
FlowBlaze: Stateful Packet Processing in Hardware

Salvatore Pontarelli1,2, Roberto Bifulco3, Marco Bonola1,2, Carmelo Cascone4,

Marco Spaziani2,5, Valerio Bruschi2,5, Davide Sanvito6, Giuseppe Siracusano3,

Antonio Capone6, Michio Honda3, Felipe Huici3 and Giuseppe Bianchi2,5

1Axbryd, 2CNIT, 3NEC Laboratories Europe, 4Open Networking Foundation,
5University of Rome Tor Vergata, 6Politecnico di Milano

Abstract

While programmable NICs allow for better scalability to

handle growing network workloads, providing an expressive

yet simple abstraction to program stateful network functions

in hardware remains a research challenge. We address the

problem with FlowBlaze, an open abstraction for building

stateful packet processing functions in hardware. The ab-

straction is based on Extended Finite State Machines and in-

troduces the explicit definition of flow state, allowing Flow-

Blaze to leverage flow-level parallelism. FlowBlaze is ex-

pressive, supporting a wide range of complex network func-

tions, and easy to use, hiding low-level hardware implemen-

tation issues from the programmer. Our implementation of

FlowBlaze on a NetFPGA SmartNIC achieves very low la-

tency (in the order of a few microseconds), consumes rela-

tively little power, can hold per-flow state for hundreds of

thousands of flows, and yields speeds of 40 Gb/s, allowing

for even higher speeds on newer FPGA models. Both hard-

ware and software implementations of FlowBlaze are pub-

licly available.

1 Introduction

Network infrastructures need a continuously evolving set of

network functions to be operated reliably [45, 35]; NAT, path

and server load balancing, traffic shaping, security functions

such as access control, and DoS protection are just a few

examples. Given the flexibility of modern networks and

the need to continuously support new applications, opera-

tors have turned to pure software implementations for such

functions, which have a number of benefits, including pro-

grammability and ease of management [8].

However, while essential to network operations, network

functions introduce overheads. Most notably, they increase

network packets’ end-to-end delay, since they are on the path

of network flows, and increase the overall cost of running

the infrastructure, needing additional computation resources,

i.e., CPU cores. These overheads become particularly criti-

cal in low latency fabrics such as those of modern datacen-

ters [50]. For instance, server-to-server communication de-

lays are expected to be in the order of a few tens of µs in a

cloud datacenter [29]. For comparison, it could take tens of

µs for packets to go from a NIC, over the PCIe bus, to a CPU

that executes a network function and back to the NIC.

To address this issue, past years have seen the introduction

of efficient programmable network devices that can offload

network packets processing from the CPU. For example, Mi-

crosoft deployed FPGA-based SmartNICs in their datacen-

ters [24]. These devices save CPU usage and reduce the

amount of traffic on a server’s PCIe bus, improving a net-

work function’s packet processing latency by more than an

order of magnitude. As a downside, programming a Smart-

NIC to support a new network function requires hardware

design expertise. While a tech giant can build and assign a

dedicated team to the task [24], this is usually not the case for

a large majority of companies, e.g., smaller cloud or network

operators. As a result, recent network programming abstrac-

tions, such as P4 [13] have the explicity goal of simplifying

the programming of FPGA-based network devices [60, 2].

However, they have limitations in describing network func-

tions that need to keep per-flow state [24, 58], a common

requirement in the world of network functions.

In this paper we address these shortcomings by introduc-

ing FlowBlaze, an abstraction that extends match-action lan-

guages such as P4 or Microsoft’s GFT [24] to simplify the

description of a large set of L2-L4 stateful functions, while

making them amenable to (line-rate) implementations on

FPGA-based SmartNICs. To benefit the community at large,

we build FlowBlaze on open SmartNIC technology (NetF-

PGA [65]), and provide our hardware and software imple-

mentations as open source. Our contributions are:

• The FlowBlaze abstraction. FlowBlaze adapts match-

action tables to describe the evolution of a network flow’s

state using Extended Finite State Machines (EFSM).

• A hardware implementation of FlowBlaze on the NetF-

PGA SUME card that can forward packets at 40Gb/s

line rate while keeping state for hundreds of thousands

of flows, consuming relatively little power, and providing

packet processing latency of less than 1 µs.

• A comprehensive analysis of FlowBlaze’ expresiveness

through the implementation of over 10 different use cases

including stateful firewalls, load balancers, NATs, traffic

policers and SYN flood detection and mitigation.

• Two different high performance software implementations

(for mSwitch [31] and the Linux kernel) of FlowBlaze.

Such implementations can be used to handle VM-to-VM

communications; to help implement fail-over in software

scenarios, e.g., during hardware maintenance; to support

end systems that do not have a SmartNIC available; or

to implement network functions that are deployed in less

performance-demanding scenarios.

FlowBlaze implementations, documentation and additional

results are available at [25].

2 Requirements and state-of-the-art

Our goal is to provide a system that allows a programmer

with little hardware design expertise to quickly implement,

or update, stateless and stateful packet processing functions

at high speed, on FPGA-based SmartNICs. It should be

noted that our focus is on functions that operate on packet

headers, generally at L2-L4 of the network stack, such as

firewalls, L4 load balancers and NATs. These are common

building blocks for many other functions, and can often be

completely executed within a NIC. Functions that operate on

packet payloads such as DPIs and L7 firewalls are out of the

scope of this work. More formally, we target the following

requirements:

• R1: High Performance: support of network functions

that achieve throughput in the range of 40-100Gb/s while

providing per-packet processing latency of at most a few

µs.

• R2: State Scalability: support for functions that operate

on fine-grained per-flow state and the ability to store per-

flow state for large numbers of network flows (e.g., up to

several 100Ks). The number of flows should not affect the

processing latency.

• R3: Easy to Use: allow a programmer to focus solely on

implementing the functionality needed and not get bogged

down in tricky, time-consuming hardware performance op-

timizations. Further, hardware constraints should have rea-

sonably little impact on application design, and the pro-

grammer should need little to no hardware design expertise

to implement a function.

• R4: Expressiveness: the system’s programming abstrac-

tion should allow users to describe a large range of po-

tentially stateful functions, including complex ones (e.g.,

anomaly detection, connection tracking, etc.).

2.1 Existing systems

Taking these requirements into account, we review the state

of the art and find that existing systems only meet these re-

High Perf State Scal Ease Expresiv

General programming frameworks

HDL
√ √ × √

HLS [52] × √ √ √

ClickNP [42] -
√

-
√

Match-action abstractions

P4 [13] - -
√

-

Domino [58]
√ √

- -

OpenState [11]
√ √ √ ×

FAST [51] × √ √ ×

Table 1: Qualitative comparison of stateful abstractions. A

dash means a requirement is only partly met.

quirements partially, for an FPGA target (See Table 1). In

effect, we can split previous approaches in two categories:

General programming frameworks are solutions that rely

entirely on FPGA re-programmability features to implement

new functions and therefore focus on languages and frame-

works to simplify FPGA programming. Here we include

Hardware Description Languages (HDLs) and High Level

Synthesis (HLS) systems.

HDLs such as Verilog are a low-level programming

method for FPGAs, requiring extensive hardware design ex-

pertise. HLS systems like those based on OpenCL, can im-

prove ease of use (R3) by adopting high-level languages.

However, hardware expertise is still needed since the code

has to be properly designed and annotated to ensure the syn-

thesis process succeeds in providing a high-performance im-

plementation [52]. For example, ClickNP [42] may require

the programmer of a functional element to apply specific

hardware-related optimizations, when the compiler fails to

apply its automated optimization [42]. Further, updating a

function requires a new synthesis and flashing of the FPGA

design, a process that takes hours.

Match-action abstractions are based on the match-action

tables (MATs) model. MATs are an effective and widely ap-

plied tool to describe network functions as a pipeline com-

posed of a parser and a variable number of match and action

blocks. The parser and the actions logic are generally rather

stable and are therefore programmed at configuration time,

while the match table’s entries are inserted at runtime and

can be used to change the implementation of functions on-

the-fly.

MATs are a good tool to describe L2-L4 network func-

tions [47], but currently available MAT abstractions only

support stateless functions so that a programmer cannot

specify functions where the processing of a packet should

depend on a previously received packet. Older versions of

the P4 language, which targets a MAT model, left the im-

plementation of state-related constructs such as registers,

to platform-specific features, which reduces portability and

complicates the work of a programmer. As a matter of fact,

solutions that use P4 to implement FPGA-based network

functions require the programmer to provide stateful func-

tions using HDLs [2, 60].

A step forward in this direction was first provided by

Domino [58], which extends the match-action model to in-

clude, in the action blocks, small and fast registers that can

keep state. These registers can be accessed during the pro-

cessing of any packet handled by the action block, thus pro-

viding a global state access model. A similar solution is

also supported by the @atomic construct in the latest P4

language version, i.e., P4-16 [20] (the previous version was

P4-14 [19]). Unfortunately, the global state model provides

little information for hardware implementations to optimize

state operations. Thus, Domino-like solutions are designed

to address a worst-case access pattern, which leads to very

constrained state update functionality (R4).

Do we meet all four requirements at once? The wide-

spread application of MATs suggests that they could be a

good starting point for providing an effective abstraction to

describe network functions, and works like Domino already

point towards a direction that extends MATs to support state-

ful functions. Thus, our problem boils down to supporting

per-flow states in a match-action abstraction.

Here, we begin by making the observation that many net-

work functions already partition their state on a per-flow ba-

sis [54]. This means that programmers are familiar with the

concept of flow state, and that this inherent, per-flow par-

allelism can be leveraged to optimize state operations and

memory accesses in a hardware implementation.

Can flow state become a first class citizen? Admit-

tedly, FAST [51] and OpenState [11] follow this direction

to provide stateful packet processing abstractions, explic-

itly defining flow state. In both cases, packets are grouped

in programmer-defined network flows (like in MATs), and

flows are associated with a Finite State Machine (FSM). Pro-

grammers then define the FSMs’ transition tables which are

used to update the corresponding FSMs’ states as packets are

processed. Following this line of reasoning, it would seem

that FSMs would be a good choice to transform a stateless

MAT into a stateful element. Related work has shown FSMs

to be programmer-friendly, allowing for the definition of a

host of packet forwarding behavior [40, 62] (R3, R4). Fur-

ther, a FSM can be efficiently represented by its transitions

table, which can be implemented in a straightforward way in

hardware since it is functionally equivalent to a MAT (R1).

Unfortunately, FSMs are not scalable (R2). Briefly, an

FSM is described by the set of states S, inputs I, outputs

O and by the transition relation T : S× I → S×O. Since

FSMs need to explicitly define all the possible states si ∈ S

the system can be in, this may lead to a phenomenon known

as state explosion [34]; the next section explains how Flow-

Blaze solves this issue.

3 FlowBlaze Design

To keep most of the good properties of FSMs while provid-

ing a scalable abstraction, we resort to Extended Finite State

Machines (EFSMs) [4]. An EFSM extends the FSM model

by introducing: (i) variables D to describe the state; (ii) en-

abling functions F on such variables to trigger transitions

(fi : D← {0,1}, fi ∈ F); and (iii) update functions for the

variable values (ui : D← D,ui ∈U). The transition relation

of an EFSM is expressed as T : S×F× I→ S×U×O.

Example. Figure 1 shows the EFSM representation of an ap-

plication that identifies whether a single flow f1 (e.g., iden-

tified by IP destination) is large by marking all packets after

the 100th one. Using a conventional graph representation,

the nodes of Figure 1 are states, while edges represent tran-

sitions. Each node is named using the corresponding state

label. Transitions are marked with the quadruple {enabling

functions, event, update functions, output}. Enabling and

update functions operate on the variable D(f1), which is the

variable of D we selected to store a flow’s number of pack-

ets. The event pkt(f1) represents the reception of any packet

belonging to a flow f1. Finally, the outputs mark and fwd

are high-level descriptions of a packet header rewriting ac-

tion and a generic forwarding action. The dashed line shows

a transition triggered by a timeout event (e.g., an idle time-

out), which brings the EFSM back to its starting state.

3.1 The FlowBlaze Abstraction

While adopting EFSMs partly helps in dealing with state ex-

plosion, we still need to adapt them to ensure an efficient

hardware implementation. We need to address two issues:

• State scalability: standard EFSMs would require a sepa-

rate transition table (i.e., the EFSM’s description), for each

flow in the system.

• Flow parallelism: an EFSM state definition does not in-

clude the concept of flow state, which we need in order to

leverage flow-level parallelism.

To address the above issues FlowBlaze uses EFSM defini-

tions to describe the behavior of a group of flows. Here, the

observation is that often many flows share the same forward-

ing behavior [39], even if each flow, at any given point in

time, may be in a different state of such EFSM. For exam-

ple, in Figure 1 we specify an EFSM for a single flow, but

we usually want to apply the same EFSM to all the other

flows seen by our function, so to mark any flow with more

than 100 packets. In other words, the forwarding logic is

the same for all flows, but they are actually associated with

different EFSM instances.

State types The introduction of such instances has an imme-

diate side-effect: there is no way for two different instances

to read or write each other’s states. For example, we would

be unable to extend the EFSM of Fig. 1 to also count the total

number of flows that sent more than 100 packets.

We address the issue by introducing the notion of global

state, which can be read and modified by all the EFSM in-

stances generated from the same EFSM definition. Formally,

the FlowBlaze abstraction divides the EFSM variable space

Figure 1: EFSM description of an application that identifies

flows generating more than 100 packets

Figure 2: Description of the application of Fig. 1 using a

generic flow definition.

D in two parts: the global registers gi ∈ G that are part of

the global state; and the flow registers ri ∈ R, which, together

with the state label, constitute the flow state. The global state

exists for the entire lifetime of the system and accesses to the

global state are serialized, similar to [58]. Flow state, on the

other hand, only exists while its corresponding flow does,

and accesses to it are serialized for packets within a flow,

i.e., when processing packets belonging to different flows it

is possible modify their respective flow states in parallel.

To illustrate, Figure 2 extends the example of Figure 1 to

describe the same application but this time using an EFSM to

identify all large flows, with a flow defined as a set of pack-

ets with the same destination IP address. In this case, each

flow is associated with an EFSM instance that has its own

current state (”small” or ”big”) and a variable r1. Notice that

in Figure 2 variables are no longer accessed using a flow id

(in Fig. 1 we used D(f1)), since each packet is now asso-

ciated with its corresponding flow’s EFSM instance. Sim-

ilarly, the packet reception event does not specify the flow

the packet belongs to anymore, since that information is cap-

tured already by the generic flow definition associated with

the EFSM. Table 2 shows the transition table needed to im-

plement this function; we will give a full explanation of it

and of how to program FlowBlaze later in this section.

Composition In a match-action abstraction there is usually

a pipeline of MATs. Similarly, FlowBlaze allows for the

pipelining of EFSMs, which is equivalent to their sequen-

tial composition [40]. That is, in the most general case a

network function is described by an ordered list of EFSM

definitions, where the output of the EFSM i can be used as

input for EFSM i+ 1. Each EFSM definition has its own

scope for the flow and global states: an EFSM definition’s

global state is only accessible by that EFSM’s instances.

To move information between two sequential EFSMs,

FlowBlaze associates packet state, i.e., metadata, with each

packet. Such state is created when a packet is received, and

deleted once its processing is completed. For example, after

Cond. Event S Nxt S Update Pkt act.

1 r1 <= 100 pkt sml sml r1 = r1 +1 fwd

2 r1 > 100 pkt sml big r1 = r1 +1 mrk, fwd

3 * pkt big big r1 = r1 +1 mrk, fwd

Table 2: Transition table for the example of Fig. 2.

Figure 3: FlowBlaze machine model

the EFSM of Figure 2 one could add another EFSM which

uses metadata tagged by the first EFSM to classify packets

differently, based on whether they belong to a large or a small

flow.

3.2 Machine Model

Having described the FlowBlaze abstraction, we now pro-

ceed to show how this abstraction is formalized to a machine

model that can be implemented in hardware.

More specifically, FlowBlaze’s machine model (see Fig-

ure 3) extends the MATs pipeline model described by

RMT [14]. Like in RMT, FlowBlaze packet headers (includ-

ing packet metadata) are processed through the pipeline’s el-

ements to define the forwarding actions. Each element can

be either stateless or stateful. A stateless element is a MAT,

similar to the ones employed in RMT1. Unlike RMT, a state-

ful element implements an EFSM definition. As a result, a

pipeline can combine both stateless and stateful elements.

The architecture of a stateful element has two notable dif-

ferences from a MAT: (1) such an element has a Flow Con-

text Table before the usual match part, and (2) the element

splits the actions into (state) update functions and packet ac-

tions. In greater detail, as shown in Figure 3 (the box labeled

”Stateful Element”), packet processing involves the follow-

ing sequential steps:

1. Flow Context Table. When a packet header enters the

element, it is associated with a corresponding flow context.

The context is extracted from the Flow Context Table using,

as search key, a list of header fields (e.g., the TCP/UDP 4-

tuple, optionally in conjunction with the packet’s metadata).

The search key is specified at configuration time and corre-

sponds to FlowBlaze’s EFSM flow definition. The context,

i.e., a table’s entry, includes a state label s and an array of

1FlowBlaze assumes packets headers are already parsed when passed

to the pipeline, taking advantage of RMT-like programmable packet pars-

ing [28] and reconfigurable match tables [14].

registers ~R = {r0,r1, ...,r(k−1)}. Flow contexts are also asso-

ciated with hard and idle timeouts. If no context is found for

a given key, a default context is used (i.e., with all values set

to 0). A single flow context identifies an EFSM instance.

2. EFSM Table. The packet’s header and metadata, plus the

extracted flow context, are passed to the EFSM table. Such

table is an extension of a traditional MAT, which in addition

to supporting matching on the packer header fields, can also

match on the state label s and evaluate enabling functions.

An enabling function can be specified as a logical AND of up

to m arithmetic comparisons (~C = {c0,c1, ...,c(m−1)}). The

comparisons’ operands can be selected among any combina-

tion of flow registers and packet header fields. For each entry

in the table, a programmer can specify (i) packet modifica-

tion and forwarding operations, (ii) the next state label s, and

(iii) a list of instructions to update the flow context registers
~R and the global registers ~G = {G0,G1, ...,G(h−1)}. In short,

the EFSM table acts as the state machine’s transition table.

3. Update Functions. The header and metadata, the update

instructions, and the new value of the state label are passed

to the update functions block. The block performs the re-

quired update instructions to update the values stored in both

the flow context registers ~R and global registers ~G. Such in-

structions can range from simple integer sums, for instance

to update the value of a register representing a packet or byte

counter, to more complex ones, e.g., multiplications, depend-

ing on the specific implementation and target performance.

4. Action. Like in a MAT, this block applies actions on the

packet header. In contrast to a MAT, the values of the flow

context registers as well as those of the global registers can

also be used (e.g., to rewrite some packet header fields).

3.3 FlowBlaze Programming

FlowBlaze is deployed bump-in-the-wire, in the NIC, and its

programming is similar to programming a P4 device. At con-

figuration time, the programmer has to define the parser, the

match fields for MATs and EFSM transition tables, and the

actions, which now include also the state update functions.

Like in [2], changing these components requires a new syn-

thesis of the FPGA design. Luckily, these are the parts of a

function that change less frequently [23].

At runtime, the programmer defines the logic of her net-

work functions by configuring the flow definition for the

stateful elements, selecting a subset of the parsed header

fields, and writing the required entries in the MATs and

EFSM transition tables. This is analogous to the runtime pro-

gramming of P4 and OpenFlow devices. In fact, we extend

the OpenFlow protocol to write such entries from a python-

based RYU OpenFlow controller [25].

One thing worth highlighting is that the programmer can

quickly experiment and update her functions logic on-the-fly,

since programming the network functions logic is as quick

as writing entries to tables, unlike other solutions that need a

new synthesis and flashing of the FPGA design [42].

Use case Entries Reg.

Server Load Balancer 2,2 0+1, 1

UDP Stateful Firewall 5 0

Port Knocking Firewall 6 0

Flowlet load balancer 2, 4, 9 1, 0+2, 0+4

Traffic Policer 4 2+2

Big Flow Detector 3 1

SYN flood Detection and Mitigation 4 1

TCP optimistic ACK detection 8 3

TCP super spreader detection 8 1

Dynamic NAT 3, 4 1+1, 2

vEPC subscriber’s quota verification 9 1

Switch Paxos Coordinator 1 0+1

Switch Paxos Acceptor 3 3+1

In-network KVS cache 6 2

Table 3: Implemented use cases. The entries column re-

ports the number of EFSM table entries needed by a stateful

element, with each comma-separated number representing

a different element. The registers column lists the number

of flow+global registers for each element. More in the Ap-

pendix.

3.4 Expressiveness: A Case Study

To demonstrate FlowBlaze’s expressiveness we have imple-

mented a large set of network functions ranging from NATs

to load balancers and anomaly detection, to name a few (full

listings in Table 3). For each we state the number of stateful

elements, and the respective number of entries and registers

required by FlowBlaze to support them. The different use

cases can be combined to provide more complex functions.

Beyond these applications, and to provide a better under-

standing of the level of complexity that our system can sup-

port, we now show an example of a FlowBlaze configuration

that implements a TCP connection tracking function (Fig-

ure 4). Connection tracking is required by network operators

to protect their networks from a number of attacks [33], but

its implementation is fairly complex and challenging (e.g.,

it requires per-packet flow state updates to check TCP se-

quence numbers, and we cannot know, at least not right away,

whether a packet we see is actually delivered or lost).

Assuming a parser can extract the relevant TCP header

fields [28], FlowBlaze allows us to implement the function

using two stateful elements. The first element has 7 transi-

tions and tracks the TCP connection establishment, i.e., the

three-way handshake, and computes receive window (RCW)

boundaries. A connection is identified with a bi-directional

4-tuple network flow. In particular, the flow key specifica-

tion is defined as biflow, meaning that both directions of the

flow will be associated with the same flow context. The flow

context contains the IP address of the initiator of the connec-

tion (r0), the last acknowledged sequence numbers (SEQs)

(r1, r2), the last seen SEQs (r3, r4), and the RCW for each

direction (r5, r6). A packet is sent to the second element

when a connection is in the estbl state, in which case the left

and right boundaries of the RCW are computed and copied

Figure 4: A complex, TCP connection tracking use case to show FlowBlaze’s expressiveness. All of element 2’s states can

transition to the rst state. Transitions triggered by timeouts are omitted for clarity.

into the packet’s metadata. The second element has 29 tran-

sitions and checks if the packet’s SEQ is within the RCW

boundaries and handles connection termination. The flow

context contains the IP source of the connection termination

initiator (r0) and the last expected ACK number for each di-

rection (r1, r2). Since connection terminations do not happen

at packet processing speed, and since it is safe to keep state

for terminated connections for a short time, we leave it to

software (e.g., running on a CPU), to clean up the state of

terminated connections: the software reads the terminated

connections from element 2 and clears the state for those

connections from element 1.

It is worth pointing out that making a few assumptions

about the implemented network functions can seriously re-

duce the required FlowBlaze resources. For instance, we

can reduce the number of registers from 7 to 4 in element

1 by assuming that one side of the connection is trusted [30],

e.g., because we control the TCP stacks of those machines.

Likewise, we could simplify the implementation assuming

a fixed size for the receive window, as done in some hard-

ware firewall implementations [55]. Finally, we could easily

change the implementation behavior for SEQ checking from

window shifting to window advancing by simply introducing

an additional condition (i.e., newSEQ > storedSEQ) to the

transitions that update the stored SEQ in element 1.

4 Hardware Design and Implementation

In this section we present FlowBlaze’s hardware design,

mapping the abstraction and machine model described in the

previous section to an actual hardware implementation. Note

that we focus mainly on the architecture of a stateful ele-

ment, since that is where most of the research contribution

in this section lies (we leave out details about packet header

parsing). We begin by giving an overview of the stateful el-

ement’s architecture, and follow that by a description of the

issues we encountered and how we addressed them.

4.1 Stateful Element Architecture

FlowBlaze’s hardware design extends a state-of-the-art

packet processing pipeline by introducing stateful elements.

As mentioned in Section 2, one of the advantages of select-

ing an EFSM-based abstraction is that the EFSM’s transi-

tion table can be directly mapped to a MAT, which consti-

tutes the starting point for our stateful element architecture

(see Fig. 5): the TCAM, instruction RAM and packet header

action blocks are components of a regular MAT implemen-

tation; the remaining blocks are required to implement the

FlowBlaze abstraction.

In greater detail, the stateful element works as a pipeline.

A packet header is received and hashed by the key extractor,

which is configured to generate a flow key according to the

provided EFSM’s flow definition, and first handled by the

scheduler block. This block uses the hash to place the header

in one of its queues, guaranteeing no per-flow re-ordering,

and then serves headers from the queues with a scheduling

policy that provides per-flow state access consistency.

A scheduled header is then used to look up the correspond-

ing flow state in the Flow Context Table. The state includes

the state label s and the registers~r, values which are then fed

as input to the conditions evaluation block. This block se-

lects the operands for the conditions from the registers, the

header fields and/or a constant value using a crossbar, and

outputs the result to a vector~c, which, together with the state

label s and the header fields, is used to perform a look-up

in the EFSM table. The result of the look-up is the instruc-

Figure 5: FlowBlaze’s stateful element architecture.

tions that should be executed by the update function’s ALUs

and the packet header action block. These two blocks per-

form their operations in parallel: the former updates the flow

state in the Flow Context Table and the value of the global

registers, while the latter modifies the header fields.

Having given an overview of the architecture, we dedicate

the rest of the section to describing how we solve issues to

do with the scalability of the Flow Context Table and with

guaranteeing consistency.

4.2 Scalability of Flow Context Tables

In order to implement the flow-oriented addressing required

by the forwarding tables and by FlowBlaze’s Flow Con-

text Table we need to rely on optimized hash tables. A

typical solution in this space is to use cuckoo hash ta-

bles [63] which support higher load factors, thereby improv-

ing SRAM usage efficiency. However, an entry insertion in

a cuckoo hash table may actually need multiple operations

when there is a hash collision; this makes insertion times

variable and potentially long for a loaded table, severely im-

pacting performance. While current designs usually perform

entry insertion and collision handling in the device’s control

plane [24, 49], in FlowBlaze we need to handle entry inser-

tions in the data plane while guaranteeing quick and constant

insertion times2. FlowBlaze solves the issue by implement-

ing the cuckoo insertion logic completely in hardware and

extending the hash table with a small stash memory to hold

entries waiting for insertion. The stash allows FlowBlaze to

hide the variable insertion time of a cuckoo hash. We imple-

ment a four-choices cuckoo hash table that offers a 97% load

factor [22, 26], using a dual port (read-after-write) SRAM to

support two accesses in the same clock cycle for concurrent

read and write operations.

The key extractor of Figure 5 generates the four hash keys

2For reference, the device’s control plane can insert/modify entries at a

speed that is usually 1000-10000x slower than the packet processing rate.

Even in cases where such a slow update rate is tolerable, consistency prob-

lems for the state and scalability concerns for the control plane arise [49].

required to address the table, and the table itself is coupled

with a stash memory that can host 8 entries [41]. In con-

trast to a typical cuckoo with stash, a new entry is always

inserted first in the stash, which guarantees constant inser-

tion time (1 cycle). In parallel, the insertion logic moves

entries from the stash to the hash table and operates as a reg-

ular cuckoo+stash implementation. The insertion logic can

execute an entry insertion or a movement (needed to resolve

collisions) per cycle, in about 6.4ns in our implementation.

It is worth noting that while a very loaded table can cause the

number of movements to grow by as much as 100x [26], in

section 5 we empirically show that our 8-entry stash memory

is enough to avoid packet losses for the rather large network

traces we test against. The observations here is that unlike

state write operations which happen for each packet arrival,

an insertion happens only when a new network flow starts, a

smaller and thus manageable rate.

Handling Corner Cases Despite these mechanisms, a Flow

Context Table (and its stash) may exceptionally become full.

At this stage, the right strategy is dependent on the network

function being run (e.g., for a stateful firewall the right ap-

proach might be to reject any new connections).

FlowBlaze provides a programmer with the ability to im-

plement the logic to handle such cases. When a packet be-

longing to a new flow is received, FlowBlaze checks, in ad-

dition to the look-up in the Flow Context Table, the table’s

occupancy level. If the table is full, a flag is set in the packet

metadata, essentially indicating that there is no more space

to save flow state for this flow. This flag can then be matched

in the EFSM table, allowing the programmer to program the

state machine to handle the case, e.g., by dropping the packet

(and the flow) or by sending the packet out for further pro-

cessing, e.g., in software. Further, when a table is full, Flow-

Blaze provides the option to install a new flow state entry

by replacing an existing one. This is handled with a config-

urable eviction policy: the insertion logic can be configured

to read the entries’ flow register R0 and to select for eviction

the entry with the highest (or lowest) value. That is, a net-

work function’s FSM can use R0 to enforce a custom eviction

logic. For example, R0 can be used to store the timestamp of

the last seen packet in order to implement a logic that evicts

the least active flows; alternatively, R0 could store a packet

counter to evict the smallest (or biggest) flow.

4.3 Guaranteeing Flow State Consistency

Flow-oriented memory addressing implies that a memory lo-

cation is accessed only when a given flow’s packet is pro-

cessed. As a result, a given memory location is accessed at a

rate that may be just a fraction of the overall packet process-

ing rate (i.e., one access per cycle), and enables read/modi-

fy/write operations that span multiple clock cycles. This fea-

ture, however, introduces a state consistency problem, since

a memory location’s access times may vary depending on the

traffic pattern, potentially leading to a concurrent read/write

Figure 6: Stateful element scheduling scenarios. P1 (Packet

1) and P2 belong to the same flow and use the same flow

context. P3, P4 and P5 belong to different flows and can

concurrently access memory.

of the same location. For example, when two packet headers

that access the same flow context entry are processed in short

sequence, the second packet’s flow state read may happen be-

fore the first packet’s flow state update has been written back

to memory (see top table in Figure 6). Stalling the pipeline

while waiting for the state to be updated would guarantee

consistency at the cost of performance (middle table).

To resolve the issue, [58] uses read/modify/write state op-

erations that are performed in a single clock cycle, but at the

cost of very constrained update operations. FlowBlaze, on

the other hand, leverages the inherent parallelism given by

the presence of different flows that access different flow con-

text entries, hence, memory areas. In particular, the sched-

uler (recall Figure 5) guarantees flow context consistency by

conservatively locking the pipeline only when two packets

need to access the same flow context. To achieve this, the

scheduler recognizes the flow a packet belongs to by using

one of the hash keys (FK1) generated by the key extrac-

tor. When a new packet arrives, the scheduler feeds it to the

pipeline if no other packets with the same hash key are being

processed. Otherwise, the scheduler stalls the pipeline.

To mitigate any potential head-of-line blocking issues, in

our design we arrange the state update ALUs in a parallel

fashion. This effectively reduces the number of stalled cycles

at the cost of constraining the complexity of state updates.

That is, we limit state updates to one single operation per

operand, which is anyway sufficient to implement the use

cases described in Sec. 3.4. By doing so, as we will see in

Sec. 5, a single queue in the scheduling block is enough to

achieve the target performance.

Here, notice that this design decision may be changed with

relatively minor modifications, e.g., arranging ALUs in a se-

rial fashion, thereby providing richer state update semantics.

However, in such a case, the number of stalled cycles would

increase, and so would the risk of having head-of-line block-

Param. Value Descr.

k 4x32b Flow context’s registers

m 8 Maximum number of conditions.

z 64b Size of metadata moved between elements

h 8x32b Global registers

ALUs 5 The maximum number of ALUs dictates the

maximum number of update functions that

can be performed for a given transition.

mqs 20 max queue size, in number of packets

nq 1 number of queues

Table 4: Parameters of a FlowBlaze stateful element in our

hardware implementation.

Resource type Reference switch FlowBlaze

Slice LUTs 49436 (11%) 71712 (16%)

Block RAMs 194 (13%) 393 (26%)

Table 5: NetFPGA’s resource requirements for FlowBlaze

with a single stateful element compared to those of a refer-

ence, single-stage Ethernet switch.

ing issues. Thus, our general architecture includes the op-

tion of using multiple waiting queues for packets belonging

to different flows.

The scheduling block uses FK1 to assign packets to Q

different queues, guaranteeing that packets belonging to the

same flow are always enqueued in the same queue, thus keep-

ing the original ordering for packets belonging to the same

flow (cf. Figure 6). The scheduler serves the queues in a

round-robin fashion. When a queue is selected, it verifies if

a packet with the same hash FK1 is already in the pipeline.

If that is the case, the scheduler examines the next queue,

until it finds a queue whose first packet has a different hash.

If no other queues are available, the pipeline is stalled. Oth-

erwise, the scheduler extracts the current queue’s first packet

and feeds it to the pipeline.

4.4 Hardware Implementation

Our implementation is based on the NetFPGA SUME [65]

SmartNIC, an x8 Gen3 PCIe adapter card containing a Xil-

inx Virtex-7 690T FPGA [3] and four SFP+ transceivers

providing four 10G Ethernet links. The system is clocked

at 156.25MHz and designed to forward 64B minimum-size

packets at line rate. We synthesized FlowBlaze using the

standard Xilinx design flow.

Our prototype fixes the machine model’s parameters as in

Table 4 and uses a non-programmable packet parser, a con-

figurable size flow context table, and a fixed-size EFSM ta-

ble. The Flow Context Table is implemented with BRAM

blocks. Each entry has 128b for the flow key and 146b for

the value (16b of state label plus 4 registers of 32b and 2b

acting as internal flags). The EFSM table is implemented by

a small TCAM of 32 entries of 160 bits. The limited size

is due to the technical challenges of implementing a TCAM

on FPGAs, which is still an open research issue [36, 59, 37].

Nonetheless, Table 3 shows that such number of entries is al-

ready sufficient for a large range of use cases. As described

earlier, the scheduler block has a single queue, for up to 20

packets, which is enough to provide the required throughput

and forwarding latency for the tested workloads. We stud-

ied the implications of different queue sizes and scheduler

configurations in [17].

Table 5 lists the logic and memory resources (in terms

of absolute numbers and fraction of available FPGA re-

sources) used by a FlowBlaze implementation with a single

stateful element and a Flow Context Table with 16k entries.

For reference, we also list those required for the NetFPGA

SUME single-stage reference switch, i.e., a simple Ethernet

switch. The reported resources include the overhead of sev-

eral blocks, such as the microcontroller for the FlowBlaze

configuration, the input/output FIFO for the 10G interfaces,

etc., which are required to operate the FPGA and do not need

to be replicated for each element. We successfully imple-

mented on the NetFPGA SUME up to 6 stateful elements for

a total of about 200k flow context entries, using around 57%

of LUTs and 85% of BRAM blocks.

4.5 Software Implementation
We implemented FlowBlaze’s pipeline design as a software

data plane to enable any network functions written using

the FlowBlaze abstraction to run in software. Briefly, we

provide two implementations: a FlowBlaze module on the

mSwitch [31] platform in native C (open source [25]); and

for the Linux kernel network stack using eBPF/XDP [1]. We

evaluate these implementations in the next section.

5 Evaluation

Methodology We experimentally measure FlowBlaze’s per-

formance with end-to-end tests and microbenchmarks, re-

sorting to simulations to test corner cases scenarios or to

unveil details that would not be visible with black-box test-

ing. To test the workload-dependent behavior of FlowBlaze

we used a number of traffic traces collected at various op-

erational networks. Here we report the results for publicly

available traces (see Table 6) selected from carrier networks

(CHI15 [16], MW15 [46]) and from university datacenters

(UNI1, UNI2) [10, 9]. For the hardware implementation

tests, the achieved performance is independent of the par-

ticular tested application and only influenced by the num-

ber of pipeline elements, thus we report tests only for a

UDP Stateful Firewall application (NetFPGA-FW-FB). For

the software implementations we show the performance of

the UDP Stateful Firewall (XDP-FW-FB) and Big Flow De-

tector applications (mSw.-FB), to compare them with cus-

tom implementations of the same functions and evaluate

the overhead of the FlowBlaze abstraction. Here, we use

as comparison plain mSwitch [31], Linux’s XDP [1] and

VPP [27] on DPDK. The VPP functions are from the official

project repository (VPP-FW), while XDP-FW is a function-

ally equivalent implementation of the UDP Stateful Firewall

Max # active flows Max # new flows/ms Mean Pkt

Size (B)Trace IP s IP s,d 5 tpl IP s IP s,d 5 tpl

UNI1 575 997 4k 13 19 39 697

UNI2 948 3k 7k 20 42 42 751

MW15 12k 130k 152k 38 112 114 540

CHI15 92k 147k 178k 135 144 144 778

Table 6: Max number of active flows for 10s time windows

and max number of new flows/ms in the examined traces.

V
P
P

m
S
w
.

X
D
P

X
D
P
-F
W

X
D
P
-F
W
(2
)

X
D
P
-F
W
(3
)

V
P
P
-L
2

V
P
P
-F
W

V
P
P
-F
W
(2
)

V
P
P
-F
W
(3
)

m
S
w
.-
F
B

m
S
w
.-
F
B
(2
)

X
D
P
-F
W
-F
B

X
D
P
-F
W
-F
B
(2
)

X
D
P
-F
W
-F
B
(3
)

N
et
F
P
G
A
-F
W
-F
B

0

2

4

6

8

10

12

14

T
h
ro

u
g
h
p
u
t
[M

p
/
s]

Figure 7: Packet forwarding rates of bare packet I/O engines

(white), stateful packet processing w/o FlowBlaze (light

gray) and that with FlowBlaze (dark gray): Numbers in () in-

dicate the number of CPU cores if not 1. FlowBlaze does not

add overhead (XDP-FW vs XDP-FW-FB) and it scales well

(XDP-FW-FB vs XDP-FW-FB(2) and mSw.-FB vs mSw.-

FB(2)). The NetFPGA implementation can always forward

at line rate while saving up to 3 CPU cores.

function implemented by FlowBlaze.

Testbed For NetFPGA experiments, we use a single machine

equipped with Xeon X3470 CPU clocked at 2.93 Ghz, the

quad-port NetFPGA board (cf. Sec. 4) and a single dual-

port Intel 82599 10 GbE NIC. Each 10 GbE port is con-

nected to each of two active NetFPGA ports. For experi-

menting with software implementations, we use two servers

connected back-to-back with Ethernet cables: each has an

Intel Xeon E3-1231 v3 CPU (3.4GHz) and a single dual-port

Intel 82599 10 GbE NIC. One server is used to generate and

terminate test traffic; the other is used to forward packets.

5.1 Throughput

End-to-end tests We measure the end-to-end FlowBlaze

throughput when running different applications using both

our hardware and software implementations. The mSwitch

and XDP implementations are configured with the Big Flow

Detector and UDP Stateful Firewall, respectively, both iden-

tifying flows by the 5-tuple. The same application is config-

ured also on the NetFPGA implementation.

Figure 7 summarizes the measured packet forwarding

rates of minimum-sized (64B) packets with various systems.

All the bare packet I/O frameworks (white bars) achieve line

rate (14.88 Mp/s) as they do not touch packet headers. When

implementing packet processing logic on top of them, rates

decrease (gray bars) and we need more CPU cores to reach

line rate. Implementing network functions with FlowBlaze

Figure 8: Drop rate of FlowBlaze when clocked at differ-

ent frequencies and forwarding the traffic traces of Table 6,

at 40Gb/s line rate. The 1-flow label shows the case of a

pipeline without the scheduler block. With more granular

flow definitions, e.g., 5-tuple, there is a higher degree of

flow-level parallelism, which reduces the need to stall the

pipeline. This can be seen looking at the change of drop

rates for different flow definitions in the 156.25MHz case.

(black bars) does not add much overhead, as we see in the

comparison between XDP-FW and XDP-FW-FB. Further,

FlowBlaze scales to multiple CPU cores well (see XDP-FW-

FB and mSw.-FB). Notice that the software implementations

are forwarding only 4 flows, and thus we are showing a best

case scenario for the achieved forwarding rate. The NetF-

PGA implementation can forward packets at 10Gbps line

rate, and the performance is independent of the number of

flows being forwarded. These results show that, even for a

relatively simple use case, FlowBlaze can free several CPU’s

cores from network processing tasks.

Hardware A clock-cycle detailed simulation of the hard-

ware design shows that our prototype could in princi-

ple forward 40 Gb/s for all packet sizes when clocked at

156.25MHz. However, the introduction of pipeline stalls

to guarantee flow state consistency may actually lower the

achieved throughput for some traffic mixes. Thus, in order to

have a better understanding of FlowBlaze performance, we

use the traces described earlier to test it with different work-

loads. The traces show a largely bi-modal distribution, with

at least 30% (or more) of the packets being minimum size.

Furthermore, we try different versions of the design, clocked

at 133, 156.25, 166 and 180MHz. This helps to highlight the

effect of the packet scheduler, with respect to the option of

running the system with a higher frequency.

We use the moongen packet generator on a dedicated

server to replay the traffic traces, connecting the server’s 4

10GbE ports back-to-back with the NetFPGA. The traces are

replayed while removing any inter-packet gap, i.e., we gen-

erate traffic at 40Gb/s line rate. We consider 4 different flow

definitions: 1-flow, i.e., no distinction of network flows and

thus no scheduler block, IP src, IP src/dst and 5-tuple. Fig. 8

reports the results.

For a frequency of 133MHz the FlowBlaze pipeline is un-

64 512 1518

20

40

60

80

100

120

140

L
a
te
n
c
y
[µ

s]

NetFPGA-FW-FB
NetFPGA
Cable

64 512 1518
Packet Size [Byte]

mSw.-FB
mSw.
Cable

64 512 1518

XDP-FW-FB
XDP
VPP

Figure 9: End-to-end RTT: offloading NFs to hardware re-

duces latency by avoiding PCIe and CPU overheads (dark

gray plots). FlowBlaze adds almost no latency to the hard-

ware and software baselines (comparison between light and

dark gray plots within each graph).

able to sustain line rate: the roughly 15% packet drop is in-

dependent of the stalling and of flow definitions. Our proto-

type’s selected clock frequency, i.e., 156.25MHz, is the min-

imum one that sustains 40Gb/s with our design, but stalling

reduces the actual throughput: this is visible in the 1-flow

case, which results in a 4.6-10.20% packet drop rate, de-

pending on the trace. The introduction of the scheduler

block allows FlowBlaze to reduce (or completely remove)

packet drops to 0-1.8% when using a 5-tuple flow definition.

Slightly rising the frequency to 166MHz allows FlowBlaze

to completely remove packet drops for all the traces and all

flow definitions. In contrast, in the 1-flow case, even further

increasing the frequency to 180MHz does not achieve that,

with 0.7% of drops with the UNI2 trace.

5.2 Latency

In terms of latency, offloading stateful processing to an I/O

peripheral can significantly reduce end-to-end latency by

avoiding transfers over PCIe. Recall that end-to-end RTTs

between a pair of client and server machines over Ethernet,

TCP, a socket API and using a simple HTTP parser are a

few tens of µs [32]; RTTs over datacenter fabrics, thanks

to sophisticated congestion control algorithms [5, 6, 61] and

RDMA deployment [64, 50], can be lower than 100 µs [29].

We connect two 10G NIC regular ports to two NetF-

PGA ports to measure the end-to-end latency; we then run

a netmap pkt-gen program on one regular port to send and

receive packets while instrumenting another pkt-gen on

the other regular port to echo back received packets. The

measured latency includes two passes through the NetFPGA

and the latency of the pkt-gen (including overheads of

moving packets through the PCIe bus 4 times).

Figure 9 plots the RTT measured at the pkt-gen genera-

tor. In the left graph the NetFPGA implementation adds only

2–9 µs to cable, and up to 1 µs to plain FPGA forwarding (no

FlowBlaze). This is because packets are avoiding PCIe bus

transfers and FlowBlaze is optimized to process a packet in

just 8 clock cycles. Here, notice that multiple pipelined ele-

ments may slightly increase the processing latency of Flow-

Blaze, with each element adding about 50ns. Also, a full

queue in the scheduler block may add up to 384ns of waiting

time. In any case, even with these additional delays, Flow-

Blaze packet processing latency is well below one µs.

The middle and right graphs show the RTTs when using

mSwitch and XDP implementations. Since software packet

processing requires moving packets over the PCIe bus (4

times for round trip), in this case the RTT increases by 38–

46 µs with mSwitch (mSw.-FB over Cable) and by 41–127

µs with XDP (XDP-FW-FB over Cable). However, this addi-

tional latency does not come from the FlowBlaze abstraction

but from packet I/O frameworks; we can see that by com-

paring them against mSw and XDP, respectively. While not

visible in the graphs, we note that FlowBlaze adds up to 1 µs

in both the mSwitch and XDP implementations.

In summary, offloading stateful functions to SmartNICs

is important for low latency end-to-end services. Further-

more, since FlowBlaze does not add latency to base packet

I/O frameworks, operators can start deploying it in soft-

ware, allowing for incremental deployment of FlowBlaze-

enabled SmartNICs that implement performance critical net-

work functions.

5.3 Power Consumption

The NetFPGA consumes 16W when idle and configured

with a no-op bitstream. When the FlowBlaze bitstream is

loaded, the consumption grows to 22W and is independent

of the packet rate and of the network function programmed

on FlowBlaze. This consumption has to be considered in

addition to the overall system’s power consumption, which

is 85W when the CPU is idle (For a total of about 107W).

In contrast, the software implementations mSwitch and FB-

mSwitch consume 124W and 123W of power during oper-

ation, respectively, and 119W when not forwarding pack-

ets; FB-eBPF consumes 123W in operation and 118W oth-

erwise. In all, FlowBlaze provides significant power sav-

ings over software-based implementations, while supporting

much higher packet forwarding rates.

5.4 Flow Scalability

The maximum number of entries a FlowBlaze’s stateful ele-

ment can host depends on the amount of state required by the

application (e.g., number of registers); our NetFPGA imple-

mentation can host about 200k entries, which are enough for

all the traces listed in Table 6. It should be noted that using

a simpler but less efficient hash scheme for the FlowBlaze

design, such as a 4-left hash, would have made the system

unable to deal with CHI15. In fact, a 4-left hash table, with

65-70% maximum load factor could only host about 140k

entries in the NetFPGA’s memory. Further, it is worth noting

that the NetFPGA SUME uses a fairly old FPGA genera-

tion, with less than 10MB of SRAM blocks. Modern FPGAs

could host more than 5x times such number of entries. In any

case, related work such as [24] shows that these numbers are

in line with current datacenter requirements.

Figure 10: (a) Number of moves to insert an entry in the

Flow Context Table. (b) Number of entries in the stash.

5.5 Flow Insertion Performance

Recall that FlowBlaze extends Cuckoo hashing for constant

time insertion in hardware. Since slow insertion could lead

to dropping flows, we are interested in whether FlowBlaze

can handle high flow arrival rates.

To analyze its behaviour, we implement the FlowBlaze in-

sertion algorithm in software, and measure the number of

entry movements required for a new entry insertion while in-

creasing occupancy of the Flow Context Table. We run two

tests. First, for each traffic trace, we first fill the table to the

required occupancy level, e.g., 50%, then we try to insert

the next trace’s flows and measure the required number of

movements for each such insertion. In a second test, we fill

the table with randomly generated keys, and then try to in-

sert new keys that are also randomly generated, performing

10k independent measurements. In all cases, the hash table

is provided with memory to host all the entries when loaded

at 95%. The results are similar for the two tests; for the sake

of brevity, Fig. 10a shows them only for the second test.

For a table 95% full, the median number of movements

is 125 per insertion, with the highest outlier requiring about

300 movements. Recall that a movement takes 6.4ns, thus

300 movements equates to about 1.9us and so FlowBlaze is

able to scale to insertion rates in the order of millions of

entries per second. However, recall that FlowBlaze uses a

stash that can host at most 8 entries waiting for insertion.

If the flow arrival rate is faster than the insertion rate in the

hash table, the stash could become full and flows would be

dropped. We measured the stash occupancy when using the

traffic traces described earlier, simulating a challenging sce-

nario in which each entry insertion in the table takes 450

movements, i.e, 1.5× the worst outlier of Figure 10a. The

results in Figure 10b show that in all the cases, with the most

fine-grained 5-tuple flow definition, the stash has at most 8

entries (meaning no flow is dropped) while being empty for

most of the time.

6 Discussion

Ease of use While we did not run large scale surveys, we can

report our experience in using FlowBlaze to implement net-

work functions. In line with the findings of [40], we found

the EFSM abstraction requires the programmer to adapt to

a model that is different from regular procedural program-

ming, but relatively simple to adopt. Once adopted, the

EFSM model helps in focusing on the required function’s

state and on how it evolves. We found this particularly help-

ful in designing more complex functions, such as the one of

Fig. 4. Here, we would first focus on the different states the

function could be in, and then describe the inputs that would

make a function evolve from one state to the next, leading to

a very linear design and implementation process.

Security Even if a smart state encoding, such as the one

adopted in [49], could enable handling state for millions of

flows, FlowBlaze will always have some hard memory limit

which could be potentially exploited, for example by DoS

attacks. To deal with this, FlowBlaze provides primitives

that allow a programmer to explicitly handle cases where the

Flow Context Table is full. Still, it is up to the programmer to

define functions that are robust to DoS attacks. For example,

the function in Figure 4 could be preceded by an element that

implements a SYN flooding detection function so that traf-

fic from a host that performs a SYN attack could be dropped,

avoiding the creation of a large number of entries in the Flow

Context Tables for the elements that follow.

7 Related Work

The MAT abstraction is the starting point for FlowBlaze and

was formalized by OpenFlow [48]. RMT [14] extends that

model with programmable packet parsers, re-configurable

forwarding tables to match on different headers and pro-

grammable actions. dRMT [18] is an alternative implemen-

tation of the RMT instruction set for a high-performance

switching ASIC. Languages such as P4 [13] and PX [15] are

used to describe such configurable MATs. Our work extends

RMT to perform stateful packet processing.

SNAP [7] introduces a stateful packet processing abstrac-

tion for the control plane. The network is programmed as if it

was a single big stateful switch, then, a compiler distributes

state variables to the network devices. State is represented by

an array of values that can be indexed by e.g., packet header

fields’ values. SNAP does not focus on the implementation

of stateful operations in the data plane, which is instead the

focus of our work. In fact, FlowBlaze can be used as an

implementation target for SNAP. However, FlowBlaze pro-

vides a predefined per-flow state access model, which may

not suite all the SNAP’s programs. That is, SNAP’s abstrac-

tion is less constrained, therefore there may be programs that

cannot be mapped to a FlowBlaze target.

Perhaps the closest works to FlowBlaze are FAST [51] and

OpenState [11]. Both works define an FSM abstraction, but

(i) do not define a state access model that allows for both

per-flow and global consistency, and (ii) do not deal with is-

sues related to the integration of FSMs in an RMT machine

model. FlowBlaze fills these gaps and provides a hardware

implementation that addresses problems that have to do with

quick per-flow state insertion and state update consistency.

In contrast, FAST provides only a software implementation,

while OpenState can only support much simpler Mealy Ma-

chines.

VFP [23] presents a MAT-like abstraction, GFT, to offload

some network functions to a SmartNIC, and defines concepts

similar to the biflow we use in FlowBlaze. AccelNet[24]

implements GFT in a FPGA-based SmartNIC. Their design

differs from FlowBlaze in several ways. First, AccelNet re-

quires the first packet of a flow to be handled in software.

For short flows this introduces additional delays that may

be critical for real-time applications, thus FlowBlaze allows

for functions to be entirely executed in the FPGA instead.

Second, AccelNet uses a small (2k flows) cache in SRAM

backed by a larger DRAM to host flow entries. This is also

related to Marple, which extends data plane state memory

using off-chip DRAM [53] to support network monitoring

functions in high-performance switching ASICs. In contrast,

FlowBlaze places all the flow entries in a highly optimized

hash-table in SRAM, which guarantees constant delays for

all flows’ state reads and writes. Unlike FlowBlaze, Accel-

Net does not provide an abstraction to program FPGA func-

tions, though it does implement a microcode programmable

action block which allows for reconfiguration of the actions

without requiring a change in the FPGA design; this is com-

plementary to our work.

Examples of functions offloaded to programmable hard-

ware are presented in [49, 57, 43, 21, 44, 56, 38]. FlowBlaze

provides an abstraction to implement such use cases, and ad-

dresses issues in those implementations to do with control

plane scalability and limited state memory. We described the

implementation of a few datacenter use cases with an earlier

software version of FlowBlaze in [12].

8 Conclusion

We presented FlowBlaze, an EFSM-based abstraction able

to describe network functions targeted at high-performance

data plane implementations. FlowBlaze is flexible and can

implement complex network functions while being compat-

ible with the wide-spread MATs pipeline abstraction. Lever-

aging the flow state concept, we provided an efficient hard-

ware implementation that can run, at line-rate, stateful net-

work functions that keep large, per-flow state. FlowBlaze is

built on top of the NetFPGA open platform and both hard-

ware and software sources are publicly available [25].

Acknowledgements

We would like to thank the anonymous NSDI reviewers and

our shepherd Anirudh Sivaraman for their valuable feed-

back. This work has received funding from the European

Union’s Horizon 2020 research and innovation programme

under grant agreement No. 761493 (”5GTANGO”) and No.

762057 (”5G-PICTURE”). This paper reflects only the au-

thors’ views and the European Commission is not responsi-

ble for any use that may be made of the information it con-

tains.

References

[1] Linux socket filtering aka berkeley packet fil-

ter (bpf). https://www.kernel.org/doc/

Documentation/networking/filter.txt.

[2] P4-NetFPGA. https://github.com/

NetFPGA/P4-NetFPGA-public/wiki.

[3] Virtex-7 Family Overview. http://www.xilinx.

com.

[4] V. S. Alagar and K. Periyasamy. Extended Finite State

Machine, pages 105–128. Springer London, London,

2011.

[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,

P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.

Data center tcp (dctcp). In Proceedings of the ACM

SIGCOMM 2010 Conference, SIGCOMM ’10, pages

63–74, New York, NY, USA, 2010. ACM.

[6] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,

A. Vahdat, and M. Yasuda. Less is more: trading a

little bandwidth for ultra-low latency in the data cen-

ter. In Proceedings of the 9th USENIX conference on

Networked Systems Design and Implementation, pages

19–19. USENIX Association, 2012.

[7] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford,

and D. Walker. Snap: Stateful network-wide abstrac-

tions for packet processing. In Proceedings of the 2016

ACM SIGCOMM Conference, SIGCOMM ’16, pages

29–43, New York, NY, USA, 2016. ACM.

[8] AT&T, BT, CenturyLink, China Mobile, Colt, Deu-

tusche Telekom, KDDI, NTT, Orange, Telefom Italia,

Telefonica, Telstra, and Verizon. Network function vir-

tualization - white paper. http://www.tid.es/

es/Documents/NFV_White_PaperV2.pdf.

[9] T. Benson. Data set for IMC 2010 data center

measurement. http://pages.cs.wisc.edu/

˜tbenson/IMC10_Data.html.

[10] T. Benson, A. Akella, and D. A. Maltz. Network traf-

fic characteristics of data centers in the wild. In ACM

SIGCOMM IMC, ACM SIGCOMM IMC ’10, 2010.

[11] G. Bianchi, M. Bonola, A. Capone, and C. Cascone.

Openstate: Programming platform-independent state-

ful openflow applications inside the switch. ACM SIG-

COMM CCR, 44(2):44–51, 4 2014.

[12] M. Bonola, R. Bifulco, L. Petrucci, S. Pontarelli, A. Tu-

lumello, and G. Bianchi. Implementing advanced net-

work functions with stateful programmable data planes.

In Local and Metropolitan Area Networks (LANMAN),

2017 IEEE International Symposium on, pages 1–2.

IEEE, 2017.

[13] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-

own, J. Rexford, C. Schlesinger, D. Talayco, A. Vah-

dat, G. Varghese, et al. P4: Programming protocol-

independent packet processors. ACM SIGCOMM CCR,

44(3):87–95, 2014.

[14] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McK-

eown, M. Izzard, F. Mujica, and M. Horowitz. For-

warding metamorphosis: Fast programmable match-

action processing in hardware for sdn. In ACM SIG-

COMM ’13, ACM SIGCOMM ’13, pages 99–110.

ACM, 2013.

[15] G. Brebner and W. Jiang. High-speed packet pro-

cessing using reconfigurable computing. IEEE Micro,

34(1):8–18, Jan 2014.

[16] CAIDA. The CAIDA UCSD anonymized in-

ternet traces - chicago 2015-02-19. http:

//www.caida.org/data/passive/

passive_2015_dataset.xml.

[17] C. Cascone, R. Bifulco, S. Pontarelli, and A. Capone.

Relaxing state-access constraints in stateful pro-

grammable data planes. ACM SIGCOMM Computer

Communication Review, 48(1):3–9, 2018.

[18] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Var-

gaftik, A. Berger, G. Mendelson, M. Alizadeh, S.-T.

Chuang, I. Keslassy, A. Orda, and T. Edsall. drmt: Dis-

aggregated programmable switching. In Proceedings

of the Conference of the ACM Special Interest Group

on Data Communication, SIGCOMM ’17, pages 1–14,

New York, NY, USA, 2017. ACM.

[19] T. P. L. Consortium. The p4 language specification -

version 1.0.5, 5 2018.

[20] T. P. L. Consortium. P416 language specification, 5

2018.

[21] H. T. Dang, M. Canini, F. Pedone, and R. Soulé. Paxos

made switch-y. SIGCOMM Comput. Commun. Rev.,

46(2):18–24, May 2016.

[22] U. Erlingsson, M. Manasse, and F. McSherry. A

cool and practical alternative to traditional hash tables.

In 7th Workshop on Distributed Data and Structures

(WDAS’06), Santa Clara, CA, January 2006.

[23] D. Firestone. VFP: A virtual switch platform for host

SDN in the public cloud. In 14th USENIX Sympo-

sium on Networked Systems Design and Implementa-

tion (NSDI 17), pages 315–328, Boston, MA, 2017.

USENIX Association.

https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://github.com/NetFPGA/P4-NetFPGA-public/wiki
https://github.com/NetFPGA/P4-NetFPGA-public/wiki
http://www.xilinx.com
http://www.xilinx.com
http://www.tid.es/es/Documents/NFV_White_PaperV2.pdf
http://www.tid.es/es/Documents/NFV_White_PaperV2.pdf
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
http://www.caida.org/data/passive/passive_2015_dataset.xml
http://www.caida.org/data/passive/passive_2015_dataset.xml
http://www.caida.org/data/passive/passive_2015_dataset.xml

[24] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,

A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu,

A. Caulfield, E. Chung, H. K. Chandrappa, S. Chatur-

mohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,

K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel,

T. Sapre, M. Shaw, G. Silva, M. Sivakumar, N. Sri-

vastava, A. Verma, Q. Zuhair, D. Bansal, D. Burger,

K. Vaid, D. A. Maltz, and A. Greenberg. Azure accel-

erated networking: Smartnics in the public cloud. In

15th USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI 18), pages 51–66, Ren-

ton, WA, 2018. USENIX Association.

[25] FlowBlaze. Repository with FlowBlaze source code

and additional material. http://axbryd.com/

FlowBlaze.html.

[26] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis. Space

efficient hash tables with worst case constant access

time. Theory of Computing Systems, 38(2):229–248,

Feb 2005.

[27] L. Foundation. FD.io. https://fd.io/.

[28] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown.

Design principles for packet parsers. In ACM/IEEE

ANCS ’13.

[29] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye,

and M. Lipshteyn. Rdma over commodity ethernet at

scale. In Proceedings of the 2016 ACM SIGCOMM

Conference, pages 202–215. ACM, 2016.

[30] M. Handley, V. Paxson, and C. Kreibich. Network in-

trusion detection: Evasion, traffic normalization, and

end-to-end protocol semantics. In Proc. USENIX Secu-

rity Symposium, volume 2001, 2001.

[31] M. Honda, F. Huici, G. Lettieri, and L. Rizzo. mswitch:

A highly-scalable, modular software switch. In Pro-

ceedings of the 1st ACM SIGCOMM Symposium on

Software Defined Networking Research, ACM SOSR

’15, pages 1:1–1:13. ACM, 2015.

[32] M. Honda, G. Lettieri, L. Eggert, and D. Santry.

PASTE: A network programming interface for non-

volatile main memory. In Proc. USENIX NSDI, 2018.

[33] H. Hong, H. Choi, D. Kim, H. Kim, B. Hong, J. Noh,

and Y. Kim. When cellular networks met ipv6: Security

problems of middleboxes in ipv6 cellular networks. In

2017 IEEE European Symposium on Security and Pri-

vacy (EuroS P), pages 595–609, April 2017.

[34] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Intro-

duction to Automata Theory, Languages, and Compu-

tation (3rd Edition). Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 2006.

[35] M. A. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park.

mos: A reusable networking stack for flow monitor-

ing middleboxes. In 14th USENIX Symposium on

Networked Systems Design and Implementation (NSDI

17), pages 113–129, Boston, MA, 2017. USENIX As-

sociation.

[36] B. Jean-Louis. Using block RAM for high performance

read/write TCAMs, 2012. Xilinx XAPP204.

[37] W. Jiang. Scalable ternary content addressable memory

implementation using fpgas. In Architectures for Net-

working and Communications Systems (ANCS), 2013

ACM/IEEE Symposium on, pages 71–82, Oct 2013.

[38] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,

C. Kim, and I. Stoica. Netcache: Balancing key-value

stores with fast in-network caching. In Proceedings of

the 26th Symposium on Operating Systems Principles,

SOSP ’17, pages 121–136, New York, NY, USA, 2017.

ACM.

[39] P. Kazemian, G. Varghese, and N. McKeown. Header

space analysis: Static checking for networks. In Pre-

sented as part of the 9th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI

12), pages 113–126, San Jose, CA, 2012. USENIX.

[40] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster,

and R. Clark. Kinetic: Verifiable dynamic network con-

trol. In 12th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI 15), pages 59–

72, Oakland, CA, 2015. USENIX Association.

[41] A. Kirsch, M. Mitzenmacher, and U. Wieder. More

robust hashing: Cuckoo hashing with a stash. SIAM J.

Comput., 39(4):1543–1561, Dec. 2009.

[42] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu,

Y. Xiong, and P. Cheng. Clicknp: Highly flexible

and high-performance network processing with recon-

figurable hardware. In ACM SIGCOMM ’16.

[43] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and

M. J. Freedman. Be fast, cheap and in control with

switchkv. In 13th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 16), pages

31–44, Santa Clara, CA, 2016. USENIX Association.

[44] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy,

and K. Atreya. Incbricks: Toward in-network compu-

tation with an in-network cache. SIGOPS Oper. Syst.

Rev., 51(2):795–809, Apr. 2017.

[45] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu,

M. Honda, R. Bifulco, and F. Huici. Clickos and the

art of network function virtualization. In Proceedings

of the 11th USENIX Conference on Networked Systems

http://axbryd.com/FlowBlaze.html
http://axbryd.com/FlowBlaze.html
https://fd.io/

Design and Implementation, USENIX NSDI’14, pages

459–473. USENIX Association, 2014.

[46] MAWI. MAWILab traffic trace - 2015-07-20.

http://www.fukuda-lab.org/mawilab/

v1.1/2015/07/20/20150720.html.

[47] N. McKeown. Programmable forwarding planes are

here to stay. In ACM SIGCOMM 2017 The Third Work-

shop on Networking and Programming Languages

(NetPL), 2017.

[48] N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S. Shenker,

and J. Turner. Openflow: Enabling innovation in cam-

pus networks. ACM SIGCOMM CCR, 38(2):69–74, 3

2008.

[49] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. Silkroad:

Making stateful layer-4 load balancing fast and cheap

using switching asics. In Proceedings of the Confer-

ence of the ACM Special Interest Group on Data Com-

munication, SIGCOMM ’17, pages 15–28, New York,

NY, USA, 2017. ACM.

[50] R. Mittal, N. Dukkipati, E. Blem, H. Wassel,

M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall,

D. Zats, et al. Timely: Rtt-based congestion control for

the datacenter. In ACM SIGCOMM Computer Com-

munication Review, volume 45, pages 537–550. ACM,

2015.

[51] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and

R. Govindan. Flow-level state transition as a new

switch primitive for sdn. In Proceedings of the Third

Workshop on Hot Topics in Software Defined Network-

ing, ACM HotSDN ’14, pages 61–66. ACM, 2014.

[52] F. B. Muslim, L. Ma, M. Roozmeh, and L. Lavagno.

Efficient fpga implementation of opencl high-

performance computing applications via high-level

synthesis. IEEE Access, 5:2747–2762, 2017.

[53] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal,

V. Arun, M. Alizadeh, V. Jeyakumar, and C. Kim.

Language-directed hardware design for network per-

formance monitoring. In Proceedings of the Confer-

ence of the ACM Special Interest Group on Data Com-

munication, SIGCOMM ’17, pages 85–98, New York,

NY, USA, 2017. ACM.

[54] A. Panda, O. Lahav, K. Argyraki, M. Sagiv, and

S. Shenker. Verifying reachability in networks with

mutable datapaths. In 14th USENIX Symposium on

Networked Systems Design and Implementation (NSDI

17), pages 699–718, Boston, MA, 2017. USENIX As-

sociation.

[55] Z. Qian and Z. M. Mao. Off-path tcp sequence number

inference attack - how firewall middleboxes reduce se-

curity. In Proceedings of the 2012 IEEE Symposium on

Security and Privacy, SP ’12, pages 347–361, Wash-

ington, DC, USA, 2012. IEEE Computer Society.

[56] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and

P. Kalnis. In-network computation is a dumb idea

whose time has come. In Proceedings of the 16th ACM

Workshop on Hot Topics in Networks, HotNets-XVI,

pages 150–156, New York, NY, USA, 2017. ACM.

[57] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishna-

murthy, J. Nelson, and S. Peter. Evaluating the power

of flexible packet processing for network resource al-

location. In 14th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 17), pages

67–82, Boston, MA, 2017. USENIX Association.

[58] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Al-

izadeh, H. Balakrishnan, G. Varghese, N. McKeown,

and S. Licking. Packet transactions: High-level pro-

gramming for line-rate switches. In ACM SIGCOMM

’16, ACM SIGCOMM ’16, pages 15–28. ACM, 2016.

[59] Z. Ullah, M. Jaiswal, Y. Chan, and R. Cheung. FPGA

Implementation of SRAM-based Ternary Content Ad-

dressable Memory. In IEEE 26th International Paral-

lel and Distributed Processing Symposium Workshops

& PhD Forum (IPDPSW), IEEE IPDPSW 2012, 2012.

[60] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivas-

tav, N. Foster, and H. Weatherspoon. P4fpga: A rapid

prototyping framework for p4. In Proceedings of the

Symposium on SDN Research, SOSR ’17, pages 122–

135, New York, NY, USA, 2017. ACM.

[61] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron.

Better never than late: Meeting deadlines in datacenter

networks. ACM SIGCOMM Computer Communication

Review, 41(4):50–61, 2011.

[62] Y. Yuan, D. Lin, R. Alur, and B. T. Loo. Scenario-based

programming for sdn policies. In Proceedings of the

11th ACM Conference on Emerging Networking Exper-

iments and Technologies, CoNEXT ’15, pages 34:1–

34:13, New York, NY, USA, 2015. ACM.

[63] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. An-

dersen. Scalable, High Performance Ethernet Forward-

ing with CuckooSwitch. In Proceedings of the Ninth

ACM Conference on Emerging Networking Experi-

ments and Technologies, ACM CoNEXT ’13, pages

97–108. ACM, 2013.

[64] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,

Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and

http://www.fukuda-lab.org/mawilab/v1.1/2015/07/20/20150720.html
http://www.fukuda-lab.org/mawilab/v1.1/2015/07/20/20150720.html

M. Zhang. Congestion control for large-scale rdma

deployments. In ACM SIGCOMM Computer Com-

munication Review, volume 45, pages 523–536. ACM,

2015.

[65] N. Zilberman, Y. Audzevich, G. A. Covington, and

A. W. Moore. NetFPGA SUME: Toward 100 Gbps as

Research Commodity. IEEE Micro ’14, 34(5):32–41,

2014.

A: ALU Instructions

Type Instructions Description

Logic

NOP do nothing

NOT OUT ← NOT (IN1)

XOR, AND, OR OUT ← IN1opIN2

Arithmetic
ADD, SUB OUT ← IN1opIN2

ADDI, SUBI OUT ← IN1opIMM

Shift/Rotate

LSL (Logical shift left) OUT ← IN1 << IMM

LSR (Logical shift right) OUT ← IN1 >> IMM

ROR (Rotate right) OUT ← IN1rorIMM

Table 7: FlowBlaze ALU-supported instructions.

B: Pipeline Simulations

Figure 11: sim1 (a) throughput and (b) latency.

Figure 12: sim2 (a) throughput and (b) latency.

In order to understand FlowBlaze’s design performance

(when clocked at 156.25MHz) with respect to a worst case

scenario, we implemented a custom FlowBlaze simulator

and used modified versions of the traces described in Sec. 5.

The traces show a largely bi-modal distribution, with at least

30% (or more) of the packets being minimum size. It should

be noted that we used this custom pipeline simulator since

a clock-cycle level hardware simulator would be too slow to

perform trace-based simulations at this scale.

We perform two simulations: sim1 simulates line rate by

removing any time gap between packets; this results are used

to validate the simulator and are comparable to our experi-

mental evaluation results (cf. Fig. 8); sim2 modifies all pack-

ets to be minimum size and so represents a worst-case work-

load. Figures 11 and 12 plot throughput relative to Flow-

Blaze’s line rate, with the scheduler block (cf. Section 4.3)

and without it (global label), as well as the 99th percentile

forwarding latency which is increased by pipeline stalls or

queuing. The former case is tested against three flow def-

initions: IPsrc, IPsrc-IPdst, and 5-tuple. In the global la-

bel case, we force the pipeline to stall for 3 cycles for every

minimum size packet in order to guarantee state consistency

(recall the middle table in Figure 6).

The results show the effects of having the scheduler block

(cf. traces details in Table 6): depending on flow definitions

and traces, it improves the throughput by 50–160% in the

worst case (sim2), and up to 12% in sim1. In this last case,

the scheduler reduces the per-packet latency by 30–70% .

	Introduction
	Requirements and state-of-the-art
	Existing systems

	FlowBlaze Design
	The FlowBlaze Abstraction
	Machine Model
	FlowBlaze Programming
	Expressiveness: A Case Study

	Hardware Design and Implementation
	Stateful Element Architecture
	Scalability of Flow Context Tables
	Guaranteeing Flow State Consistency
	Hardware Implementation
	Software Implementation

	Evaluation
	Throughput
	Latency
	Power Consumption
	Flow Scalability
	Flow Insertion Performance

	Discussion
	Related Work
	Conclusion

