
UCRG JC-1206%
PREPRINT

Flow Visualization Using Moving Textures

N. Max
B. Becker

This paper was prepared.for submittal to the
ICASEILaRC Symposium on
Visualizing Time Va y Data

Williamsbuw V A
September 18-19,1995

April 1995

DISCLAIMER

This document was prepared as an account of work sponsored by a n agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparahs, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

FLOW VISUALIZATION USING MOVING TEXTURES:

Nekon Max

Lawrence Livermore National Laboratory

Livermore, California

Barry Becker

Lawrence Livermore National Laboratory

Livermore, California

SUMMARY

We present a method for visualizing 2D and 3D flows by animating textures on triangles, taking advan-

tage of texture mapping hardware. We discuss the problems when the flow is time-varying, and present

solutions.

INTRODUCTION

An intuitive way to visualize a flow is to watch particles or textures move in the flow. The early color

table animation of [l] was an example of this technique. More recently, van Wijk [2] has proposed advect-

ing and motion blurring particles by the flow field. The LIC method [3,4,5] uses integrals of white noise

textures along streamlines, moving the weighting function in the integrals from frame to frame to animate

the texture motion. The motion blur of the particles and the directional texture blurring from the LIC inte-

gration create anisotropic textures which indicate the flow even in a still frame. However they are computa-

tionally intensive, and cannot generate animation in real time. The textured splats of Crawfis [6] use a loop

of cycling texture maps with precomputed advecting motion blurred spots, and take advantage of texture

mapping hardware. These are composited in back to front order in a local region near each data point, and

oriented in the direction of the velocity vector, so that the precomputed advection cycle indicates the flow.

In this paper, we show how texture mapping hardware can produce near-real-time texture motion,

*This work was performed under the auspices of the U.S. Department of Energy by Lawrence Liver-
more National Laboratory under contract number W-7405-ENG-48, with specific support from an
internal LDRD grant. We thank Roger C r a m for helpful suggestions.

using a polygon grid, and one fixed texture. However, we make no attempt to indicate the flow direction in

a still frame. As discussed below, any anisotropic stretching comes from the velocity gradient, not the

velocity itself.

The basic idea is to advect the texture by the flowQfield. In [7] we gave an indication of the wind veloc-

ity by advecting the 3D texture coordinates on the polygon vertices of a cloudiness contour surface in a cli-

mate simulation. This was slow, because the 3D texture was rendered in software, and because advecting

the texture was difficult for time-varying flows. In this paper, we replace the 3D textures by 2D texture

maps compatible with hardware rendering, and give techniques for handling time-varying flows more effi-

ciently.

The next section gives our technique for the case of 2D steady flows, and the following one discusses

the problems of texture distortion. Then we discuss the problems with extending our method to time-vary-

ing flows, and our two solutions. Next we develop compositing methods for visualizing 3D flows. The final

section gives our results and conclusions.

TEXTURFi ADVECTION FOR STEADY 2D FLOWS

We start with a mathematical definition of texture advection, and then show how it can be approxi-

mated by hardware texture-mapped polygon rendering.

Let p(x, y) represent the steady flow solution of the differential equation

where V(x, y) is the velocity field being visualized. Thus point P is carried by the flow to the point p(P)
after a time delay t. The flow satisfies the composition rule

fl+'p) = f l [~ ' (~) J

for both positive and negatives and t. Thus (F')-'(P) = F"(P).

In this paper, we will assume that the initial texture coordinates at t = 0 are the same as the (x, y) coor-

dinates of the region R being rendered. In practice, the texture is usually defined in a different (u, v) coordi-

nate system related to (x, y) by translation and scaling, but for simplicity we will ignore the difference.

If T(x, y) is a 2D texture being advected by the flow, then a new texture TJx, y) is defined by

Thus, to compute Ti at a point P, we go backwards along the streamline through P, to find the point Q such

that F'(Q) = P, and then evaluate the texture function Tat Q. When animated, this will give the appearance

that the initial texture Tis being carried along by the flow. By equation (2) above,

F('+*') (P) = FA'(, Ff (P)). Thus the streamlines F'(P) needed for the texture coordinates can be

computed incrementally.

There are two problems with this formulation when the domain of definition for V(x, y) or T(x, y) is

limited to a finite region R in which the velocity data or texture is available. First of all, if the streamline

F"(P) leaves the region R, the necessary velocities are not available to continue the integration. One must

either extrapolate the known velocities outside R, or continue the streamline as a straight line using the last

valid velocity. Fortunately, either of these extrapolation methods will give a correctly moving texture in

animation. This is because the visible texture motion at a point P inside R is determined only by the veloc-

ity at P, and the extrapolation of the streamline beyond R serves only to determine what texture will be

brought in from "off screen".

Second, even if F"(P) is extended outside R, the texture may not be known there. The standard solu-

tion to this is to take T(x, y) to be a periodic function in both x and y, so that it is defined for all (x, y). Most

texture mapping hardware is capable of generating this sort of wraparound texture, by using modular arith-

metic (or truncation of high order bits) to compute the appropriate texture map address from the x and y

values. There are also tools to generate textures which wrap around without apparent seams [SI.

To adapt this technique to hardware polygon rendering, the 2D region R is divided up into a regular

grid of triangles, and the texture coordinates F r (P J are only computed for the vertices Pi of the grid. Dur-

ing the hardware scan conversion, texturing, and shading process, the texture coordinates at each pixel are

interpolated from those at the vertices, and the appropriate texture pixels are accessed. For triangles, the

standard bilinear interpolation, which is not rotation invariant, reduces to linear interpolation, which is. For

anti-aliasing, the hardware can use the higher order bits of the texture coordinates to weight an average of

four adjacent texture map values (or four values in each of the two most-nearly-appropriate-resolution ver-

sions of the texture, if MIP mapping [9] is employed.)

TEXTURE DISTORTION

The flow Fr(P) can change the shape of a triangle, so that it becomes long and thin in texture space, as

shown in figure 1. In the direction where the triangle is stretched by Fr, the texture will be compressed by

F r. This distortion will not be present if the velocity is constant, so that F" and F z are both translations.

The distortion instead indicates anisotropies in the derivatives of K For incompressible 2D flows, stretching

in one direction will be compensated by compression in a p’erpendicular direction. For compressible flows,

theremay be stretching in all directions at some positions, and shrinking in all directions at others.

Figure 1. The triangle on the right is mapped to the texture on the left, which ends up being
compressed vertically when the triangle is rendered.

During the animation of the texture advection, this distortion continues to build up, so that eventually

the visualization will become useless. Therefore we periodically restart the texture coordinates back at their

original positions in the regular grid. To avoid the sudden jump this would cause in the animation, we grad-

ually ‘fade up the new texture and fade down the old one, according to the weighting curves in figure 2.

Each texture starts with weight zero, fades up over the old texture until it alone is present, and then fades

Figure 2. Three cycles of the weighting curves for fading the textures up and down.

down as an even newer texture takes its place. This “cross dissolve” cah be done in hardware, using a com-

positing [101. If the textures are random, and contain an adequate range of spatial frequencies, this cross

dissolve will not disturb the perception of continuously flowing motion.

Since each texture is used for only a short time, the distortion does not become extreme. For a steady

flow, one cross dissolve cycle ends with the same image at which it began, so an animation loop may be

created which can be cycled rapidly and repeatedly on a workstation screen. Similar precomputed loops are

possible with the surface particle [2], LIC [3], and textured splat [6] techniques.

TEXTURE ADVECTION FOR UNSTEADY 2D FLOWS

If the velocity V depends on t, the differential equation

defines a flow which no longer satisfies equation (2). For a fixed initial position Q, the curve F'(Q) is a par-

ticle trace C(t) as in Ell], rather than a streamline. To find the texture coordinates for P at time to we need to

find the point Q such that Fro (Q) = P. We must go backwards along the particle trace, and thus solve the

differential equation

= V (C (t) , t)
dt (4)

for the t range 0 I t I to, with "final" condition C(t0) = P, and then set Q = C(0). With the change of vari-

ables u = to - t, this is equivalent to the differential equation

for the u range 0 I u I to, with initial condition C(0) = P. Then Q = C(t0).

In the case of unsteady flow, the differential equations (5) for different to are not related and define

completely different particle traces, so incremental methods can no longer be used. In [7] we integrated

equation (5) anew for each frame time 6. To find the texture coordinates for frame to, we had to access the

time varying velocity data for the whole t range 0 I t I to, which is very inefficient for large data sets. Here

we propose two more practical methods.

The first method is to derive a differential equation for the flow Gt (x, y) = [$I-' (x, y) . This flow

maps a point P to the texture coordinate point Q needed at frame time t, that is, the point with F'(Q) = R

Thus we have

F(Gt(P)) = P.

Let G$ and G$ be the x and y components of the vector-valued function G'(x, y), and similarly let F', and

p,, be the components of p. Then by differentiating the components of equation (6) with respect to t by the

chain rule, we get the pair of equations

aFc, aFc,aGi aFt,aGi

at ax at ay at

a< aF.l,aGi az-+aGt Y Y

at ax at ay at

- +-- +-- = 0,

- +-- +-- = 0.

a< a#
- I - at at

Now by equation (3), - = Vx and -' = Vy , where Vx and Vy are the components of the velocity field

at position ~ (G z (P)) = P and time t. Therefore we have

where M is the Jacobian 'matrix for the flow Fr(xy y):

Thus

But since G'(x, y) = [#)-' (x, y) the matrix M-' is the Jacobian matrix J for G'(x, y):

Thus Gr(x, y) satisfies the partial differential equations:

_

These differential equations essentially say that the flow G'(x, y) is determined from the negative of the

velocity

texture flow necessary to give the desired apparent velocity at time t. The initial condition for G' at t = 0 is

that @(P) = P, that is, d is the identity map. Equations (7) can be integrated incrementally in time by

Euler's method. If G'(Pi) is known at time t for all vertices on a regular grid, the partials in the Jacobian

matrix J(Pi) can be estimated from central differences between the G' values at adjacent grid vertices. (For

vertices at the boundary of R, one-sided differences must be used.) Then, using the current velocity

V(Gf(Pi), t), increments AG, = %At and AGy = -$At are found for the components of G'. If necessary,

At can be a fraction of the time step between frames, and/or the vertex grid used for solving equations (7)

can be finer than the triangle grid used in rendering the texture, in order to make the solution more accurate.

as transformed into the texture coordinate system appropriate for t = 0, so they determine the

act t

at

The vertex grid spacing will affect the accuracy of the finite difference approximations to the partial

derivatives like -y. This accuracy is critical, because small errors in these partials will cause errors in

position in the next frame, which may compound the errors in the partials, and cause them to grow expo-

nentially from frame to frame. Here again, it is useful to fade out the current advected texture and fade in a

new texture whose coordinates are reinitialized to the identity map, so that the integration errors cannot

accumulate for too long.

act
ax

The second method for handling unsteady flows is to move the triangle vertices by the flow p(x, y),

keeping their texture coordinates constant. This advects the texture directly, by moving the triangles, and

carrying the texture along with them. To do this, we incrementally integrate equation (3), and no partial

derivative estimates are needed for a Jacobian. However we again have a problem at the edges of the region

R. The boundary vertices may move inside R, leaving gaps at the edges, or may move outside, causing too

much texture to be rendered. The excess rendering is easily prevented by clipping all triangles to the

boundary of R. The gaps can be eliminated by creating extra guard polygons around the edges of R, widen-

ing it to a larger region s. Whenever any vertex on the boundary of S crosses into R, a new row of guard

polygons is added to the a€fected side of S. Again it is useful to integrate only over a limited time interval

before reinitializing the texture coordinates, to avoid creating too many extra polygons.

FLOWS IN 3D

In three dimensions, one could advect 3D texture coordinates, but 3D texturing is not widely available.

We have instead used 2D textures on parallel section planes. We made the textured planes semi-transparent,

and composited them from back to front using the a compositing hardware in our workstation. (This is how

3D texture mapping is usually implemented in hardware.) For the methods which change only the texture

coordinates, we used the 2D projection of the velocity onto the section plane. For the method which moves

the triangle vertices, we used the true 3D velocity, allowing the section surfaces to warp out of planarity.

Combining the compositing for the cross-dissolve of figure 2 with the compositing of the separate tex-

ture planes can lead to problems in the accumulated opacity. Given two objects with opacities al and %,

the resulting opacity from compositing both objects is a1 + % - al%. (See [101 or multiply the transparen-

cies.) Supposef'(t) andf2(t) are the two weighting curves shown in figure 2, withfl +f2 = 1, and a is the

desired section plane opacity. If we just take the two component opacities to be al = afl and % = af2, the

result is a composite opacity

2
a, = af, + af2- a f1f2 = a-

The unwanted last term causes a periodic pulsation in a0

A solution is to use exponentials, which have better multiplicative properties. Define an "optical

-fJ -fJ
depth', I = - h(1- a), so that a = 1 - e-', and let al = 1 - e
opacity is then

and = 1 - e . The resulting composite

a, = a, +a2-ala2

1-e 1-e
-fil

= 1 - e +I-e

as desired.

Another problem with compositing texture planes of constant transparency is that the frontmost planes

will eventually obscure the ones to the rear if the data volume gets large. One solution is to use variable-

transparency textures, so that some regions of.the texture are completely transparent, Another is to specify

the transparency on triangle vertices using a separate scalar data variable wfiich can select out regions of

interest where the texture motion should be visible. In [7] we used percent cloudiness contour surfaces to

specify the location of the advecting software-rendered texture. With our new hardware based technique,

this cloudiness variable is used to specify the vertex transparency, and produces similar realism in much

less time.

IMPLEMENTATION AND RESULTS

. The different types of moving textures discussed were implemented as a class hierarchy in C++. Inven-

tor [121 quadmeshes were used to represent texture layers. An Iris Explorer module was then constructed in

order to make use of color maps and data readers.

Figure 3 shows what happens when the vertices themselves are advected. The whole surface distorts,

even in the direction perpendicular to the plane. In Figure 4 the texture coordinates are advected backwards

while the vertices are held fixed. This gives the impression of motion in the direction of flow. Unfortunately

the texture distorts too much over a long period of time. Also the texture vertices may move outside the

defined domain. A solution to the first problem is to fade in a second texture with the texture coordinates

reset to their original positions. The resulting cross dissolve is shown in Figure 5. The opacity for each tex-

ture is computed using exponentials, as discussed above, so there is no distracting variation in the overall

intensity during animation. To avoid the problem of having to sample outside the domain, we used the

inverse flow G' for the texture coordinates, as explained above, while keeping the vertices fixed (Figure 6).

This method also gives bad results over time if we do not periodically fade in a new unadvected texture as

shown figure 7. Figure8 illustrates how flow moves through particles of aerogel, a materid with very low

density which is a good thermal insulator. Figure 9 shows a frame from an animation of global wind data on

a spherical mesh. The opaque regions represent high percent cloudiness. Although the vector field is static,

the texture (but not the colors) appear to move in the direction of flow. Figures 10 and 11 depict steady flow

near a high density contour in an interstellar cloud collision simulation (data courtesey of Richard Klein).

Figure 10 has moving vertices, while figure 11 has moving texture coordinates. The color indicates density.

A frame from an animation of unsteady wind data over Indonesia on a curvilinear mesh is shown in Figure

12. Percent cloudiness is mapped to color and opacity.

We ran our software on an SGI Onyx supporting hardware texture mapping. For a 32 by 32 slice of a

volume (as in the aerogel example) we were able to achieve about four frames per second. To rotate a com-

plete 50x40~10 volume, like the one shown in Figure 9, about 15 seconds was required.

REFERENCES

1. Shoup, Richard: Color Table Animation. Computer Graphics Vol. 13, No. 2 (August 1979) pp. 8 - 13

2. van Wijk, Jarke: Flow Visualization With Surface Particles. IEEE Computer Graphics and Applications,

Vol. 13, NO. 4 (July 1993) pp. 18 - 24.

3. Cabral, Brian; and Leedom, Lie* Imaging Vector Fie& Using Line Integral Convolution. Computer

Graphics Proceedings, Annual Conference Series (1993) pp. 263 - 270.

4. Forssell, Lisa: Visualizing Flow over Curvilinear Grid Surfaces using Line Integral Convolution. Pro-

ceedings of IEEE Visualization '94, pp. 240 - 247.

5. Stalling, Detlev; and Hege, Hans-Christian: Fast and Resolution Independent Line Integral Convolution.

6. Crawfis, Roger; and Max, Nelson: Texture Splats for 3 0 Scalar and Vector Field Ksualization. Proceed-

ACM Computer Graphics Proceedings, Annual Conference Series, 1995, pp. 249 - 256.

ings of IEEE Visualization '93, pp. 261 - 265.

7. Max, Nelson; Crawfis, Roger; and Williams, Dean: Visualizing Wind velocities by Advecting Cloud Tex-

8. Heeger, David; and Bergen, James: Pyramid-Based Texture Analysis and Synthesis. ACM Computer

9. Williams, Lance: Pyramidal Parametrics. Computer Graphics Vol. 17 No. 3 (July 1983) pp. 1 - 11.

10. Porter Tom; and Duff, Tom: Compositing Digital Images. Computer Graphics Vol. 18, No. 4 (July

11. Lane, David: UFAT - A Particle Tracer for Etne-Dependent Flow Fieh . Proceedings of IEEE Visual-

12. Wernecke, Josie: The Inventor Mentor. Addison -Wesley Publ. Co., Inc., 1994.

tures. Proceedings of JEEE Visualization '92, pp. 179 - 184.

Graphics Proceedings, Annual Conference Series, 1995, pp. 229 - 238.

1984) pp. 253 - 259.

ization '94, pp. 257 - 264.

Figure 3. Actual vertices are advected in 3D. Figure 4. Texture coordinates are advected
backwards.

Figure 5. Same method
as figure 4, but with a
new texture fading in as
soon as the other
becomes too distorted.

Figure 7. Same method
as figure 6, but with a
new texture fading in
as soon as the other
becomes too distorted.

Figure 6. Texture coordinates are advected-77-
using vectors transformed by the local
jacobian matrix, while vertices are held fixed.

Figure 12. Method of
figure 7 applied to an
unsteady flow
representing global
climate data. Color and
opacity indicate percent
cloudiness. Both the
winds and percent
cloudiness vary in time.

Technical Informution Department Lawrence Lkermore National Laboratory
University of California Livermore, California 94551

,.;

I "

i ,

