
Machine-Veri�ed

Network Controllers

Nate Foster

Cornell University

Proof Assistants

Coq

Proof Assistants

Mark Reitblatt

PhD student

Arjun Guha

Postdoc→UMass

Coq

Networks in Practice

“The trigger for this

event was a network

con�guration change”
—Amazon

Networks in Practice

“The service outage

was due to a series of

internal network events

that corrupted router

data tables”

—GoDaddy

“The airline

experienced a network

connectivity issue...”

—United Airlines

Networks in Practice

“The airline

experienced a network

connectivity issue...”

—United Airlines

Networks in Practice

Networks in Practice

There are hosts...

Networks in Practice

Connected by switches...

Networks in Practice

There are also servers...

Networks in Practice

Connected by routers...

Networks in Practice

And a load balancer...

Networks in Practice

And a gateway router...

Networks in Practice

There are other ISPs...

Networks in Practice

So we need to run BGP...

Networks in Practice

And we need a �rewall to �lter incoming tra�c...

Networks in Practice

There are also wireless hosts...

Networks in Practice

So we need wireless gateways...

Networks in Practice

And yet more middleboxes for lawful intercept...

Each color represents a di�erent set of control

plane protocols and algorithms... this is

Networks in Practice

Software-Defined Networking

A clean-slate architecture that standardizes

features and decouples forwarding from

Software-Defined Networking

Essential ingredients
• Decouple control and data planes

• Logically-centralized control

Enables
• Novel functionality

• Formal reasoning
Data Plane

Control Plane Data Plane

Control Plane

Data Plane

Control Plane
Data Plane

Control Plane

Software-Defined Networking

Essential ingredients
• Decouple control and data planes

• Logically-centralized control

Enables
• Novel functionality

• Formal reasoning
Data Plane

Controller

Data Plane

Data Plane

Data Plane

Existing Tools

There is a cottage industry in SDN con�guration-checking tools...

Existing Tools

FlowChecker: Configuration Analysis and Verification of
Federated OpenFlow Infrastructures

Ehab Al-Shaer and Saeed Al-Haj
Department of Software and Information Systems

University of North Carolina at Charlotte
{ealshaer, salhaj}@uncc.edu

ABSTRACT

It is difficult to build a real network to test novel experi-
ments. OpenFlow makes it easier for researchers to run their
own experiments by providing a virtual slice and configura-
tion on real networks. Multiple users can share the same
network by assigning a different slice for each one. Users
are given the responsibility to maintain and use their own
slice by writing rules in a FlowTable. Misconfiguration prob-
lems can arise when a user writes conflicting rules for sin-
gle FlowTable or even within a path of multiple OpenFlow
switches that need multiple FlowTables to be maintained at
the same time.

In this work, we describe a tool, FlowChecker, to identify
any intra-switch misconfiguration within a single FlowTable.
We also describe the inter-switch or inter-federated inconsis-
tencies in a path of OpenFlow switches across the same or
different OpenFlow infrastructures. FlowChecker encodes
FlowTables configuration using Binary Decision Diagrams
and then uses the model checker technique to model the
inter-connected network of OpenFlow switches.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations—Network management

General Terms

Security, Verification

Keywords

OpenFlow, configuration verification, access control, auto-
mated analysis, binary decision diagrams

1. INTRODUCTION
OpenFlow is an innovative architecture that provides an

open programmable platform for network access control [17].
By separating the data and control plans, users can use the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SafeConfig’10, October 4, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0093-3/10/10 ...$10.00.

OpenFlow centralized controllers to install filters (match,
count and action) in the OpenFlow switches and control the
global data processing in the network. Currently, Open-
Flow control supports the following actions: forward, drop,
encapsulate, encrypt, limit, and classify/enqueue for QoS.
The platform is also extensible to support more actions. The
controller running new protocols or algorithms might insert,
modify, or remove filters in the switches in order to enforce
network-wide policies or properties (e.g., guests should ac-
cess the internet only through a proxy) [17]. Thus, it is
assumed that the integrated behavior of the installed fil-
ters will globally implement these policies. However, the
following conflicts become apparent: (1) the semantic gap
between the controller platform (e.g., NOX [13]) and the
filter tables in the data processing units, (2) the distribu-
tion of access control that supports aggregate flows (wild-
cards) and many different actions, (3) the ability of sharing
one controller by different users, and (4) the ability of us-
ing multiple controllers in the same domain. These conflicts
together increase the potential of intra-federated (single do-
main) OpenFlow configuration conflicts. In addition, as two
or more OpenFlow infrastructures communicate with each
other, potential inter-federated conflicts may appear due to
inconsistency in the controller or switch configuration. This
may result in invalidation of end-to-end policy enforcement.

Due to these reasons, a correct enforcement of the con-
troller policies might be questionable without the support
of formal automated configuration verification tools. This
work attempts to address these problems by (1) encoding
OpenFlow configuration using Binary Decision Diagrams
(BDDs) considering the priority-based matching semantic,
various actions, the existence of multiple controllers and
multiple users, (2) modeling the global behavior of the Open-
Flow network based on FlowTables over single or multiple
federated infrastructures in a single state machine, and (3)
providing a generic property-based verification interface us-
ing BDD-based symbolic model checking and temporal logic.
The presented system, called FlowChecker, can be used by
administrators/users for (1) verifying the consistency of dif-
ferent switches and controllers across different OpenFlow
federated infrastructures, (2) validating the correctness of
the configuration synthesis generated by a new implemented
protocols, and (3) debugging reachability and security prob-
lems. FlowChecker can also be used to conduct “what-if”
analysis to study the impact of the new protocols or algo-
rithms on the network by simply changing the state in the
FlowTables and then analyzing the effect.

The development of FlowChecker leverages our previous

37

There is a cottage industry in SDN con�guration-checking tools...

• FlowChecker [SafeCon�g ’10]

Existing Tools

FlowChecker: Configuration Analysis and Verification of
Federated OpenFlow Infrastructures

Ehab Al-Shaer and Saeed Al-Haj
Department of Software and Information Systems

University of North Carolina at Charlotte
{ealshaer, salhaj}@uncc.edu

ABSTRACT

It is difficult to build a real network to test novel experi-
ments. OpenFlow makes it easier for researchers to run their
own experiments by providing a virtual slice and configura-
tion on real networks. Multiple users can share the same
network by assigning a different slice for each one. Users
are given the responsibility to maintain and use their own
slice by writing rules in a FlowTable. Misconfiguration prob-
lems can arise when a user writes conflicting rules for sin-
gle FlowTable or even within a path of multiple OpenFlow
switches that need multiple FlowTables to be maintained at
the same time.

In this work, we describe a tool, FlowChecker, to identify
any intra-switch misconfiguration within a single FlowTable.
We also describe the inter-switch or inter-federated inconsis-
tencies in a path of OpenFlow switches across the same or
different OpenFlow infrastructures. FlowChecker encodes
FlowTables configuration using Binary Decision Diagrams
and then uses the model checker technique to model the
inter-connected network of OpenFlow switches.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations—Network management

General Terms

Security, Verification

Keywords

OpenFlow, configuration verification, access control, auto-
mated analysis, binary decision diagrams

1. INTRODUCTION
OpenFlow is an innovative architecture that provides an

open programmable platform for network access control [17].
By separating the data and control plans, users can use the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SafeConfig’10, October 4, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0093-3/10/10 ...$10.00.

OpenFlow centralized controllers to install filters (match,
count and action) in the OpenFlow switches and control the
global data processing in the network. Currently, Open-
Flow control supports the following actions: forward, drop,
encapsulate, encrypt, limit, and classify/enqueue for QoS.
The platform is also extensible to support more actions. The
controller running new protocols or algorithms might insert,
modify, or remove filters in the switches in order to enforce
network-wide policies or properties (e.g., guests should ac-
cess the internet only through a proxy) [17]. Thus, it is
assumed that the integrated behavior of the installed fil-
ters will globally implement these policies. However, the
following conflicts become apparent: (1) the semantic gap
between the controller platform (e.g., NOX [13]) and the
filter tables in the data processing units, (2) the distribu-
tion of access control that supports aggregate flows (wild-
cards) and many different actions, (3) the ability of sharing
one controller by different users, and (4) the ability of us-
ing multiple controllers in the same domain. These conflicts
together increase the potential of intra-federated (single do-
main) OpenFlow configuration conflicts. In addition, as two
or more OpenFlow infrastructures communicate with each
other, potential inter-federated conflicts may appear due to
inconsistency in the controller or switch configuration. This
may result in invalidation of end-to-end policy enforcement.

Due to these reasons, a correct enforcement of the con-
troller policies might be questionable without the support
of formal automated configuration verification tools. This
work attempts to address these problems by (1) encoding
OpenFlow configuration using Binary Decision Diagrams
(BDDs) considering the priority-based matching semantic,
various actions, the existence of multiple controllers and
multiple users, (2) modeling the global behavior of the Open-
Flow network based on FlowTables over single or multiple
federated infrastructures in a single state machine, and (3)
providing a generic property-based verification interface us-
ing BDD-based symbolic model checking and temporal logic.
The presented system, called FlowChecker, can be used by
administrators/users for (1) verifying the consistency of dif-
ferent switches and controllers across different OpenFlow
federated infrastructures, (2) validating the correctness of
the configuration synthesis generated by a new implemented
protocols, and (3) debugging reachability and security prob-
lems. FlowChecker can also be used to conduct “what-if”
analysis to study the impact of the new protocols or algo-
rithms on the network by simply changing the state in the
FlowTables and then analyzing the effect.

The development of FlowChecker leverages our previous

37

There is a cottage industry in SDN con�guration-checking tools...

• FlowChecker [SafeCon�g ’10]

•AntEater [SIGCOMM ’11]
Debugging the Data Plane with Anteater

Haohui Mai Ahmed Khurshid Rachit Agarwal
Matthew Caesar P. Brighten Godfrey Samuel T. King

University of Illinois at Urbana-Champaign

{mai4, khurshi1, agarwa16, caesar, pbg, kingst}@illinois.edu

ABSTRACT

Diagnosing problems in networks is a time-consuming and
error-prone process. Existing tools to assist operators pri-
marily focus on analyzing control plane configuration. Con-
figuration analysis is limited in that it cannot find bugs in
router software, and is harder to generalize across protocols
since it must model complex configuration languages and
dynamic protocol behavior.
This paper studies an alternate approach: diagnosing prob-

lems through static analysis of the data plane. This ap-
proach can catch bugs that are invisible at the level of con-
figuration files, and simplifies unified analysis of a network
across many protocols and implementations. We present
Anteater, a tool for checking invariants in the data plane.
Anteater translates high-level network invariants into in-
stances of boolean satisfiability problems (SAT), checks them
against network state using a SAT solver, and reports coun-
terexamples if violations have been found. Applied to a large
university network, Anteater revealed 23 bugs, including for-
warding loops and stale ACL rules, with only five false posi-
tives. Nine of these faults are being fixed by campus network
operators.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operation; D.2.5 [Software Engineering]: Testing and
Debugging

General Terms

Algorithms, Reliability

Keywords

Data Plane Analysis, Network Troubleshooting, Boolean Sat-
isfiability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’11, August 15–19, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0797-0/11/08 ...$10.00.

1. INTRODUCTION
Modern enterprise networks are complex, incorporating

hundreds or thousands of network devices from multiple
vendors performing diverse codependent functions such as
routing, switching, and access control across physical and
virtual networks (VPNs and VLANs). As in any complex
computer system, enterprise networks are prone to a wide
range of errors [10, 11, 12, 14, 25, 32, 38, 41], such as miscon-
figuration, software bugs, or unexpected interactions across
protocols. These errors can lead to oscillations, black holes,
faulty advertisements, or route leaks that ultimately cause
disconnectivity and security vulnerabilities.
However, diagnosing problems in networks remains a black

art. Operators often rely on heuristics — sending probes, re-
viewing logs, even observing mailing lists and making phone
calls — that slow response to failures.1 To address this, au-
tomated tools for network diagnostics [14, 43] analyze con-
figuration files constructed by operators. While useful, these
tools have two limitations stemming from their analysis of
high-level configuration files. First, configuration analysis
cannot find bugs in router software, which interprets and
acts on those configuration files. Both commercial and open
source router software regularly exhibit bugs that affect net-
work availability or security [41] and have led to multiple
high-profile outages and vulnerabilities [11, 44]. Second,
configuration analysismust model complex configuration lan-

guages and dynamic protocol behavior in order to determine
the ultimate effect of a configuration. As a result, these tools
generally focus on checking correctness of a single protocol
such as BGP [14, 15] or firewalls [2, 43]. Such diagnosis will
be unable to reason about interactions that span multiple
protocols, and may have difficulty dealing with the diversity
in configuration languages from different vendors making up
typical networks.
We take a different and complementary approach. Instead

of diagnosing problems in the control plane, our goal is to
diagnose problems as close as possible to the network’s ac-

tual behavior through formal analysis of data plane state.
Data plane analysis has two benefits. First, by checking the
results of routing software rather than its inputs, we can
catch bugs that are invisible at the level of configuration

1As one example, a Cisco design technote advises that “Un-
fortunately, there is no systematic procedure to troubleshoot
an STP issue. ... Administrators generally do not have time
to look for the cause of the loop and prefer to restore con-
nectivity as soon as possible. The easy way out in this case
is to manually disable every port that provides redundancy
in the network. ... Each time you disable a port, check to
see if you have restored connectivity in the network.” [10]

290

Existing Tools

FlowChecker: Configuration Analysis and Verification of
Federated OpenFlow Infrastructures

Ehab Al-Shaer and Saeed Al-Haj
Department of Software and Information Systems

University of North Carolina at Charlotte
{ealshaer, salhaj}@uncc.edu

ABSTRACT

It is difficult to build a real network to test novel experi-
ments. OpenFlow makes it easier for researchers to run their
own experiments by providing a virtual slice and configura-
tion on real networks. Multiple users can share the same
network by assigning a different slice for each one. Users
are given the responsibility to maintain and use their own
slice by writing rules in a FlowTable. Misconfiguration prob-
lems can arise when a user writes conflicting rules for sin-
gle FlowTable or even within a path of multiple OpenFlow
switches that need multiple FlowTables to be maintained at
the same time.

In this work, we describe a tool, FlowChecker, to identify
any intra-switch misconfiguration within a single FlowTable.
We also describe the inter-switch or inter-federated inconsis-
tencies in a path of OpenFlow switches across the same or
different OpenFlow infrastructures. FlowChecker encodes
FlowTables configuration using Binary Decision Diagrams
and then uses the model checker technique to model the
inter-connected network of OpenFlow switches.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations—Network management

General Terms

Security, Verification

Keywords

OpenFlow, configuration verification, access control, auto-
mated analysis, binary decision diagrams

1. INTRODUCTION
OpenFlow is an innovative architecture that provides an

open programmable platform for network access control [17].
By separating the data and control plans, users can use the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SafeConfig’10, October 4, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0093-3/10/10 ...$10.00.

OpenFlow centralized controllers to install filters (match,
count and action) in the OpenFlow switches and control the
global data processing in the network. Currently, Open-
Flow control supports the following actions: forward, drop,
encapsulate, encrypt, limit, and classify/enqueue for QoS.
The platform is also extensible to support more actions. The
controller running new protocols or algorithms might insert,
modify, or remove filters in the switches in order to enforce
network-wide policies or properties (e.g., guests should ac-
cess the internet only through a proxy) [17]. Thus, it is
assumed that the integrated behavior of the installed fil-
ters will globally implement these policies. However, the
following conflicts become apparent: (1) the semantic gap
between the controller platform (e.g., NOX [13]) and the
filter tables in the data processing units, (2) the distribu-
tion of access control that supports aggregate flows (wild-
cards) and many different actions, (3) the ability of sharing
one controller by different users, and (4) the ability of us-
ing multiple controllers in the same domain. These conflicts
together increase the potential of intra-federated (single do-
main) OpenFlow configuration conflicts. In addition, as two
or more OpenFlow infrastructures communicate with each
other, potential inter-federated conflicts may appear due to
inconsistency in the controller or switch configuration. This
may result in invalidation of end-to-end policy enforcement.

Due to these reasons, a correct enforcement of the con-
troller policies might be questionable without the support
of formal automated configuration verification tools. This
work attempts to address these problems by (1) encoding
OpenFlow configuration using Binary Decision Diagrams
(BDDs) considering the priority-based matching semantic,
various actions, the existence of multiple controllers and
multiple users, (2) modeling the global behavior of the Open-
Flow network based on FlowTables over single or multiple
federated infrastructures in a single state machine, and (3)
providing a generic property-based verification interface us-
ing BDD-based symbolic model checking and temporal logic.
The presented system, called FlowChecker, can be used by
administrators/users for (1) verifying the consistency of dif-
ferent switches and controllers across different OpenFlow
federated infrastructures, (2) validating the correctness of
the configuration synthesis generated by a new implemented
protocols, and (3) debugging reachability and security prob-
lems. FlowChecker can also be used to conduct “what-if”
analysis to study the impact of the new protocols or algo-
rithms on the network by simply changing the state in the
FlowTables and then analyzing the effect.

The development of FlowChecker leverages our previous

37

There is a cottage industry in SDN con�guration-checking tools...

• FlowChecker [SafeCon�g ’10]

•AntEater [SIGCOMM ’11]

•NICE [NSDI ’12]
Debugging the Data Plane with Anteater

Haohui Mai Ahmed Khurshid Rachit Agarwal
Matthew Caesar P. Brighten Godfrey Samuel T. King

University of Illinois at Urbana-Champaign

{mai4, khurshi1, agarwa16, caesar, pbg, kingst}@illinois.edu

ABSTRACT

Diagnosing problems in networks is a time-consuming and
error-prone process. Existing tools to assist operators pri-
marily focus on analyzing control plane configuration. Con-
figuration analysis is limited in that it cannot find bugs in
router software, and is harder to generalize across protocols
since it must model complex configuration languages and
dynamic protocol behavior.
This paper studies an alternate approach: diagnosing prob-

lems through static analysis of the data plane. This ap-
proach can catch bugs that are invisible at the level of con-
figuration files, and simplifies unified analysis of a network
across many protocols and implementations. We present
Anteater, a tool for checking invariants in the data plane.
Anteater translates high-level network invariants into in-
stances of boolean satisfiability problems (SAT), checks them
against network state using a SAT solver, and reports coun-
terexamples if violations have been found. Applied to a large
university network, Anteater revealed 23 bugs, including for-
warding loops and stale ACL rules, with only five false posi-
tives. Nine of these faults are being fixed by campus network
operators.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operation; D.2.5 [Software Engineering]: Testing and
Debugging

General Terms

Algorithms, Reliability

Keywords

Data Plane Analysis, Network Troubleshooting, Boolean Sat-
isfiability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’11, August 15–19, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0797-0/11/08 ...$10.00.

1. INTRODUCTION
Modern enterprise networks are complex, incorporating

hundreds or thousands of network devices from multiple
vendors performing diverse codependent functions such as
routing, switching, and access control across physical and
virtual networks (VPNs and VLANs). As in any complex
computer system, enterprise networks are prone to a wide
range of errors [10, 11, 12, 14, 25, 32, 38, 41], such as miscon-
figuration, software bugs, or unexpected interactions across
protocols. These errors can lead to oscillations, black holes,
faulty advertisements, or route leaks that ultimately cause
disconnectivity and security vulnerabilities.
However, diagnosing problems in networks remains a black

art. Operators often rely on heuristics — sending probes, re-
viewing logs, even observing mailing lists and making phone
calls — that slow response to failures.1 To address this, au-
tomated tools for network diagnostics [14, 43] analyze con-
figuration files constructed by operators. While useful, these
tools have two limitations stemming from their analysis of
high-level configuration files. First, configuration analysis
cannot find bugs in router software, which interprets and
acts on those configuration files. Both commercial and open
source router software regularly exhibit bugs that affect net-
work availability or security [41] and have led to multiple
high-profile outages and vulnerabilities [11, 44]. Second,
configuration analysismust model complex configuration lan-

guages and dynamic protocol behavior in order to determine
the ultimate effect of a configuration. As a result, these tools
generally focus on checking correctness of a single protocol
such as BGP [14, 15] or firewalls [2, 43]. Such diagnosis will
be unable to reason about interactions that span multiple
protocols, and may have difficulty dealing with the diversity
in configuration languages from different vendors making up
typical networks.
We take a different and complementary approach. Instead

of diagnosing problems in the control plane, our goal is to
diagnose problems as close as possible to the network’s ac-

tual behavior through formal analysis of data plane state.
Data plane analysis has two benefits. First, by checking the
results of routing software rather than its inputs, we can
catch bugs that are invisible at the level of configuration

1As one example, a Cisco design technote advises that “Un-
fortunately, there is no systematic procedure to troubleshoot
an STP issue. ... Administrators generally do not have time
to look for the cause of the loop and prefer to restore con-
nectivity as soon as possible. The easy way out in this case
is to manually disable every port that provides redundancy
in the network. ... Each time you disable a port, check to
see if you have restored connectivity in the network.” [10]

290

A NICE Way to Test OpenFlow Applications

Marco Canini⋆, Daniele Venzano⋆, Peter Perešı́ni⋆, Dejan Kostić⋆, and Jennifer Rexford†

⋆EPFL †Princeton University

Abstract

The emergence of OpenFlow-capable switches enables

exciting new network functionality, at the risk of pro-

gramming errors that make communication less reliable.

The centralized programming model, where a single con-

troller program manages the network, seems to reduce

the likelihood of bugs. However, the system is inherently

distributed and asynchronous, with events happening at

different switches and end hosts, and inevitable delays

affecting communication with the controller. In this pa-

per, we present efficient, systematic techniques for test-

ing unmodified controller programs. Our NICE tool ap-

plies model checking to explore the state space of the en-

tire system—the controller, the switches, and the hosts.

Scalability is the main challenge, given the diversity of

data packets, the large system state, and the many possi-

ble event orderings. To address this, we propose a novel

way to augment model checking with symbolic execu-

tion of event handlers (to identify representative pack-

ets that exercise code paths on the controller). We also

present a simplified OpenFlow switch model (to reduce

the state space), and effective strategies for generating

event interleavings likely to uncover bugs. Our proto-

type tests Python applications on the popular NOX plat-

form. In testing three real applications—aMAC-learning

switch, in-network server load balancing, and energy-

efficient traffic engineering—we uncover eleven bugs.

1 Introduction

While lowering the barrier for introducing new func-

tionality into the network, Software Defined Networking

(SDN) also raises the risks of software faults (or bugs).

Even today’s networking software—written and exten-

sively tested by equipment vendors, and constrained

(at least somewhat) by the protocol standardization

process—can have bugs that trigger Internet-wide out-

ages [1, 2]. In contrast, programmable networks will of-

fer a much wider range of functionality, through software

created by a diverse collection of network operators and

third-party developers. The ultimate success of SDN,

and enabling technologies like OpenFlow [3], depends

on having effective ways to test applications in pursuit

of achieving high reliability. In this paper, we present

NICE, a tool that efficiently uncovers bugs in OpenFlow

programs, through a combination of model checking and

symbolic execution. Building on our position paper [4]

that argues for automating the testing of OpenFlow ap-

plications, we introduce several new contributions sum-

marized in Section 1.3.

1.1 Bugs in OpenFlow Applications

An OpenFlow network consists of a distributed collec-

tion of switches managed by a program running on a

logically-centralized controller, as illustrated in Figure 1.

Each switch has a flow table that stores a list of rules

for processing packets. Each rule consists of a pattern

(matching on packet header fields) and actions (such as

forwarding, dropping, flooding, or modifying the pack-

ets, or sending them to the controller). A pattern can re-

quire an “exact match” on all relevant header fields (i.e.,

a microflow rule), or have “don’t care” bits in some fields

(i.e., a wildcard rule). For each rule, the switch main-

tains traffic counters that measure the bytes and packets

processed so far. When a packet arrives, a switch selects

the highest-priority matching rule, updates the counters,

and performs the specified action(s). If no rule matches,

the switch sends the packet header to the controller and

awaits a response on what actions to take. Switches also

send event messages, such as a “join” upon joining the

network, or “port change” when links go up or down.

The OpenFlow controller (un)installs rules in the

switches, reads traffic statistics, and responds to events.

For each event, the controller program defines a handler,

which may install rules or issue requests for traffic statis-

tics. Many OpenFlow applications1 are written on the

NOX controller platform [5], which offers an OpenFlow

1In this paper, we use the terms “OpenFlow application” and “con-

troller program” interchangeably.

Existing Tools

FlowChecker: Configuration Analysis and Verification of
Federated OpenFlow Infrastructures

Ehab Al-Shaer and Saeed Al-Haj
Department of Software and Information Systems

University of North Carolina at Charlotte
{ealshaer, salhaj}@uncc.edu

ABSTRACT

It is difficult to build a real network to test novel experi-
ments. OpenFlow makes it easier for researchers to run their
own experiments by providing a virtual slice and configura-
tion on real networks. Multiple users can share the same
network by assigning a different slice for each one. Users
are given the responsibility to maintain and use their own
slice by writing rules in a FlowTable. Misconfiguration prob-
lems can arise when a user writes conflicting rules for sin-
gle FlowTable or even within a path of multiple OpenFlow
switches that need multiple FlowTables to be maintained at
the same time.

In this work, we describe a tool, FlowChecker, to identify
any intra-switch misconfiguration within a single FlowTable.
We also describe the inter-switch or inter-federated inconsis-
tencies in a path of OpenFlow switches across the same or
different OpenFlow infrastructures. FlowChecker encodes
FlowTables configuration using Binary Decision Diagrams
and then uses the model checker technique to model the
inter-connected network of OpenFlow switches.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations—Network management

General Terms

Security, Verification

Keywords

OpenFlow, configuration verification, access control, auto-
mated analysis, binary decision diagrams

1. INTRODUCTION
OpenFlow is an innovative architecture that provides an

open programmable platform for network access control [17].
By separating the data and control plans, users can use the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SafeConfig’10, October 4, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0093-3/10/10 ...$10.00.

OpenFlow centralized controllers to install filters (match,
count and action) in the OpenFlow switches and control the
global data processing in the network. Currently, Open-
Flow control supports the following actions: forward, drop,
encapsulate, encrypt, limit, and classify/enqueue for QoS.
The platform is also extensible to support more actions. The
controller running new protocols or algorithms might insert,
modify, or remove filters in the switches in order to enforce
network-wide policies or properties (e.g., guests should ac-
cess the internet only through a proxy) [17]. Thus, it is
assumed that the integrated behavior of the installed fil-
ters will globally implement these policies. However, the
following conflicts become apparent: (1) the semantic gap
between the controller platform (e.g., NOX [13]) and the
filter tables in the data processing units, (2) the distribu-
tion of access control that supports aggregate flows (wild-
cards) and many different actions, (3) the ability of sharing
one controller by different users, and (4) the ability of us-
ing multiple controllers in the same domain. These conflicts
together increase the potential of intra-federated (single do-
main) OpenFlow configuration conflicts. In addition, as two
or more OpenFlow infrastructures communicate with each
other, potential inter-federated conflicts may appear due to
inconsistency in the controller or switch configuration. This
may result in invalidation of end-to-end policy enforcement.

Due to these reasons, a correct enforcement of the con-
troller policies might be questionable without the support
of formal automated configuration verification tools. This
work attempts to address these problems by (1) encoding
OpenFlow configuration using Binary Decision Diagrams
(BDDs) considering the priority-based matching semantic,
various actions, the existence of multiple controllers and
multiple users, (2) modeling the global behavior of the Open-
Flow network based on FlowTables over single or multiple
federated infrastructures in a single state machine, and (3)
providing a generic property-based verification interface us-
ing BDD-based symbolic model checking and temporal logic.
The presented system, called FlowChecker, can be used by
administrators/users for (1) verifying the consistency of dif-
ferent switches and controllers across different OpenFlow
federated infrastructures, (2) validating the correctness of
the configuration synthesis generated by a new implemented
protocols, and (3) debugging reachability and security prob-
lems. FlowChecker can also be used to conduct “what-if”
analysis to study the impact of the new protocols or algo-
rithms on the network by simply changing the state in the
FlowTables and then analyzing the effect.

The development of FlowChecker leverages our previous

37

There is a cottage industry in SDN con�guration-checking tools...

• FlowChecker [SafeCon�g ’10]

•AntEater [SIGCOMM ’11]

•NICE [NSDI ’12]

•Header Space Analysis [NSDI ’12]

Debugging the Data Plane with Anteater

Haohui Mai Ahmed Khurshid Rachit Agarwal
Matthew Caesar P. Brighten Godfrey Samuel T. King

University of Illinois at Urbana-Champaign

{mai4, khurshi1, agarwa16, caesar, pbg, kingst}@illinois.edu

ABSTRACT

Diagnosing problems in networks is a time-consuming and
error-prone process. Existing tools to assist operators pri-
marily focus on analyzing control plane configuration. Con-
figuration analysis is limited in that it cannot find bugs in
router software, and is harder to generalize across protocols
since it must model complex configuration languages and
dynamic protocol behavior.
This paper studies an alternate approach: diagnosing prob-

lems through static analysis of the data plane. This ap-
proach can catch bugs that are invisible at the level of con-
figuration files, and simplifies unified analysis of a network
across many protocols and implementations. We present
Anteater, a tool for checking invariants in the data plane.
Anteater translates high-level network invariants into in-
stances of boolean satisfiability problems (SAT), checks them
against network state using a SAT solver, and reports coun-
terexamples if violations have been found. Applied to a large
university network, Anteater revealed 23 bugs, including for-
warding loops and stale ACL rules, with only five false posi-
tives. Nine of these faults are being fixed by campus network
operators.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operation; D.2.5 [Software Engineering]: Testing and
Debugging

General Terms

Algorithms, Reliability

Keywords

Data Plane Analysis, Network Troubleshooting, Boolean Sat-
isfiability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’11, August 15–19, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0797-0/11/08 ...$10.00.

1. INTRODUCTION
Modern enterprise networks are complex, incorporating

hundreds or thousands of network devices from multiple
vendors performing diverse codependent functions such as
routing, switching, and access control across physical and
virtual networks (VPNs and VLANs). As in any complex
computer system, enterprise networks are prone to a wide
range of errors [10, 11, 12, 14, 25, 32, 38, 41], such as miscon-
figuration, software bugs, or unexpected interactions across
protocols. These errors can lead to oscillations, black holes,
faulty advertisements, or route leaks that ultimately cause
disconnectivity and security vulnerabilities.
However, diagnosing problems in networks remains a black

art. Operators often rely on heuristics — sending probes, re-
viewing logs, even observing mailing lists and making phone
calls — that slow response to failures.1 To address this, au-
tomated tools for network diagnostics [14, 43] analyze con-
figuration files constructed by operators. While useful, these
tools have two limitations stemming from their analysis of
high-level configuration files. First, configuration analysis
cannot find bugs in router software, which interprets and
acts on those configuration files. Both commercial and open
source router software regularly exhibit bugs that affect net-
work availability or security [41] and have led to multiple
high-profile outages and vulnerabilities [11, 44]. Second,
configuration analysismust model complex configuration lan-

guages and dynamic protocol behavior in order to determine
the ultimate effect of a configuration. As a result, these tools
generally focus on checking correctness of a single protocol
such as BGP [14, 15] or firewalls [2, 43]. Such diagnosis will
be unable to reason about interactions that span multiple
protocols, and may have difficulty dealing with the diversity
in configuration languages from different vendors making up
typical networks.
We take a different and complementary approach. Instead

of diagnosing problems in the control plane, our goal is to
diagnose problems as close as possible to the network’s ac-

tual behavior through formal analysis of data plane state.
Data plane analysis has two benefits. First, by checking the
results of routing software rather than its inputs, we can
catch bugs that are invisible at the level of configuration

1As one example, a Cisco design technote advises that “Un-
fortunately, there is no systematic procedure to troubleshoot
an STP issue. ... Administrators generally do not have time
to look for the cause of the loop and prefer to restore con-
nectivity as soon as possible. The easy way out in this case
is to manually disable every port that provides redundancy
in the network. ... Each time you disable a port, check to
see if you have restored connectivity in the network.” [10]

290

A NICE Way to Test OpenFlow Applications

Marco Canini⋆, Daniele Venzano⋆, Peter Perešı́ni⋆, Dejan Kostić⋆, and Jennifer Rexford†

⋆EPFL †Princeton University

Abstract

The emergence of OpenFlow-capable switches enables

exciting new network functionality, at the risk of pro-

gramming errors that make communication less reliable.

The centralized programming model, where a single con-

troller program manages the network, seems to reduce

the likelihood of bugs. However, the system is inherently

distributed and asynchronous, with events happening at

different switches and end hosts, and inevitable delays

affecting communication with the controller. In this pa-

per, we present efficient, systematic techniques for test-

ing unmodified controller programs. Our NICE tool ap-

plies model checking to explore the state space of the en-

tire system—the controller, the switches, and the hosts.

Scalability is the main challenge, given the diversity of

data packets, the large system state, and the many possi-

ble event orderings. To address this, we propose a novel

way to augment model checking with symbolic execu-

tion of event handlers (to identify representative pack-

ets that exercise code paths on the controller). We also

present a simplified OpenFlow switch model (to reduce

the state space), and effective strategies for generating

event interleavings likely to uncover bugs. Our proto-

type tests Python applications on the popular NOX plat-

form. In testing three real applications—aMAC-learning

switch, in-network server load balancing, and energy-

efficient traffic engineering—we uncover eleven bugs.

1 Introduction

While lowering the barrier for introducing new func-

tionality into the network, Software Defined Networking

(SDN) also raises the risks of software faults (or bugs).

Even today’s networking software—written and exten-

sively tested by equipment vendors, and constrained

(at least somewhat) by the protocol standardization

process—can have bugs that trigger Internet-wide out-

ages [1, 2]. In contrast, programmable networks will of-

fer a much wider range of functionality, through software

created by a diverse collection of network operators and

third-party developers. The ultimate success of SDN,

and enabling technologies like OpenFlow [3], depends

on having effective ways to test applications in pursuit

of achieving high reliability. In this paper, we present

NICE, a tool that efficiently uncovers bugs in OpenFlow

programs, through a combination of model checking and

symbolic execution. Building on our position paper [4]

that argues for automating the testing of OpenFlow ap-

plications, we introduce several new contributions sum-

marized in Section 1.3.

1.1 Bugs in OpenFlow Applications

An OpenFlow network consists of a distributed collec-

tion of switches managed by a program running on a

logically-centralized controller, as illustrated in Figure 1.

Each switch has a flow table that stores a list of rules

for processing packets. Each rule consists of a pattern

(matching on packet header fields) and actions (such as

forwarding, dropping, flooding, or modifying the pack-

ets, or sending them to the controller). A pattern can re-

quire an “exact match” on all relevant header fields (i.e.,

a microflow rule), or have “don’t care” bits in some fields

(i.e., a wildcard rule). For each rule, the switch main-

tains traffic counters that measure the bytes and packets

processed so far. When a packet arrives, a switch selects

the highest-priority matching rule, updates the counters,

and performs the specified action(s). If no rule matches,

the switch sends the packet header to the controller and

awaits a response on what actions to take. Switches also

send event messages, such as a “join” upon joining the

network, or “port change” when links go up or down.

The OpenFlow controller (un)installs rules in the

switches, reads traffic statistics, and responds to events.

For each event, the controller program defines a handler,

which may install rules or issue requests for traffic statis-

tics. Many OpenFlow applications1 are written on the

NOX controller platform [5], which offers an OpenFlow

1In this paper, we use the terms “OpenFlow application” and “con-

troller program” interchangeably.

Header Space Analysis: Static Checking For Networks

Peyman Kazemian

Stanford University

kazemian@stanford.edu

George Varghese

UCSD and Yahoo Labs

varghese@cs.ucsd.edu

Nick McKeown

Stanford University

nickm@stanford.edu

Abstract

Today’s networks typically carry or deploy dozens

of protocols and mechanisms simultaneously such as

MPLS, NAT, ACLs and route redistribution. Even when

individual protocols function correctly, failures can arise

from the complex interactions of their aggregate, requir-

ing network administrators to be masters of detail. Our

goal is to automatically find an important class of fail-

ures, regardless of the protocols running, for both opera-

tional and experimental networks.

To this end we developed a general and protocol-

agnostic framework, called Header Space Analysis

(HSA). Our formalism allows us to statically check net-

work specifications and configurations to identify an im-

portant class of failures such as Reachability Failures,

Forwarding Loops and Traffic Isolation and Leakage

problems. In HSA, protocol header fields are not first

class entities; instead we look at the entire packet header

as a concatenation of bits without any associated mean-

ing. Each packet is a point in the {0, 1}L space where L

is the maximum length of a packet header, and network-

ing boxes transform packets from one point in the space

to another point or set of points (multicast).

We created a library of tools, called Hassel, to imple-

ment our framework, and used it to analyze a variety of

networks and protocols. Hassel was used to analyze the

Stanford University backbone network, and found all the

forwarding loops in less than 10 minutes, and verified

reachability constraints between two subnets in 13 sec-

onds. It also found a large and complex loop in an exper-

imental loose source routing protocol in 4 minutes.

1 Introduction

“Accidents will occur in the best-regulated

families” — Charles Dickens

In the beginning, a switch or router was breathtak-

ingly simple. About all the device needed to do was in-

dex into a forwarding table using a destination address,

and decide where to send the packet next. Over time,

forwarding grew more complicated. Middleboxes (e.g.,

NAT and firewalls) and encapsulation mechanisms (e.g.,

VLAN and MPLS) appeared to escape from IP’s lim-

itations: e.g., NAT bypasses address limits and MPLS

allows flexible routing. Further, new protocols for spe-

cific domains, such as data centers, WANs and wireless,

have greatly increased the complexity of packet forward-

ing. Today, there are over 6,000 Internet RFCs and it is

not unusual for a switch or router to handle ten or more

encapsulation formats simultaneously.

This complexity makes it daunting to operate a large

network today. Network operators require great sophisti-

cation to master the complexity of many interacting pro-

tocols and middleboxes. The future is not any more rosy

- complexity today makes operators wary of trying new

protocols, even if they are available, for fear of break-

ing their network. Complexity also makes networks frag-

ile, and susceptible to problems where hosts become iso-

lated and unable to communicate. Debugging reacha-

bility problems is very time consuming. Even simple

questions are hard to answer, such as “Can Host A talk

to Host B?” or “Can packets loop in my network?” or

“Can User A listen to communications between Users

B and C?”. These questions are especially hard to an-

swer in networks carrying multiple encapsulations and

containing boxes that filter packets.

Thus, our first goal is to help system administrators

statically analyze production networks today. We de-

scribe new methods and tools to provide formal answers

to these questions, and many other failure conditions, re-

gardless of the protocols running in the network.

Our second goal is to make it easier for system ad-

ministrators to guarantee isolation between sets of hosts,

users or traffic. Partitioning networks this way is usually

called “slicing”; VLANs are a simple example used to-

day. If configured correctly, we can be confident that traf-

fic in one slice (e.g. a VLAN) cannot leak into another.

This is useful for security, and to help answer questions

such as “Can I prevent Host A from talking to Host B?”.

For example, imagine two health-care providers using

the same physical network. HIPAA [20] rules require

that no information about a patient can be read by other

providers. Thus a natural application of slicing is to place

each provider in a separate slice and guarantee that no

packet from one slice can be controlled by or read by the

other slice. We call this secure slicing. Secure slicing

may also be useful for banks as part of defense-in-depth,

and for classified and unclassified users sharing the same

physical network. Our tools can verify that slices have

Existing Tools

FlowChecker: Configuration Analysis and Verification of
Federated OpenFlow Infrastructures

Ehab Al-Shaer and Saeed Al-Haj
Department of Software and Information Systems

University of North Carolina at Charlotte
{ealshaer, salhaj}@uncc.edu

ABSTRACT

It is difficult to build a real network to test novel experi-
ments. OpenFlow makes it easier for researchers to run their
own experiments by providing a virtual slice and configura-
tion on real networks. Multiple users can share the same
network by assigning a different slice for each one. Users
are given the responsibility to maintain and use their own
slice by writing rules in a FlowTable. Misconfiguration prob-
lems can arise when a user writes conflicting rules for sin-
gle FlowTable or even within a path of multiple OpenFlow
switches that need multiple FlowTables to be maintained at
the same time.

In this work, we describe a tool, FlowChecker, to identify
any intra-switch misconfiguration within a single FlowTable.
We also describe the inter-switch or inter-federated inconsis-
tencies in a path of OpenFlow switches across the same or
different OpenFlow infrastructures. FlowChecker encodes
FlowTables configuration using Binary Decision Diagrams
and then uses the model checker technique to model the
inter-connected network of OpenFlow switches.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations—Network management

General Terms

Security, Verification

Keywords

OpenFlow, configuration verification, access control, auto-
mated analysis, binary decision diagrams

1. INTRODUCTION
OpenFlow is an innovative architecture that provides an

open programmable platform for network access control [17].
By separating the data and control plans, users can use the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SafeConfig’10, October 4, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0093-3/10/10 ...$10.00.

OpenFlow centralized controllers to install filters (match,
count and action) in the OpenFlow switches and control the
global data processing in the network. Currently, Open-
Flow control supports the following actions: forward, drop,
encapsulate, encrypt, limit, and classify/enqueue for QoS.
The platform is also extensible to support more actions. The
controller running new protocols or algorithms might insert,
modify, or remove filters in the switches in order to enforce
network-wide policies or properties (e.g., guests should ac-
cess the internet only through a proxy) [17]. Thus, it is
assumed that the integrated behavior of the installed fil-
ters will globally implement these policies. However, the
following conflicts become apparent: (1) the semantic gap
between the controller platform (e.g., NOX [13]) and the
filter tables in the data processing units, (2) the distribu-
tion of access control that supports aggregate flows (wild-
cards) and many different actions, (3) the ability of sharing
one controller by different users, and (4) the ability of us-
ing multiple controllers in the same domain. These conflicts
together increase the potential of intra-federated (single do-
main) OpenFlow configuration conflicts. In addition, as two
or more OpenFlow infrastructures communicate with each
other, potential inter-federated conflicts may appear due to
inconsistency in the controller or switch configuration. This
may result in invalidation of end-to-end policy enforcement.

Due to these reasons, a correct enforcement of the con-
troller policies might be questionable without the support
of formal automated configuration verification tools. This
work attempts to address these problems by (1) encoding
OpenFlow configuration using Binary Decision Diagrams
(BDDs) considering the priority-based matching semantic,
various actions, the existence of multiple controllers and
multiple users, (2) modeling the global behavior of the Open-
Flow network based on FlowTables over single or multiple
federated infrastructures in a single state machine, and (3)
providing a generic property-based verification interface us-
ing BDD-based symbolic model checking and temporal logic.
The presented system, called FlowChecker, can be used by
administrators/users for (1) verifying the consistency of dif-
ferent switches and controllers across different OpenFlow
federated infrastructures, (2) validating the correctness of
the configuration synthesis generated by a new implemented
protocols, and (3) debugging reachability and security prob-
lems. FlowChecker can also be used to conduct “what-if”
analysis to study the impact of the new protocols or algo-
rithms on the network by simply changing the state in the
FlowTables and then analyzing the effect.

The development of FlowChecker leverages our previous

37

There is a cottage industry in SDN con�guration-checking tools...

• FlowChecker [SafeCon�g ’10]

•AntEater [SIGCOMM ’11]

•NICE [NSDI ’12]

•Header Space Analysis [NSDI ’12]

• VeriFlow [HotSDN ’12]

• and many others...

Debugging the Data Plane with Anteater

Haohui Mai Ahmed Khurshid Rachit Agarwal
Matthew Caesar P. Brighten Godfrey Samuel T. King

University of Illinois at Urbana-Champaign

{mai4, khurshi1, agarwa16, caesar, pbg, kingst}@illinois.edu

ABSTRACT

Diagnosing problems in networks is a time-consuming and
error-prone process. Existing tools to assist operators pri-
marily focus on analyzing control plane configuration. Con-
figuration analysis is limited in that it cannot find bugs in
router software, and is harder to generalize across protocols
since it must model complex configuration languages and
dynamic protocol behavior.
This paper studies an alternate approach: diagnosing prob-

lems through static analysis of the data plane. This ap-
proach can catch bugs that are invisible at the level of con-
figuration files, and simplifies unified analysis of a network
across many protocols and implementations. We present
Anteater, a tool for checking invariants in the data plane.
Anteater translates high-level network invariants into in-
stances of boolean satisfiability problems (SAT), checks them
against network state using a SAT solver, and reports coun-
terexamples if violations have been found. Applied to a large
university network, Anteater revealed 23 bugs, including for-
warding loops and stale ACL rules, with only five false posi-
tives. Nine of these faults are being fixed by campus network
operators.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operation; D.2.5 [Software Engineering]: Testing and
Debugging

General Terms

Algorithms, Reliability

Keywords

Data Plane Analysis, Network Troubleshooting, Boolean Sat-
isfiability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’11, August 15–19, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0797-0/11/08 ...$10.00.

1. INTRODUCTION
Modern enterprise networks are complex, incorporating

hundreds or thousands of network devices from multiple
vendors performing diverse codependent functions such as
routing, switching, and access control across physical and
virtual networks (VPNs and VLANs). As in any complex
computer system, enterprise networks are prone to a wide
range of errors [10, 11, 12, 14, 25, 32, 38, 41], such as miscon-
figuration, software bugs, or unexpected interactions across
protocols. These errors can lead to oscillations, black holes,
faulty advertisements, or route leaks that ultimately cause
disconnectivity and security vulnerabilities.
However, diagnosing problems in networks remains a black

art. Operators often rely on heuristics — sending probes, re-
viewing logs, even observing mailing lists and making phone
calls — that slow response to failures.1 To address this, au-
tomated tools for network diagnostics [14, 43] analyze con-
figuration files constructed by operators. While useful, these
tools have two limitations stemming from their analysis of
high-level configuration files. First, configuration analysis
cannot find bugs in router software, which interprets and
acts on those configuration files. Both commercial and open
source router software regularly exhibit bugs that affect net-
work availability or security [41] and have led to multiple
high-profile outages and vulnerabilities [11, 44]. Second,
configuration analysismust model complex configuration lan-

guages and dynamic protocol behavior in order to determine
the ultimate effect of a configuration. As a result, these tools
generally focus on checking correctness of a single protocol
such as BGP [14, 15] or firewalls [2, 43]. Such diagnosis will
be unable to reason about interactions that span multiple
protocols, and may have difficulty dealing with the diversity
in configuration languages from different vendors making up
typical networks.
We take a different and complementary approach. Instead

of diagnosing problems in the control plane, our goal is to
diagnose problems as close as possible to the network’s ac-

tual behavior through formal analysis of data plane state.
Data plane analysis has two benefits. First, by checking the
results of routing software rather than its inputs, we can
catch bugs that are invisible at the level of configuration

1As one example, a Cisco design technote advises that “Un-
fortunately, there is no systematic procedure to troubleshoot
an STP issue. ... Administrators generally do not have time
to look for the cause of the loop and prefer to restore con-
nectivity as soon as possible. The easy way out in this case
is to manually disable every port that provides redundancy
in the network. ... Each time you disable a port, check to
see if you have restored connectivity in the network.” [10]

290

A NICE Way to Test OpenFlow Applications

Marco Canini⋆, Daniele Venzano⋆, Peter Perešı́ni⋆, Dejan Kostić⋆, and Jennifer Rexford†

⋆EPFL †Princeton University

Abstract

The emergence of OpenFlow-capable switches enables

exciting new network functionality, at the risk of pro-

gramming errors that make communication less reliable.

The centralized programming model, where a single con-

troller program manages the network, seems to reduce

the likelihood of bugs. However, the system is inherently

distributed and asynchronous, with events happening at

different switches and end hosts, and inevitable delays

affecting communication with the controller. In this pa-

per, we present efficient, systematic techniques for test-

ing unmodified controller programs. Our NICE tool ap-

plies model checking to explore the state space of the en-

tire system—the controller, the switches, and the hosts.

Scalability is the main challenge, given the diversity of

data packets, the large system state, and the many possi-

ble event orderings. To address this, we propose a novel

way to augment model checking with symbolic execu-

tion of event handlers (to identify representative pack-

ets that exercise code paths on the controller). We also

present a simplified OpenFlow switch model (to reduce

the state space), and effective strategies for generating

event interleavings likely to uncover bugs. Our proto-

type tests Python applications on the popular NOX plat-

form. In testing three real applications—aMAC-learning

switch, in-network server load balancing, and energy-

efficient traffic engineering—we uncover eleven bugs.

1 Introduction

While lowering the barrier for introducing new func-

tionality into the network, Software Defined Networking

(SDN) also raises the risks of software faults (or bugs).

Even today’s networking software—written and exten-

sively tested by equipment vendors, and constrained

(at least somewhat) by the protocol standardization

process—can have bugs that trigger Internet-wide out-

ages [1, 2]. In contrast, programmable networks will of-

fer a much wider range of functionality, through software

created by a diverse collection of network operators and

third-party developers. The ultimate success of SDN,

and enabling technologies like OpenFlow [3], depends

on having effective ways to test applications in pursuit

of achieving high reliability. In this paper, we present

NICE, a tool that efficiently uncovers bugs in OpenFlow

programs, through a combination of model checking and

symbolic execution. Building on our position paper [4]

that argues for automating the testing of OpenFlow ap-

plications, we introduce several new contributions sum-

marized in Section 1.3.

1.1 Bugs in OpenFlow Applications

An OpenFlow network consists of a distributed collec-

tion of switches managed by a program running on a

logically-centralized controller, as illustrated in Figure 1.

Each switch has a flow table that stores a list of rules

for processing packets. Each rule consists of a pattern

(matching on packet header fields) and actions (such as

forwarding, dropping, flooding, or modifying the pack-

ets, or sending them to the controller). A pattern can re-

quire an “exact match” on all relevant header fields (i.e.,

a microflow rule), or have “don’t care” bits in some fields

(i.e., a wildcard rule). For each rule, the switch main-

tains traffic counters that measure the bytes and packets

processed so far. When a packet arrives, a switch selects

the highest-priority matching rule, updates the counters,

and performs the specified action(s). If no rule matches,

the switch sends the packet header to the controller and

awaits a response on what actions to take. Switches also

send event messages, such as a “join” upon joining the

network, or “port change” when links go up or down.

The OpenFlow controller (un)installs rules in the

switches, reads traffic statistics, and responds to events.

For each event, the controller program defines a handler,

which may install rules or issue requests for traffic statis-

tics. Many OpenFlow applications1 are written on the

NOX controller platform [5], which offers an OpenFlow

1In this paper, we use the terms “OpenFlow application” and “con-

troller program” interchangeably.

Header Space Analysis: Static Checking For Networks

Peyman Kazemian

Stanford University

kazemian@stanford.edu

George Varghese

UCSD and Yahoo Labs

varghese@cs.ucsd.edu

Nick McKeown

Stanford University

nickm@stanford.edu

Abstract

Today’s networks typically carry or deploy dozens

of protocols and mechanisms simultaneously such as

MPLS, NAT, ACLs and route redistribution. Even when

individual protocols function correctly, failures can arise

from the complex interactions of their aggregate, requir-

ing network administrators to be masters of detail. Our

goal is to automatically find an important class of fail-

ures, regardless of the protocols running, for both opera-

tional and experimental networks.

To this end we developed a general and protocol-

agnostic framework, called Header Space Analysis

(HSA). Our formalism allows us to statically check net-

work specifications and configurations to identify an im-

portant class of failures such as Reachability Failures,

Forwarding Loops and Traffic Isolation and Leakage

problems. In HSA, protocol header fields are not first

class entities; instead we look at the entire packet header

as a concatenation of bits without any associated mean-

ing. Each packet is a point in the {0, 1}L space where L

is the maximum length of a packet header, and network-

ing boxes transform packets from one point in the space

to another point or set of points (multicast).

We created a library of tools, called Hassel, to imple-

ment our framework, and used it to analyze a variety of

networks and protocols. Hassel was used to analyze the

Stanford University backbone network, and found all the

forwarding loops in less than 10 minutes, and verified

reachability constraints between two subnets in 13 sec-

onds. It also found a large and complex loop in an exper-

imental loose source routing protocol in 4 minutes.

1 Introduction

“Accidents will occur in the best-regulated

families” — Charles Dickens

In the beginning, a switch or router was breathtak-

ingly simple. About all the device needed to do was in-

dex into a forwarding table using a destination address,

and decide where to send the packet next. Over time,

forwarding grew more complicated. Middleboxes (e.g.,

NAT and firewalls) and encapsulation mechanisms (e.g.,

VLAN and MPLS) appeared to escape from IP’s lim-

itations: e.g., NAT bypasses address limits and MPLS

allows flexible routing. Further, new protocols for spe-

cific domains, such as data centers, WANs and wireless,

have greatly increased the complexity of packet forward-

ing. Today, there are over 6,000 Internet RFCs and it is

not unusual for a switch or router to handle ten or more

encapsulation formats simultaneously.

This complexity makes it daunting to operate a large

network today. Network operators require great sophisti-

cation to master the complexity of many interacting pro-

tocols and middleboxes. The future is not any more rosy

- complexity today makes operators wary of trying new

protocols, even if they are available, for fear of break-

ing their network. Complexity also makes networks frag-

ile, and susceptible to problems where hosts become iso-

lated and unable to communicate. Debugging reacha-

bility problems is very time consuming. Even simple

questions are hard to answer, such as “Can Host A talk

to Host B?” or “Can packets loop in my network?” or

“Can User A listen to communications between Users

B and C?”. These questions are especially hard to an-

swer in networks carrying multiple encapsulations and

containing boxes that filter packets.

Thus, our first goal is to help system administrators

statically analyze production networks today. We de-

scribe new methods and tools to provide formal answers

to these questions, and many other failure conditions, re-

gardless of the protocols running in the network.

Our second goal is to make it easier for system ad-

ministrators to guarantee isolation between sets of hosts,

users or traffic. Partitioning networks this way is usually

called “slicing”; VLANs are a simple example used to-

day. If configured correctly, we can be confident that traf-

fic in one slice (e.g. a VLAN) cannot leak into another.

This is useful for security, and to help answer questions

such as “Can I prevent Host A from talking to Host B?”.

For example, imagine two health-care providers using

the same physical network. HIPAA [20] rules require

that no information about a patient can be read by other

providers. Thus a natural application of slicing is to place

each provider in a separate slice and guarantee that no

packet from one slice can be controlled by or read by the

other slice. We call this secure slicing. Secure slicing

may also be useful for banks as part of defense-in-depth,

and for classified and unclassified users sharing the same

physical network. Our tools can verify that slices have

VeriFlow: Verifying Network-Wide Invariants in Real Time

Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, P. Brighten Godfrey
Department of Computer Science

University of Illinois at Urbana-Champaign
201 North Goodwin Avenue

Urbana, Illinois 61801-2302, USA
{khurshi1, wzhou10, caesar, pbg}@illinois.edu

ABSTRACT

Networks are complex and prone to bugs. Existing tools
that check configuration files and data-plane state operate
offline at timescales of seconds to hours, and cannot detect
or prevent bugs as they arise.

Is it possible to check network-wide invariants in real time,
as the network state evolves? The key challenge here is to
achieve extremely low latency during the checks so that net-
work performance is not affected. In this paper, we present a
preliminary design, VeriFlow, which suggests that this goal
is achievable. VeriFlow is a layer between a software-defined
networking controller and network devices that checks for
network-wide invariant violations dynamically as each for-
warding rule is inserted. Based on an implementation using
a Mininet OpenFlow network and Route Views trace data,
we find that VeriFlow can perform rigorous checking within
hundreds of microseconds per rule insertion.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations—Network management, Network monitoring

General Terms

Algorithms, Design, Experimentation, Management, Perfor-
mance, Security, Verification

Keywords

Software-defined networking, OpenFlow, forwarding, debug-
ging, real time

1. INTRODUCTION
Network forwarding behaviors are complex, including code-

pendent functions running on hundreds or thousands of de-
vices, such as routers, switches, and firewalls from different
vendors. As a result, a substantial amount of effort is re-
quired to ensure networks’ correctness and security. How-
ever, faults in the network state arise commonly in practice,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotSDN’12, August 13, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1477-0/12/08 ...$15.00.

including loops, suboptimal routing, black holes and access
control violations that make services unavailable or prone
to attacks (e.g., DDoS attacks). Software-Defined Network-
ing (SDN) will ease the development of network applica-
tions, but bugs are likely to remain problematic since the
complexity of software will increase. Moreover, SDN allows
multiple applications or even multiple users to program the
same physical network simultaneously, potentially resulting
in conflicting rules that alter the intended behavior of one
or more applications [15].

One solution is to rigorously check network software or
configuration for bugs prior to deployment. Symbolic exe-
cution [7] can catch bugs through exploration of all possible
code paths, but is usually not tractable for large software.
Analysis of configuration files [8,18] is useful, but cannot find
bugs in router software and must be designed for specific
configuration languages and control protocols. Moreover,
using these approaches, an operator who wants to ensure
the network’s correctness must have access to the software
and configuration, which may not be true in an SDN net-
work where controllers can be operated by other parties [15].
Another approach is to statically analyze snapshots of the
network-wide data-plane state [5, 6, 11, 12]. These tools op-
erate offline, and thus only find bugs after they happen.

This paper studies the following question: Is it possible to

check network-wide invariants, such as absence of routing

loops, in real time as the network evolves? This would en-
able us to check updates before they hit the network, allow-
ing us to raise alarms, or even prevent bugs as they occur by
blocking problematic changes. However, existing techniques
for checking networks are not adequate for this purpose as
they operate on timescales of seconds to hours [6,11,12] 1. As
current SDN controllers are capable of handling around 30K
new flow installs per second while maintaining a sub-10ms
flow install time [16], rule verification latency in the order
of seconds is not enough to ensure real-time response, and
will affect controller throughput immensely. Delaying up-
dates for processing can harm consistency of network state,
and reduce reaction time of protocols with real-time require-
ments such as routing and fast failover. Moreover, check-
ing network-wide properties seems to require network-wide
state, and processing churn of a large network could intro-
duce scaling challenges. Hence, we need some way to per-
form this checking at very high speeds.

We present a preliminary design, VeriFlow, which demon-
strates that the goal of real-time verification is achievable.

1The average run time of reachability tests in [11] is 13 sec-
onds.

Existing Tools

FlowChecker: Configuration Analysis and Verification of
Federated OpenFlow Infrastructures

Ehab Al-Shaer and Saeed Al-Haj
Department of Software and Information Systems

University of North Carolina at Charlotte
{ealshaer, salhaj}@uncc.edu

ABSTRACT

It is difficult to build a real network to test novel experi-
ments. OpenFlow makes it easier for researchers to run their
own experiments by providing a virtual slice and configura-
tion on real networks. Multiple users can share the same
network by assigning a different slice for each one. Users
are given the responsibility to maintain and use their own
slice by writing rules in a FlowTable. Misconfiguration prob-
lems can arise when a user writes conflicting rules for sin-
gle FlowTable or even within a path of multiple OpenFlow
switches that need multiple FlowTables to be maintained at
the same time.

In this work, we describe a tool, FlowChecker, to identify
any intra-switch misconfiguration within a single FlowTable.
We also describe the inter-switch or inter-federated inconsis-
tencies in a path of OpenFlow switches across the same or
different OpenFlow infrastructures. FlowChecker encodes
FlowTables configuration using Binary Decision Diagrams
and then uses the model checker technique to model the
inter-connected network of OpenFlow switches.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations—Network management

General Terms

Security, Verification

Keywords

OpenFlow, configuration verification, access control, auto-
mated analysis, binary decision diagrams

1. INTRODUCTION
OpenFlow is an innovative architecture that provides an

open programmable platform for network access control [17].
By separating the data and control plans, users can use the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SafeConfig’10, October 4, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0093-3/10/10 ...$10.00.

OpenFlow centralized controllers to install filters (match,
count and action) in the OpenFlow switches and control the
global data processing in the network. Currently, Open-
Flow control supports the following actions: forward, drop,
encapsulate, encrypt, limit, and classify/enqueue for QoS.
The platform is also extensible to support more actions. The
controller running new protocols or algorithms might insert,
modify, or remove filters in the switches in order to enforce
network-wide policies or properties (e.g., guests should ac-
cess the internet only through a proxy) [17]. Thus, it is
assumed that the integrated behavior of the installed fil-
ters will globally implement these policies. However, the
following conflicts become apparent: (1) the semantic gap
between the controller platform (e.g., NOX [13]) and the
filter tables in the data processing units, (2) the distribu-
tion of access control that supports aggregate flows (wild-
cards) and many different actions, (3) the ability of sharing
one controller by different users, and (4) the ability of us-
ing multiple controllers in the same domain. These conflicts
together increase the potential of intra-federated (single do-
main) OpenFlow configuration conflicts. In addition, as two
or more OpenFlow infrastructures communicate with each
other, potential inter-federated conflicts may appear due to
inconsistency in the controller or switch configuration. This
may result in invalidation of end-to-end policy enforcement.

Due to these reasons, a correct enforcement of the con-
troller policies might be questionable without the support
of formal automated configuration verification tools. This
work attempts to address these problems by (1) encoding
OpenFlow configuration using Binary Decision Diagrams
(BDDs) considering the priority-based matching semantic,
various actions, the existence of multiple controllers and
multiple users, (2) modeling the global behavior of the Open-
Flow network based on FlowTables over single or multiple
federated infrastructures in a single state machine, and (3)
providing a generic property-based verification interface us-
ing BDD-based symbolic model checking and temporal logic.
The presented system, called FlowChecker, can be used by
administrators/users for (1) verifying the consistency of dif-
ferent switches and controllers across different OpenFlow
federated infrastructures, (2) validating the correctness of
the configuration synthesis generated by a new implemented
protocols, and (3) debugging reachability and security prob-
lems. FlowChecker can also be used to conduct “what-if”
analysis to study the impact of the new protocols or algo-
rithms on the network by simply changing the state in the
FlowTables and then analyzing the effect.

The development of FlowChecker leverages our previous

37

There is a cottage industry in SDN con�guration-checking tools...

• FlowChecker [SafeCon�g ’10]

•AntEater [SIGCOMM ’11]

•NICE [NSDI ’12]

•Header Space Analysis [NSDI ’12]

• VeriFlow [HotSDN ’12]

• and many others...

Debugging the Data Plane with Anteater

Haohui Mai Ahmed Khurshid Rachit Agarwal
Matthew Caesar P. Brighten Godfrey Samuel T. King

University of Illinois at Urbana-Champaign

{mai4, khurshi1, agarwa16, caesar, pbg, kingst}@illinois.edu

ABSTRACT

Diagnosing problems in networks is a time-consuming and
error-prone process. Existing tools to assist operators pri-
marily focus on analyzing control plane configuration. Con-
figuration analysis is limited in that it cannot find bugs in
router software, and is harder to generalize across protocols
since it must model complex configuration languages and
dynamic protocol behavior.
This paper studies an alternate approach: diagnosing prob-

lems through static analysis of the data plane. This ap-
proach can catch bugs that are invisible at the level of con-
figuration files, and simplifies unified analysis of a network
across many protocols and implementations. We present
Anteater, a tool for checking invariants in the data plane.
Anteater translates high-level network invariants into in-
stances of boolean satisfiability problems (SAT), checks them
against network state using a SAT solver, and reports coun-
terexamples if violations have been found. Applied to a large
university network, Anteater revealed 23 bugs, including for-
warding loops and stale ACL rules, with only five false posi-
tives. Nine of these faults are being fixed by campus network
operators.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operation; D.2.5 [Software Engineering]: Testing and
Debugging

General Terms

Algorithms, Reliability

Keywords

Data Plane Analysis, Network Troubleshooting, Boolean Sat-
isfiability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’11, August 15–19, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0797-0/11/08 ...$10.00.

1. INTRODUCTION
Modern enterprise networks are complex, incorporating

hundreds or thousands of network devices from multiple
vendors performing diverse codependent functions such as
routing, switching, and access control across physical and
virtual networks (VPNs and VLANs). As in any complex
computer system, enterprise networks are prone to a wide
range of errors [10, 11, 12, 14, 25, 32, 38, 41], such as miscon-
figuration, software bugs, or unexpected interactions across
protocols. These errors can lead to oscillations, black holes,
faulty advertisements, or route leaks that ultimately cause
disconnectivity and security vulnerabilities.
However, diagnosing problems in networks remains a black

art. Operators often rely on heuristics — sending probes, re-
viewing logs, even observing mailing lists and making phone
calls — that slow response to failures.1 To address this, au-
tomated tools for network diagnostics [14, 43] analyze con-
figuration files constructed by operators. While useful, these
tools have two limitations stemming from their analysis of
high-level configuration files. First, configuration analysis
cannot find bugs in router software, which interprets and
acts on those configuration files. Both commercial and open
source router software regularly exhibit bugs that affect net-
work availability or security [41] and have led to multiple
high-profile outages and vulnerabilities [11, 44]. Second,
configuration analysismust model complex configuration lan-

guages and dynamic protocol behavior in order to determine
the ultimate effect of a configuration. As a result, these tools
generally focus on checking correctness of a single protocol
such as BGP [14, 15] or firewalls [2, 43]. Such diagnosis will
be unable to reason about interactions that span multiple
protocols, and may have difficulty dealing with the diversity
in configuration languages from different vendors making up
typical networks.
We take a different and complementary approach. Instead

of diagnosing problems in the control plane, our goal is to
diagnose problems as close as possible to the network’s ac-

tual behavior through formal analysis of data plane state.
Data plane analysis has two benefits. First, by checking the
results of routing software rather than its inputs, we can
catch bugs that are invisible at the level of configuration

1As one example, a Cisco design technote advises that “Un-
fortunately, there is no systematic procedure to troubleshoot
an STP issue. ... Administrators generally do not have time
to look for the cause of the loop and prefer to restore con-
nectivity as soon as possible. The easy way out in this case
is to manually disable every port that provides redundancy
in the network. ... Each time you disable a port, check to
see if you have restored connectivity in the network.” [10]

290

A NICE Way to Test OpenFlow Applications

Marco Canini⋆, Daniele Venzano⋆, Peter Perešı́ni⋆, Dejan Kostić⋆, and Jennifer Rexford†

⋆EPFL †Princeton University

Abstract

The emergence of OpenFlow-capable switches enables

exciting new network functionality, at the risk of pro-

gramming errors that make communication less reliable.

The centralized programming model, where a single con-

troller program manages the network, seems to reduce

the likelihood of bugs. However, the system is inherently

distributed and asynchronous, with events happening at

different switches and end hosts, and inevitable delays

affecting communication with the controller. In this pa-

per, we present efficient, systematic techniques for test-

ing unmodified controller programs. Our NICE tool ap-

plies model checking to explore the state space of the en-

tire system—the controller, the switches, and the hosts.

Scalability is the main challenge, given the diversity of

data packets, the large system state, and the many possi-

ble event orderings. To address this, we propose a novel

way to augment model checking with symbolic execu-

tion of event handlers (to identify representative pack-

ets that exercise code paths on the controller). We also

present a simplified OpenFlow switch model (to reduce

the state space), and effective strategies for generating

event interleavings likely to uncover bugs. Our proto-

type tests Python applications on the popular NOX plat-

form. In testing three real applications—aMAC-learning

switch, in-network server load balancing, and energy-

efficient traffic engineering—we uncover eleven bugs.

1 Introduction

While lowering the barrier for introducing new func-

tionality into the network, Software Defined Networking

(SDN) also raises the risks of software faults (or bugs).

Even today’s networking software—written and exten-

sively tested by equipment vendors, and constrained

(at least somewhat) by the protocol standardization

process—can have bugs that trigger Internet-wide out-

ages [1, 2]. In contrast, programmable networks will of-

fer a much wider range of functionality, through software

created by a diverse collection of network operators and

third-party developers. The ultimate success of SDN,

and enabling technologies like OpenFlow [3], depends

on having effective ways to test applications in pursuit

of achieving high reliability. In this paper, we present

NICE, a tool that efficiently uncovers bugs in OpenFlow

programs, through a combination of model checking and

symbolic execution. Building on our position paper [4]

that argues for automating the testing of OpenFlow ap-

plications, we introduce several new contributions sum-

marized in Section 1.3.

1.1 Bugs in OpenFlow Applications

An OpenFlow network consists of a distributed collec-

tion of switches managed by a program running on a

logically-centralized controller, as illustrated in Figure 1.

Each switch has a flow table that stores a list of rules

for processing packets. Each rule consists of a pattern

(matching on packet header fields) and actions (such as

forwarding, dropping, flooding, or modifying the pack-

ets, or sending them to the controller). A pattern can re-

quire an “exact match” on all relevant header fields (i.e.,

a microflow rule), or have “don’t care” bits in some fields

(i.e., a wildcard rule). For each rule, the switch main-

tains traffic counters that measure the bytes and packets

processed so far. When a packet arrives, a switch selects

the highest-priority matching rule, updates the counters,

and performs the specified action(s). If no rule matches,

the switch sends the packet header to the controller and

awaits a response on what actions to take. Switches also

send event messages, such as a “join” upon joining the

network, or “port change” when links go up or down.

The OpenFlow controller (un)installs rules in the

switches, reads traffic statistics, and responds to events.

For each event, the controller program defines a handler,

which may install rules or issue requests for traffic statis-

tics. Many OpenFlow applications1 are written on the

NOX controller platform [5], which offers an OpenFlow

1In this paper, we use the terms “OpenFlow application” and “con-

troller program” interchangeably.

Header Space Analysis: Static Checking For Networks

Peyman Kazemian

Stanford University

kazemian@stanford.edu

George Varghese

UCSD and Yahoo Labs

varghese@cs.ucsd.edu

Nick McKeown

Stanford University

nickm@stanford.edu

Abstract

Today’s networks typically carry or deploy dozens

of protocols and mechanisms simultaneously such as

MPLS, NAT, ACLs and route redistribution. Even when

individual protocols function correctly, failures can arise

from the complex interactions of their aggregate, requir-

ing network administrators to be masters of detail. Our

goal is to automatically find an important class of fail-

ures, regardless of the protocols running, for both opera-

tional and experimental networks.

To this end we developed a general and protocol-

agnostic framework, called Header Space Analysis

(HSA). Our formalism allows us to statically check net-

work specifications and configurations to identify an im-

portant class of failures such as Reachability Failures,

Forwarding Loops and Traffic Isolation and Leakage

problems. In HSA, protocol header fields are not first

class entities; instead we look at the entire packet header

as a concatenation of bits without any associated mean-

ing. Each packet is a point in the {0, 1}L space where L

is the maximum length of a packet header, and network-

ing boxes transform packets from one point in the space

to another point or set of points (multicast).

We created a library of tools, called Hassel, to imple-

ment our framework, and used it to analyze a variety of

networks and protocols. Hassel was used to analyze the

Stanford University backbone network, and found all the

forwarding loops in less than 10 minutes, and verified

reachability constraints between two subnets in 13 sec-

onds. It also found a large and complex loop in an exper-

imental loose source routing protocol in 4 minutes.

1 Introduction

“Accidents will occur in the best-regulated

families” — Charles Dickens

In the beginning, a switch or router was breathtak-

ingly simple. About all the device needed to do was in-

dex into a forwarding table using a destination address,

and decide where to send the packet next. Over time,

forwarding grew more complicated. Middleboxes (e.g.,

NAT and firewalls) and encapsulation mechanisms (e.g.,

VLAN and MPLS) appeared to escape from IP’s lim-

itations: e.g., NAT bypasses address limits and MPLS

allows flexible routing. Further, new protocols for spe-

cific domains, such as data centers, WANs and wireless,

have greatly increased the complexity of packet forward-

ing. Today, there are over 6,000 Internet RFCs and it is

not unusual for a switch or router to handle ten or more

encapsulation formats simultaneously.

This complexity makes it daunting to operate a large

network today. Network operators require great sophisti-

cation to master the complexity of many interacting pro-

tocols and middleboxes. The future is not any more rosy

- complexity today makes operators wary of trying new

protocols, even if they are available, for fear of break-

ing their network. Complexity also makes networks frag-

ile, and susceptible to problems where hosts become iso-

lated and unable to communicate. Debugging reacha-

bility problems is very time consuming. Even simple

questions are hard to answer, such as “Can Host A talk

to Host B?” or “Can packets loop in my network?” or

“Can User A listen to communications between Users

B and C?”. These questions are especially hard to an-

swer in networks carrying multiple encapsulations and

containing boxes that filter packets.

Thus, our first goal is to help system administrators

statically analyze production networks today. We de-

scribe new methods and tools to provide formal answers

to these questions, and many other failure conditions, re-

gardless of the protocols running in the network.

Our second goal is to make it easier for system ad-

ministrators to guarantee isolation between sets of hosts,

users or traffic. Partitioning networks this way is usually

called “slicing”; VLANs are a simple example used to-

day. If configured correctly, we can be confident that traf-

fic in one slice (e.g. a VLAN) cannot leak into another.

This is useful for security, and to help answer questions

such as “Can I prevent Host A from talking to Host B?”.

For example, imagine two health-care providers using

the same physical network. HIPAA [20] rules require

that no information about a patient can be read by other

providers. Thus a natural application of slicing is to place

each provider in a separate slice and guarantee that no

packet from one slice can be controlled by or read by the

other slice. We call this secure slicing. Secure slicing

may also be useful for banks as part of defense-in-depth,

and for classified and unclassified users sharing the same

physical network. Our tools can verify that slices have

VeriFlow: Verifying Network-Wide Invariants in Real Time

Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, P. Brighten Godfrey
Department of Computer Science

University of Illinois at Urbana-Champaign
201 North Goodwin Avenue

Urbana, Illinois 61801-2302, USA
{khurshi1, wzhou10, caesar, pbg}@illinois.edu

ABSTRACT

Networks are complex and prone to bugs. Existing tools
that check configuration files and data-plane state operate
offline at timescales of seconds to hours, and cannot detect
or prevent bugs as they arise.

Is it possible to check network-wide invariants in real time,
as the network state evolves? The key challenge here is to
achieve extremely low latency during the checks so that net-
work performance is not affected. In this paper, we present a
preliminary design, VeriFlow, which suggests that this goal
is achievable. VeriFlow is a layer between a software-defined
networking controller and network devices that checks for
network-wide invariant violations dynamically as each for-
warding rule is inserted. Based on an implementation using
a Mininet OpenFlow network and Route Views trace data,
we find that VeriFlow can perform rigorous checking within
hundreds of microseconds per rule insertion.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations—Network management, Network monitoring

General Terms

Algorithms, Design, Experimentation, Management, Perfor-
mance, Security, Verification

Keywords

Software-defined networking, OpenFlow, forwarding, debug-
ging, real time

1. INTRODUCTION
Network forwarding behaviors are complex, including code-

pendent functions running on hundreds or thousands of de-
vices, such as routers, switches, and firewalls from different
vendors. As a result, a substantial amount of effort is re-
quired to ensure networks’ correctness and security. How-
ever, faults in the network state arise commonly in practice,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotSDN’12, August 13, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1477-0/12/08 ...$15.00.

including loops, suboptimal routing, black holes and access
control violations that make services unavailable or prone
to attacks (e.g., DDoS attacks). Software-Defined Network-
ing (SDN) will ease the development of network applica-
tions, but bugs are likely to remain problematic since the
complexity of software will increase. Moreover, SDN allows
multiple applications or even multiple users to program the
same physical network simultaneously, potentially resulting
in conflicting rules that alter the intended behavior of one
or more applications [15].

One solution is to rigorously check network software or
configuration for bugs prior to deployment. Symbolic exe-
cution [7] can catch bugs through exploration of all possible
code paths, but is usually not tractable for large software.
Analysis of configuration files [8,18] is useful, but cannot find
bugs in router software and must be designed for specific
configuration languages and control protocols. Moreover,
using these approaches, an operator who wants to ensure
the network’s correctness must have access to the software
and configuration, which may not be true in an SDN net-
work where controllers can be operated by other parties [15].
Another approach is to statically analyze snapshots of the
network-wide data-plane state [5, 6, 11, 12]. These tools op-
erate offline, and thus only find bugs after they happen.

This paper studies the following question: Is it possible to

check network-wide invariants, such as absence of routing

loops, in real time as the network evolves? This would en-
able us to check updates before they hit the network, allow-
ing us to raise alarms, or even prevent bugs as they occur by
blocking problematic changes. However, existing techniques
for checking networks are not adequate for this purpose as
they operate on timescales of seconds to hours [6,11,12] 1. As
current SDN controllers are capable of handling around 30K
new flow installs per second while maintaining a sub-10ms
flow install time [16], rule verification latency in the order
of seconds is not enough to ensure real-time response, and
will affect controller throughput immensely. Delaying up-
dates for processing can harm consistency of network state,
and reduce reaction time of protocols with real-time require-
ments such as routing and fast failover. Moreover, check-
ing network-wide properties seems to require network-wide
state, and processing churn of a large network could intro-
duce scaling challenges. Hence, we need some way to per-
form this checking at very high speeds.

We present a preliminary design, VeriFlow, which demon-
strates that the goal of real-time verification is achievable.

1The average run time of reachability tests in [11] is 13 sec-
onds.

But they are expensive to run,

and each builds on a custom

(typically ad hoc) foundation

These are all great tools!

Machine-Verified Controllers

Vision

•Develop programs in a high-level language

• Reason at a high level of abstraction

•Use a compiler and run-time system to

generate low-level control messages

•Machine-veri�ed proofs of correctness

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Run-Time System

NetCore Compiler

NetCore Program

Contributions

•NetCore compiler + optimizer

• Featherweight OpenFlow model

•General framework for establishing

run-time system correctness

OVERVIEW

OpenFlow Switches

Controller

Pattern Action Bytes Packets

1010 Drop 200 10

010* Forward(2) 100 4

011* Controller 0 0

Priority

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Forwarding Table: prioritized list of rules

Rule: pattern, actions, and counters

Pattern: pre�x match on headers

Action: forward or modify

Counters: total bytes and packets processed

Network Events

• Topology changes

•Diverted packets

• Tra�c statistics

Control Messages

•Modify rules

•Query counters

NOX

Controller

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Issue #1: Switch-Level Errors

What happens if...

•The controller misses a keep-alive message?

•The controller sends a malformed message?
- Bad output port

- Too many actions

- Inconsistent actions

- Unsupported actions

•The switches runs out of space for rules?

Any of these can lead to essentially arbitrary

behavior

Issue #2: Malformed Patterns

What happens if the controller sends the following

message to a switch?

FlowMod	 AddFlow	 {	 match	 =	 {	 srcIPAddress	 =	 10.0.1.*”,	 ...	 },
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 actions	 =	 [flood],	 ...	 }	

Issue #2: Malformed Patterns

What happens if the controller sends the following

message to a switch?

FlowMod	 AddFlow	 {	 match	 =	 {	 srcIPAddress	 =	 10.0.1.*”,	 ...	 },
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 actions	 =	 [flood],	 ...	 }	

We’d expect the switch to install a rule that

broadcasts all tra�c from a host the given subnet...

Issue #2: Malformed Patterns

What happens if the controller sends the following

message to a switch?

FlowMod	 AddFlow	 {	 match	 =	 {	 srcIPAddress	 =	 10.0.1.*”,	 ...	 },
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 actions	 =	 [flood],	 ...	 }	

We’d expect the switch to install a rule that

broadcasts all tra�c from a host the given subnet...

...but it actually installs a rule that �oods all tra�c

Issue #2: Malformed Patterns

What happens if the controller sends the following

message to a switch?

FlowMod	 AddFlow	 {	 match	 =	 {	 srcIPAddress	 =	 10.0.1.*”,	 ...	 },
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 actions	 =	 [flood],	 ...	 }	

We’d expect the switch to install a rule that

broadcasts all tra�c from a host the given subnet...

Why? Switches silently ignore IP �elds unless the

Ethernet frame type is IP!

...but it actually installs a rule that �oods all tra�c

Issue #3: Message Reordering

What happens if the controller sends the following

pair of OpenFlow messages to a switch in sequence?

FlowMod	 AddFlow	 {	 match	 =	 {	 ethFrameType	 =	 ethTypeIP,
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 srcIPAddress	 =	
“10.0.1.99”,	 ...	 },
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 priority	 =	 1,
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 actions	 =	 []	 }	

FlowMod	 AddFlow	 {	 match	 =	 {	 ethFrameType	 =	 ethTypeIP,
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 srcIPAddress	 =	 “10.0.1.*”,	 ...	 },
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 priority	 =	 2,
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 actions	 =	 [flood]	 }	

The intention is to encode a negation...

Issue #3: Message Reordering

What happens if the controller sends the following

pair of OpenFlow messages to a switch in sequence?

FlowMod	 AddFlow	 {	 match	 =	 {	 ethFrameType	 =	 ethTypeIP,
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 srcIPAddress	 =	
“10.0.1.99”,	 ...	 },
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 priority	 =	 1,
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 actions	 =	 []	 }	

FlowMod	 AddFlow	 {	 match	 =	 {	 ethFrameType	 =	 ethTypeIP,
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 srcIPAddress	 =	 “10.0.1.*”,	 ...	 },
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 priority	 =	 2,
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 actions	 =	 [flood]	 }	

The intention is to encode a negation...

...but the switch may process these in either order!

MACHINE-VERIFIED

CONTROLLERS

NetCore

Flow tables

OpenFlow messages

Featherweight OpenFlow

Compiler

Run-time system

Optimizer

NetCore

Flow tables

OpenFlow messages

Featherweight OpenFlow

Compiler

Run-time system

Optimizer

NetCore

 NetCore [POPL ’12]

Syntax NetCore

Flow tables

OpenFlow messages

Featherweight OpenFlow

Compiler

Run-time system

Optimizer
Inductive	 pred	 :	 Type	 :=	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (*	 Predicates	 *)
	 	 |	 OnSwitch	 :	 Switch	 -‐>	 pred
	 	 |	 IngressPort	 :	 Port	 -‐>	 pred
	 	 |	 DlSrc	 :	 EthernetAddress	 -‐>	 pred
	 	 |	 DlDst	 :	 EthernetAddress	 -‐>	 pred
	 	 |	 DlVlan	 :	 option	 VLAN	 -‐>	 pred
	 	 |	 ...	
	 	 |	 And	 :	 pred	 -‐>	 pred	 -‐>	 pred
	 	 |	 Or	 :	 pred	 -‐>	 pred	 -‐>	 pred
	 	 |	 Not	 :	 pred	 -‐>	 pred
	 	 |	 All	 :	 pred
	 	 |	 None	 :	 pred.

Inductive	 PseudoPort	 :	 Type	 :=	 	 	 	 	 	 	 	 	 	 	 (*	 Psuedo	 Ports	 *)
	 	 |	 PhysicalPort	 :	 Port	 -‐>	 PseudoPort
	 	 |	 AllPorts	 :	 PseudoPort.

Inductive	 act	 :	 Type	 :=	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (*	 Actions	 *)
	 	 |	 FwdMod	 :	 Mod	 -‐>	 PseudoPort	 -‐>	 act

Inductive	 pol	 :	 Type	 :=	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (*	 Policies	 *)
	 	 |	 Policy	 :	 pred	 -‐>	 list	 act	 -‐>	 pol
	 	 |	 Union	 :	 pol	 -‐>	 pol	 -‐>	 pol
	 	 |	 Restrict	 :	 pol	 -‐>	 pred	 -‐>	 pol.

 NetCore [POPL ’12]

NetCore

Flow tables

OpenFlow messages

Featherweight OpenFlow

Compiler

Run-time system

Optimizerlp = (sw , pt, pk)
lpsout = pol(sw , pt, pk)

S = {|(T (sw , ptout), pk) | (ptout , pk) 2 lpsout |}

{|lp|}] {|lp
1
· · · lp

n
|}

lp
−! S] {|lp

1
· · · lp

n
|}

Semantics

•Models hop-by-hop forwarding behavior of the network

•Abstracts away from the underlying distributed system

•Makes it easy to reason about network-wide properties

NetCore

Flow tables

OpenFlow messages

Featherweight OpenFlow

Compiler

Run-time system

Optimizer

NetCore to Flow Tables

Example

Correctness Theorem

NetCore compiler

• Key operation: �ow table intersection

•Must restrict to “valid” patterns

NetCore ~ FlowTable

NetCore

Flow tables

OpenFlow messages

Featherweight OpenFlow

Compiler

Run-time system

Optimizer

Priority Pattern Action

65534 inPort = 2,dlSrc = dc:ba:65:43:21 Fwd 2

65533 inPort = 2 Fwd 3

Optimizer

•Optimizer prunes (many) redundant rules

• Based on simple algebra of operations

Valid Patterns

	 Inductive	 ValidPattern	 :	 Pattern	 -‐>	 Prop	 :=
	 	 	 	 |	 SupportedIPPatternValid	 :	 forall	 dlSrc	 dlDst	 dlVlan	 dlVlanPcp	 nwSrc	 nwDst	 nwTos
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 tpSrc	 tpDst	 inPort	 nwProto,
	 	 	 	 	 	 	 	 In	 nwProto	 SupportedL4Protos	 -‐>
	 	 	 	 	 	 	 	 ValidPattern	 (MkPattern	 dlSrc	 dlDst	 (WildcardExact	 Const_0x800)
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 dlVlan	 dlVlanPcp
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 nwSrc	 nwDst	 (WildcardExact	 nwProto)
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 nwTos	 tpSrc	 tpDst	 inPort)
	 	 	 	 |	 UnsupportedIPPatternValid	 :	 forall	 dlSrc	 dlDst	 dlVlan	 dlVlanPcp	 nwSrc	 nwDst	 nwTos
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 inPort	 nwProto,
	 	 	 	 	 	 	 	 ~	 In	 nwProto	 SupportedL4Protos	 -‐>
	 	 	 	 	 	 	 	 ValidPattern	 (MkPattern	 dlSrc	 dlDst	 (WildcardExact	 Const_0x800)
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 dlVlan	 dlVlanPcp
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 nwSrc	 nwDst	 (WildcardExact	 nwProto)
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 nwTos	 WildcardAll	 WildcardAll	 inPort)
	 	 	 	 |	 ARPPacketValid	 :	 forall	 dlSrc	 dlDst	 dlVlan	 dlVlanPcp	 nwSrc	 nwDst	 inPort,
	 	 	 	 	 	 	 	 ValidPattern	 (MkPattern	 dlSrc	 dlDst	 (WildcardExact	 Const_0x806)
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 dlVlan	 dlVlanPcp
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 nwSrc	 nwDst	 WildcardAll
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WildcardAll	 WildcardAll	 WildcardAll	 inPort)
	 	 	 	 |	 UnknownDlTypPatternValid	 :	 forall	 dlSrc	 dlDst	 dlTyp	 dlVlan	 dlVlanPcp	 inPort,
	 	 	 	 	 	 	 	 ValidPattern	 (MkPattern	 dlSrc	 dlDst	 dlTyp
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 dlVlan	 dlVlanPcp
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WildcardAll	 WildcardAll	 WildcardAll
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WildcardAll	 WildcardAll	 WildcardAll	 inPort)
	 	 	 	 |	 EmptyPatternValid	 :	
	 	 	 	 	 	 	 	 ValidPattern	 Pattern_empty.

NetCore

Flow tables

OpenFlow messages

Featherweight OpenFlow

Compiler

Run-time system

Optimizer

OpenFlow Specification

42 pages...

...of informal English text

...and C struct de�nitions

Featherweight OpenFlow

(outp0, outm 0) = JRT K(lp)

S(sw , pts,RT , {|lp|}] inp, outp, inm, outm)
lp
−! S(sw , pts,RT , inp, outp0] outp, inm, outm 0] outm)

(Pkt-Process)

S(sw , pts,RT , inp, {|(sw , pt, pk)|}] outp, inm, outm) | L((sw , pt), pks, loc0)
−! S(sw , pts,RT , inp, outp, inm, outm) | L((sw , pt), [pk] ++pks, loc0)

(Send-Wire)

L(loc, pks ++ [pk] , (sw , pt)) | S(sw , pts,RT , inp, outp, inm, outm)
(sw ,pt,pk)

−! L(loc, pks, (sw , pt)) | S(sw , pts,RT , {|(sw , pt, pk)|}] inp, outp, inm, outm)

(Recv-Wire)

RT 0 = apply(∆RT ,RT)

S(sw , pts,RT , inp, outp, {|FlowMod ∆RT |}] inm, outm) −! S(sw , pts,RT 0, inp, outp, inm, outm)
(Switch-FlowMod)

pt 2 pts

S(sw , pts,RT , inp, outp, {|PktOut pt pk|}] inm, outm) −! S(sw , pts,RT , inp, {|(sw , pt, pk)|}] outp, inm, outm)
(Switch-PktOut)

fout(σ) (sw ,SM ,σ0)

C(σ, fin , fout) | M(sw ,SMS ,CMS) −! C(σ0, fin , fout) | M(sw , [SM] ++SMS ,CMS)
(Ctrl-Send)

fin(sw ,σ,CM) σ
0

C(σ, fin , fout) | M(sw ,SMS ,CMS ++ [CM]) −! C(σ0, fin , fout) | M(sw ,SMS ,CMS)
(Ctrl-Recv)

SM 6= BarrierRequest n

M(sw ,SMS ++ [SM] ,CMS) | S(sw , pts,RT , inp, outp, inm, outm)
−! M(sw ,SMS ,CMS) | S(sw , pts,RT , inp, outp, {|SM |}] inm, outm)

(Switch-Recv-Ctrl)

M(sw ,SMS ++ [BarrierRequest n] ,CMS) | S(sw , pts,RT , inp, outp, ;, outm)
−! M(sw ,SMS ,CMS) | S(sw , pts,RT , inp, outp, ;, {|BarrierReply n|}] outm)

(Switch-Recv-Barrier)

S(sw , pts,RT , inp, outp, inm, {|CM |}] outm) | M(sw ,SMS ,CMS)
−! S(sw , pts,RT , inp, outp, inm, outm) | M(sw ,SMS , [CM] ++CMS)

(Switch-Send-Ctrl)

Devices Switch S ::= S(sw , pts,RT , inp.outp, inm, out

Controller C ::=C(σ, fin , fout)
Link L ::=L(locsrc , pks, locdst)
OpenFlow Link to Controller M ::=M(sw ,SMS ,CMS)

Packets and Locations Packet pk ::= abstract

Switch ID sw 2 N

Port ID pt 2 N

Location loc 2 sw ⇥ pt

Located Packet lp 2 loc ⇥ pk

Controller Components Controller state σ ::= abstract

Controller input relation fin 2 sw ⇥ CM ⇥ σ σ

Controller output relation fout 2 σ sw ⇥ SM ⇥ σ

Switch Components Rule table RT ::= abstract

Rule table Interpretation JRT K 2 lp ! {|lp
1
· · · lp

n
|}⇥ {|CM 1 · · ·C

Rule table modifier ∆RT ::= abstract

Rule table modifier interpretation apply 2 ∆RT ! RT ! ∆RT

Ports on switch pts 2 {pt1 · · · ptn}
Consumed packets inp 2 {|lp

1
· · · lp

n
|}

Produced packets outp 2 {|lp
1
· · · lp

n
|}

Messages from controller inm 2 {|SM 1 · · ·SM n|}
Messages to controller outm 2 {|CM 1 · · ·CM n|}

Link Components Endpoints locsrc , locdst 2 loc where locsrc 6= locdst
Packets from locsrc to locdst pks 2 [pk1 · · · pkn]

Controller Link Message queue from controller SMS 2 [SM 1 · · ·SM n]
Message queue to controller CMS 2 [CM 1 · · ·CM n]

Abstract OpenFlow Protocol Message from controller SM ::=FlowMod ∆RT | PktOut pt p

Message to controller CM ::=PktIn pt pk | BarrierReply n

Syntax Semantics

Key judgments:

•Controller in:

•Controller out:

•Network step: M → M
0

(sw ,CM ,σ) σ
0

σ (sw ,SM ,σ
0)

Models all essential asynchrony

NetCore

Flow tables

OpenFlow messages

Featherweight OpenFlow

Compiler

Run-time system

Optimizer

Run-Time System

Invariants

•Maintain a sound approximation of

overall �ow table each switch

• Eventually process all diverted packets

Run-time instances

• Trivial: processes all packets on controller

• Proactive: installs rules, falls back to Trivial when out of space

• Full: like Proactive, but also installs exact-match rules

FlowTable ≈ Featherweight OpenFlow

Theorem

NetCore

Flow tables

OpenFlow messages

Featherweight OpenFlow

Compiler

Run-time system

Optimizer

Safe Wires

	 	 	 	 Inductive	 SafeWire	 :	 SF	 -‐>	 SF	 -‐>	 SF	 -‐>	 list	 CM	 -‐>	 Prop	 :=
	 	 	 	 |	 SafeWire_nil	 :	 forall	 lb	 ub,	
	 	 	 	 	 	 	 	 extends	 ub	 lb	 -‐>
	 	 	 	 	 	 	 	 SafeWire	 lb	 ub	 lb	 nil
	 	 	 	 |	 SafeWire_cons_FlowMod	 :	 forall	 lb	 ub	 sf	 sft	 lst,
	 	 	 	 	 	 	 	 SafeWire	 lb	 ub	 sf	 lst	 -‐>
	 	 	 	 	 	 	 	 extends	 ub	 (apply_SFT	 sft	 sf)	 -‐>
	 	 	 	 	 	 	 	 SafeWire	 lb	 ub	 (apply_SFT	 sft	 sf)	 (FlowMod	 sft	 ::	 lst)
	 	 	 	 |	 SafeWire_cons_PktOut	 :	 forall	 lb	 ub	 sf	 pt	 pk	 lst,
	 	 	 	 	 	 	 	 SafeWire	 lb	 ub	 sf	 lst	 -‐>
	 	 	 	 	 	 	 	 SafeWire	 lb	 ub	 sf	 (PktOut	 pt	 pk	 ::	 lst)
	 	 	 	 |	 SafeWire_cons_BarrierRequest	 :	 forall	 lb	 ub	 sf	 n	 lst,
	 	 	 	 	 	 	 	 SafeWire	 lb	 ub	 sf	 lst	 -‐>
	 	 	 	 	 	 	 	 SafeWire	 lb	 ub	 sf	 (BarrierRequest	 n	 ::	 lst).

Implementation

Source

•~8,000 lines of Coq

•~1,500 lines of Haskell

Components

•NetCore compiler and optimizer

• Flow tables

• Featherweight OpenFlow

• Run-time system instances

• Proofs of correctness

Status

• Extracts to Haskell source code

•Compiles against Nettle libraries

• Running on “production” tra�c in the lab

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Run-Time System

NetCore Compiler

NetCore Program

Performance

0

1,250

2,500

3,750

5,000

Implementation

F
lo

w
M

o
d

s
/

se
co

n
d

Unveri�ed

Veri�ed

Conclusion

NetCore

Flow tables

OpenFlow messages

Featherweight OpenFlow

Compiler

Run-time system

Optimizer

Networks are critical infrastructure...

...developed using 1970s-era

techniques

Software-de�ned networks are an

architecture that could be used to put

networks on a solid foundation

Machine-veri�ed controllers based on

NetCore a �rst step in this direction

A Grand Collaboration: Languages + Networking

Frenetic Cornell

Shrutarshi Basu (PhD)

Nate Foster (Faculty)

Arjun Guha (Postdoc)

Stephen Gutz (Undergrad)

Mark Reitblatt (PhD)

Robert Soulé (Postdoc)

Alec Story (Undergrad)

http://frenetic-‐lang.org

Frenetic Princeton

Chris Monsanto (PhD)

Joshua Reich (Postdoc)

Jen Rexford (Faculty)

Cole Schlesinger (PhD)

Dave Walker (Faculty)

Naga Praveen Katta (PhD)

