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A~tract. In this paper, research efforts in the broad area of flow transitions 
of Rayleigh-Brnard convection in rectangular enclosures with sidewalls 
are reviewed. Numerical studies are given primary emphasis. However, 
experimental works that are relevant are described. Our current physical 
understanding of the transition phenomena as occurring in the Rayleigh- 
Brnard problem is critically reviewed. Two broad categories of transition 
are discussed. In the former, the transitions are temporal in nature, and 
mostly confined to small enclosures. In the latter, transitions are a result 
of change in spatial patterns. This phenomenon, known as pattern selection, 
is looked into for both small and intermediate enclosures. 
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1. Introduction 

Rayleigh-Brnard convection is among the most heavily investigated physical 
problems for nearly a century. The enduring popularity of the problem with respect 
to a wide cross section of scientists and engineers is not surprising. The Rayleigh- 
Brnard problem is relevant to applications ranging from astrophysics, geophysics, 
atmospheric sciences and various disciplines of engineering. Many familiar and 
esoteric physical phenomena such as the imperceptible movement of the continental 
plates, the violent magnetic storms in the solar atmosphere, the destructive forces of 
a tropical cyclone are in essence a manifestation of the Rayleigh-Brnard convection 
for different geometries and parametric ranges. In an industrial context, Rayleigh- 
Brnard (henceforth abbreviated to RB at times) convection has applications in 
disciplines such as solar energy systems, energy storage, material processing and 
nuclear reactor systems. 

RB convection forms a subclass of fluid flow problems that are known as buoyancy- 
driven flows or thermal convection. In these, fluid flow is induced by density differences 
that arise as a result of temperature differences. Thermal convection occurring in 
enclosures or cavities caused by a temperature gradient in the direction of the gravity 
vector is known as Rayleigh-Brnard convection. Other than its relevance to the 
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various disciplines of the physical sciences, the RB problem has been investigated for 
theoretical and fundamental reasons as well. The problem is governed by nonlinear 
coupled partial differential equations. It therefore serves as a paradigm of a nonlinear 
system. The model problem has been used to investigate the transition from laminar 
to turbulent flow. In another related issue, the physical model has been used to study 
the nonlinear selection and evolution of patterns. These two aspects of RB convection 
will be the subject of this paper. 

More specifically, we review and highlight some of the computational work that 
has been done to study the phenomena of flow transition and pattern formation with 
respect to Rayleigh-B6nard convection. In the process, we will also include some of 
the relevant experimental work. This is important, since the only true test of the 
correctness of the computational model is reasonable agreement with experiments. 
The twin areas offer an exciting area of research with far-reaching implications. 

2. Brief background of the Rayleigh-l~nard problem 

The Rayleigh-B6nard problem in its simplest form and one that was the earliest to 
be investigated is the so-called infinite layer case. In such a case, a layer of fluid is 
constrained between two infinite horizontal surfaces. The system is heated from below, 
i.e., the lower surface is at a higher temperature than the upper surface. The heated- 
from-below case is said to have an adverse temperature gradient because the fluid 
at the bottom will be lighter than the fluid at the top and this top-heavy arrangement 
is potentially unstable. When the temperature gradient is below a certai.n value, the 
natural tendency of the fluid to move, because of buoyancy, will be inhibited by its 
own viscosity and thermal diffusivity. Thus, the thermal instability will manifest itself 
only when the adverse temperature gradient exceeds a certain critical value. 

The earliest experiments to demonstrate in a definitive manner the onset of thermal 
instability in fluids are due to B6nard (1900). The theoretical foundations for a correct 
interpretation of the phenomena are due to Rayleigh (1916). The phenomenon of 
thermal convection under an adverse temperature gradient is therefore known as 
the Rayleigh-B6nard convection in their honour. The non-dimensional adverse 
temperature gradient is known as the Rayleigh number. An introductory exposition 
and review of the infinite layer RB convection can be found in Chandrasekhar (1961). 
A more advanced and complete review of the infinite layer RB convection instability 
at higher Rayleigh numbers is given in Busse (1978). For a general discussion of 
transitions and bifurcations for buoyancy-driven enclosure flows, the reader is referred 
to Yang (1988). 

Although it will be of immense benefit to the research community to review all 
current work done with regard to flow transitions in natural convection, it is felt that 
the scope is too vast to be included in just a single article. We therefore chose a more 
specialized topic and restricted ourselves to the numerical study of flow transitions, 
instabilities and bifurcations for the Rayleigh-B6nard problem in rectangular enclosures 
with sidewalls only. In the following sections, the basic RB problem is formulated 
and the various physical parameters discussed. This is followed by a general discussion 
of RB convection with respect to flow transitions primarily restricted to small enclosures 
and temporal transitions. Following that, we discuss RB convection restricted to 
spatial transitions in small and intermediate boxes. All along we emphasize the 
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numerical methods used by the researchers in their study and relevant experimental 
works. We conclude with a recommendation on future study. 

3. Problem statement 

The problem formulation described in this section was for most part used for most 
of the numerical work reviewed and in particular to all our recent investigations. 
RB convection is studied in a three-dimensional rectangular geometry. The geometry 
of the enclosure is shown in figure 1. The vertical walls are adiabatic. The bottom 
wall is heated and the top wall is cooled, both isothermally. The Boussinesq approxi- 
mation is invoked. Consequently, all transport properties are assumed constant with 
the exception of the buoyancy term in the momentum equations, which is linearized. 
The governing equations are non-dimensionalized by suitable scales of the dependent 
and independent variables. The x, y and z coordinates are non-dimensionalized by 
L, the enclosure height. The velocities, time and pressure were scaled by or~L, LZ/ot 

and pL2/ot 2 respectively. In this case, ~ is the thermal diffusivity of the fluid. The 
temperature was normalized with respect to the top and bottom wall temperatures. 
The non-dimensionalized governing equations are the continuity, the Navier-Stokes 
and the energy equations that are listed below: 

V o U = O ,  (1) 

(au/at) + v • (uU) = - (ap/ax) + P r v  2 u, (2) 

(av/at) + v • (vU) = - (ap/ay) + PrV2v + RaPr T, (3) 

(aw/~t) + V • (wU) = - (ap/az) + PrV 2 w, (4) 

(a T/at) + V • (TU) = V 2 T. (5) 

The boundary conditions that are consistent with the adiabatic and isothermal walls 

Y 

g Cold top wall 

Hot bottom wall 

]~ t.x - ]  Figure 1. Geometry of the enclosure. 
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in a non-dimensional form are the following: 

x = O, Ax; 0 <~ z <<. A=; 0 <~y <<. 1; u = v = w = O(dT/dx) =0, 

z --- 0,A=; 0 4  x <<. Ax; 0 <<. y <<. 1; u = v = w = O(t3T/~z) = O, 

y=O,  1 ; O ~ x < ~ A x ; O < ~ z < ~ A z ; u = v = w = O  T =  0 .5 -  y. 

(6) 

(7) 

(8) 

The significant parameters of the formulation are the Rayleigh number Ra that 
represents the strength of the driving forces and the Prandtl number Pr. They are 
defined as follows; 

Ra = gflATL3/(v~t); Pr = v/cc (9) 

The two other parameters are the normalized dimensions of the rectangular enclosure 
in the horizontal directions or the geometrical aspect ratios A x and Az. For problems 
in which some of the assumptions are relaxed, there will be additional parameters. 
For instance if the Boussinesq approximation is not used, a parameter to quantify 
the departure from the Boussinesq approximation will arise. These additional 
parameters will be discussed on a case-by-case basis wherever applicable. 

4. Bifurcation to convective flow from initial conduction state 

It has generally been known that for the given problem, as the Rayleigh number is 
increased, the system undergoes a series of bifurcations. By a bifurcation we mean 
that the flow undergoes a qualitative change in the flow and temperature field. For 
instance, an increase in the Rayieigh number and a corresponding decrease in the 
number of rolls wouldexemplify a flow bifurcation. On the other hand, if an increase 
in the Rayleigh number merely increases the velocities and heat transport without 
changing the flow pattern, no bifurcation would have occurred. 

Below a certain critical Rayleigh number, there is no motion since the buoyant 
forces cannot overcome the viscous forces. Davis (1967) and Catton (1970) calculated 
the critical Rayleigh number for the onset of convection by a linear stability analysis 
of the motionless conduction state. The eigenvalue problem was solved by a Galerkin 
procedure wherein the dependent variables are expressed as a summation of trial 
functions as shown below, 

N N N 

U =  E c . , . ,  T =  E d.O., P = E e.~.. (10) 
n=l n = l  n = l  

Similar calculations by Biihler et al (1979) using a more complete set of trial functions 
showed that the critical Rayleigh number is a function of the geometrical aspect 
ratios. The critical Rayleigh number for the onset of motion decreases with an increase 
in the aspect ratio and is the lowest for the infinite layer case which is 1707.8. The 
critical Rayleigh numbers for cylindrical lateral walls was calculated by Charleson & 
Sani (1970). 

5. Transition to time dependence 

When the Rayleigh number is increased beyond a certain critical value, RB convection 
becomes oscillatory through an instability mechanism predicted for the two-dimensional 
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infinite layer case by Clever & Busse (1974, 1987) using linear stability theory. Stability 
analysis beyond oscillatory instability has not been reported. However, experimental 
results of large aspect ratio enclosure flow by Ahlers & Behringer (1978) indicate that 
the flow becomes turbulent soon after oscillatory convection. For intermediate aspect 
ratio containers (aspect ratios between 5 and 30), experiments by Oertel (1982, 
pp. 3-24) indicate a spatially complex structure. Walden et al (1984) discovered from 
their measurements that the temporal behaviour of the fluid was spatially dependent. 

In contrast, RB convection in small aspect ratio as reported in experiments (Maurer 
& Libchaber 1979; Gollub & Benson 1980; Berg6 et al 1982, pp. 123-148) indicate 
that the dynamical behaviour of thermal convection follows a well-defined set of 
bifurcations to chaos and turbulence as the Rayleigh number is increased. The 
dynamical behaviour is simpler due to the restricting influence of the side-walls. A 
more interesting general observation was that the bifurcation sequences were 
qualitatively similar to simple dynamical systems such as nonlinear ordinary difference 
and differential equations. Examples of bifurcation sequences or scenarios include 
the Ruelle-Takens scenario (Ruelle & Takens 1971) and the Feigenbaum sequence 
(Feigenbaum 1978). For a more complete documentation of bifurcation in simple 
dynamical systems, the reader is referred to Parker & Chua (1988). 

A brief description of the experiments is in order. In the experiments of Gollub & 
Benson (1980), two enclosures 3.5 x 2.1 x 1, and 2.4 x 1-2 x 1, and two different 
Prandtl numbers (2"5 and 5) were investigated. Four major transition sequences to 
turbulent flows were reported. One significant result was that the transition depended 
not only on the Prandtl number and geometry but on the initial conditions as well. 
The number of different flow configurations was surprisingly many for a small aspect 
ratio box. 

Experiments on a small box (2 x 1.2 x 1) with silicone oil (Pr = 130) were carried 
out by Berg6 et al (1982, pp. 123-48) and Arroyo & Savir6n (1992). The observed 
routes to chaos were similar to those observed for fluids with lower Prandtl numbers 
such as air (Kirchartz & Oertel 1988). Maurer & Libchaber (1979) performed 
experiments with liquid helium (Pr = 0"5) and observed similar routes to turbulence. 
Although the dynamical behaviours were not identical, one common feature noted 
was that the first bifurcation to time-dependent behaviour is oscillatory with a single 
independent frequency. Furthermore, the critical Rayleigh number for the onset of 
time-dependent flow decreased with a reduction of the fluid Prandtl number. 

6. Relevance of numerical studies 

The central problem confronting a fluid dynamicist is the phenomena of turbulence. 
Due to the unacceptably fine mesh required to resolve the length scales of turbulence, 
it is impossible to numerically simulate turbulence in flows that occur in practical 
applications, given present computing resources. One approach to understanding the 
phenomena of turbulence better would be to completely solve a simpler problem that 
nevertheless shares many of the features of turbulence. One such "simpler problem" 
is the Rayleigh-Brnard problem in small aspect ratio enclosures in the unsteady and 
chaotic regime. Nevertheless, computations in an RB system are not particularly 
easy. 

Such computations must necessarily be three-dimensional using numerical schemes 
with low numerical diffusion and hence higher order and computationally expensive. 
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Also, since the flow is time-dependent, the integration with respect to time must be 
carried out for long intervals. With the phenomenal increase in computing power in 
the past several years, these problems have become tractable and represent a very 
exciting area of research. By an accurate numerical simulation of well-documented 
bifurcation experiments, one could begin to understand the phenomena of bifurcation 
and transition better. Insights into the physics of the RB system could potentially 
lead to a better understanding to the important problem of transition to turbulent 
flows. 

The study of bifurcation phenomena in small enclosures is also a fascinating 
problem in its own right. Busse and coworkers have more or less identified, in a 
complete manner, the instabilities associated with roll convection in infinite enclosures. 
The extension to finite boxes, especially small boxes, is not straightforward, and 
practically intractable from the point of view of a stability problem since the base 
state is analytically complex. The only tool available is a complete and accurate 
numerical simulation of the basic equations. The documentation of all instability 
mechanisms associated with small and intermediate enclosures represents a formidable 
and challenging enterprise for applied mathematicians, physicists and engineers. 

7. Early numerical study of the RB system 

Numerical investigation of the bifurcation phenomena in small boxes has been few 
and very recent. Upson et al (1981, pp. 245-59) used a modified Galerkin finite 
element method to simulate thermal convection for the case experimentally investigated 
by Maurer & Libchaber (1979) for a 3.29 x 1"8 x 1 enclosure and a Prandtl number 
of 0.5. The frequencies of oscillations were close to that in the experiments. Two 
different flow patterns, one with two rolls and the other with three rolls were found 
to occur for the same boundary conditions (but different initial conditions). However, 
the transition from three to two rolls that was documented experimentally could not 
be reproduced. Mukutmoni & Yang (1992) numerically simulated the transition from 
three to two rolls. It is possible that the simulations of Upson et al (1981, pp. 245-59) 
were not carried out long enough for the instability to manifest itself. 

Kessler (1987) carried out simulations with a 4:2:1 box for air. Spectral Galerkin 
methods were used. The dependent variables were expanded in the form similar to (10), 

L M N 

O= (11) 
i = 1  j = l  k = l  

The C(x)'s are the so-called 'beam functions' that satisfy the zero normal and tangential 
velocity'at the wall. As given in Chandrasekhar (1961), they have the following 
functional form: 

C(x) = (cosh 2,x /cosh(2J2))  - (cos 2mx/cos(2J2)) or 

(sinh # ,x /s inh (#,/2) ) - (sin l~mx/sin(t~,/2) ). (12) 

2,  and/~m are the eigenvalues for a specific set of boundary conditions. For higher 
Rayleigh numbers where extra resolution is required for the boundary layers, Chebyshev 
polynomials were used. The numerical simulations looked into details of the steady 
and oscillatory convection. However, ad-hoc symmetry conditions were imposed to 
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reduce computational costs. As a result, it was not a suitable method for studying 
flow transitions. In particular, the symmetry conditions forced an odd number of 
rolls. 

Yahata (1984) computed for several aspect ratios including cylindrical side walls 
using a Galerkin method. The assumption of slip walls made the computations more 
efficient but less realistic. The calculations showed several possible routes to chaotic 
flow. Non-Boussinesq effects were investigated. 

Urata (1986) used spectral methods to compute for a 2:2:1 box for Prandtl numbers 
of 1 and 3. The study looked into the details of time-dependent convection. However, 
the assumption of slip-walls meant that the solution obtained was somewhat 
unrealistic. The computations spanned the chaotic regime. The Lyapunov exponents 
were calculated. For Pr = 1, and Ra = 20,000, the dimension of the chaotic attractor 
was determined to be 3.3. 

8. Some recent studies on small aspect ratio RB convection 

In this section we review some of the recent works on RB convection in small boxes. 
All studies reviewed in this section computed realistic cases (non-slip walls). More 
significantly, extensive comparisons with experiments were made. The RB system even 
for small aspect ratio enclosures permits multiple solutions to the numerical problem. 
Although some solutions computed without proper experimental validation are real, 
many of them are obtained from incorrect application of boundary conditions or 
inadequate resolution from a coarse mesh and are therefore not physical. If the 
purpose of the study is to understand the physics, comparison and validation from 
closely related experiments is imperative. As observed by Yang & Mukutmoni (1992, 
pp. 23-41), only then can it be claimed that the numerical solution is indeed an actual 
solution. 

Mukutmoni & Yang (1993a) studied a two-roll RB convection for the case 
experimentally studied by Gollub et al (1980, pp. 22-7) for a 3.5:2.1:1 box for a fluid 
of Prandtl number 2.5. The schematic diagram of the two-roll RB convection is shown 
in figure 2. 

Due to the nonlinearity of the governing equations, the solution is not uniquely 
determined by the governing parameters. The solution depends on the initial conditions. 

Y 

J__x 
Z 

Figure 2. Schematic of a two-roll RB 
convection. 
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Figure 3. (a) Sectional streamlines, (b) velocity vectors, and (e) isotherms at vertical 
section z --- 1.7; Ra = 20,000 (Mukutmoni & Yang 1993a). 

Using suitable velocity perturbations, a two-roll flow pattern (figure 3) was developed. 
Based on a grid refinement study (Mukutmoni & Yang 1993a), a 20 x 20 x 20 grid 
was used for the computations. A third-order finite-difference scheme QUICK (Leonard 
1983, pp. 211-26) was used. The finite-volume method and SIMPLEX algorithm (Van 
Doormal & Raithby 1984) were implemented. Good quantitative agreement with 
experiments was found with respect to the frequencies and critical Rayleigh numbers. 
Qualitatively, the behaviour was identical. Both the computations and experiments 
showed a Hopf bifurcation followed by a period-doubling transition. 

The numerical results showed that the oscillating temperature and velocity field 
exhibited a standing wave pattern propagating along the axis of the rolls. The nature 
of the oscillating temperature field is shown along a horizontal section in figure 4 as 
a series of contour plots spanning one complete oscillation cycle. Another study by 
Mukutmoni & Yang (1992) revealed a similar standing wave pattern in a 3-3:1-9:1 
box for a fluid Prandtl number of 0"5 (figure 5). These computations were based on 
the experiments of Maurer & Libchaber (1979). Linear stability theory (Clever & 
Busse 1974) predicts a travelling wave pattern for a horizontally unbounded domain. 
The standing wave observed in the simulations is an obvious extension of their results. 

Several experiments of Rayleigh-Brnard convection in small enclosures (Gollub 
et al 1980, pp. 22-7; Libchaber & Maurer 1981, pp. 259-86; Libchaber et al 1982) 
have shown that among the several bifurcation sequences observed there is one that 
approximates the classic period-doubling route to chaos observed in iterated maps 
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Figure 4. Instantaneous isotherms over a complete oscillation cycle; Ra = 35,000 
at the horizontal section y = 0-78 (Mukutmoni & Yang 1993a). 

by Feigenbaum (1978). As an example, the following quadratic map  exhibits such a 

behaviour as the control parameter  2 is increased, 

x.+ 1 = 2x.(1 -- x.), (13) 

where 0 ~< x. ~< 1. In such a route to chaos (known as the Feigenbaum sequence) one 

observes an infinite cascade of period-doubling bifurcations. The intervals between 

successive critical control parameters  get smaller and are in a constant ratio beyond 

a sufficiently larger number  of bifurcations. The ratio is known as the Feigenbaum 
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Figure 5. The oscillating isotherms over one complete period at the horizontal 
section y = 0.8. Time interval is 0.023 (Mukutmoni & Yang 1992) 

number. Thus, 

lim (2n - 2 _ 1 ) / ( 2  + 1 - 2 . )  = 4 ' 6 6 9 2 0 1 6 0 9  . . . .  
n--* oo 

(14) 

For the Rayleigh-B6nard system the sequence of sub-harmonic bifurcations experi- 
mentally observed is not an infinite cascade but stops at not more than five. This 
is followed by a bifurcation to quasi-periodicity and chaos. The reason why ~the 
Feigenbaum sequence is reproduced only partially for the RB system was looked into 
by us (Mukutmoni & Yang 1993b)Ag our investigations (Mukutmoni 1991; Mukutmoni 
& Yang 1993b), it was discovered that the bifurcation sequence strongly depended on 
the step increase in the Rayleigh number in the numerical study. For a step increase 
of 2000, only one period-doubling bifurcation was observed (Mukutmoni & Yang 
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Figure 6. Mean velocity and temperature fields for Ra = 37,000: (a) streamlines 
(b) velocity vectors, (c) isotherms (Mukutmoni & Yang 1993b). 
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...................... iZ, or., 
Figure 7. Ra -- 39,000; (a) phase trajectory, (b) spectral amplitudes (Mukutmoni & 
Yang 1993b). 
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1993b). For a smaller step increase, two subharmonic bifurcations were reported 
(Mukutmoni 1991). 

After bifurcation to quasi-periodic flow, it was shown that the two-roll pattern 
developed asymmetry at Ra =.37,000 between the two rolls (figure 6). It was also 
reported that the independent frequency added to the system was an order of magnitude 
smaller than the first fundamental frequency (figure 7). The likely conclusion backed 
by experiments (Gollub et al 1980, pp. 22-7), is that as the Rayleigh number is 
increased, the symmetry between the rolls cannot be sustained and when that happens 
the Feigenbaum sequence is terminated. To further test this hypothesis, computation 
carried out by Mukutmoni & Yang (1993b) artificially imposed such a symmetry. It 
was found that under such conditions, the Feigenbaum sequence is reproduced. One 
period-doubling sequence is shown in figure 8. Furthermore, the computations were 
able to predict the 'windows' of periodic flow between chaotic regimes as observed 
in the quadratic map (Parker & Chua 1988). 

It is rather surprising that a complicated system such as RB convection in small 
boxes for a certain parameter range can dynamically behave similar to one-dimensional 
nonlinear difference eqlJations. However, as revealed in the experiments (Maurer & 
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Figure 8. (a) Phase trajectory, (b) spectral amplitudes for Ra ffi 47,000; (c) phase 
trajectory, (d) spectral amplitudes for Ra ffi 48,000 (Mukutmoni & Yang 1993b). 
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Libchaber 1979; Gollub & Benson 1980; Berg6 et al 1982, pp. 123-48), the complete 
dynamical behaviour of the RB system is far richer than simple dynamical systems 
consisting of ordinary difference and differential equations. This is not surprising, 
since the equations of thermal convection are governed by a system of coupled 
nonlinear partial differential equations. It is also to be expected that the experiments 
have not revealed all the possible scenarios. With present computing resources, a 
thorough investigation of the dynamical behaviour is now tractable, and presents an 
exciting avenue for research to a fluid dynamicist and to a numerical analyst as a 
benchmark problem (Mukutmoni & Yang 1991). 

Mukutmoni & Yang (1994a) further demonstrated the usefulness of numerical 
computations to gain specific physical insights when used in conjunction with 
experiments. Gollub & Benson (1980) uncovered several routes to chaos and 
turbulence. In all cases, with one exception, the dynamical behaviour increased in 
temporal complexity as the Rayleigh number was increased. In one apparently 
anomalous case, for aspect ratios of 2.42 and 1.23, and Prandtl number of 5.0, the 
flow reverted from a quasi-periodic to steady-state with an increase in Rayleigh 
number. M ukutmoni & Yang (1944a) showed that the unexpected reversion to steady- 
state was caused by a bifurcation in the spatial pattern that stabilized the flow. 
Figure 9 shows the mean velocity and temperature field, before and after the 
bifurcation. 

Preliminary numerical investigation into high Prandtl number fluids using the 
experiments of Arroyo & Savir6n (1992) was attempted by Mukutmoni et al (1993). 
Figure 10 shows the comparison with experiments in terms of pathlines. The experiments 
and numerical simulations were for an aspect ratio of 2"03 and 1.19 for silicone oil 
(Pr = 130). One numerical difficulty associated with high Prandtl fluids is that 
time-dependence occurs at higher Rayleigh-numbers and that requires a finer grid 
and adequate resolution of the boundary layers. 
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Figure 9. Velocity vectors in (u) x - y  plane for section z = 0.7, and (b) z - y  
plane for the section x = 1.0, Ra = 40,000, and in (e) x - y plane for section z = 0.7, 
and (d) z - y  plane for the section x = 1.0, Ra = 130,000 (Mukutmoni & Yang 
1994a). 
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Figure i0. Computed pathlines (Mukutmoni et al 1993) on the left. Experimental 
results (Arroyo & Savir6n 1992) on the right. Rayleigh numbers starting from the 
top, 6319, 11101 and 22884. 

Thus far, the discussion has been mostly restricted to bifurcation in the temporal 
behaviour of the system. In the following section we discuss ongoing research in the 
study of the bifurcation in spatial patterns. 

9. Pattern selection in Rayleigh-Benard system 

It has long been known that the RB problem is degenerate, i.e., for the same set of 
governing parameters many solutions are possible (Busse 1978). This is a consequence 
of the nonlinearity of the problem. The mechanism on how different solutions to the 
problem evolve and compete and the process by which a particular flow configuration 
undergoes changes is broadly known as pattern selection. Some of the earliest work on 
the pattern selection problem was done by Busse and coworkers (Busse & Whitehead 
1974; Clever & Busse 1974; Busse & Clever 1979). In their works, they identified 
several instability mechanisms that influence the pattern selection process of 
RB convection in an infinite horizontally unbounded media. However, for an infinite 
case, the number of stable solutions is infinite. For roll convection, the stable solutions 
occur over a finite bandwidth of wavenumbers. 

For large aspect ratio boxes (aspect ratios greater than 30) it has been experimentally 
shown (Busse 1978) that the instability mechanisms documented for the horizontally 
unbounded case in general apply, although the number of solutions is finite but large. 
For smaller enclosures, the evidence is insufficient. Experimental results indicate that 
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at least some of the mechanisms do apply (Kolodner et al 1986; Kirchartz & Oertel 
1988). However, it is to be expected that new instability mechanisms would occur in 
the presence of lateral walls. 

There have been several attempts to solve the problem with useful approximations 
of the governing equations. Using a perturbation expansion valid for regimes slightly 
above the critical, Newell & Whitehead (1969) and Segel (1969) derived an amplitude 
equation. Subsequent researchers have improved and generalized this amplitude 
equation to study growth and saturation of the rolls. Using this approach, Greenside 
& Coughran (1984) predicted (experimentally confirmed by Gollub & Heutmaker 
1984) that rolls tend to intersect rigid non-slip walls in an approximately perpendicular 
direction. The amplitude equation is a two-dimensional nonlinear partial differential 
equation that approximates (1) to (5). It has the following form, 

gdpldt = [~ - (V 2 + 1)2"14b - 4b 3, (15) 

where e is the perturbation parameters (Ra/Ra,) - 1. The dependent variable ~b is the 
amplitude. 

Greenside & Coughran (1984) studied the pattern selection problem by numerically 
solving the amplitude equation and imposing random initial conditions and integrating 
in time. The results indicate that irregular patterns or defects do develop but they 
smoothen out for large Rayleigh numbers. The stationary solutions were found to 
be symmetric. It was determined that the time scales needed to achieve a stationary 
solution was proportional to the horizontal diffusion scale. 

Nevertheless, the amplitude equations are valid only slightly above the critical 
Rayleigh number. To really model the phenomena accurately in the high Rayleigh 
number regime, the full Boussinesq equation must be solved. The problem is less 
tractable than a small box since a large computational grid is required. Furthermore, 
since the relaxation time is proportional at least to the horizontal diffusion time, the 
simulations must be carried out for a longer time. 

RB convection in an intermediate aspect ratio box was experimentally investigated 
by Kolodner et al (1986). They concluded that the observations were consistent with 
the results of two-dimensional stability theory, provided one makes plausible allowances 
for the experimental imposition of finite lateral boundaries. The focus of most 
experimentalists has been on roll convection. One well-documented phenomenon 
experimentally observed in small and intermediate boxes is the decrease in the number 
of rolls with an increase in Rayleigh number (Kolodner et al 1986; Leith 1987; 
Kirchartz & Oertel 1988). According to linear stability theory, the loss of roll 
phenomena, as it is sometimes referred to, is an outcome of the skewed-varicose 
instability (Busse 1978). 

The loss of rolls was numerically investigated by Mukutmoni & Yang (1992) for 
a small box (4:2:1) for a Prandtl number of 0.71. The transition from 4 to 3 rolls 
was documented as shown in figure 11. The transition sequence shows the typical 
slanting of the rolls as well as the thinning and thickening of the distorted rolls in 
the time sequence. In our computations (Mukutmoni & Yang 1994b), using a 
98 x 20 x 50 grid, we simulated a transition from 10 to 8 rolls, for an enclosure of 
aspect ratios 10.61 and 5.32 and Prandtl number of 3.5. The transition sequence is 
shown in figure 12. Our results (Mukutmoni & Yang 1994) also showed that there 
is a generation of vertical vorticity or swirl in the transition process. This means that 
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Figure 11. Transition sequence from 4 to 3 
y = 0-8 (Mukutmoni & Yang 1992). 
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the transition process is not governed entirely by the skewed-varicose instability for 
which there is no vertical vorticity (Busse 1978). The numerical computations were 
an accurate simulation of the experiments of Kolodner et al (1986). 

Another related issue of roll convection is related to the alignment of the rolls. 
Early theoretical (Davis 1967) and experimental results (Stork & Miiller 1972) seemed 
to suggest that only rolls parallel to the short side of a rectangular container are 
stable. However, we (Mukutmoni & Yang 1992) showed that rolls parallel to the 
long side for a small enclosure of aspect ratio 3-5 and 2.1 and Prandtl number 2.5 
are stable below a certain critical Rayleigh number. The conclusion of the study 
(Mukutmoni & Yang 1992) was that long rolls are metastable (unstable to finite 
perturbations) and definitely less stable than rolls parallel to the short side. 
Experiments of Kolodner et al (1986) found stable rolls parallel to the long side, for 
intermediate aspect ratio boxes. 

Pattern selection and flow transitions in intermediate aspect ratio boxes are much 
more complicated than smaller boxes due to the less restrictive influence of the 
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Figure 12. Pat tern  transi t ion at Ra = 17,000 represented in terms of isotherms 

at horizontal  section y = 0.7. Time interval o f t  = 1 (Mukutmoni  & Yang t994b). 



666 

(a) 

N 

D Mukutmoni and K T Yang 

(b) 

(d) 

Figure 13. Non-roll pattern transition at 
Ra = 24,000 (Mukutmoni & Yang 1994b). 
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Yang 1994b). 
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sidewalls. Some experiments hint at a much more complicated temporal behaviour 
(Walden et al 1984) at higher Rayleigh numbers than small enclosures. The flow 
patterns are more complicated. Several non-roll patterns have been documented. For 
moderately high Prandtl fluids, bimodal convection has been documented experi- 
mentally (Busse 1978). Another interesting non-roll pattern is the "spoke-pattern" 
convection (Kolodner et al 1986) which has a highly complicated three-dimensional 
structure and is time-dependent as well. We (Mukutmoni & Yang 1994b) documented 
steady oscillatory convection with a polygonal planform. The planform is shown in 
figure 13 and the dynamical behaviour is shown in figure 14. Such a pattern has 
however not been observed in experiments. 

10. Research needs and concluding remarks 

From our discussion it appears that numerical simulation of RB convection in 
enclosures is a very worthwhile and rewarding research area. However, it is clear 
that the numerical studies have yet to catch up with the range and scope of .the 
experiments. The review shows that successful simulations have been performed for 
small aspect ratio enclosures up to the chaotic regime for some cases. Nevertheless, 
simulations have not covered the entire range of dynamical behaviour. Although 
experiments are available, there has been no study investigating the intermittency 
and phase-locking behaviour that has been observed. Systematic and extensive studies 
of high-Prandtl fluids in enclosures are absent thus far. 

It is also worthwhile to look at convection in small enclosures for non-rectangular 
geometries such as with cylindrical lateral walls or polygonal domains. There has 
not been any study as yet. Even for rectangular domains, turbulent convection in 
enclosures at the lower Rayleigh number and (sometimes referred to as "soft" turbulence) 
has not received the attention it deserves. All numerical studies on turbulent thermal 
convection use some degree of approximation such as periodicity in the horizontal 
directions or slip horizontal walls such as the works of Sirovich & Park (1990). One 
obvious problem for RB -onvection for high Rayleigh numbers in the turbulent regime 
is the tractability. However, with the greater availability of powerful workstations 
and massively parallel machines these problems would be feasible, and lead to a 
greater understanding of the physics. 

For intermediate aspect ratio enclosures, the computational problem is more 
difficult. Not surprisingly, there have been extremely few studies that tackle the 
problem in all its complexity. However, due to the more complex physics associated 
with the problem, it is a more rewarding area. The phenomena of RB convection in 
intermediate boxes are not well known. The first challenge would be to take a closer 
look at the experimentally observed flow patterns. In particular, the non-roll patterns 
have not been looked into at all. 

Thermal convection at high Rayleigh numbers is a computationaUy difficult 
numerical problem. In this article, we have described, in certain detail, some of the 
computational techniques used in the various studies. We make no specific recom- 
mendations on the type of numerical technique employed. However, higher order 
methods are to be preferred in order to minimize numerical diffusion. The class of 
numerical techniques used by researchers include spectral, finite element and finite 
volume methods. For a complete exposition on the spectral methods the reader is 
referred to the monograph by Canuto et al (1988). An excellent reference for the finite 
volume method is the book by Fletcher (1988). 
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Higher order finite difference and finite volume methods have only recently been 
applied to numerical problems. As an example Lele (1992) describes the compact 
differencing schemes. Rai & Moin (1991) illustrate higher order upwind-weighted 
schemes for simulating turbulent flow. The issue of the required mesh density is highly 
problem dependent. For the RB problem, as described earlier, it depends strongly on 
the Rayleigh number and the Prandtl numbers. Experimental results are needed to 
primarily validate the grid resolution. 

List of symbols 

A X~ Ag 

g 
L 
L~, L~ 
Pr 
Ra 
Ra~ 
t 
T 
AT 
U 
U~ V, 14) 

x, y 
Z 

# 

X 
Y 

P 
4, 

L J L  and Lz/L, aspect ratios in the x and z directions respectively; 
acceleration due to gravity, m/s2; 
height of the enclosure, m; 
dimensions of enclosure in x and z directions (m) respectively; 
Prandtl number; 
Rayleigh number; 
critical Rayleigh number; 
non-dimensional time; 
non-dimensional temperature; 
temperature difference, K; 
non-dimensional velocity vector; 
non-dimensional x-, y- and z-direction velocites respectively; 
non-dimensional horizontal and vertical spatial coordinates respectively; 
non-dimensional spatial coordinate in the direction of depth; 
thermal diffusivity, m2/s; 
coefficient of volume expansion, I/K; 
perturbation parameter; 
bifurcation parameter; 
kinematic viscosity, m2/s; 
density, kg/m 3; 

non-dimensional amplitude of perturbation. 
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