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The local flow topology analysis of the primary atomization of liquid jets has been
conducted using the invariants of the velocity gradient tensor. All possible small-scale flow
structures are categorized into two focal and two nodal topologies for incompressible flows
in both liquid and gaseous phases. The underlying Direct Numerical Simulation database
was generated by the one-fluid formulation of the two-phase flow governing equations
including a high-fidelity Volume-of-Fluid method for accurate interface propagation.
The ratio of liquid-to-gas fluid properties corresponds to a Diesel jet exhausting into
air. Variation of the inflow-based Reynolds number as well as Weber number showed
that both these non-dimensional numbers play a pivotal role in determining the nature
of the jet breakup, but the flow topology behavior appears to be dominated by the
Reynolds number. Furthermore, the flow dynamics in the gaseous phase is generally less
homogeneous than in the liquid phase because some flow regions resemble a laminar-
to-turbulent transition state rather than fully developed turbulence. Two theoretical
models are proposed to estimate the topology volume fractions and to describe the size
distribution of the flow structures, respectively. In the latter case, a simple power law
seems to be a reasonable approximation of the measured topology spectrum. According
to that observation, only the integral turbulent length scale would be required as an
input for the a-priori prediction of the topology size spectrum.
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1. Introduction

The performance and pollutant emission of combustion devices heavily depends on
the evaporation and homogeneity of the fuel-air mixture which is controlled by the
preceding atomization process. It describes the disintegration of a liquid core into a
large number of droplets. Further crucial technical applications can be found in medicine
(e.g. asthma spray) or agriculture (e.g. manuring apparatus). The underlying physics of
spray formation, especially the interaction between the turbulent flow and the liquid-gas
interface, is not yet fully understood (Desjardins et al. 2013).

† Email address for correspondence: josef.hasslberger@unibw.de



2 J. Hasslberger, S. Ketterl, M. Klein and N. Chakraborty

The development of advanced numerical techniques in the context of Direct Numerical
Simulation (DNS) significantly improved our understanding of the atomization physics.
Each exhibiting particular advantages and disadvantages, the Volume-of-Fluid method
(Hirt & Nichols 1981), the level-set method (Sussman et al. 1994) and the front-tracking
method (Tryggvason et al. 2001) are well established for accurate interface propagation.
One of the first reported Diesel spray DNS at low Reynolds and Weber number goes
back to Leboissetier & Zaleski (2001), demonstrating that no breakup occurs for laminar
flow conditions inside the nozzle. Taking into account realistic turbulent conditions at
the injection nozzle, DNS of a liquid sheet exhausting into gaseous atmosphere was
performed by Klein (2005). For the planar water jet at the low Weber number of 270, no
jet breakup and spray formation occurred. Flow and interface statistics in the near-nozzle
region were also compared to experimental data revealing good qualitative agreement.
Sander & Weigand (2008) later found that not only the inflow turbulence characteristics
but also the mean velocity profile at the inlet has a strong influence on the stability
of liquid sheets. Accompanied by a first discussion of mesh resolution requirements in
the context of two-phase DNS, Diesel jet simulations at an increased Weber number
of 11,600, showing severe liquid breakup, were presented by Ménard et al. (2007). This
discussion of resolution requirements for the smallest interfacial structures was continued
by Desjardins & Pitsch (2010) who studied the breakup of a temporally evolving turbulent
liquid sheet at Weber numbers between 500-2,000. Herrmann (2011) investigated the
primary atomization of a round Diesel jet, also highlighting the impact of finite grid
resolution on interface geometry and droplet size distributions. Highly-resolved round
Diesel jets at the high Weber number of 14,000, injected at laminar conditions into
stagnant air, were presented by Shinjo & Umemura (2010).

To obtain a comprehensive picture of the jet atomization phenomenon, this paper
contributes by a local flow topology analysis based on the invariants of the velocity
gradient tensor following the pioneering work of Chong et al. (1990); Perry & Chong
(1987). In case of incompressible flows, all possible small-scale flow structures can be cat-
egorized into two nodal and two focal topologies. To analyze the different manifestation of
coherent structures, the methodology has been applied to a variety of flows including wall-
bounded shear flows (Chong et al. 1998) and homogeneous isotropic turbulence (Elsinga
& Marusic 2010). In the context of incompressible two-phase flows, Hasslberger et al.

(2018b) analyzed the distribution of local flow topologies in bubbly air-water systems.
It has been found that focal topologies, representing vortical motion, predominantly
reside inside the gaseous bubbles. An example of application to a single-phase jet flow
has been presented by Watanabe et al. (2014) who focused upon vortex stretching and
compression near the turbulent/non-turbulent interface in a planar jet. The authors are
not aware of any applications of this methodology to liquid jet atomization however. If
the flow is compressible, e.g. in the context of turbulent premixed combustion (Wacks
et al. 2016), the first invariant (trace) of the velocity gradient tensor assumes non-zero
values. The number of possible flow topologies consequently increases from four to eight.
Potential further analysis steps were demonstrated by Dopazo et al. (2007) who studied
the connection between local flow topologies and local interface curvature. Including also
the evolution of the invariants, an extension of the snapshot-based topology analysis has
been proposed by Ooi et al. (1999).
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2. Direct numerical simulation database

2.1. Numerical methodology

The state-of-the-art two-phase solver PARIS (PArallel Robust Interface Simulator,
written in Fortran, and developed by Stéphane Zaleski et al. at Institut Jean Le Rond
d’Alembert, UPMC & CNRS, Paris, France) was applied for the simulations discussed in
this paper. This code is based on the one-fluid formulation of the unsteady incompressible
Navier-Stokes equations including capillary forces. Two immiscible fluids are represented
by a jump in density and viscosity. Propagation of the phase interface is implicitly
calculated by an advection equation

∂α

∂t
+ uj

∂α

∂xj
= 0 (2.1)

for the cell-based volume fraction α of the liquid phase. Cell-averaged fluid properties
are then obtained from a weighted arithmetic mean for density and dynamic viscosity,

ρ = αρl + (1− α)ρg, (2.2)

µ = αµl + (1− α)µg. (2.3)

The subscripts g and l indicate the gaseous and liquid phase, respectively. To obtain the
velocity field u, the momentum balance equation for two-phase flows

ρ

(

∂ui
∂t

+
∂uiuj
∂xj

)

= −
∂p

∂xi
+
∂τij
∂xj

+ σκniδS (2.4)

is solved, in which the interface Dirac function δS ≡ δ(x−xS) is approximated by |∇α|,
and thus nδS = −∇α, according to the Continuum Surface Force methodology proposed
by Brackbill et al. (1992). The quantities σ, κ and n = −∇α/|∇α| denote the surface
tension, interface mean curvature and interface normal vector, respectively. The viscous
stress tensor τij is formulated on the basis of Stokes’ hypothesis, which reduces to

τij = µ

(

∂ui
∂xj

+
∂uj
∂xi

)

(2.5)

for incompressible flows (∇ · u = 0).
In terms of interface treatment, advanced numerical techniques are applied: a geomet-

rical Volume-of-Fluid method including piece-wise linear interface reconstruction, and a
height function method combined with continuous surface force balancing for interface
curvature determination (Popinet 2018). In the framework of the finite-volume method,
spatial discretization on a cubic staggered grid is implemented by the third-order QUICK
scheme for momentum advection and the second-order central differencing scheme for
diffusive fluxes. Volume fraction advection, Eq. 2.1, is implemented by the CIAM scheme
(Scardovelli & Zaleski 2003) (similar to the method of Parker & Youngs (1992)) and
explicit temporal discretization by a second-order accurate Runge-Kutta scheme. The
projection method invokes a successive over-relaxation solver for the pressure Poisson
equation. Parallelization is realized by the domain decomposition technique and MPI
processor communication. Further details on the utilized numerical techniques can be
found in (Tryggvason et al. 2011).

2.2. Computational setup

The investigated setup is similar to the configuration studied by Ketterl & Klein (2018).
For one of the examined cases, Fig. 1 visualizes the primary atomization process: The
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Figure 1. Three-dimensional round jet configuration: Primary atomization in the hiRe-loWe
case visualized by the blue α = 0.5 iso-contour indicating the liquid-gas interface; The mean
flow direction is oriented from left to right.

liquid is injected through a round nozzle on the left and the interface immediately starts
to wrinkle according to the turbulent inflow conditions. Interface corrugations grow in
downstream direction and ligaments are formed. These ligaments are being stretched,
eventually rupture and form droplets. Secondary atomization, i.e. the breakup of droplets
into smaller droplets, is naturally included in the simulation but is not at the focus of
this work.
The near-field of a liquid round jet injected through a nozzle into a quiescent gas is

a classical flow instability problem. Mean vorticity and its fluctuations evolve from a
wall-confined stream to an unbound environment as the flow leaves the nozzle. Coherent
structures (Brown & Roshko 1974), due to the mean vorticity shedding, form, grow and
interact with vorticity fluctuations downstream of the nozzle. For large enough Reynolds
numbers, the flow transitions to a turbulent jet. Due to the liquid jet oscillation and due
to the no-slip condition at the liquid-gas interface, pressure and viscous forces set the
initially quiescent gas in motion.
The rectangular computational domain extends 12D in axial direction and 6D in both

span-wise directions, where D denotes the diameter of the round nozzle. At the side
boundaries, homogeneous Neumann conditions are imposed, including a narrow band
where the velocity is filtered to avoid numerical instabilities. At the outflow boundary,
back-flow into the domain is prevented by clipping negative velocities to zero, also for
stability reasons. Dirichlet conditions are applied at the inlet boundary. To imitate a
turbulent channel flow inside the nozzle region, the mean velocity profile of Stanley et al.

(2002) is superimposed by a homogeneous isotropic fluctuation level of 5% and an integral
turbulent length scale of Lt = D/4 using the digital filter method of Klein et al. (2003).
This method is based on the scaling and Gaussian filtering of random fluctuations, and
it reproduces first- and second-order one-point statistics as well as given length scales.
Corresponding to Diesel engine conditions at a pressure of around 5.2 MPa and a

temperature of around 900 K, the density and viscosity ratio are specified to be ρl/ρg = 40
and µl/µg = 40, respectively. It follows that there is no jump of kinematic viscosity at
the phase boundary, i.e. ν = νl = νg. The liquid viscosity µl and the surface tension σ
are adjusted to achieve the desired values of the inflow-based Reynolds number Re =
ρlu0D/µl and Weber number We = ρlu

2
0D/σ in Tab. 1, respectively.

Spatial discretization by a uniform Cartesian mesh of grid size ∆x = ∆y = ∆z = D/64
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yields an overall number of 768× 384× 384 ≈ 1.13× 108 computational cells. According
to the universal equilibrium theory by Kolmogorov, the smallest dissipative length scale

that has to be resolved for DNS can be estimated by η ∼ LtRe
−3/4
t using the integral

turbulent length scale Lt and the turbulent Reynolds number Ret = u′Lt/νl (Batchelor
1953). Inserting the prescribed inflow characteristics for u′ and Lt yields η/∆x values
between 0.68 and 1.35, cf. Tab. 1. Thus, the grid size is of the order of the Kolmogorov
length scale in all investigated cases, and should be sufficient to resolve small-scale flow
topologies. It is hardly possible to draw further conclusions from the given values of η/∆x
because their calculation is based on dimensional considerations rather than being exact.

Manual mesh refinement (in one coordinate direction) is not a convenient choice
because the interface is moving heavily showing arbitrary alignment with the underlying
mesh and including strong topological changes. Alternative strategies like adaptive mesh
refinement involve new issues like flux splitting at the boundary between different refine-
ment levels as well as load balancing in a massively parallel environment. Furthermore,
the theoretical order of discretization is difficult to maintain for local mesh refinement.
The usage of uniform meshes is a standard procedure for solvers, which are based on
a geometrical Volume-of-Fluid method since this method provides some kind of sub-
grid treatment of the interface (Ling et al. 2017; Ménard et al. 2007). There are further
practical aspects related to the meshing strategy. The implementation of special-purpose
post-processing tools (like the topology analysis in this work) is relatively straight-
forward for uniform Cartesian meshes. Any kind of interpolation introduces a new source
of uncertainty.
Resolution of the Kolmogorov scale might not be sufficient in the context of two-phase

flow DNS simulations. Turbulent structures are believed to follow cascade dynamics such
that the smallest flow structures can be determined based on dimensional arguments.
However, primary atomization is a more complex problem. Especially the stretching
and breakup of thin ligament structures is a highly non-linear process involving strong
topological changes, and does not necessarily follow a cascade process (Ling et al. 2015).
It is a matter of ongoing discussion how to determine the required mesh density in terms
of accurate representation of interface dynamics. There are empirical criteria (e.g. by
Desjardins & Pitsch (2010)) to evaluate the grid spacing with respect to droplet stability
resolution requirements. Nevertheless, a universal criterion, e.g. based on dimensional
arguments, has not been found so far. Furthermore, the required resolution always
depends on the kind of information to be extracted from the simulation. First- and
second-order statistics like mean flow and fluctuation profiles converge faster than higher-
order statistics. For very sensitive statistics like droplet size distributions, it may even
be impossible to achieve a grid-independent solution as argued by Herrmann (2011) and
Ling et al. (2017).
The same point in time is compared for all four cases. Considering the constant time

step ∆t, which yields a CFL number of approximately 0.3, the analyzed snapshot after
15,000∆t corresponds to approximately 3.5 flow-through times based on the centerline
velocity.

3. Mathematical background

According to Perry & Chong (1987); Chong et al. (1990), amongst others, the invariants
of the velocity-gradient tensor

Aij ≡
∂ui
∂xj

= Sij +Wij (3.1)
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Case Re We η/∆x

loRe-loWe 2,000 2,000 1.35
hiRe-loWe 5,000 2,000 0.68
loRe-hiWe 2,000 5,000 1.35
hiRe-hiWe 5,000 5,000 0.68

Table 1. Case overview in terms of the inflow-based Reynolds number Re, Weber number
We, and estimated ratio of Kolmogorov length scale to grid spacing η/∆x

give rise to a set of local flow topologies. Here, Sij = 0.5(Aij +Aji) and Wij = 0.5(Aij −
Aji) represent the tensor’s symmetric and anti-symmetric components, respectively. The
corresponding characteristic equation λ3 + Pλ2 + Qλ + R = 0 exhibits three solutions,
i.e. the eigenvalues λ1, λ2 and λ3 of Aij . Since the first invariant of Aij is given by

P ≡ −trace(Aij) = −(λ1 + λ2 + λ3) = −Sii = 0 (3.2)

for incompressible flows (∇ · u = 0), the second and third invariant of Aij reduce to

Q ≡ (trace(Aij)
2 − trace(A2

ij))/2 = (−SijSij +WijWij)/2 (3.3)

and

R ≡ − det(Aij) = (−SijSjkSki − 3WijWjkSki)/3. (3.4)

The characteristic equation’s discriminant

D = (27R2 + 4Q3)/108 (3.5)

divides the Q−R phase-space into two regions:D > 0 where Aij shows one real eigenvalue
and two complex conjugate eigenvalues (and therefore focal topologies), and D < 0
where Aij shows three real eigenvalues (and therefore nodal topologies). Corresponding
to D = 0, two lines separating the topologies in the phase-space are given by

r1a = −2(−3Q)3/2/27, (3.6)

r1b = +2(−3Q)3/2/27. (3.7)

In the region D > 0, Aij has purely imaginary eigenvalues on the line r2 = 0. The lines
r1a, r1b and r2 divide the Q−R phase-space into four flow topologies in the incompressible
case. Both the topology borders r1a, r1b and r2 in the Q − R phase-space, as well as a
graphical representation of topologies S1 to S4, are shown in Fig. 2. To simplify the
interpretation, the second invariant of Aij , Q, can be split into two parts:

Q = QS +QW = −SijSij/2 +WijWij/2, (3.8)

where QS and QW denote the second invariant of Sij and Wij , respectively. QS is always
a negative quantity since −4νQS = 2νSijSij , i.e. the dissipation of kinetic energy into
heat per unit mass. The latter part QW is directly related to vorticity ω and enstrophy
Φ according to

WijWij/2 = ωiωi/4 = Φ/2. (3.9)

Thus, Q < 0 is indicative of strain-dominated regions and Q > 0 is indicative of vorticity-
dominated regions.
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Figure 2. Classification of topologies S1 to S4: Projection of topology borders r1a, r1b and
r2 in the Q − R plane (top). Dashed lines indicate Q = 0 and R = 0, respectively; Graphical
representation (bottom) corresponding to UF = unstable focus, UN = unstable node, SN =
stable node, SF = stable focus, C = compressing, S = saddle, ST = stretching.

4. Results and discussion

4.1. Vorticity field

Since vortical motion is inherently connected to the nature of turbulence, a first impres-
sion of the atomization flow dynamics is given by means of the plane-normal component
of the vorticity, i.e. ωz = ∂uy/∂x − ∂ux/∂y in Fig. 3 and ωx = ∂uz/∂y − ∂uy/∂z in
Fig. 4. The slices in Fig. 4 represent two different stages of the jet breakup process. The
vorticity and topology distributions are obviously strongly linked as elaborated in Sec.
3. Some aspects of the flow are similar in all four cases:
Counter-rotating vortex pairs can wrinkle and pinch off liquid structures. However,

separated liquid structures can induce vortex pairs in a similar manner. Both phenomena
can be identified in Fig. 3. The causality is not unambiguous in this context. Besides, it is
difficult to draw consistent conclusions from two-dimensional slices since the considered
structures, e.g. thin ligaments, do not necessarily align with the observation plane. In
general, the liquid structures exhibit a strongly three-dimensional shape. Lasheras & Choi
(1988) experimentally showed that stream-wise and span-wise vortices are interacting and
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leading to a three-dimensional turbulent planar mixing layer. In the round jet configu-
ration investigated here, azimuthal (i.e. vortex rings) and axial vorticity components are
interacting as is evident from Fig. 5. Since the behavior is qualitatively in agreement with
the other cases, only the loRe-hiWe case is shown. In order to accentuate dominant focal
structures (referring to topology S1 or S4), the three-dimensional Q = 5 iso-contour is
displayed. In the high-Reynolds number cases, the focal structures are even smaller and
harder to distinguish.
Moreover, noticeable vorticity production occurs in the shear layers close to the inlet,

where the jet is still compact. It is well known that vorticity is produced in shear layers
(Brown & Roshko 1974). This is exactly the situation in the vicinity of the nozzle where
a strong vertical gradient of axial velocity, ∂ux/∂y, can be found. In this region, the gas
is initially at rest whereas the liquid velocity is still close to the inlet velocity. As can
be seen, the sign of the induced vorticity is reversed on opposite sides of the jet. This
observation might be interpreted as vortices wrapping around the liquid jet.

The vorticity level in the liquid phase is clearly lower than in the gaseous phase,
which is characterized by a lower density but also lower viscosity. Tripathi et al. (2014)
claim that vorticity accumulates in the lighter fluid independent of the viscosity ratio
and the concaveness/convexness of the interface which follows from stability arguments
(Dixit & Govindarajan 2010). In order to exclude the viscosity ratio being responsible for
this behavior, Tripathi et al. (2014) imposed identical viscosities in their simulation and
observed the same behavior. Dopazo et al. (2000) present an analytically exact instanta-
neous relation between the vorticity values immediately above and below the interface,
as a function of the strain-rate tensor components and the viscosity ratio. However,
using a linearized prediction equally applicable to the vorticity values immediately above
and below the interface, Farsoiya et al. (2017) found that the vorticity jump across the
interface generally depends on both the density and viscosity ratio of the two fluids. Both
statements from literature do not contradict an additional vorticity accumulation effect
due to density differences, in unsteady turbulent flows and in regions sufficiently away
from the interface.
In addition, the jet half width (radial distance at which the considered variable drops

to 50% of the corresponding mean centerline value) with respect to the velocity field is
clearly larger than with respect to the liquid volume fraction.
As a first approximation, the effects of the variation of Reynolds and Weber number (cf.

Tab. 1) on jet breakup seem to be comparable in the sense of the intact liquid core length
and the number of separated ligaments or droplets. Strongest breakup consequently
appears in the high-Reynolds high-Weber case. Increasing the Weber number means that
the effect of surface tension forces is reduced compared to inertia effects. Accordingly,
interfacial structures are less rounded off and tend to develop thin ligaments with sharp
edges. That behavior can also be observed in Fig. 3. In contrast, the size of turbulent flow
structures in the gaseous phase is rather determined by the Reynolds number. According
to the common understanding, smaller structures are expected at higher values of the
Reynolds number. This behavior is not directly evident since the enhanced jet breakup
might induce additional turbulent motion in the gaseous phase.

4.2. Topology field

Figure 6 shows the result of the invariants-based topology analysis introduced in the
mathematical background section. The topology field, consisting of focal topologies S1
(blue) and S4 (purple) as well as nodal topologies S2 (red) and S3 (orange), confirms the
impression from the vorticity field that the size of flow structures is mainly determined by
the Reynolds number. Agreeing with the cascade process in turbulent flows, a spectrum
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Figure 3. Slices of the plane-normal component of vorticity with the black line indicating the
phase interface; From top to bottom: loRe-loWe, hiRe-loWe, loRe-hiWe, hiRe-hiWe.
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Figure 4. loRe-hiWe case: Slices of the plane-normal component of vorticity with the black line
indicating the phase interface, for two different axial locations: x/D = 4 (left) and x/D = 8
(right).

Figure 5. loRe-hiWe case: Three-dimensional iso-contours of α = 0.5 (semi-transparent red)
indicating the phase interface and Q = 5 (grey) indicating dominant focal structures.

of topology island sizes can be observed, which will be quantified in Sec. 4.4. It should
be kept in mind that the kinematic viscosity ν and therefore the Reynolds number based
on inflow conditions, Re = u0D/ν, is identical in both phases. However, the turbulent
Reynolds number Ret = u′Lt/ν varies locally and appears to be higher in the gaseous
phase. Examining DNS statistics of a three-dimensional two-phase jet configuration at
a similar inflow-based Reynolds number (Klein 2005), it may roughly be estimated
that u′l/u

′

g ≈ 0.2 and Lt,l/Lt,g ≈ 0.5. Accordingly, Ret,l/Ret,g ≈ 0.1 – a difference
of approximately one order of magnitude in terms of the turbulent Reynolds number.

Another interesting observation from Fig. 6 is the periodic occurrence of nodal S2
structures near the points of maximum local interface deflection on the gas side in
the vicinity of the interface near the nozzle. In an independent study on the topology
distribution in incompressible bubbly flows, Hasslberger et al. (2018b,a) observed a switch



Flow topologies in primary jet atomization 11

from nodal topology S2 to nodal topology S3 when the character of the flow around the
bubble changes from diverging (up to the bubble center) to converging (behind the bubble
center), respectively. In both the case from literature and the case investigated here, the
switch of nodal topologies occurs at the position of maximum local interface deflection.
The liquid flow structures in the vicinity of the inlet nozzle are similar in all cases since

the synthetic turbulent inflow velocity and the analyzed time snapshot are identical. The
focal topologies at the left boundary, outside of the nozzle region, must be assessed as
spurious behavior which stems from the ill-conditioned velocity gradient tensor in that
region. This nearly laminar flow region is in fact a correct solution of the Navier-Stokes
equations, i.e. the flow solution itself does not show any spuriousness. Since the topology
classification is local, spurious identification in some regions does not affect the results
in the rest of the computational domain. Provided that the velocity gradients are non-
zero (satisfied everywhere except in the mentioned region), the topology classification is
correct.

4.3. Axial volume fraction distribution

The axial development of plane-averaged (with respect to both span-wise directions)
topology volume fractions is depicted in Fig. 7. The data is evaluated in a conditional
manner, i.e. separately for the gaseous phase (left column) and the liquid phase (right
column). In the gaseous phase, from inlet to outlet, the share of focal topologies S1 and S4
increases at the expense of nodal topologies S2 and S3 as vortical motion is continuously
induced by the mechanisms mentioned in Sec. 2.2. It is worth noting that a coupling of
azimuthal and axial vorticity filaments, as displayed in Fig. 5, is involved in the nodal-
to-focal transition process in axial direction. Whereas the general behavior is the same in
all cases, the tendency towards an asymptotic state with respect to the volume fraction
distribution scales both with Re and We. As discussed above, the size of topology islands
scales primarily with Re but the corresponding volume fractions seem to depend also on
We. Regarding the global exchange from nodal topology S3 to nodal topology S2 in axial
direction, the gas entrainment from the surrounding atmosphere of the jet must be taken
into account. There is a net inflow via the side boundaries of the domain which, for small
values of x/D, gives rise to a globally converging flow situation in the gaseous phase
(corresponding to S3). The entrainment increases in axial direction (note that there is a
no-slip condition at the inflow plane everywhere except the nozzle) and saturates roughly
where the liquid jet starts breaking up, at around x/D = 5. The inward-directed radial
flow at the lateral boundaries is countered by the breakup and spreading of the jet flow,
resulting in local diverging flow situations surrounding the liquid core (corresponding to
S2). Figure 6 shows that the major part of converging S3 topologies can be found at the
lateral boundaries towards the nozzle side, whereas diverging S2 topologies are mainly
found at the edge of the developing and expanding shear flow. Accordingly, the dominant
nodal topology changes from S3 to S2 at a certain distance from the nozzle. In the
investigated setup, the crossover point occurs approximately at half of the axial domain
length but the location generally depends on the size of the computational domain in
radial direction. Nevertheless, the physical processes are unaffected by the domain setup.
In the liquid phase, only marginal changes in axial direction can be observed. Due to

the fluctuating nature of the two-phase jet flow, the topology shares are oscillating but
their means remain at a fairly constant level. Note that the behavior directly at the nozzle
is prescribed by the synthetic turbulent inflow data. In all cases, the volume fraction is
at around 35% for focal topologies S1 and S4, somewhat below 20% for nodal topology
S2, and around 10% for nodal topology S3.
The following theoretical discussion on incompressible homogeneous isotropic turbu-
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Figure 6. Slices of the flow topology field where 1-4 in the color bar refer to S1-S4 respectively;
The black line indicates the phase interface; From top to bottom: loRe-loWe, hiRe-loWe,
loRe-hiWe, hiRe-hiWe.
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Figure 7. Axial volume fraction distribution of focal topologies S1 and S4 as well as nodal
topologies S2 and S3 for the gaseous phase (left) and liquid phase (right); From top to bottom:
loRe-loWe, hiRe-loWe, loRe-hiWe, hiRe-hiWe.
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Figure 8. Incompressible topology map including the topology borders r1a (red line), r1b (blue
line), r2 (green line), and the hypothetical boundary between populated and unpopulated regions
(dash-dotted purple line). Dashed black lines indicate Q = 0 and R = 0, respectively.

lence serves as a reference for comparison. The topology border relationship

r1b(Q) ∝ (−3Q)3/2 (4.1)

reflects the scaling behavior of the second and third invariant, cf. Sec. 3. Q(C · Aij) =
C2 ·Q(Aij) and R(C ·Aij) = C3 ·R(Aij) hold for any arbitrary constant C ∈ IR+ since
trace(C · Aij) = C · trace(Aij) and det(C · Aij) = C3 · det(Aij). In other words, scaling
of a reference flow solution to obtain different levels of velocity fluctuation u′ or integral
length scale Lt does not change the classification of each sample in the topology diagram.
The corner point (Q∗,R∗) of a hypothetical rectangle, which is lying on the mentioned
topology border (cf. Fig. 8), is given by

R∗ = r1b(Q = Q∗) = 2/27(−3Q∗)3/2. (4.2)

Let us now assume that the rectangle represents the boundary between heavily populated
(towards the origin) and poorly populated (towards infinity) regions in the topology
diagram. In realistic flows, local deviations from the rectangular shape are likely to exist
but may well annihilate each other in terms of the populated area. The populated area
ΩS2 corresponding to topology S2 can then be calculated by

ΩS2 = |

∫ Q∗

0

r1b(Q)dQ| = 4/405(−3Q∗)5/2. (4.3)

The assumption of a homogeneous isotropic flow suggests a symmetric population in the
Q−R space such that the populated overall area Ω reads

Ω =
4

∑

k=1

ΩSk = 2Q∗ · 2R∗. (4.4)

The presented ansatz finally allows for the calculation of the different volume fractions,

VFS2 = VFS3 = ΩS2/Ω = 10%, (4.5)

VFS1 = VFS4 = (Ω/2−ΩS2)/Ω = 40%, (4.6)

which are independent of the particular choice of Q∗ (and therefore R∗). Thus, the
total percentage of volume fractions in incompressible homogeneous isotropic turbulence
is expected to be 20% for nodal and 80% for focal topologies. The two-phase jet
configuration investigated here naturally deviates from this idealized state. Especially
the nodal topology S2 is increased (at the expense of other topologies) which matches
the globally diverging character of the jet flow.
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4.4. Topology island size distribution

For example in spray combustion, the investigation of turbulence-chemistry interaction
is an outstanding field of research. In this context, it is important to know the spectrum
of turbulent length scales interacting with the flame. A flood-fill algorithm is thus applied
here to determine the size distribution of the topology islands. Regarding the connectivity
definition of discrete topology fields, three possibilities naturally arise. Eventually, the
usage of face neighbors (6 potential neighbors of each cell not residing at the domain
boundary) was preferred over edge neighbors (18 potential neighbors) and point neighbors
(26 potential neighbors). Especially when using point neighbors, a disproportionately
strong neighborhood connectivity was observed. Owing to the exponential character of
the size distribution, the size range is partitioned into 50 exponentially sized bins. At the
lowest level, the island size is limited to three finite-volume cells to exclude single- and
double-cell islands which are likely to be influenced by numerical effects.
Inspecting the result in Fig. 9, where N is the number of topology islands of a certain

size V = V ∗/(∆x)3 where V ∗ is the actual topology island volume, several interesting
observations can be made: Most prominently, the size distribution follows roughly a linear
trend in the log-log diagram for all four cases and it appears to be consistently higher
in the gaseous phase (left column) than in the liquid phase (right column). Outliers,
not following the linear trend, occur scarcely at large island sizes for all cases and are
mainly located in the laminar region, i.e. sufficiently away from the jet core. In the
less homogeneous gaseous phase, the linear trend is slightly less pronounced and small
differences between nodal and focal topologies can be identified. Furthermore, the number
of nodal topologies S3 for small island sizes is slightly increased compared to the other
topologies – an observation that has also been made in turbulent premixed combustion
(Chakraborty et al. 2018).
The roughly linear size distribution in the log-log diagram suggests a power law

formulation to describe the topology spectrum. Its derivation is based on the general
ansatz

N(V ) = aV b (4.7)

with the constants a, b ∈ IR. First of all, we require
∫ Vmax

Vmin

N(V )dV = VFSk · Vtotal (4.8)

where VFSk is the volume fraction of the considered topology Sk (k ∈ [1, 2, 3, 4]). It
follows

a

b+ 1

(

V b+1
max − V b+1

min

)

= VFSk · Vtotal (4.9)

for b 6= −1. For b = −1, ln(V ) appears as the primitive. Considering the scale disparity
in turbulent flows, it is reasonable to assume |V b+1

max | ≫ |V b+1
min | and therefore

a

b+ 1
V b+1
max ≈ VFSk · Vtotal. (4.10)

Now, let us assume we have ψ ∈ IN structures of size Vmax:

N(V = Vmax) = aV b
max = ψ. (4.11)

Inserting Eq. 4.11 into Eq. 4.10 to eliminate a yields

b ≈
ψVmax

VFSk · Vtotal
− 1. (4.12)

Using VFSk · Vtotal ≫ ψVmax, we finally obtain b ≈ −1 and hence a ≈ Vmaxψ.
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Figure 9. Topology island size distribution for the gaseous phase (left) and liquid phase (right);
The turquoise and the green line represent the corresponding power law models of the gaseous
phase and the liquid phase, respectively; From top to bottom: loRe-loWe, hiRe-loWe, loRe-hiWe,
hiRe-hiWe.
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Alternatively, one may interpret V as the actual topology island volume and the power
law N(V ) = aV b as the corresponding number density. It is then clear from dimensional
arguments that b = −1.
To obtain a useful simple model of the spectrum, we require

N(V = Vmax) = 1 (4.13)

which is equivalent to setting ψ = 1. The topology size distribution then reads

N(V ) = VmaxV
−1 (4.14)

and Vmax = (Lt/∆x)
3 is taken to be the corresponding volume measure of the integral

turbulent length scale Lt. As can be seen in Fig. 9, there may exist a few larger topology
islands (usually at occurrence one) but the number N does not considerably increase
above the volume corresponding to Lt. We know Lt,l ≈ D/4 from the prescribed inflow
data and we reuse Lt,l/Lt,g ≈ 50% from Sec. 4.2 to obtain Lt,g ≈ D/2. Both models for
the gaseous phase (turquoise line) and liquid phase (green line) are included in Fig. 9.
Since VFSk does not enter the simple model, it does not distinguish between different
topologies. Consequently, the model is identical for all four cases, only distinguishing for
the gaseous and liquid phase. In a general situation, Lt may be estimated by the nozzle
diameter D as a first-order approximation.
It has been seen in Sec. 4.2 that the topology field is determined by the Reynolds

number rather than the Weber number. Since the total turbulent volume Vtotal (i.e. the
region where both focal and nodal topologies appear; somewhat larger than the spray
volume) is smaller in the low-Reynolds cases, b > −1 must be expected in these cases
according to Eq. 4.12. From a close examination of Fig. 9, the slightly different slope in
the log-log diagram can be discerned because of the aforementioned effect.
The convincing performance of this simple model raises the question whether this

method can be used to estimate the integral length scale Lt when this quantity is a-priori
unknown in complex flows. There is some algorithmic complexity involved to determine
the topology size distribution but its advantage lies in the fact that it is based on a single
time snapshot (which is usually available in contrast to long time series). Following the
standard procedure, Lt is obtained by the integration of the normalized auto-correlation
tensor which requires a certain, sometimes considerable, length of the time series to
guarantee a reasonable result. Using the well-established approximation Lt ≈ k3/2/ǫ,
where ǫ is the dissipation rate of the specific turbulent kinetic energy k, would require
statistics as well.

5. Concluding remarks

Using a Direct Numerical Simulation database of primary jet atomization, a local flow
topology analysis has been performed based on the invariants of the velocity gradient
tensor. It categorizes all possible small-scale flow structures into two focal and two nodal
topologies for incompressible flows.
Although both the inflow-based Reynolds number as well as Weber number are heavily

influencing the jet breakup, the flow topology behavior seems to be rather dominated by
the Reynolds number. As may be expected, the flow dynamics in the gaseous phase is
generally less homogeneous than in the liquid phase because some flow regions resemble a
laminar-to-turbulent transition state rather than fully developed turbulence. Regarding
the axial development of topology volume fractions, a strong shift from nodal to focal
topologies was observed in the gaseous phase. In the liquid phase, the topology shares
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remain fairly constant in axial direction (fluctuations due to the oscillating jet behavior
excluded).
The discussion of DNS observations is complemented by a theoretical derivation of

topology volume fractions in incompressible homogeneous isotropic turbulence. This
reference solution allows for the comparison with atomization cases which only slightly
deviate from this idealized state in the liquid phase. Additionally, a simple model of the
size distribution of flow structures is proposed. Motivated by the roughly linear behavior
of the topology spectrum in the log-log diagram, a power law ansatz is adopted. The
only other input to the model is the turbulent integral length scale which is assumed
to be different in both phases. Applying reverse logic, it may be possible to utilize the
snapshot-based topology analysis to estimate the integral turbulent length scale when
this quantity is a-priori unknown in complex flows. The robustness of this hypothesis is
however yet to be assessed for a broader range of flow conditions.
Future work deals with the development of sub-grid models for the computationally

more efficient Large Eddy Simulation. Observations from the topology analysis, e.g. the
ratio of focal to nodal topologies, might be helpful to derive appropriate assumptions in
the context of functional or structural modeling of interface-dominated two-phase flows.
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