al. [1983] (see Section 4.2).
In Tables 2 and 3 we report the average and maximal relative improvements imp
of all 10 test instances of one problem class (for the two above mentioned parame-
ter settings). Table 4 shows the mean computational time (in minutes : seconds)
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Dimension bz =0 bz =1 bz =2 bz = 0
n m mean maX | mean maX | mean maX | mean maxX
20 5 1.18 275 | 1.25 284 | 0.85 3.60| 1.32 4.21
10 1.73  3.79 | 1.23 5.06 | 1.22 252 | 1.22 240
20 092 264 029 1.23| 0.14 0.66 | 0.13 0.66
20 5 1.61 344 | 0.77 140 | 042 1.73| 0.36 1.80
10 218 299 | 1.16 214 | 0.69 196 | 0.51 1.32
20 079 1.74 | 0.87 141 | 042 134 | 0.29 1.04
100 5 1.74 370 | 039 1.12 | 0.47 091 | 0.04 0.21
10 210 3.80 | 1.00 1.47| 0.73 1.39 ] 0.13 0.40

Table 2: Relative improvements imp for maxWorse = 3,000, max Returns = 1

Dimension bz =0 bz =1 bz =2 bz = 0
n m mean maX | mean maX | mean maX | mean maXxX
20 5 1.61 3.95| 143 330 | 1.53 421 | 094 3.00
10 214 416 | 1.61 526 | 1.45 295| 1.34 283
20 1.34 264 | 053 1.42] 066 3.36 | 0.35 1.51
20 5 264 390 093 1.47| 0.63 198 | 042 1.80
10 265 4.17 | 1.52 223 | 1.08 232 | 0.57 1.32
20 1.05 233 | 095 1.50 | 0.67 1.34| 045 1.69
100 5 244 435 053 131 ] 056 1.04| 0.02 0.11
10 283 454 1.29 1.99| 089 220 0.17 0.40

Table 3: Relative improvements imp for maxWorse = 1,000, maxReturns =5

of the tabu search for maxWorse = 3000 and maxReturns = 1. The computa-
tional times for the parameter setting maxWorse = 1000 and maz Returns =5
lies in the mean 39% over the values in Table 4.

e Tables 2 and 3 show that the relative improvement values achieved with
the restart technique are almost always better than the results achieved
without this technique. Thus, as for the classical permutation flow-shop
problem (see Nowicki & Smutnicki [1996b]) the restart technique improves
the efficiency of the tabu search.

e Comparing the results for different buffer capacities, almost all relative im-
provement values get better the less the buffer capacities are. This effect
may be explained by the way we treat infeasible neighbors: For a capacity
of b; = oo all neighbors result from a single shift whereas for b; = 0 each
neighbor results from a shift together with a repair step. In general, with
increasing buffer capacities the number of neighbors for which a repair step
has to be executed decreases. In one execution of the repair procedure sev-
eral operations on successive machines may be shifted to another position.
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Dimension Buffer Capacity

20 5 0:23 0:19 0:14 0:15
10 0:53 0:31 0:34 0:32
20 1:28 0:49 0:47 0:42

50 5 6:01 2:35 1:19 0:57
10 10:22 4:15 2:59 1:51
20 19:43 9:52 4:26 3:18

100 5 46:10 | 11:15 5:44 3:10
10 | 132:31 | 34:16 | 13:22 5:33

Table 4: Mean computational time (in minutes : seconds) for maxWorse =
3,000, maxReturns = 1

As a consequence a solution is changed by one repair step more than by
a simple shift. Thus, in a fixed number of iterations, on the average more
changes are made for instances with small buffer sizes than for those with
large buffer sizes. Obviously, the calculations for one iteration step with
repair process take more time than the calculations for one iteration step
without repair process. Thus, the computational time for fixed parameter
setting will decrease with increasing buffer size. This can be seen in Ta-
ble 4. One may expect that when the computational times for instances
with different buffer capacities are similar, the gap between the relative
improvement values for different buffer capacities will reduce.

5.2 Influence of the buffer capacities on the makespan

Besides the quality of the proposed tabu search approach, another interesting
aspect is the influence of the buffer capacities on the best makespan found by
the tabu search. In order to investigate this influence, we determined the relative
change (for j =0,1,2) .

Ct]abu — t(fbu

oo
tabu

of the best found makespan relative to the case of a buffer capacity of b; = oo
(here, CY,,,, denotes the best found makespan over all test settings for the flow-
shop problem with a buffer capacity of b; = j, 7 = 0,1,2,00). In Table 5 the
average, maximal and minimal relative changes Aavg, Amax and Amin of all 10
test instances of one problem class are shown. A negative Aawvg-value indicates
that in the mean a relative improvement of the best found makespan was reached
when reducing the buffer capacity. A negative Amin-value indicates that for at

A =100 -
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Dimension b; =0 b; =1 b; =2
n m Aavg | Amaz | Amin || Aavg | Amaz | Amin || Aavg | Amax | Amin
20 5 14.48 | 23.22 6.30 1.63 4.71 0.00 0.02 1.06 | -0.70
10 11.64 | 15.55 5.97 1.55 3.59 | -0.61 0.30 1.06 | -0.42
20 4.96 7.40 2.77 || -0.13 1.53 | -2.72 || -0.30 1.53 | -3.36
50 5 18.56 | 24.48 | 11.36 2.13 4.08 | -2.74 0.01 0.34 | -0.65
10 20.95 25.16 | 17.16 2.78 3.81 1.05 || -0.18 1.19 -1.32
20 1713 | 18.96 | 14.71 1.67 2.54 0.23 0.16 1.57 | -0.43
100 ) 20.45 22.92 | 18.04 4.21 5.66 3.28 0.22 0.80 -0.08
10 25.64 | 29.91 | 21.52 4.18 8.18 1.13 0.20 1.59 | -1.25

Table 5: Influence of the buffer capacity on the best found makespan (relative to
the values for b; = o0)

least one problem of a problem class a better makespan was found when reducing
the buffer capacity from b; = oo to b; = j.

For a buffer capacity of b; = 2, the makespan increases averagely by at most only
0.3% and in each problem class for at least one problem a better makespan was
reached. The latter effect can again be explained by the way we treat infeasible
neighbors. For the case of a buffer capacity of b; = 1, the significance of the buffer
size becomes more evident, i.e. the makespan increases in the mean by at most
4.2%. The reduction of the buffer capacity to b; = 0 results in a considerable
increase of the makespan. In this case the Aavg-value amounts up to 25.6 %.

There are two main reasons for the increase of the makespan when reducing
the buffer capacity: First, due to the buffer restriction, the number of feasible
solutions decreases with decreasing buffer capacities. While for the case of the
classical flow-shop (b; = oo) each arbitrary combination of job permutations is
allowed, for the case of b; = 0 only permutation solutions are feasible. But as
the best known solutions for classical flow-shop problems often do not vary very
much from permutation solutions, this restriction seems to have a minor influence
on the makespan. The major influence results of the blocking restriction. If a
buffer is filled completely, a job waiting to be inserted in this buffer blocks its
machine, such that the processing of the following jobs on that machine is delayed.
Obviously, the less the buffer capacities are, the more blocking situations may
appear. The test results confirm that blocking appears very seldom for a buffer
capacity of at least b; = 2. In the case of b; = 1, the influence of blocking on
the makespan becomes obvious. When no intermediate buffer space is available,
the influence of blocking is considerable, especially as the makespan of the best
known permutation solution lies in the mean over all 80 test instances only 0.33%
over that of the best known classical solution.
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6 Conclusions

We have presented a tabu search approach for the flow-shop problem with in-
termediate buffers where different job sequences on the machines are allowed.
Conditions to characterize feasible solutions have been proposed. The classical
disjunctive graph model for shop problems has been adapted to model flow-shop
problems with buffers and the classical block-approach for the flow-shop problem
has been extended to the problem with buffers.

The provided numerical results seem to be very satisfactory. To get a deeper
insight into the quality of the solutions it would be of interest to calculate good
lower bounds for the problem with small buffer capacities. Another interesting
question is whether the proposed concepts can be generalized and applied to
other shop problems with buffers.

Acknowledgment: The authors are grateful to Tim Nieberg for implementing
the tabu search procedure proposed in this paper.
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