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ABSTRACT 
Aerodynamic noise becomes significant for high-speed trains and its prediction in an industrial

context is hard to achieve. The aerodynamic and aeroacoustic behaviour of the flow past a high-

speed train wheelset, one of the main components of a bogie, are investigated at a scale 1:10 using

a two-stage hybrid method of computational fluid dynamics and acoustic analogy. The near-field

unsteady flow is obtained by solving the Navier-Stokes equations numerically through delayed

detached-eddy simulations and the results are fed to predict the far-field noise signals using the

Ffowcs Williams-Hawkings acoustic analogy. Far-field sound radiated from the scaled model is

also measured in a low noise open-jet anechoic wind tunnel. Good agreement is achieved between

numerical and experimental results for the dominant frequency of tonal noise and the shape of the

spectra. Results show that turbulent flow past the wheelset is characterized by three-dimensional

streamwise and spanwise vortices with various scales and orientations. Vortex shedding and flow

separation around the wheelset are the key factors for the aerodynamic noise generation. It is

found that the radiated tonal noise corresponds to the dominant frequencies of the oscillating lift

and drag forces from the wheelset. The directivity of the noise radiated exhibits a typical dipole

pattern. As the inflow velocity increases, the shedding frequency scales with the freestream

velocity and the axle diameter to yield a Strouhal number of 0.18 while the noise levels increase

noticeably. For the current wheelset case investigated without considering the ground effect, the

inclusion of wheelset rotation increases the radiated noise levels slightly with similar directivity.

1. INTRODUCTION
For high-speed trains, it is generally accepted that the aerodynamic noise becomes

predominant at the running speed over about 300 km/h [1–3]. The generation of

aerodynamic noise from high-speed trains is less well understood and numerical

calculations have been restricted to some simple geometries using the traditional
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computational methods [3]. The flow-induced noise from a full-scale simplified high-

speed train was studied numerically using the lattice-Boltzmann method along with the

turbulence wall-function approach, although verification by experimental

measurements is required to improve confidence [4]. By comparison, the calculations

on some simplified scaled geometries can reveal more details of the flow behaviour and

the corresponding aeroacoustic mechanisms in some main components of high-speed

trains. Moreover, these numerical simulations can be performed with affordable

computer resources and verified by experimental measurements. Results from these

model cases can be used to determine the relative importance of various aerodynamic

noise sources and to establish efficient noise prediction methods, such as the

component-based model developed to predict the aerodynamic noise from high-speed

trains [5].

It is still very difficult to predict aerodynamic noise in an industrial context due to

large computational resources required for unsteady numerical simulations [6]. This

research aims to study the aerodynamic noise generation mechanism from the scale

models with increased complexity around high-speed train bogie regions and to see the

differences between the various cases. As an initial step, this paper focuses on

investigating the flow behaviour and the corresponding aerodynamic noise

characteristics from an isolated wheelset of a high-speed train: two wheels attached to

an axle. This can also be represented as a general case of circular cylinder with two

discs fixed close to the ends, which is of some practical applications. Calculations are

performed for a 1:10 scale wheelset and its components. Numerical results of the

aerodynamic noise are verified by the experimental measurements from an anechoic

open-jet wind tunnel.

2. NUMERICAL METHOD
Numerical simulations are carried out using a two-stage strategy of computational fluid

dynamics (CFD) and computational aeroacoustics (CAA) methods. Aerodynamically,

high-speed trains are operating within the low Mach number flow regime. The

incoming flow simulated here is also at low Mach numbers (0.09 and 0.2 corresponding

to 30 and 70 m/s) and thereby the compressibility effects may be neglected to the

hydrodynamic flow field. Moreover, at low Mach number the dominant noise sources

are the dipole sources from wall pressure fluctuations, which can be predicted

essentially through incompressible flow modelling. Therefore, the unsteady,

incompressible Navier-Stokes equations are used to solve the flow field. The open

source software OpenFOAM-2.2.1 is employed to solve the governing equations. A

second-order accurate scheme is used for the spatial derivatives and the temporal

discretisation follows a second-order fully implicit scheme. The delayed detached-eddy

simulation (DDES) based on the Spalart-Allmaras turbulence model is employed for

the current flow calculations [7].

The near-field unsteady flow computation provides acoustic sources which are fed

to Ffowcs Williams-Hawkings (FW-H) acoustic analogy for far-field noise prediction

[8,9]. The formal solution of the FW-H equation may be written as
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(1)

where ƒ(x, t) = 0 describes the control surface. [ ]τe
denotes the evaluation at the

emission time. The acoustic pressure p′(x, t) represents the pressure fluctuation

perceived by an observer at observer time t. The source terms under the integral sign

are defined as

(2)

(3)

(4)

where T
ij

is the Lighthill stress tensor; Q
i

and  L
ij

are thickness and loading noise

sources respectively [9, 10]. u
i
and v

i
are the flow and surface velocity components in

the ith direction. τ
ij

is the viscous stress tensor and δ
ij 

the Kronecker delta. Owing to a

low Mach number flow simulated, the quadrupole noise from the Lighthill stress tensor

may be neglected and Farassat’s formulation 1A is employed to solve FW-H equation

and predict the noise generated [9,10].

3. SIMULATION SETUP
The present analysis is based on a 1:10 scale simplified wheelset model, displayed in

Fig. 1, where x is the flow direction, y the vertical direction and z the spanwise

direction. Although the shape of a railway wheel is rather complex, wheel-mounted

braking systems are often implemented on the power bogie of high-speed trains,

enabling the wheel to be represented as a flat-sided disc by neglecting the gap between

the wheel and braking discs. The flange of the running surface is also neglected here.

In this 1/10th model, the axle has a diameter (d ) of 17.5 mm and the wheels have a

diameter (D) of 92 mm. The wheelset geometry is symmetrical along the axle mid-span

where the flow influence from the wheel is small. Therefore, it is reasonable to make

use of symmetry to cut the computational domain with half the axle and a single wheel.

The use of symmetry plane was investigated and demonstrated to be acceptable [4]. The

domain has dimensions 15D × 10D × 6D (length, height and width) where D is the

wheel diameter; thus, the blockage ratio (defined as the ratio of the projected wheelset

area to the domain cross-sectional area) is small (about 0.5%); and the outlet boundary

is far enough to have negligible influence on the near-wake flow around the wheelset.
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The following boundary conditions are applied: the upstream inlet flow is represented

as a steady uniform flow (U∞) with a low turbulence intensity; the top, bottom, axle

mid-plane and side boundaries are specified as symmetry boundaries which are

equivalent to zero-shear slip walls and assume no flux of any quantity across them; a

pressure outlet with zero gauge pressure is imposed at the downstream exit boundary

and all wheelset surfaces are defined as either stationary or moving (for rotating case)

no-slip walls. The wheel rotation effect is implemented by imposing the corresponding

rotation velocity on the solid surface. Numerical calculations are performed at two

freestream velocities of 30 and 70 m/s. The resulting Reynolds numbers (based on the

axle diameter and the freestream properties) are 36,000 and 83,900, which are within

the subcritical Reynolds number regime. As well known, for a uniform stream passing

over the axle of cylindrical shape, the boundary layer separation is laminar and vortex

shedding occurs in the wake area with a Strouhal number of around 0.2 in the

subcritical flow regime.

A rigorous grid convergence study for a complex geometry case is difficult to

achieve because of the large calculations required for the unsteady flow. As a main part

of the wheelset, the axle is a typical circular cylinder, from which numerical and

experimental data are available for comparison. Therefore, a mesh refinement study has

been performed on a circular cylinder at the same flow condition and is used to provide

guidelines for the wheelset mesh generation. The influence of spatial resolutions has

been compared by using different grid points in the x-y plane (cases named ‘Coarse’,

‘Baseline’ and ‘Fine’) and along the spanwise (z) direction. The time resolution was
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examined through reducing the timestep size by a factor of five. The effects of changes

in y+ (the dimensionless first-cell spacing) were also analyzed. The Strouhal number

(St) of the shedding frequency, root-mean-square values of the fluctuating lift

coefficient (C ′
L
) and drag coefficient (C ′

D
), mean drag coefficient (C

−
D

), the separation

angle (θ ) and the dimensionless recirculation length (L
r
/D) for each case have been

computed and all the predicted results are found to exhibit a certain degree of grid

convergence. The ‘Baseline’ case is demonstrated to have adequate resolution and is

used to guide the generation of grids in the simulations here.

Based on the results of the grid convergence study for the cylinder case, a fully

structured mesh is generated around the wheelset (displayed in Fig. 2) with resolutions

similar to the cylinder ‘Baseline’ grids. The cell size on the axle surface is implemented

as 0.4 mm around the perimeter and 0.8 mm in the spanwise direction. The maximum

cell size on the wheel surface is 0.9 mm. The mesh in the corner area between the wheel

and axle is refined with double grid points in the wheel radial direction and the axle

axial direction. For the case with inlet velocity of 30 m/s as an example, the distance

from the wheelset to the nearest grid point is set as 10–5 m and stretched with a growth

ratio of 1.1 inside the boundary layer, yielding a maximum value of y+ less than 1. For

Reynolds-averaged Navier-Stokes (RANS) simulation or detached-eddy simulation

(DES), the y+  in the first near-wall cell should be very small (on the order of y+ = 1) to

ensure the turbulence models employed inside the viscous sublayer to account for the

low-Reynolds number effects. The total number of grid points in the entire domain is

5.5 million, distributed mainly in the near-wall and wake regions around the wheelset.

The physical timestep size is 10–5 s which gives an adequate temporal resolution for the

simulation with respect to the Courant-Friedrichs-Lewy values of less than 

2 considering the implicit time marching scheme used here.
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4. AERODYNAMIC RESULTS
In order to understand the flow behaviour around the wheelset, the simulation results of

the instantaneous iso-surfaces of Q-criterion and the vorticity fields are displayed. The

gauge pressure at the wake positions as well as the lift and drag coefficients from the

different geometries are compared. The numerical calculations presented in this section

are based on the non-rotating (stationary) geometries with inflow velocity of 30 m/s.

4.1. Properties of DDES model
Detail descriptions on delayed detached-eddy simulation model were introduced in [7].

In simulations of turbulent flow using DES, the mesh should be so designed as to ensure

that the boundary layer region is modelled by RANS while large-eddy simulation (LES)

is only switched on outside the boundary layer. In DDES, the switch between RANS

and LES is controlled by a redefined length scale (d
~
) which depends not only on the

cell wall distance and grid spacing but also on the time-dependent eddy-viscosity field.

In order to check the RANS/LES switching of the DDES scheme, Fig. 3 illustrates the

radial profiles of the mean velocity, the model length scale ratio (r
d
), DDES function 

(1 – ƒ
d
) and the ratio of the modified length scale to wall distance (d

~
/d) at θ = 60°

(measured clockwise from the front stagnation point) at the mid-span locations of the

wheel and the axle. The delay function ƒ
d

is given by

(5)

in which the model length scale ratio r
d

applied to any eddy-viscosity model becomes

slightly more robust in the irrotational regions and is represented as

(6)

where U
i,j

= ∂U
i
/∂x

j
is the velocity gradients and the molecular kinematic viscosity v is

employed to rectify the very-near-wall behaviour through keeping r
d

away from zero.

The function (1 – ƒ
d
) approaches zero in the LES region. As shown in the figure, the

wheel mid-span represents the x-y surface from the midpoint along the axial direction,

whereas the axle mid-span is defined at the half-length position of the axle segment

inside the wheel. In terms of r/D (the dimensionless distance to the wall surface) in the

abscissa, the boundary layer (i.e. based on U/U∞) extends to 0.003 and RANS/LES

switching occurs (the location where d
~
/d becomes less than 1) around 0.008 at the

wheel mid-plane. At the axle mid-plane the boundary layer extends to 0.007 and

RANS/LES switching occurs at 0.033. It is shown that the RANS-LES interface

remains well outside the boundary layer and the DDES delay function f
d

reaches 

1 within the LES region. Therefore, it is confirmed that the RANS method is imposed

over the entire boundary layer and the LES treatment is applied elsewhere when using

the DDES model in the simulation.

r
v v

U U k d
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4.2. Flow field
Fig. 4 visualizes the wheelset’s wake structures represented by the iso-surfaces of

normalized Q-criterion value of 50 (based on Q [(U
0
/D)2], where U

0
is the freestream

velocity and D the wheel diameter). They are coloured by the velocity magnitude
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normalized with freestream velocity. It can be seen that flow separates at the wheel front

edges, and reattaches within a very short distance on the wheel flat side surface,

forming a crescent-shaped separation bubble; the subsequent horseshoe-shaped eddies

are formed and carried downstream. In the axle wake, two-dimensional spanwise

vortices are generated first straight behind the axle, followed by streamwise vortices

developed further downstream, suggesting a three-dimensional character of the

solutions in the wheelset wake area. Additionally, compared to the flow developed

around the wheel, a higher level of velocity magnitude occurs in the axle wake,

indicating a significantly energetic flow generated there.

The instantaneous non-dimensional spanwise vorticity fields (ω
z

= 

(∂V/∂x – ∂U/∂y)D/U∞) in the wake area behind the axle and wheel are displayed in 

Fig. 5. This reveals that the flow behaviour around the axle is different from that around

the wheel: the organized vortex structures in the axle wake are clearly formed and

dominated by a large alternating shedding while the wheel wake is highly turbulent with
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eddies of different scales. This is understandable as the axle provides the appropriate

spanwise correlation length to generate vortex shedding whereas the wheel is three-

dimensional with small aspect ratio, the flow separation from the side surface

influences the vortices shed behind the wheel, causing the flow structure behind the

wheel to be fully three-dimensional and less organized, with various scales.

Fig. 6 displays the instantaneous non-dimensional spanwise vorticity fields (ω
z
) in

the axle wake at different distances to the wheel inner surface. It can be seen from 

Fig. 6(a) that in the axle wake with the gap of 5 mm away from the wheel inner surface,

the vortices shed from the axle interact with the vortices generated from the wheel

circumferential edge; they deform largely and are merged into the eddies formed behind

the wheelset, leading to the synchronized behaviour of the wheelset wake. Close to 

the wheel (shown in Fig. 6b), the interaction of the vortices generated from the axle and

wheel becomes weaker and the wake is dominated by flow separations occurring on 

the wheel top and bottom rim edges.

Fig. 7 shows the power spectral density (PSD) of the gauge pressure at different

positions in the wheelset wake. A tonal peak at 311 Hz is clearly seen in Fig. 7(a)

showing the PSD at a point with a distance of one axle radius from the top side of the

axle at mid-span. This frequency is associated with the vortex shedding from the axle,

and the corresponding Strouhal number (non-dimensionalized by the freestream

velocity and the axle diameter) is 0.182. Fig. 7(b) illustrates that the PSD of the pressure

at a point with a distance of one wheel radius away from the top of the wheel at mid-

span is broadband and its amplitude is much lower than that in the axle wake. This

indicates that flow behind the wheel is fully three-dimensional and the wake contains

the turbulent structures with various scales. Fig. 7(c) shows the results for points located

at 3 mm and 13 mm away from the wheel inner rim in line with the top of the axle. Two

peaks appear at the frequency of 311 Hz and 622 Hz, and these correspond respectively

to the axle vortex shedding and the interaction between the vortex shedding from the

axle and the unsteady flow around the wheel in the drag direction. It is noted that closer
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to the wheel, the tonal peak amplitude of the pressure signal becomes lower;

particularly, the second peak at 622 Hz drops by more than the first one at 311 Hz. This

is because the vortex shedding from the axle is less strong there and much weaker

impact is generated by the axle shedding vortices on the unsteady flow around wheel,

resulting in the less drag fluctuation produced in the wheel-axle corner region.

4.3. Lift and drag coefficient
Fig. 8 depicts the PSDs of the lift and drag coefficients of the wheelset. In order to

provide insight, results are shown for the separate components for the wheel and axle

when they form part of the wheelset. A clear peak appears in all lift coefficient PSDs at

311 Hz, corresponding to a Strouhal number (non-dimensionalized by the freestream

velocity and the axle diameter) of 0.182. This peak is associated with the axle primary
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shedding frequency. By comparison, another lower peak is observed in the drag

coefficient curves at twice the shedding frequency. As known, the aerodynamic lift

force acting in the transverse direction normal to the flow fluctuates with a larger

amplitude at half the frequency of the drag force which acts in the streamwise direction

parallel to the flow. It can be seen that the flow around the wheelset and that around its

components have the same shedding frequencies. This is because the periodic,

alternating vortex shedding produced from the axle dominates the wake unsteadiness

and interacts with the wall boundary layer and unsteady flow separated from the wheel

(consistent with Figs. 6 and 7c), thereby the resulting wake induces the regular

fluctuating forces on the whole wheelset. Compared to the axle where the massive

vortex shedding occurs, the wheel has the same dominant frequencies in the lift and

drag forces, but with much lower amplitude. Considering the axle and wheel in isolation

from each other, it should be noted that the main peak of the drag force (St = 0.36)

cannot be identified for the isolated axle case while the flow around the isolated wheel

is fully irregular with no periodic vortex shedding, as shown in Fig. 9.

5. AEROACOUSTIC RESULTS
Based on the near-field flow data obtained from the CFD calculations, the FW-H

method can predict far-field noise signals by equivalent acoustic sources as stated

previously. There are 22,016 panels around the wheel and 15,232 panels on the axle

which account for the acoustic sources on the solid integration surfaces. The receivers

are distributed uniformly along a circumference with 2.5 m radius at an interval of 

5° as sketched in Fig. 10 to measure the noise directivity from the wheelset centreline.

5.1. Acoustic spectra computation
The CFD simulations were run for 0.93 s corresponding to 20 times the flow-through

time. The length of the time signal used as input to the FW-H method for noise

calculation is related to the last 0.55 s of the computation. The PSD is computed from
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the predicted far-field noise time history by the Welch’s method and averaged over 50%

overlapping segments using a Hanning window applied to 5 segments, giving a

frequency resolution of 6 Hz.

Based on the numerical simulations on the symmetrical half wheelset and whole

isolated wheel (i.e. without the axle) cases, Fig. 11 shows the spectra of the noise

radiated from the non-rotating wheelset and an isolated wheel at three receivers as
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well as the noise radiated by components of the wheelset (separate components of

the wheel and axle) at one receiver in the z-y plane as described in Fig. 10. The

largest drag dipole component is found at receiver 1 while receiver 19 shows the

highest lift dipole component. At receiver 3 both the lift and drag dipole components

are found, as will be discussed subsequently. From the wheelset case in Fig. 11(a),

it is noted that the tonal peaks appear at the frequencies of 311 Hz and 622 Hz at

receiver 3 which is located 0.434 m above the axle axis. The primary peak

corresponds to the oscillating lift forces exerted back on the fluid around the

wheelset and the peak at the second harmonic is associated with the oscillating drag

forces. As mentioned earlier, the frequency of the fluctuating drag is twice that of the

fluctuating lift.
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Fig. 11(b) compares the spectra of the noise radiated from the sources on the axle

and the wheel separately (as part of the wheelset) at receiver 3. Again, two tonal noises

are found with dominant frequencies corresponding to the lift and drag forces

respectively. Therefore, in the vertical z-y plane normal to the flow direction the sound

radiation produced from the separated wheel in the presence of the axle is mainly

associated with the drag forces, whereas the noise generated by the separated axle in the

presence of the wheel mainly corresponds to lift forces. As a result, the level of the

second harmonic is largest at receiver 1 (shown in Fig. 11c) while that of the primary

shedding frequency is highest at receiver 19 (shown in Fig. 11d). Compared with the

wheelset case, the noise radiated from the isolated wheel is more broadband with a

lower spectral level, resulting from the irregular flow with no periodic shedding

generated around it as stated earlier.

Furthermore, to improve the completeness of current analyses, the spectra of the

noise generated from a rotating wheelset (U∞ = 30 m/s) and a non-rotating wheelset 

(U∞ = 70 m/s, closer to the high-speed train case) at receiver 3 are compared with the

non-rotating wheelset case in Fig. 12. It is found that the frequencies of the two

dominant peaks in the rotating wheelset case are both around 6 Hz higher but with

similar amplitude compared to those from the non-rotating wheelset as illustrated in

Fig. 12(a). Thus, the rotation of the wheelset is expected to have negligible influence on

the noise generation, as confirmed below. Moreover, Fig. 12(b) shows that as the inflow

velocity increases to 70 m/s, the noise levels increase greatly and the frequencies of the

two spectral peaks (726 Hz and 1447 Hz) increase in proportion to the flow speed,

corresponding to an invariant Strouhal number characterized by regular vortex

shedding.
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Figure 12: Spectra of acoustic pressure at receiver 3.



5.2. Experimental verification
An experimental measurement of sound generated by flow past a non-rotating wheelset

was made in an open-jet anechoic wind tunnel. Fig. 13 displays the experiment setup of

which the test model is mounted in the working section on a rigid baffle. A 1:10 scale

half-wheelset is immersed within the core flow and the remaining parts are wrapped

with sound-absorbing sponge to suppress the aerodynamic noise generated by vortex

shedding from such a portion. The exit nozzle has a rectangular cross-section (350 mm ×
500 mm, width by height) and the flow speed is 30 m/s with the turbulence level in the

jet core below 0.3%. In accordance with the numerical predictions, two receivers

identified as ‘top microphone’ and ‘side microphone’ are located at (–18, 1375, 31.3)

and (0, 185, 2211.3), of which the dimensions in millimetres and the coordinates (see

Fig. 13) with the origin at the centre of the axle outer end surface. Corresponding to the

frequency resolution used in the simulation, the PSD of test data is also computed by

the Welch’s method with 6 Hz bandwidth.

Fig. 14 displays the spectra of the radiated noise at the two receivers. Due to a

high background noise in the low frequency range generated from the nozzle itself,

results are only considered above 100 Hz. Fig. 14(a) compares the predicted and

measured PSD levels for the top microphone. Good agreement can be found for the

dominant frequency of tonal noise and the shape of the spectrum; even a small peak

around 960 Hz (third harmonic) is accurately predicted in the computation. In the

experiment a low amplitude peak appears around 234 Hz, which is not observed in

the simulation. This peak may be associated with the noise contribution from the

interaction between the axle wake and the baffle plate, i.e. the vortex shedding in the

axle wake region close to the baffle is decreased by the unsteady flow developed on

the rigid plate and thereby the corresponding shedding frequency is reduced. This

same phenomenon has been found in the experiments of flow-induced noise from

wall-mounted cylinders [11]. Compared with the experimental data, the tonal peak

is higher in the calculated spectrum. Again, this is likely to be due to the solid wall
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(rigid baffle) used in the experiment which weakens the coherent vortex shedding

from the axle compared to the symmetric boundary conditions with stronger

spanwise uniformity applied in the simulation.

Fig. 14(b) shows the spectra of the radiated noise from prediction and experiment at

the side microphone. Note that the experimental noise levels are systematically higher

than the predictions at the side microphone due to the additional noise contributions

caused by reflections from the baffle plate. The two tonal peaks in the measurements

correspond fairly well with the noise predictions: both the dominant frequency values

and the harmonic behaviour. This indicates that the sound reflection from the baffle

plate has a little effect on the frequencies of the main peak and harmonics caused by the

vortex shedding from the wheelset.

5.3. Acoustic directivity
The directivity of radiated noise in the far-field is obtained based on the overall

calculated sound pressure level which is determined from the PSDs over the frequency

range below 5 kHz. As the symmetry plane is used, only the flow data of half geometry

are available and applied for the noise prediction. Thus, the sound pressure level from

the whole geometry are given by 

are the sound pressure levels of two receivers located symmetrically along the

symmetry plane with the same sound source from the half geometry. Fig. 15 shows the

noise directivities from the rotating and non-rotating wheelsets. As the inflow speed

increases from 30 m/s to 70 m/s, the noise levels are increased by 18.5 dB with the

similar directivity pattern. This corresponds to an increase in the radiated sound power

in proportion to about the sixth power of the flow speed as expected for an aeroacoustic

dipole source.
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Based on the noise directivities shown in Fig. 15 and Fig. 16(a), it can be concluded

that the dipole patterns of the noise generated from the rotating and non-rotating

wheelsets are very close, with noise levels that are about 2 dB higher for the rotating

case. Fig. 16(b) shows the noise directivity from the separate components from the

wheel and axle of the rotating and non-rotating wheelsets. It can be seen that the vertical

dipole pattern of the non-rotating wheel is inclined upwards toward the inflow direction

for the rotating wheel and the difference in the noise levels between them is small.

Compared to the separated wheel, the noise generation from the axle part is much

larger. This leads to the vertical dipole pattern of noise radiation from the rotating

wheelset presented in Fig. 17, which clearly shows that the lift dipole dominates the
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directivity shape (centred at 40 dB). The non-rotating wheelset case has a similar

vertical dipole directivity pattern which can be indicated from Fig. 15. Additionally,

compared with the non-rotating case, the noise generation from the rotating axle is

slightly larger as a consequence of the stronger flow-axle interaction caused by the

rotation effect, making the noise of the rotating wheelset generally higher as mentioned

earlier.

6. CONCLUSIONS
The aerodynamic and aeroacoustic behaviour of the flow past an isolated wheelset have

been studied using the DDES model and FW-H acoustic analogy. It is found that the

turbulent flow around the wheelset has a complicated three-dimensional wake structure:

both streamwise and spanwise vortices are formed due to the vortex shedding and flow

separation around it. In aeroacoustic prediction, the noise calculation compares fairly

well with the experimental measurements. For both the rotating and the non-rotating

wheelsets, tonal noise is generated with dominant frequencies corresponding to the

oscillating lift and drag forces; a vertical dipole pattern of noise directivity is predicted

with slightly higher level for the rotating case whereas the rotation effect has little effect

on the noise generation from an isolated wheelset, at least in the present case where the

ground effect is neglected. As the inflow velocity increases, the frequencies of spectral

peaks increase corresponding to an invariant Strouhal number characterized by regular

vortex shedding and the noise levels increase considerably.

In order to interpret these results for a full-scale case, it may be noted that the

Reynolds number in reality is much higher; thus, the tonal components are likely to be

less significant and the broadband component is likely to increase in importance; the
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more complex geometry will also lead to more complex flow structures and this will

affect the noise radiated. Such factors will need to be accounted for in future work.
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