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Flow stabilization with active hydrodynamic cloaks
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We demonstrate that fluid flow cloaking solutions, based on active hydrodynamic metamaterials, exist for

two-dimensional flows past a cylinder in a wide range of Reynolds numbers (Re’s), up to approximately 200.

Within the framework of the classical Brinkman equation for homogenized porous flow, we demonstrate using

two different methods that such cloaked flows can be dynamically stable for Re’s in the range of 5–119. The

first highly efficient method is based on a linearization of the Brinkman-Navier-Stokes equation and finding

the eigenfrequencies of the least stable eigenperturbations; the second method is a direct numerical integration

in the time domain. We show that, by suppressing the von Kármán vortex street in the weakly turbulent wake,

porous flow cloaks can raise the critical Reynolds number up to about 120 or five times greater than for a bare

uncloaked cylinder.
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Metamaterials (MMs), or artificially structured composites,

have been proposed as a supplement to natural molecular

media that extends material properties into the domains not

covered by naturally formed substances. Supplemented with

a macroscopic design methodology, known as transformation

optics (acoustics, and so on), MMs enable new wave applica-

tions by offering extra flexibility in manipulating the dynamics

of waves and matter. Recently, it was proposed [1] that

hydrodynamic metamaterials (HDMMs), consisting of a fluid-

filled solid matrix with a variable fluid permeability, can enable

exotic flow regimes in which pressure and velocity differentials

are confined to a small volume occupied by the permeable

shell. These flows were demonstrated in three dimensions for

a spherical object surrounded by a concentric porous shell with

anisotropic and partially negative permeability. As explained

below, such a property would necessitate the use of active

hydrodynamic metamaterials, defined as HDMMs, with active

elements that can accelerate the fluid; the latter elements can be

devised, for example, from electrically powered and controlled

micropumps [2,3].

The wider concept of active, or externally powered, MMs

is currently the subject of fundamental studies in the fields

of electrical engineering, optics, and acoustics. Here, before

attempting to propose a physical implementation of an active

HDMM, we wish to address the question of whether such

media would be of any benefit in hydro- or aerodynamical

engineering. This paper serves to demonstrate that active

HDMMs are capable of leveraging the critical Reynolds

number (Re) at which the flow past an object transitions from

laminar to weakly turbulent.

In comparison with the three-dimensional flow past a

sphere, the two-dimensional (2D) case is substantially more

challenging. From the theoretical perspective, exact analytical

solutions for flow past a cylinder are not possible even in

the limit of small Re’s; Oseen’s equation can be used to

obtain the lowest-order approximation [4]. Thus, 2D flows

are more sensitive to the approximate treatment (or neglect) of

the momentum advection term [(�u · �∇)�u] in the Navier-Stokes
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equations. This term is responsible for chaotic motions that

are bound to grow from small perturbations when the Re

exceeds a certain critical value; well-developed stochasticity

of a flow with stationary boundary conditions is known as

turbulence [4].

For 2D flows past a cylinder, the growth of perturbations

is a concern even at low Re’s (less than 100) where the spon-

taneous formation and separation of oscillating eddies in the

downstream wake give rise to the von Kármán vortex street [5].

Vortex shedding has many undesirable practical consequences,

including vibrations of long fluid-protruding objects (towers,

chimneys, and aerials) and bubble generation in gas-saturated

liquids (submarine periscopes). An engineering effort was

made to control the wake and to suppress vortex shedding

by manipulating the separation of vortices from the boundary

layer by both passive means, such as fins and other vortex

spoilers [6] as well as active devices [5,7,8]. In this paper, we

propose that fluid-permeable active flow “cloaks” can suppress

the formation of eddies in a wide range of Re’s, thus, leveraging

the onset of turbulence.

We begin our analysis by postulating the time-dependent

nonlinear Brinkman equations for the macroscopic description

of flows [9–12] in HDMMs,

∂
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We wish to simplify the analysis by setting the porosity

parameter ǫ, which represents the filling fraction of the fluid,

to a constant value of unity. This approximation is consistent

with the expectation that the desirable porous media have a

very small filling fraction of the solid phase, which would

allow them to have a high permeability (low resistance to the

flow). Generalization of the forthcoming analysis to specific

values of ǫ < 1 is straightforward.

With this simplification, the steady-state form of the

Brinkman equation for an incompressible fluid (ρ = const)

with a constant free-stream dynamic viscosity μ and
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FIG. 1. (Color online) (a) Schematic of the structure and the

problem setup. (b) Permeability profiles designed for flows with

various flow rates, labeled by the corresponding Reynolds number

Re = ρu0a/μ. Steady-state cloaking solutions; shaded: distribution

of the vertical velocity uy normalized to u0; black lines: streamlines

of flow for solutions optimized at (c) Re = 0.5 and (d) Re = 190.

coordinate-dependent inverse permeability tensor κ−1 be-

comes

ρ(�u · �∇)�u = −�∇p + μ∇2 �u − μκ−1 �u (3)

combined with the steady-state continuity equation,

�∇ · �u = 0. (4)

Within the framework of Eq. (2), we solve the problem of

two-dimensional flow cloaking [1] or wake elimination. We

then proceed to demonstrate that wake elimination, indeed,

results in flow stabilization at flow rates that normally result in

turbulence. The schematic of the geometry under consideration

is shown in Fig. 1(a). The boundary conditions are no

slip (�u = 0) at the surface of an impermeable cylinder (r =
a) and plug flow in the y direction (�u = u0ŷ) at infinity

(r → ∞). Elsewhere, including the transition from porous to

free flow domains at r = b, the continuity conditions [13]

are assumed for the velocity field and for the fluid stress

tensor, including its pressure and shear components. Whenever

a specific calculation occurs, we assume a = 0.5 mm, b =
2a, μ = 1 × 10−3 Pa s, and ρ = 1 g/cm3. When referring to

normalized permeability, the normalization constant κ0 =
a2/4 is assumed.

Previously, approximate solutions were reported for the

case of flow past a spherical cloak [1]. The proposed technique

was based on the introduction of the (Stokes) stream function

and solving the linear equation in the regime with vanishingly

small Re’s. However, for the flow past a cylinder, it is well

known that the linear Stokes equation cannot give meaningful

solutions that satisfy the boundary conditions at r = a and

infinity; the origin of the problem is the existence of a

logarithmic fundamental solution. This issue can be partially

alleviated by considering Oseen’s equation, which uses an

approximate linearized form of the advection term instead

of neglecting it entirely. Still, this term, due to its angular

symmetry, would break down the separation of variables in

the polar coordinates, thus, rendering the method of Ref. [1]

much more difficult to apply. Thus, we choose to obtain the

wake-free (cloaking) solutions numerically by employing a

gradient-based optimization technique.

In Ref. [1], it was shown that wake-free solutions exist

when the permeability is spherically symmetric but locally

anisotropic with the spherically uniaxial type of anisotropy.

Here, we show that approximately wake-free designs can

be obtained by assuming locally isotropic and cylindrically

symmetric permeability κ(r). For solving the forward steady-

state problem with any given κ(r), our approach employs a

standard two-dimensional Galerkin (finite element) method

provided by simulation software COMSOL MULTIPHYSICS [14],

specifically, in its “free and porous flow” interface, which

includes both Brinkman and Navier-Stokes equations. The

simulation domain throughout this paper is a rectangle of

width W = 20a horizontally and height H = 60a vertically.

The inflow boundary is positioned at y = −H/3, and the outlet

is at y = 2H/3 with the center of the cylinder at the origin.

The forward problem is then embedded into a gradient-based

optimization algorithm (SNOPT), which is also part of the same

program. This integrated forward-inverse solving strategy lets

us use the built-in semianalytic sensitivity analysis, which

produces the gradient of the optimization goal with respect

to all optimization variables in one step, which is then used by

the gradient-assisted optimization routine. The optimization

goal is to minimize the norm of velocity deviation from a

perfectly uniform plug flow, i.e.,

W =

∫

|�u − �u0|
2dV, (5)

where the integral is taken over the exterior of the cylinder

of radius r = b, which represents the cloak. The quantity

W can be seen as a measure of wake in the flow past the

structure. The optimization variables are the nodal values of the

unknown permeability function κ(r), discretized on a certain

finite element mesh. These nodal values are then extruded and

are interpolated onto the entire annulus a � r � b.

In this fashion, we obtain a fully converged solution with the

flow rate corresponding to Re = 0.5 and then use that solution

as an initial guess for the next run of the optimization solver at a

slightly higher inflow velocity u0. This procedure yields fully

converged (in the sense of the gradient-based optimization)

solutions, showing very little velocity perturbation (5) in the

exterior of the permeable cylinder. Several such solutions are

illustrated in Figs. 1(b)–1(d).

A key feature of the obtained solutions is that they contain

regions where κ−1 < 0. Although we are not aware of any

physical implementations of negative κ as passive porous

media, we may conceive it to be implemented as an active

HDMM. The latter is defined here as a fluid-permeable

structure that applies an accelerating force to the fluid. To

understand how an active HDMM can implement the proposed

solutions, one should realize that the Brinkman Eq. (3) is

nothing more than the momentum transport equation with three

volumetric forces: pressure gradient force, viscous shear force
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and, lastly, the force exerted by the solid components of the

HDMM upon the fluid,

�Fs = −μκ−1 �u. (6)

In passive media (or media with κ > 0), �Fs is typically

contradirected with the average flow direction �u so that it

does work against the flow ( �Fs · �u < 0) and, thus, decel-

erates it. However, in an HDMM, an embedded array of

thrust-generating elements (such as mini- or micropumps

[2,3]) may generate a force Fs with an arbitrary direction

relative to �u, including �Fs · �u > 0. Therefore, our HDMM

cloaking solutions are to be implemented in practice as

follows. Once the spatial distributions κ(�r) and macroscopic

fluid velocity �u(�r) are found using the technique presented

here, negative permeability regions are replaced with an

equivalent body force �fthrust using the trivial relationship

μκ−1(r)�u(�r) = μκ−1
p (r)�u(�r) − �fthrust(�r), where κp(r) > 0 is

an arbitrary positive function of the radius. We emphasize that

the origin of negative permeability in our results is the ansatz of

Eq. (6), used to express the volumetric force needed to sustain

the desired flow pattern ( �Fs) in terms of the macroscopic fluid

velocity (�u). This ansatz is used merely for historical reasons,

and it is neither expected to be valid at high Re’s nor required

to obtain the types of flows reported here.

In order to address the question of the dynamic stability of

the stationary solutions obtained, we first employ the method

of small perturbation [15]. The technique is based on the

linearization of the full time-dependent Eq. (2) with respect

to the steady-state solution (�us , ps) of the nonlinear Eq. (3).

Assuming that the velocity and pressure perturbations (�v,p′)

depend on time as e−λt , the following eigenvalue problem can

be formulated:

ρ(�us · �∇)�v + ρ(�v · �∇)�us + �∇p′ − μ∇2�v + μκ−1�v = λρ�v,

(7)

which must be supplemented by the linearized continuity

equation �∇ · �v = 0.

Once the eigenvalue problem is solved, the eigenvalues λn

can be used to determine whether the solution is stable with

respect to small perturbations. The steady-state solution is

unconditionally stable when all eigenvalues λn lie in the right

half-plane, i.e., Re (λn) � 0 ∀ n. Thus, the critical velocity at

which the transition from laminar to turbulent flow occurs can

be determined by looking at � = minn Re(λn) as a function of

u0; once � becomes negative, the flow is no longer stable.

First, we calibrated this method by solving the classical

problem of laminar flow past a bare impermeable cylinder

of radius a (results not shown). The spectra we obtain

indicate that such flow is unconditionally stable for Reynolds

numbers Re = ρu0a/μ up to Re(0)
cr = 23.5 and bears unstable

eigenmode(s) above that Reynolds number. The instability-

causing eigenmode in the latter regime has the appearance

of the familiar von Kármán vortex street. This finding is in

general agreement with other theoretical and experimental

results [16,17].

We then apply this method to porous cloaks with various

flow rates, which are labeled by the corresponding Reynolds

number of the flow Re = ρu0a/μ, calculated with respect to

the cloaked cylinder radius a. The lowest three eigenvalues

FIG. 2. (Color online) Stability analysis using the harmonic

perturbation method for several fluid cloaks. Shaded: distribution

of velocity perturbation and black lines: its streamlines for the

eigenmode with the lowest Re(λ); cloaks with (a) Re = 1 (unstable),

(b) Re = 5 (stable), (c) Re = 100 (stable), (d) Re = 120 (unstable).

for cloaks with various Re’s are listed in Table I. Noticeably,

an unstable eigenmode exists in the range of Re � 4, which

becomes stable at Re ≈ 5 and remains stable at higher Re’s.

A snapshot of this eigenmode’s velocity perturbation profile

is shown in Figs. 2(a) and 2(b), both below (a) and above

(b) the transition Re. This behavior—flow stabilization with

increasing flow rate—is drastically different from the usual

laminar-turbulent flow transitions. Apparently, this form of

instability can be attributed to the presence of an active

(negative-permeability) medium, which adds momentum to

the flow in proportion to the local velocity [see Eq. (6) and the

discussion below it]. Not surprisingly, a hypothetical medium

with a momentum pump, whose strength grows with the flow

rate, acts as an amplifier of local fluctuations, causing the

system to exhibit an instability even at very small Re’s well

within the Stokes flow regime.

In the range of Re = 5–119 [see Table I and Fig. 2(c)],

all eigenmodes existing in our simulation domain are stable,

which leads us to believe that the steady-state solutions

obtained in this regime are unconditionally stable. This

conclusion is further confirmed below by another method.

At Re = 120, an eigenmode corresponding to the formation

of an oscillating von Kármán vortex street past the cylinder

[Fig. 2(d)] becomes unstable and remains unstable for all

higher Re’s that were simulated (up to Re = 192). From

Fig. 2(d), one may observe that the eigenmode, leading to

flow instability in that regime, appears to be seeded by the

perturbation in the small region past the cylinder near its

back surface where the velocity deviation (or wake) is not

completely eliminated in the stationary solution [see Fig. 1(d)].

Since the cloaking structures obtained through numerical

optimization of the permeability deviate noticeably from a

perfect wake-free goal (5), at Re > 100, one can, therefore,

expect that a more accurate cloak with a much smaller value

of (5) would also possess a more stable perturbation spectrum.

To validate the findings of our perturbative stability anal-

ysis, we perform full transient simulations based on the full
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TABLE I. The three lowest eigenvalues [ordered by increasing Re(λ)] for cloaks designed for different Re’s.

Re λ1 λ2 λ3

0.5 −4.093 0.3456 ± 0.0576i 0.4466 ± 0.1393i

1 −2.621 0.6843 ± 0.1914i 0.818 ± 0.4684i

4 −0.4757 3.008 ± 0.7027i 3.4721 ± 2.4045i

5 0.3651 3.823 ± 0.5922i 4.477 ± 3.008i

10 3.369 7.4493 8.7070

50 18.618 ± 40.715i 48.461 ± 55.731i 51.655

100 9.748 ± 125.92i 93.835 94.886 ± 96.484i

119 8.950 ± 154.387i 113.795 ± 114.267i 114.164

120 −11.718 ± 134.177i 115.740 118.602 ± 73.088i

190 −21.490 ± 211.938i 85.055 182.137

time-dependent Eq. (2). The initial value problem was solved

for cloaks with several u0’s with the same boundary conditions

as were used for the stationary analysis, and with the initial

values �u(x,y,t = 0) = u0ŷ and p(x,y,t = 0) = 0.

For the cloak designed to operate at Re = 1, which, for

the cylinder dimension 2a = 1 mm, corresponds to inflow

velocity u0 = 2 mm/s, we observe that the solution quickly

(within 0.1-0.2 s) reaches the steady-state solution that was

found in the stationary analysis [Figs. 3(a) and 3(b)]. However,

as evident from Fig. 3(a), at t ≈ 5 s, since the simulation starts,

the velocity in the vicinity of the structure begins to grow

exponentially, and at t = 6.6 s [Fig. 3(c)], the velocity profile

matches precisely with the unstable eigenmode predicted by

the perturbation analysis [see Fig. 2(a)]. Pure exponential

growth of this eigenmode continues throughout the end of

the simulation period (10 s).

Similar behavior, but on a longer temporal scale, is observed

for the cloak designed to operate at Re = 4 (not shown). As

seen from Table I, the unstable eigenmode is characterized

by the negative real part Re (λ) = −0.4757, which is less,

by a factor of 0.18, than Re (λ) = −2.62 of this eigenmode

FIG. 3. (Color online) Time-dependent analysis for fluid cloaks

optimized at different Re’s. (a) Cloak operating at Re = 1, vertical

velocity on the surface of the cloak at position x = b, y = 0 vs time

(logarithmic scale), (b) vy velocity component profile at Re = 1,

t = 0.3 s (before instability), and (c) Re = 1, t = 6.6 s (after unstable

eigenmode growth). (d) At Re = 100, vertical velocity at a surface

point vs time, (e) vy snapshot at Re = 100, t = 0.0015 s (before

stabilization), and (f) Re = 100, t = 0.15 s (after stabilization).

at Re = 1. Thus, one may expect that the time needed for

the instability to develop is about 1/0.18 ≈ 5 times greater

than in the previous case. This prediction is confirmed by the

transient simulation: The instability begins to grow at t ≈ 25 s

(not shown).

The cloak designed for Re = 100 (inflow velocity u0 =
0.2 m/s) shows a drastically different behavior. The flow

reaches steady state in about 0.04 s since the initialization

time and remains completely unchanged throughout the rest

of the simulation period T = H/u0 = 0.15 s, which is chosen

such that the fluid starting at the inlet has enough time to travel

throughout the very long simulation domain. This confirms

that the steady-state solution found above is dynamically

stable. Virtually identical behavior is observed in the flow

with Re = 119 (not shown), which is the upper limit of the

dynamically stable regime in our calculations.

Above the transition (Re = 120), numerical integration

of time-dependent equations reveals an instability (Fig. 4).

The spatial profile of velocity disturbance and its oscillating

nature allows one to immediately identify the vortex sheet

eigenmode shown in Fig. 2(d). This behavior is seen in the

entire range of velocities studied (Re = 120–192). The growth

rate of this instability during its unsaturated (exponential)

growth as well as its oscillation frequency are consistent with,

correspondingly, the real and the imaginary parts of the lowest

eigenvalue (λ1) shown in Table I.

The close agreement between the two independent stability

analysis methods is evidence that, within the applicability

domain of the Brinkman-Navier-Stokes equations, the fluid-

permeable structure described above is able to increase

FIG. 4. (Color online) Transition to turbulence in the designed

cloaks. (a) At Re = 190, vertical velocity at a surface point (x =

b, y = 0) vs time, (b) vy profile at t = 0.004 s (before instability

growth), and (c) t = 0.4 s (after considerable growth of instability).
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the critical velocity ucr , which marks the transition from

laminar to turbulent flow, by a factor of 5. According to

the law of hydrodynamic similarity, ucr is a function of the

object diameter 2R (which also equals its cross section in

two dimensions), kinematic viscosity ν = μ/ρ, and a single

dimensionless coefficient Recr , which itself is a function of

only the object shape ucr = Recrν

R
. Thus, the increase in ucr can

be stated either as an increase in Recr , the critical Reynolds

number, or as a reduction of effective diameter 2Reff , defined

according to ucr =
Re(0)

cr ν

Reff
, where Re(0)

cr = 23.5 is the critical

Re of the bare cylinder. In that sense, the fluid sees the cylinder

of radius R surrounded by the cloaking structure as a cylinder

of radius Reff , which can be substantially smaller than R,

according to the findings above.

In conclusion, we have demonstrated that approximate

fluid flow cloaking solutions exist for flows past a cylindrical

obstacle. These solutions require a mixture of positive and

negative permeabilities inside a cylindrical shell, which can

be locally isotropic. We show that negative permeability gives

rise to dynamic instability for flows with Reynolds numbers of

Re < 5. However, a family of solutions exist for all Re’s in the

range of 5–119 where the steady-state flow is unconditionally

stable. This finding hints at the possibility of maintaining

laminar flows around cylinders at velocities five times the

critical velocity for a bare cylinder. Further minimization

of the wake at high Reynolds numbers should lead to

dynamically stable solutions at the correspondingly higher

velocities.
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