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SUMMARY 

We present a method for visualizing 2D and 3D flows by animating textures on triangles, taking advan- 

tage of texture mapping hardware. We discuss the problems when the flow is time-varying, and present 

solutions. 

INTRODUCTION 

An intuitive way to visualize a flow is to watch particles or textures move in the flow. The early color 

table animation of [l] was an example of this technique. More recently, van Wijk [2] has proposed advect- 

ing and motion blurring particles by the flow field. The LIC method [3,4,5] uses integrals of white noise 

textures along streamlines, moving the weighting function in the integrals from frame to frame to animate 

the texture motion. The motion blur of the particles and the directional texture blurring from the LIC inte- 

gration create anisotropic textures which indicate the flow even in a still frame. However they are computa- 

tionally intensive, and cannot generate animation in real time. The textured splats of Crawfis [6] use a loop 

of cycling texture maps with precomputed advecting motion blurred spots, and take advantage of texture 

mapping hardware. These are composited in back to front order in a local region near each data point, and 

oriented in the direction of the velocity vector, so that the precomputed advection cycle indicates the flow. 

In this paper, we show how texture mapping hardware can produce near-real-time texture motion, 

*This work was performed under the auspices of the U.S. Department of Energy by Lawrence Liver- 
more National Laboratory under contract number W-7405-ENG-48, with specific support from an 
internal LDRD grant. We thank Roger C r a m  for helpful suggestions. 



using a polygon grid, and one fixed texture. However, we make no attempt to indicate the flow direction in 

a still frame. As discussed below, any anisotropic stretching comes from the velocity gradient, not the 

velocity itself. 

The basic idea is to advect the texture by the flowQfield. In [7] we gave an indication of the wind veloc- 

ity by advecting the 3D texture coordinates on the polygon vertices of a cloudiness contour surface in a cli- 

mate simulation. This was slow, because the 3D texture was rendered in software, and because advecting 

the texture was difficult for time-varying flows. In this paper, we replace the 3D textures by 2D texture 

maps compatible with hardware rendering, and give techniques for handling time-varying flows more effi- 

ciently. 

The next section gives our technique for the case of 2D steady flows, and the following one discusses 

the problems of texture distortion. Then we discuss the problems with extending our method to time-vary- 

ing flows, and our two solutions. Next we develop compositing methods for visualizing 3D flows. The final 

section gives our results and conclusions. 

TEXTURFi ADVECTION FOR STEADY 2D FLOWS 

We start with a mathematical definition of texture advection, and then show how it can be approxi- 

mated by hardware texture-mapped polygon rendering. 

Let p(x,  y )  represent the steady flow solution of the differential equation 

where V(x, y )  is the velocity field being visualized. Thus point P is carried by the flow to the point p(P) 
after a time delay t. The flow satisfies the composition rule 

fl+'p) = f l [ ~ ' ( ~ )  J 

for both positive and negatives and t. Thus (F')-'(P) = F"(P). 

In this paper, we will assume that the initial texture coordinates at t = 0 are the same as the (x, y )  coor- 

dinates of the region R being rendered. In practice, the texture is usually defined in a different (u, v) coordi- 

nate system related to (x, y )  by translation and scaling, but for simplicity we will ignore the difference. 

If T(x, y) is a 2D texture being advected by the flow, then a new texture TJx, y )  is defined by 



Thus, to compute Ti at a point P, we go backwards along the streamline through P, to find the point Q such 

that F'(Q) = P, and then evaluate the texture function Tat Q. When animated, this will give the appearance 

that the initial texture Tis being carried along by the flow. By equation (2) above, 

F('+*') (P) = FA'(, Ff (P) ). Thus the streamlines F'(P) needed for the texture coordinates can be 

computed incrementally. 

There are two problems with this formulation when the domain of definition for V(x, y) or T(x, y) is 

limited to a finite region R in which the velocity data or texture is available. First of all, if the streamline 

F"(P) leaves the region R, the necessary velocities are not available to continue the integration. One must 

either extrapolate the known velocities outside R, or continue the streamline as a straight line using the last 

valid velocity. Fortunately, either of these extrapolation methods will give a correctly moving texture in 

animation. This is because the visible texture motion at a point P inside R is determined only by the veloc- 

ity at P, and the extrapolation of the streamline beyond R serves only to determine what texture will be 

brought in from "off screen". 

Second, even if F"(P) is extended outside R, the texture may not be known there. The standard solu- 

tion to this is to take T(x, y) to be a periodic function in both x and y, so that it is defined for all (x, y). Most 

texture mapping hardware is capable of generating this sort of wraparound texture, by using modular arith- 

metic (or truncation of high order bits) to compute the appropriate texture map address from the x and y 

values. There are also tools to generate textures which wrap around without apparent seams [SI. 

To adapt this technique to hardware polygon rendering, the 2D region R is divided up into a regular 

grid of triangles, and the texture coordinates F r ( P J  are only computed for the vertices Pi of the grid. Dur- 

ing the hardware scan conversion, texturing, and shading process, the texture coordinates at each pixel are 

interpolated from those at the vertices, and the appropriate texture pixels are accessed. For triangles, the 

standard bilinear interpolation, which is not rotation invariant, reduces to linear interpolation, which is. For 

anti-aliasing, the hardware can use the higher order bits of the texture coordinates to weight an average of 

four adjacent texture map values (or four values in each of the two most-nearly-appropriate-resolution ver- 

sions of the texture, if MIP mapping [9] is employed.) 

TEXTURE DISTORTION 

The flow Fr(P) can change the shape of a triangle, so that it becomes long and thin in texture space, as 

shown in figure 1. In the direction where the triangle is stretched by Fr, the texture will be compressed by 

F r. This distortion will not be present if the velocity is constant, so that F" and F z  are both translations. 

The distortion instead indicates anisotropies in the derivatives of K For incompressible 2D flows, stretching 



in one direction will be compensated by compression in a p’erpendicular direction. For compressible flows, 

theremay be stretching in all directions at some positions, and shrinking in all directions at others. 

Figure 1. The triangle on the right is mapped to the texture on the left, which ends up being 
compressed vertically when the triangle is rendered. 

During the animation of the texture advection, this distortion continues to build up, so that eventually 

the visualization will become useless. Therefore we periodically restart the texture coordinates back at their 

original positions in the regular grid. To avoid the sudden jump this would cause in the animation, we grad- 

ually ‘fade up the new texture and fade down the old one, according to the weighting curves in figure 2. 

Each texture starts with weight zero, fades up over the old texture until it alone is present, and then fades 

Figure 2. Three cycles of the weighting curves for fading the textures up and down. 

down as an even newer texture takes its place. This “cross dissolve” cah be done in hardware, using a com- 



positing [ 101. If the textures are random, and contain an adequate range of spatial frequencies, this cross 

dissolve will not disturb the perception of continuously flowing motion. 

Since each texture is used for only a short time, the distortion does not become extreme. For a steady 

flow, one cross dissolve cycle ends with the same image at which it began, so an animation loop may be 

created which can be cycled rapidly and repeatedly on a workstation screen. Similar precomputed loops are 

possible with the surface particle [2], LIC [3], and textured splat [6] techniques. 

TEXTURE ADVECTION FOR UNSTEADY 2D FLOWS 

If the velocity V depends on t, the differential equation 

defines a flow which no longer satisfies equation (2). For a fixed initial position Q, the curve F'(Q) is a par- 

ticle trace C(t) as in Ell], rather than a streamline. To find the texture coordinates for P at time to we need to 

find the point Q such that Fro (Q) = P. We must go backwards along the particle trace, and thus solve the 

differential equation 

= V ( C ( t ) , t )  
dt (4) 

for the t range 0 I t I to, with "final" condition C(t0) = P, and then set Q = C(0). With the change of vari- 

ables u = to - t, this is equivalent to the differential equation 

for the u range 0 I u I to, with initial condition C(0) = P. Then Q = C(t0). 

In the case of unsteady flow, the differential equations (5) for different to are not related and define 

completely different particle traces, so incremental methods can no longer be used. In [7] we integrated 

equation (5) anew for each frame time 6. To find the texture coordinates for frame to, we had to access the 

time varying velocity data for the whole t range 0 I t I to, which is very inefficient for large data sets. Here 

we propose two more practical methods. 

The first method is to derive a differential equation for the flow Gt (x, y) = [$I-' (x, y) . This flow 

maps a point P to the texture coordinate point Q needed at frame time t, that is, the point with F'(Q) = R 

Thus we have 



F(Gt(P)) = P. 

Let G$ and G$ be the x and y components of the vector-valued function G'(x, y), and similarly let F', and 

p,, be the components of p. Then by differentiating the components of equation (6) with respect to t by the 

chain rule, we get the pair of equations 

aFc, aFc,aGi aFt,aGi 

at ax at ay at 

a< aF.l,aGi az-+aGt Y Y  

at ax at ay at 

- +-- +-- = 0,  

- +-- +-- = 0. 

a< a# 
- I  - at at 

Now by equation (3), - = Vx and -' = Vy , where Vx and Vy are the components of the velocity field 

at position ~ ( G z  (P) ) = P and time t. Therefore we have 

where M is the Jacobian 'matrix for the flow Fr(xy y): 

Thus 

But since G'(x, y) = [ #)-' (x, y) the matrix M-' is the Jacobian matrix J for G'(x, y): 

Thus Gr(x, y )  satisfies the partial differential equations: 

_ .  . . . 



These differential equations essentially say that the flow G'(x, y) is determined from the negative of the 

velocity 

texture flow necessary to give the desired apparent velocity at time t. The initial condition for G' at t = 0 is 

that @(P) = P, that is, d is the identity map. Equations (7) can be integrated incrementally in time by 

Euler's method. If G'(Pi) is known at time t for all vertices on a regular grid, the partials in the Jacobian 

matrix J(Pi) can be estimated from central differences between the G' values at adjacent grid vertices. (For 

vertices at the boundary of R, one-sided differences must be used.) Then, using the current velocity 

V(Gf(Pi), t), increments AG, = %At and AGy = -$At are found for the components of G'. If necessary, 

At can be a fraction of the time step between frames, and/or the vertex grid used for solving equations (7) 

can be finer than the triangle grid used in rendering the texture, in order to make the solution more accurate. 

as transformed into the texture coordinate system appropriate for t = 0, so they determine the 

act t 

at 

The vertex grid spacing will affect the accuracy of the finite difference approximations to the partial 

derivatives like -y. This accuracy is critical, because small errors in these partials will cause errors in 

position in the next frame, which may compound the errors in the partials, and cause them to grow expo- 

nentially from frame to frame. Here again, it is useful to fade out the current advected texture and fade in a 

new texture whose coordinates are reinitialized to the identity map, so that the integration errors cannot 

accumulate for too long. 

act 
ax 

The second method for handling unsteady flows is to move the triangle vertices by the flow p(x, y), 

keeping their texture coordinates constant. This advects the texture directly, by moving the triangles, and 

carrying the texture along with them. To do this, we incrementally integrate equation (3), and no partial 

derivative estimates are needed for a Jacobian. However we again have a problem at the edges of the region 

R. The boundary vertices may move inside R, leaving gaps at the edges, or may move outside, causing too 

much texture to be rendered. The excess rendering is easily prevented by clipping all triangles to the 

boundary of R. The gaps can be eliminated by creating extra guard polygons around the edges of R, widen- 

ing it to a larger region s. Whenever any vertex on the boundary of S crosses into R, a new row of guard 

polygons is added to the a€fected side of S. Again it is useful to integrate only over a limited time interval 

before reinitializing the texture coordinates, to avoid creating too many extra polygons. 

FLOWS IN 3D 

In three dimensions, one could advect 3D texture coordinates, but 3D texturing is not widely available. 



We have instead used 2D textures on parallel section planes. We made the textured planes semi-transparent, 

and composited them from back to front using the a compositing hardware in our workstation. (This is how 

3D texture mapping is usually implemented in hardware.) For the methods which change only the texture 

coordinates, we used the 2D projection of the velocity onto the section plane. For the method which moves 

the triangle vertices, we used the true 3D velocity, allowing the section surfaces to warp out of planarity. 

Combining the compositing for the cross-dissolve of figure 2 with the compositing of the separate tex- 

ture planes can lead to problems in the accumulated opacity. Given two objects with opacities al and %, 

the resulting opacity from compositing both objects is a1 + % - al%. (See [ 101 or multiply the transparen- 

cies.) Supposef'(t) andf2(t) are the two weighting curves shown in figure 2, withfl +f2 = 1, and a is the 

desired section plane opacity. If we just take the two component opacities to be al = afl and % = af2, the 

result is a composite opacity 

2 
a, = af, + af2- a f1f2 = a- 

The unwanted last term causes a periodic pulsation in a0 

A solution is to use exponentials, which have better multiplicative properties. Define an "optical 

-fJ -fJ 
depth', I = - h(1- a), so that a = 1 - e-', and let al = 1 - e 
opacity is then 

and = 1 - e . The resulting composite 

a, = a, +a2-ala2 

1-e 1-e 
-fil 

= 1 - e  +I-e 

as desired. 

Another problem with compositing texture planes of constant transparency is that the frontmost planes 

will eventually obscure the ones to the rear if the data volume gets large. One solution is to use variable- 

transparency textures, so that some regions of.the texture are completely transparent, Another is to specify 

the transparency on triangle vertices using a separate scalar data variable wfiich can select out regions of 

interest where the texture motion should be visible. In [7] we used percent cloudiness contour surfaces to 

specify the location of the advecting software-rendered texture. With our new hardware based technique, 

this cloudiness variable is used to specify the vertex transparency, and produces similar realism in much 

less time. 

IMPLEMENTATION AND RESULTS 

. The different types of moving textures discussed were implemented as a class hierarchy in C++. Inven- 



tor [ 121 quadmeshes were used to represent texture layers. An Iris Explorer module was then constructed in 

order to make use of color maps and data readers. 

Figure 3 shows what happens when the vertices themselves are advected. The whole surface distorts, 

even in the direction perpendicular to the plane. In Figure 4 the texture coordinates are advected backwards 

while the vertices are held fixed. This gives the impression of motion in the direction of flow. Unfortunately 

the texture distorts too much over a long period of time. Also the texture vertices may move outside the 

defined domain. A solution to the first problem is to fade in a second texture with the texture coordinates 

reset to their original positions. The resulting cross dissolve is shown in Figure 5. The opacity for each tex- 

ture is computed using exponentials, as discussed above, so there is no distracting variation in the overall 

intensity during animation. To avoid the problem of having to sample outside the domain, we used the 

inverse flow G' for the texture coordinates, as explained above, while keeping the vertices fixed (Figure 6). 

This method also gives bad results over time if we do not periodically fade in a new unadvected texture as 

shown figure 7. Figure8 illustrates how flow moves through particles of aerogel, a materid with very low 

density which is a good thermal insulator. Figure 9 shows a frame from an animation of global wind data on 

a spherical mesh. The opaque regions represent high percent cloudiness. Although the vector field is static, 

the texture (but not the colors) appear to move in the direction of flow. Figures 10 and 11 depict steady flow 

near a high density contour in an interstellar cloud collision simulation (data courtesey of Richard Klein). 

Figure 10 has moving vertices, while figure 11 has moving texture coordinates. The color indicates density. 

A frame from an animation of unsteady wind data over Indonesia on a curvilinear mesh is shown in Figure 

12. Percent cloudiness is mapped to color and opacity. 

We ran our software on an SGI Onyx supporting hardware texture mapping. For a 32 by 32 slice of a 

volume (as in the aerogel example) we were able to achieve about four frames per second. To rotate a com- 

plete 50x40~10 volume, like the one shown in Figure 9, about 15 seconds was required. 
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Figure 3. Actual vertices are advected in 3D. Figure 4. Texture coordinates are advected 
backwards. 

Figure 5. Same method 
as figure 4, but with a 
new texture fading in as 
soon as the other 
becomes too distorted. 

Figure 7. Same method 
as figure 6, but with a 
new texture fading in 
as soon as the other 
becomes too distorted. 

Figure 6. Texture coordinates are advected-77- 
using vectors transformed by the local 
jacobian matrix, while vertices are held fixed. 



Figure 12. Method of 
figure 7 applied to an 
unsteady flow 
representing global 
climate data. Color and 
opacity indicate percent 
cloudiness. Both the 
winds and percent 
cloudiness vary in time. 
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