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Flow singularities where the fluid velocity is zero are examined in terms 
of their relevance to polymer chain extension and flow instabilities. The 
singular flows are subdivided into two and three dimensional flows and flows 
that do and do not contain rotational components. Methods by which these 
various flows can be generated are reviewed. 

Theoretical considerations necessary to achieve flow induced polymer 
chain extension are briefly reviewed and the major conclusions presented in 
a simple form. The consequences of these conditions are then discussed in 
relation to the ability and manner in which chain extension can occur in var- 
ious flows. 

The significance of degenerate and non degenerate two dimensional flows 
is examined in terms of flow stability and observed changes in the topology 
of flows; in particular the relevance of degenerate critical points where the 
principal strain rate equals the rotation rate is discussed in relation to the 
birth of eddies. Finally, the effect that localized polymer chain extension 
can have in modifying various singular flows is examined. When polymer is 
added to the flow a possible reduction in the persistent strain rate together 
with changes in the topology of flows are both considered. 

1. Introduction 

In comparison to the extensive experimental and theoretical studies car- 
ried out on singularities in solids, the close examination of singularities in 
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fluid flow has been virtually ignored. One class of singularity that is of inter- 
est in fluid flow is the stagnation point, line and sheet where the fluid veloc- 
ity is zero ; in steady flows these singularities will remain stationary in space 
with time. An object of this paper will be to draw particular attention to the 
existence and relevance of these singularities in certain flows and also show 
the overall importance of these singularities in terms of ultimate polymer 
chain extension and phenomena related to flow instabilities. 

Over the past seven years several flow devices have been developed by the 
author and his associates at Bristol. Most of the flows studied were of high 
symmetry containing at least one stagnation point and many have been lim- 
ited to a steady two dimensional flow pattern. These flows can be generated 
fairly easily in the laboratory and their interpretation is relatively unambig- 
uous. By contrast many practical flows, including turbulence, involve com- 
plex time dependent three dimensional flows which are extremely difficult 
to interpret; it is hoped that an understanding of the simpler flows will aid 
our understanding in the more complex cases. 

Definitions 

It is convenient to start by defining certain quantities which have become 
important during the course of this study. 

Velocity gradients. In general a velocity gradient in a fluid is defined by a 

tensor, 

(1) 

where V is a velocity at a position r. We may split this tensor into two com- 

ponents, 

Sij = i(kij + iii), (2) 

Oij = $(iij - kji), (3) 

such that 

tij = Sij + Oij, (4) 

The first symmetric part, Sij, represents a deforming strain rate and the latter 

antisymmetrical part, Cdij, a rotation rate. 
For two dimensional flows, the strain rate tensor has the form 

611 g&2 + 621) 

Sij = 
[ #I2 + G21) 622 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 , (5) 

where the magnitude of the principal strain rate S for incompressible flows is 
given by 

S = d(--det Sjj) (6) 
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and the magnitude of the rotation rate w is given by 

w=alcurl VI. (7) 

The magnitude of the rate of stretching of a non rotating fluid line defined 
as u and named the persistent strain rate [l] is given by 

o=J9=? (8) 

2. singular flows 

2.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASingular flows containing little or no rotation 

Flows that are free from rotation will have Oij = 0. These flows in many 
respects represent the simplest possible class of flows, however with the 
notable exception of the work by Trouton [ 21 and G.I. Taylor [ 33, they 
received little early experimental attention. The rotation free two dimension- 
al pure shearing flow has a velocity gradient tensor given by, 

Assuming incompressibility, the streamlines of this two dimensional flow 
may be given simply by the stream potential # of the flow where $ is given by 

Streamlines are represented by lines of constant $. Pure shearing flow, shown 
schematically in Fig. 1, has a stream function given by 

C$=sxy (11) 

The singularity of the flow where the velocity is zero occurs at the origin 
and exists as a line zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0, 0, z). For any given plane the singularity is defined as 
a hyperbolic critical point. 

Pure shearing flow can be achieved experimentally in a number of ways. 
Low velocity gradients (0 ---lo2 s-l) can be achieved using a four roll mill 
apparatus initially pioneered by G.I. Taylor [ 31 and later used by amongst 
others Giesekus [ 41 and Crowley et al. [ 51. The apparatus consists of four 
symmetrically positioned rollers. When the rollers are rotated at equal speed 
and with a rotation sense indicated in Fig. 2 a good approximation to uni- 
form pure shearing flow is obtained in the central region of the flow near the 
critical point; however the hyperbolic nature of the pure shearing streamlines 
is incompatible with the circular boundary of the rollers and therefore the 
flow cannot be entirely that of pure shearing right up to the edges of the 
rollers. The four roll mill apparatus can easily be used by immersing the 
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Fig. 1. Schematic diagram of streamlines for pure shearing flow. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

rollers in a tank of fluid. Streamlines of the flow can be obtained by either 
viewing slight concentration differences in the flow using transmitted light, 
or by introducing small scattering particles such as Hostalen GUR polyethyl- 
ene powder into the flow and viewing the optical scattering from a planar 
incident beam of light. 

One of the problems with the four roll mill is that in general typical 
dimensions of the apparatus are large and of the order 1 cm thus turbulence 
can readily set in, particularly outside the central region of the rollers; this 
can restrict the maximum velocity gradient that can be achieved. To obtain 
high velocity gradients in pure shearing flow it would appear that a double 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr 

’ , Optical window 

Optlcol window 

Fig. 2. Schematic diagram of four roll mill apparatus. 

Fig. 3. Schematic diagram of double slit apparatus. 
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slit system is more satisfactory. The elements of such an apparatus are shown 
in Fig. 3. Using glycerol and polyethylene oxide solutions it was found that 
this apparatus could produce velocity gradients of up to lo4 s-l with the 
potential of higher velocity gradients being possible. Fluid is forced into the 
opposed slits by applying an enhanced pressure to the main cylinder. It was 
observed that the flow between the slits was close to that of uniform pure 
shearing flow and the ends or edges of the slits did not appear to interfere 
noticeably with the flow pattern. To a first approximation the magnitude of 
the velocity gradient can be given by S = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV/6, where V is the centre line 
entry velocity into the slits and 26 the separation of the slits; this approxi- 
mation is valid for 6 G -21 where E is the internal diameter of the slits. 
When 6 > -21 the velocity gradient between the slits can no longer be con- 
sidered uniform. 

It is quite easy to devise other flows that will have regions containing sin- 
gular pure shearing flows. A good example is the flow generated by two 
counter rotating rollers; this flow has two hyperbolic critical points shown 
schematically in Fig. 4. The asymptotic streamlines at the critical points 
intersect at right angles which indicate that the flow is that of pure shearing 
flow at this point. As indicated by the work of Jeffrey [ 61, in an ideal fluid 
the position of the critical points is controlled solely by the separation of the 
rollers, with the critical points moving outward with increasing roller separa- 
tion. Another experimental arrangement of static cylinders in a steady trans- 
lational flow, shown schematically in Fig. 5, is capable of generating an array 
of critical points. It has been indicated by Werl6 [7] that at sufficient 
Reynolds number the vortices shed from each cylinder produce a symmetric 

flow pattern with a hyperbolic cricial point immediately downstream from 

each cylinder. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 4. Schematic diagram of flow between counter rotating rollers. 

Fig. 5. Diagram of flow past a symmetric array of cylinders showing hyperbolic critical 

points downstream from each cylinder. 
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Three dimensional rotation free flows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
One of the first flows to be studied at Bristol was the three dimensional 

flow produced by impinging jets [ 8,9]. This flow was of primary interest 
because it could produce essentially rotation free extensional flows of high 
velocity gradient. The system consists of two jets immersed in a “sea” of 
fluid. By forcing fluid out of the jets an axial compression flow would be 
produced in the region of jet impingement given by a velocity gradient 
tensor, 

-s 0 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

eij = : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 %!3 2 0 I (12) 

0 0 1s 
2 

By reversing the flow and sucking fluid into the jets an axial extensional flow 
was achieved given by, 

(13) 

For both axial compression and extension the singularity of the flow is a 
stagnation point which, using the classification of Poincare (see for example 
ref. [lo]), would be called a co1 singular point. The experimental realization 
of the flow is shown in Fig. 6. It was found that pure axial compression 
could only be achieved in a rather limited region of the flow close to the crit- 
ical point [ 91. The situation for axial extension was less stringent and pro- 
viding the jet separation was less than about three jet diameters a good 
approximation to uniform axial extensional flow was achieved in the whole 
region between the jets. 

2.2. Singular flows containing rotational components 

At present both the experimental realization and theoretical considera- 
tions have concentrated on two dimensional rather than three dimensional 

-----_ -----__ 3= Jet Jet _- --___ -- -_-- 
symmetry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

axis 
symmetry plane 

Fig. 6. Schematic diagram of flow between mutually opposed jets. 
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singular flows containing rotational components. In general the velocity gra- 
dient tensor for a two dimensional flow with a rotation component will have 

the form 

Pll E 2 '1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Eij = 

.[ 1 

i21 622 0 (14) 

0 0 0 

Following Frank [ 111 it is instructive to consider the 2D singular flow which 

is governed by the stream potential, 

f#l = ‘2 0(X2 + y2) + $3(X2 - y2) (15) 

The streamlines of the flow can have distinct forms depending on the relative 
magnitude of w and S. The spectrum of flows that can be obtained are 
shown in Fig. 7. Both the contours of the streamlines and the forms of the 
associated stream potential surfaces are shown. When w = 0 the flow is that 
of pure shearing flow and the asymptotes of the hyperbolic critical point 
intersect orthogonally. When S > o the flow still contains a hyperbolic crit- 
ical point, however the asymptotes no longer cut orthogonally. When w = S 
a degenerate flow occurs which corresponds to the much studied simple 
shearing flow. When S < o a closed orbit flow occurs where the singularity 
is defined by an elliptical critical point. This spectrum of flows has been 
explored experimentally for Newtonian fluids by Giesekus [4] using a mod- 
ified four roll mill apparatus. In this experiment the drives of diagonally op- 
posite pairs of rollers are driven independently and at variable speeds. To ob- 
tain elliptic critical points the sense of rotation of each pair of rollers must 
be the same, whereas to generate‘ hyperbolic critical points adjacent rollers 
generally rotate in the opposite sense. 

It was found by Frank and Mackley [l] that by using two co-rotating rollers 
flows where S > w could be explored. The general flow for two co-rotating 
rollers is shown in Fig. 8. The form of the streamlines near the hyperbolic 
critical point at the centre of the flow obey the stream potential given by 
eqn. (15) and the asymptotic angle (Y, defined as the obtuse angle between 
the asymptotes, is given by 

cos 2a = -w/s (16) 

This angle (Y is a direct measure of the relative magnitude of w and S and can 
be changed by varying the separation of the rollers, consequently flows with 
different components of w/S can be achieved ranging in principle from o = 
S when the rollers are touching and o + 0 when the rollers are a great distance 

apart. 
We now consider a flow which under rather special conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApossesses a 

critical point’which has three inflows and three outflows. This flow is repre- 

sented by the stream function, 

I$ = r(;Xs- A$) (17) 



Fig. 7. Sequence of streamlines and corresponding potential surfaces for flows given by 

4 = &J(x2 + y2) + $9(x2 + y2). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The form of the flow’s streamlines is shown in Fig. 11 flow number 1, and 
was first examined by Berry and Mackley [ 12 J. The flow can be generated to 
a very good approximation by an array of six rollers symmetrically posi- 
tioned, which are rotating with equal speeds in directions indicated in Fig. 9. 
This symmetric flow is special in that it represents a highly degenerate situa- 
tion. The critical point defined as the elliptic umbilic critical point occurs at 
the centre of the flow and satisfies the conditions V = 0, o = S = 0. 

The symmetry of this flow can be broken in a number of ways. Using the 
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Fig. 8. Schematic diagram of flow between co-rotating rollers. 

Fig. 9. Six roll mill geometry. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

classification of Thorn [ 131, Berry and Mackley [ 121 were able to show that 
only three perturbation parameters were necessary to explore all possible 
flows originating from the “germ” of the flow given by eqn. (17). These par- 
ameters consisted of additional translational components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, and V,, and an 
additional rotational component o. When these components are included 
the stream potential takes the form 

@I = y&r3 - zcy2) - $0(X2 + y2) - v,x + v,y (13) 

These additional terms can be experimentally introduced by varying cer- 
tain roller rotation rates. For example with the roller coupling shown in 
Fig. 9 an increase or decrease of S&, with respect to !& and S’& would intro- 
duce a V,, component to the flow. Similarly an increase or decrease of S&,, 
with respect to C12, would introduce a rotational component o into the flow. 

Starting from the most degenerate case, w = S = 0, additional terms in 
V,, V, and w can be added to the flow. This has the effect of immediately 
changing the form that the critical points take. In order to follow how the 
form of critical points will change it is very useful to consider the so called 
“catastrophe surface” [12] of the elliptic umbilic which is shown in Fig. 10. 
This surface drawn in the three dimensional control space with V,, V, and 
o as orthogonal axes, corresponds to the surface in control-space where the 
condition o = S is satisfied. When the parameters V,, V,, o are such that 
the point in control space does not lie on the catastrophe surface, then w + 
S and the critical points where V = 0 will either be elliptic critical points or 
hyperbolic critical points. When the point in control space does lie on the 
catastrophe surface, then o = S and a degenerate situation occurs where a 
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Fig. 10. Elliptic umbilic catastrophe surface in control space (from ref. [12]). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

degenerate critical point associated with points V = 0, w = S will exist. The 
forms that the degenerate critical points can take are limited and all are 
revealed if the path l-10, shown in Fig. 10 is taken in control space. Fig. 11 
shows the streamlines corresponding to’each position l-10 in control space. 

The critical points existing at each marked position l-10 are listed below; 
when the catastrophe surface is cut the number and nature of the critical 
points change. 

Position in Fig. 10 Number and form of critical points 

1 

2 and 3 

4 

one elliptic umbilic critical point 

two hyperbolic critical points 

two hyperbolic critical points and one fold catastrophe critical 

point 

5, 6 and 7 

3 

three hyperbolic critical points and one elliptic critical point 

one hyperbolic critical point and one cusp catastrophe critical 

point 

9 and 10 two hyperbolic critical points 

The extension of the work to singularities in three dimensional flows 
where rotational components are present has not been made. The non 
degenerate three dimensional singular flows of relevance to fluid mechanics 
are the co1 which is rotation free and experimentally well represented by the 
opposed jet system. The three dimensional singular point containing rota- 
tional components is the col-foyer shown schematically by Fig. 12. This flow 
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Fig. 12. The co1 foyer singularity (from ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA]W). 

could conceivably be generated expe * 

f 

entally using opposed jets with an 
additional device such as an offset in1 t for providing circulation of the flow. 

3. Flow singularities and chain extens&n 

3.1 Theoretical considerations 

Early studies of the flow behaviour of dilute polymer solutions were lim- 
ited to simple shearing flows, see for xample reviews by Cerf [ 141. Ziabicki 
[ 151 was the first to consider theoreti ally rotation free flows; this study 
was followed by amongst others work from Peterlin [16], Frank [17] and 
Hlavacek and Seyer [ 181, Marruci [ 1 1, Hinch [ 201 and DeGennes [ 211. 
Concerning rotation free flows, the es ential point to emerge initially from 
these studies was that significant chai extension could in principle be 
achieved provided a certain minimum elocity gradient S was exceeded. 

In terms of chain stretching the mo ecular parameter of importance is the 
relaxation time r of the molecule. Thi relaxation time is a measure of the 
time the molecule would take to ret 

_ 

to its random configuration if initial- 
ly deformed and then allowed to rel by thermal motion. The relaxation 
time is dependent on the molecular w ight of the chain, increasing with in- 
creasing molecular weight with typic values of r ranging from 10-s-ls 
(see, for example, ref. [9]). 

When a polymer chain is subjected o rotation free velocity gradients there 
are essentially two competing forces perating. The velocity gradient is 
attempting to stretch the normally r 

% 

dom chain due to fluid streaming 
around the chain. Opposing this stret hing motion there is the “elastic 
entropy” force attempting to restore he chain to its preferred random con- 
figuration. All the current theories for the dilute solution behaviour of poly- 
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mer chains in uniform rotation free velocity gradients show a characteristic 
feature in that to obtain high chain extension the condition, 

ST> 1, (rotation free flow) (19) 

must be satisfied. If ST < 1 the chain can to a first approximation be con- 
sidered essentially undeformed with the entropic restoring forces domi- 
nating. If ST > 1 the chain can be considered to be fully extended with the 
hydrodynamic stretching forces dominating over the elastic retraction. As 
the polymer chain becomes stretched the ends of the molecule find them- 
selves in regions of increasingly different velocities; this has the effect of sig- 
nificantly increasing the interaction between the chain and the flow which 
causes the socalled extensional viscosity to increase. Theory predicts [16] 
that with full chain extension increases in extensional viscosity of about one 
thousand can be expected. 

A second necessary condition to stretch chains concerns the time required 
to stretch the chain. For full chain extension the ends of the chain must be 
stretched from their normal root mean square end-to-end distance given for 

a random coil by 1, = afi, where IZ is the number of repeat units and a the 
length of each repeat unit. The fully stretched chain has an end-to-end length 
1s = na; thus the strain required to stretch the chain is e = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlE/lo and for a 
typical polymer would be of magnitude 102-103. In order to stretch the 
chain the chain must be in the stretching field for sufficient time to be ex- 
tended by this amount. This condition can approximately be expressed by 

st>> 1, (rotation free flow) (20) 

where t is the time the chain has been subjected to the uniform velocity gra- 
dient S. 

The addition of rotational components to the flow has not been rigorous- 
ly introduced into the theoretical studies on chain extension except for the 
special case of simple shearing flow (see, for example, ref. [16]). The calcu- 
lations on simple shearing where w = S showed that for flexible chains the 
degree of chain extension achieved was very small even for high velocity gra- 
dients, the reason being for this flow the rotational components of the flow 
become important and the molecules rotate rather than become stretched in 
any one direction for a sufficient period of time to become aligned. 

Frank and Mackley [l] argue that rotation can be introduced by the 
replacement of the principal strain rate by another parameter, the persistent 
strain rate u. This can most easily be shown for the two dimensional flow 
produced by co-rotating rollers and shown in Fig. 13. Polymer chains enter- 
ing the central region of the flow near the hyperbolic critical point will align 
parallel to the exit asymptote of the flow and will be stretched in a direction 
along this asymptote. The magnitude of the strain rate that the molecule will 
persistently experience will be the magnitude of the strain rate along this 
asymptote and not the magnitude of the principal strain rate which in fact 
acts along lines at 45” to the ordinate axis. The persistent strain rate u can be 
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Fig. 13. Schematic diagram showing the deformation of a fluid element of initial length 10 

in a hyperbolic critical point flow. 

Fig. 14. Graph of persistent strain rate u as a function of rotation rate o. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

written in terms of S and w by, 

o=@=z (21) 

Thus the conditions for high chain extension given by eqns. (19) and (20) 
for rotation free flows may now be written in terms of the persistent strain 
rate giving 

UT> 1 (22) 

at>> 1. (23) 

The magnitude of the persistent strain rate as a function of o is plotted in 
Fig. 14. For pure shearing flow w = 0 and u = S; u has its maximum value 

and consequently rotation free flows are the most efficient chain extenders. 
For simple shearing flows w = S, u = 0; thus neither of the conditions given 
by eqns. (22) and (23) can be satisfied and high chain extension is not possi- 
ble. Simple shearing flow marks a transition point where if S > o, u is posi- 
tive and real and- if u > S, u is imaginary. This latter case corresponds to an 
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oscillatory solution where rotation dominates preventing any possibility of 
high chain extension. The form of the curve shown in Fig. 14 shows that a cer- 
tain degree of rotation component w can be introduced into the flow without 
seriously impairing the flow’s chain extending ability, for example a flow 
where w = S/2 has a persistent strain rate of 0.87 S compared to S for the 
rotation free flow. 

3.2 Experimental consequences 

The condition for high chain extension summarized by eqns. (22) and 
(23) places considerable restrictions on the ability and extent of regions of 
flow where polymer chains can be highly extended. 

The first condition (TT > 1 requires that the magnitude of the persistent 
strain rate is sufficiently large. If the polymer chains were all of the same 
length and characterized by a single relaxation time r a sharp transition in 
chain extension would be observed with increasing u. The chains would be- 
come rapidly stretched at UT = 1. Most polymers are however not highly frac- 
tionated and usually any one sample contains a large range of molecular 
weights. This means chains have a large range of T with the highest molecular 
weight chains having the greatest value of 7. In addition if entanglements of 
polymer chains are present the spectrum of 7 values can be expected to be 
further extended. With a broad range of 7 the situation with increasing u is 
less dramatic. At low u, highly entangled and/or long molecules with large r 
may satisfy the condition UT > 1 and a small fraction of the molecules may 
be highly stretched with the other molecules remaining essentially unde- 
formed. With increasing magnitude of c a greater proportion of molecules 
will become progressively extended until all molecules will be stretched if 
the condition (T?~~,, > 1 is reached. 

The second necessary condition to achieve high chain extension at >> 1 
may have the significant effect of localizing the regions of flow where high 
chain extension can be achieved [5]. The effect is directly related to the 
existence of a singularity in the flow where V = 0. The principle of localized 
chain extension is again well illustrated with reference to the hyperbolic crit- 
ical point observed between two co-rotating rollers, shown in Fig. 13. Persis- 
tent strain rates of +u operate along the outgoing asymptotes of the flow and 
--u along the ingoing asymptotes. The magnitudes of the strain rates near the 
critical point are approximately uniform, thus the velocity along each 
asymptote may be written as, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ar,/a t= url (outgoing asymptote) (24) 

at-,/at = -ur2 (ingoing asymptote) (25) 

Assume fluid elements along a line marked PP’ in Fig. 13 are undeformed un- 
til they reach PP’ which is a distance r. from the origin measured parallel to 
the ingoing asymptote. The subsequent strain in the direction of u of a fluid 
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element of initial length lo that enters the flow along PP’ will be 

e = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl,/lo = eat. (26) 

At time t the element will be parallel to the outgoing asymptote and a dis- 
tance rt from the exit asymptote measured parallel to the ingoing asymp- 

tote, where r, is given by, 

rt = r. ePt (27) 

For high chain extension at >> 1 thus from eqn. (26) rt/rO << 1, conse- 
quently high chain extension can only be achieved very close to the outgoing 
symmetry plane of the flow. This observation is completely consistent with 
experimental observations with all the singular flows studied where highly 
localized flow birefringence corresponding to localized chain extension has 
been seen [ 1,5,9]. The degree of localization is quite striking and reflects the 
high strains required to stretch flexible chains. 

In the case of co-rotating rollers the localized chain extension occurs as a 
sheet of oriented molecules along the outgoing symmetry sheet of the flow 
[ 11. For other flows the localization always occurs along asymptotic lines, 
planes or sheets originating from stagnation points or lines. The position of 
the observed localized birefringence for certain flows is shown schematically 
in Fig. 15. One example of localized chain extension is also shown in Fig. 16 

2 Dimensional flow 
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2 Dimensional flow 
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3 Dimensional flow 
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Fig. 15. Schematic diagram showing regions marked as bold lines where localized birefrin- 

gence occurs for certain flows: (a) four roll mill, (b) double slit, (c) counter rotating 

rollers, (d) co-rotating rollers, (e) six roll mill, (f) fold catastrophe critical point and flow 

containing one hyperbolic critical point and one elliptic critical point, (g) axial extension 

(double jet), (h) axial compression (double jet). 



Fig. 16. Flow birefringence photographs observed between double slit apparatus viewed 

between diagonally crossed polaroids. Internal dimensions of slits = 1 mm X 5 cm. Photo- 

graphs (a) corresponding to 0.5%  polyethylene oxide (WSR 30l)lwater solution subjecl 

to strain rate S e 320 s-l, jet separation = 3.6 mm. (b) and (c) 1.0%  polyethylene oxide 

(WSR 30l)lwater solution subject to strain rates given by (b) S e 15-s-l, (c) S m 65 s-l, 

jet separation = 3.0 mm. Exposure times of each photograph typically 5 sec. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

from the localized flow birefringence observed for the pure shearing flow 
produced between double slits. 

It is very difficult to visualize flow systems other than those containing 
singular flows where flexible polymer chains can be significantly stretched, 
thus singularities and high polymer chain extension become intimately 
related. 

4. Flow singularities and hydrodynamic instability 

4.1 Degenerate and nondegenerate flows 

During the course of studying the flows that have been discussed in the 
previous sections it was found that certain flows were stable and insensitive 
to various perturbations whilst other flows were highly sensitive and unsta- 
ble. In particular it was observed that the topological behaviour of the criti- 
cal points of the flows were very sensitive markers as to whether a particular 
flow was stable or not. 

Concerning two dimensional flows stability can most usefully be discussed 
in terms of the magnitude of the rotation w of the flow and the principal 
strain rate S. Flows that were free from any rotation components such as the 
four roll mill and the double slit were found to be remarkably stable to fluc- 
tuations in roller speed and/or the introduction of polymer into the flow. 
Stability is indicated in the observed unchanged topology of the hyperbolic 
critical point where the asymptotes of the flow intersect orthogonally at the 
origin. To a certain extent the symmetry of the four roll mill and double slit 
apparatus dictates that the flow should maintain its symmetry, however an- 
other essentially rotation free flow is the flow between counter rotating 
rollers, shown schematically in Fig. 4, and again it was observed that the 
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overall topological form of the ingoing and outgoing hyperbolic critical 
points remained the same for perturbations such as slight mismatch of roller 
speeds and the addition of polymer. 

A similar degree of stability was observed between co-rotating rollers where 
S > w > 0. The asymptotes at the hyperbolic critical point no longer cross 
orthogonally but the topological form of the flow remained unchanged when 
slight perturbations were applied [ 11. 

The situations of greatest interest are the cases when degenerate critical 
points exist where V = 0, w = S. This occurs in the family of flows shown 
previously in Fig. 7. When S > w the flow contains a hyperbolic critical 
point, when w > S the flow contains an elliptic critical point. The condition 
w = S marks the transition between these two situations and corresponds to 
simple shearing flow. If a simple shearing flow of the form shown in Fig. 7 is 
perturbed by, say, the addition of transverse velocity components V,, V, 
and/or w, the flow can change into different topological forms. For example 
an addition of w would change the topological form to an elliptic critical 
point, alternatively a decrease in w would result in a hyperbolic critical 
point. Simple shearing flow therefore represents a highly unstable flow 
which depending on the nature of the perturbation can modify the flow into 
a number of different topological forms. The degeneracy and change in top- 
ology of the flow is reflected by the change in the form of the potential sur- 
faces of the associated flows which are also shown in Fig. 7, here the poten- 
tial surface changes from a surface containing a saddle point to a semitubu- 
lar form at o = S and then to a bowl like surface containing a minimum at 
the origin. 

The transition behaviour of simple shearing flows is further enhanced by 
the fact that the persistent strain is real and positive when S > w and be- 
comes imaginary when S < o. This means that physically the behaviour for 
example of polymer chains, oil droplets and the formation of meterological 
weather fronts [22] will all be significantly different on either side of the 
transition point. 

The above observations concerning the instability of simple shearing flow 
may appear surprising in that most laboratory experiments on laminar flow 
are carried out under simple shearing conditions and in general these flows 
are found to be rather stable. However if we have a simple shearing flow, in 
order that a perturbation can change the topology it is necessary that the 
degenerate critical point does not occur at a solid boundary of the flow. For 
example in a Couette apparatus which approximates well to simple shearing 

flow if the cylinders are sufficiently close to each other, the condition V = 
0 is only satisfied on the walls of one of the cylinders, consequently whilst 
the stagnation sheet resides on the wall of the cylinder it is not possible for 
the flow to change topology in the same way as if the stagnation point was 
unbounded. 

The significance of degenerate critical points and flow stability is very 
clearly shown in the six roll mill experiment [ 121. If the condition V = 0, 



Fig. 17. Streamline photographs of six roll mill flow showing (a) one elliptic umbilic crit- 

ical point, (b) two hyperbolic critical points produced by an additional -V, flow compo- 

nent, (c) two hyperbolic critical points produced by a further additional -V, flow com- 

ponent. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w = S is satisfied a perturbation in the form of an additional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,, V, or w 
will produce a change in the topological form of the flow. Thus flows cor- 
responding to control settings where the elliptic umbilic catastrophe sur- 
face shown in Fig. 10 is cut are intrinsically unstable, control settings where 
the perturbation is insufficient to cause a cutting of the catastrophe surface 
are intrinsically stable and the topology will remain unchanged. By way of 
example, the flow corresponding to V, = V, = o = 0 is shown in Fig. 17a. 
The slightest perturbation in the form of a V, component will break the 
symmetry of the flow and two hyperbolic critical points will develop, as 
shown in Fig. 17b. A further perturbation in terms of an additional V, com- 
ponent will not produce another change in topology, the position of the 
hyperbolic critical points will merely move further away from the origin 
with increasing V,, as shown in Fig. 17~. 

A topology change of particular interest is that associated with the devel- 
opment of the central eddy shown by flows (3,4, and 5) in Fig. 11. In this 
sequence a region of flow initially without a critical point develops and 
hyperbolic and elliptic critical point. The sequence is shown-in Fig. 18. The 
initially smooth contours develop a degenerate fold catastrophe critical 
point which subsequently forms a hyperbolic and elliptic critical point. This 
sequence of flows could conceivably correspond to the development of insta- 
bilities and eddies near the boundary of a wall for an initially two dimen- 
sional laminar boundary layer flow. Consequently the sequence of flows 
could be related to the onset of turbulent boundary layers and could also 
illustrate one of many mechanisms for generating eddies which can maintain 

Fig. 18. Schematic diagram showing the development of a fold catastrophe critical point. 



Fig. 19. Schematic diagram showing a possible mechanism for the multiplication of criti- 

cal points (from Gibson, ref. [ 231). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

the turbulence. The intermediate turbulent situations of following the decay 
of large eddies to smaller eddies offers many interesting topological possibil- 
ities. In a different context a possible topological sequence is considered by 
Gibson [23] and is shown schematically in Fig. 19; here an elliptic critical 
point is deformed by an external stretching field and breaks up to form two 
elliptic critical points and one hyperbolic critical point. 

It can be seen from these few examples that topology changes in flows 
such as the formation and multiplication of eddies in turbulent flows is asso- 
ciated with the existence of degenerate critical points in the flows. 

4.2 Flow modification and instabilities due to polymer chain extension 

The question of how chain extension can modify a certain flow is not 
easily answered; it would appear that effects become more subtle and com- 
plex with the increasing complexity of the flow being studied. 

At this point it should be noted that all experiments to be described were 
carried out with relatively concentrated polymer solutions typically l.O- 
2.0% polyethylene oxide/water. This was done for two reasons, firstly these 
solutions gave sufficiently high viscosities to ensure that the onset of turbu- 
lence did not occur at the range of speeds used and secondly the high poly- 
mer concentration enabled flow birefringence studies to be easily made. 
Recent experiments using dilute polymer solutions for double jet and slit 
systems have been carried out by Pope and Keller [ 241. 

It has been stated previously that the topology and form of the rotation 
free flow patterns produced by the four roll mill and double slit are un- 
changed with the introduction of polymer even when localized high chain 
extension can be observed using flow birefringence techniques. Velocity 
measurements have not yet been made on these flows to establish whether or 
not the magnitude of the velocity field is reduced due to the anticipated 
increase in extensional viscosity. 

Modifications to the flow were observed for both counter and co-rotating 
roller experiments. The situation for counter rotating rollers is shown clearly 
in Figs. 20 and 21. Glycerol behaves essentially as expected. With increasing 
roller separation the hyperbolic critical points move outward as shown in 
Fig. 20 and as predicted by Jeffreys [6]. The position of these critical points 
remains unchanged with increasing roller rotation as recorded in Table 1. 
The behaviour with an 0.8% polyethylene oxide (WSR30l)/water solution is 
quite striking. For a given roller separation the ingoing hyperbolic critical 



Fig. 20. Streamline photographs of flow between counter rotating rollers for a Newtonian 
liquid, glycerol. Diameter of rollers = 1.0 cm, flow moving vertically downwards through 
“throats” of roils. Shortest distance between surfaces of each roller for each sequence, 

(a) = 0.56 f 0.05 cm, (b) 0.72 cm, (c) 1.10 cm. Roller rotation rates for each sequence = 
0.7 revs/set. Exposure time 3 seconds, small quantity of Hostalen CUR powder added to 
glycerol to detect streamlines. 

point moves outwards With increasing roller speed whilst the position of the 

lower stagnation point remains unchanged, as shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21. This feature 

was first recorded in 1975 and subsequently brought to the author’s atten- 

tion by further experiments carried out by C.J. Farrell at Bristol University. 

TABLE 1 

Table of distance between stagnation points as a function of roller separation and roller 
rotation rate for counter rotating rollers. Roller diameter = 1 cm 

Fluid Roller rotation 
rate (rev/see) 

Roller separation, 
minimum distance 
between surfaces 
of rollers (cm) 

Distance between 
stagnation points 

(cm) 

glycerol 0.7 0.56 

0.7 0.72 

0.7 1.10 

glycerol 0.3 0.72 

0.7 0.72 

1.0 0.72 

1.4 0.72 

0.8% polyethylene 0.3 0.47 

oxide (WSR 301)/ 0.7 0.47 

water 2.1 0.47 

2.19 + 0.08 
2.53 + 0.08 
4.09 f 0.08 

2.63 f 0.08 
2.53 + 0.08 
2.63 + 0.08 
2.59 + 0.08 

2.3 f 0.08 
2.43 + 0.08 
2.69 f 0.08 
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Fig. 21. Streamline photographs of flow between counter rotati 
ethylene oxide (WSR 30l)/water solution. Diameter of rollers = 
tically downwards through “throats” of rolls. Shortest distance 
roller = 0.47 + 0.02 cm. Roller rotation rates for each sequence 

I \m. ~~~ I--_ 

.ng rollers for a 0.8% 1 ,01y- 

: 1.0 cm, flow moving ver- 
between surfaces of e !ach 
(a) 0.3 revslsec, (b) 0 .7 
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The outward movement of the ingoing stagnation point can be qualitatively 
explained by polymer chains becoming locally stretched with increasing rota- 
tion rate in the region marked AA’ in Fig. 15 close to the exit symmetry plane 
of the hyperbolic critical point; this would have the effect of increasing the 
extensional viscosity in this region. In order to reduce the subsequent 
enhanced stress levels in the fluid the magnitude of the locally applied persis- 
tent strain rate is correspondingly reduced by the outward movement of the 
ingoing hyperbolic critical point. Thus chain extension in this rotation free 
flow appears to result in a modification of the flow which attempts to 
reduce the u component of the flow when the molecules are being stretched. 
The justification for anticipating localized molecular extension in the region 
AA’ in Fig. 15~ is supported from the localized flow birefringence observa- 
tions in the four roll mill [5] and double slit systems where the flows are 
essentially identical in the region of the hyperbolic critical point. In addi- 
tion, recent observations in Bristol [25] and Strasbourg [26] have confirmed 
the existence of localised flow birefringence in the counter-rotating two roll 
mill. 

The flow modification produced by the presence of polymer for the case 
of co-rotating rollers has been previously reported by Frank and Mackley 
[ 11. For a roller separation giving a hyperbolic cricial point with non 
orthogonal asymptotes where w/S = 0.53 and u = 0.845 it was found that 
for a glycerol solution the asymptote angle OL defined by eqn. (16) remained 
constant with increasing roller speed. The situation when a 1.0% poiyox, 
WSR30l/water solution was introduced was different, here the asymptotic 
initially at a value of (Y = 129” increased with increasing roller rotation rate 
to a value of CY = 145”. Using eqn. (16) this change in angle can be associ- 
ated with an increase in o/S, thus either the principal strain rate decreases 
or the rotation rate increases or both. From eqn. (21) it can be seen that an 
increase in w/S must correspond to a decrease in the persistent strain rate CJ. 
Because the experimental conditions are such that the values of S and w are 
significantly different even with the addition of polymer no change in topol- 
ogy of the flow was expected or observed. In the co-rotating roller situation 
where a rotational component of the flow is present it appears that the 
effect of localized chain extension along the exit symmetry sheet of the flow 
has the effect of reducing the magnitude of the persistent strain rate. 

The flow modification produced by the presence of polymer in the six roll 
mill was reported by Berry and Mackley [12]. The observed effect was quite 
subtle and serves to illustrate the complexity of possible flow modifications. 
Many of the flows explored using the six roll mill which are schematically 
shown in Fig. 11 occur near or on the catastrophe surface shown in Fig. 10, 
this means that for these flows the conditions w = S is nearly satisfied. In 
this situation the modification of the flow due to the presence of polymer is 
sufficient in some circumstances to result in a transition across the o = S 
catastrophe surface with the result that a change in the topology of the flow 
is possible. 
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When polymer was introduced into the systems and roller settings chosen 
to take a path l-10 in control space shown in Fig. 10, it was found that the 
topology of the observed flows in fact corresponded to a path 1, 2, 3’ . . . 9’, 10 
also shown on Fig. 10 where in particular flows contained two hyperbolic crit- 
ical points and no eddy was generated [ 121. These observations require that the 
catastrophe surface is not cut except at the origin. To achieve this an addi- 
tional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, component to the flow has to be accounted for. With the roller 
couplings of the form used it is initially difficult to visualize how this can 
happen, however flow birefringence observations help in interpreting behav- 
iour. For all the flows examined chain extension if it occurs at all will be 
seen localized on the outgoing asymptotes of the flow which eventually pass 
through the throats of the roller gaps (ii), (iv) and (vi) marked in Fig. 9. If a 
localized enhanced viscosity caused by the local chain extension is associated 
with the outgoing flows (ii), (iv) and (vi), this can have the effect of breaking 
the symmetry of the out- and ingoing flow profiles between the throats of 
the rollers. The effect of this is quite subtle, if there is no rotation present, 
w = 0, flow profiles through throats marked (i), (iii), (iv) and (vi) in Fig. 9 
are all the same and the symmetry breaking of inflow and outflow velocity 
profile is still insufficient to produce an overall V, component in the central 

region of the flow and the flow remains unchanged. If there is a rotational 
component to the flow, flows marked (i) and (vi) have different values of veloc- 
ity profiles to (iii) and (iv) and in this case symmetry breaking results in differ- 
ent inflow and outflow velocity profiles and can produce an additional V, com- 
ponent. It was thus found that rotation free flows were unchanged with the 
addition of polymer but the topology of all flows containing rotation was 
changed when the polymer was added. Both observations are consistent with 
localized enhanced viscosities reducing the persistent strain rate in these 
regions and thereby modifying the velocity profile in specific regions of the 
flow. 

To summarize, the observations of this section, it has been observed that 
singular flows containing hyperbolic critical points with w = 0 do not change 
topology or develop rotational components with the addition of polymer, 
however the position of the hyperbolic critical point can be significantly dis- 
placed in an apparent attempt to reduce the local persistent strain rate in the 
region where molecules are being stretched. Similarly flows where S > o > 0 
are modified by the presence of polymer in a way that the persistent strain 
rate (I decreases. Finally flows that occur near degenerate critical points 
where o = S could be subjected to a change in topology and a local reduc- 
tion in a persistent strain rate in the region of the outgoing asymptotes 
emerging from the critical or degenerate critical point in question. 

5. Conclusion 

The overall observations of the experimental work reviewed in this paper 
strongly suggest that the behaviour of critical points in steady flow is of im- 
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portance in terms of understanding factors associated with high chain exten- 
sion of polymers and also general problems related flow modification and 
instability. The achievement of high chain extension has many practical 
applications mainly resulting from the large anisotropic properties which 
develop when the chains are stretched. The way polymers modify flows is of 
importance to plastics processing and also to the increasing practice of using 
polymers as additives to modify rheological properties of fluids. 

From the experimental observations presented in this paper the subtle 
way polymers can modify relatively simple flows suggests that generaliza- 
tions are difficult to make with confidence; however at this stage all experi- 
mental observations reported here have shown plausible agreement with the 
concept that th6 addition of polymer to a flow causes a reduction in the 
magnitude of the persistent strain rate in the region of flow where polymer 
chains have been appreciably stretched. 

Finally, the study of the behaviour of critical points in complex fluid flow 
situations appears to be a powerful way of both characterizing the flow as 
well as obtaining physical information concerning the development and 
interactions of the flow. 
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