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Abstract Interactions between butterflies and caterpillars in the genus Pieris and plants in the
family Brassicaceae are among the best explored in the field of insect–plant biology.
However, we report here for the first time that Pieris brassicae, commonly assumed to be a
typical folivore, actually prefers to feed on flowers of three Brassica nigra genotypes rather
than on their leaves. First- and second-instar caterpillars were observed to feed primarily on
leaves, whereas late second and early third instars migrated via the small leaves of the flower
branches to the flower buds and flowers. Once flower feeding began, no further leaf feeding
was observed. We investigated growth rates of caterpillars having access exclusively to either
leaves of flowering plants or flowers. In addition, we analyzed glucosinolate concentrations
in leaves and flowers. Late-second- and early-third-instar P. brassicae caterpillars moved
upward into the inflorescences of B. nigra and fed on buds and flowers until the end of the
final (fifth) instar, after which they entered into the wandering stage, leaving the plant in
search of a pupation site. Flower feeding sustained a significantly higher growth rate than leaf
feeding. Flowers contained levels of glucosinolates up to five times higher than those of
leaves. Five glucosinolates were identified: the aliphatic sinigrin, the aromatic phenyethyl-
glucosinolate, and three indole glucosinolates: glucobrassicin, 4-methoxyglucobrassicin, and
4-hydroxyglucobrassicin. Tissue type and genotype were the most important factors affecting
levels of identified glucosinolates. Sinigrin was by far the most abundant compound in all

J Chem Ecol (2007) 33:1831–1844
DOI 10.1007/s10886-007-9350-x

R. C. Smallegange : J. J. A. van Loon (*) : S. E. Blatt :M. Dicke
Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen,
The Netherlands
e-mail: joop.vanloon@wur.nl

J. A. Harvey
Department of Multitrophic Interactions, Netherlands Institute of Ecology, P.O. Box 40,
6666 ZG Heteren, The Netherlands

S. E. Blatt
Chemistry Department, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada

N. Agerbirk
Department of Natural Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C,
Denmark



three genotypes. Sinigrin, 4-hydroxyglucobrassicin, and phenylethylglucosinolate were
present at significantly higher levels in flowers than in leaves. In response to caterpillar
feeding, sinigrin levels in both leaves and flowers were significantly higher than in
undamaged plants, whereas 4-hydroxyglucobrassicin leaf levels were lower. Our results show
that feeding on flower tissues, containing higher concentrations of glucosinolates, provides P.
brassicae with a nutritional benefit in terms of higher growth rate. This preference appears to
be in contrast to published negative effects of volatile glucosinolate breakdown products on
the closely related Pieris rapae.
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Brassica nigra

Introduction

Most plants are not simply homogeneous resources to herbivorous insects but produce
discrete organs with different functions. In addition to the vegetative leaf tissues, plants
produce reproductive organs (flowers, seeds) that may exhibit significant differences in
levels of both nutrients and defensive secondary metabolites. Specialized guilds of
herbivores are known to exploit specific plant structures (Schoonhoven et al. 2005).
Flowers and seeds may be attacked by insects that rarely feed on leaf tissues, and vice
versa. Other herbivores exhibit more plasticity in food selection and will readily feed on all
available parts of the plant. Even the latter herbivore types display some preference for a
specific plant structure, presumably as a means of obtaining optimal nutrient intake,
limiting competition, or obtaining enemy-free space.

The cabbage white butterflies Pieris brassicae L., Pieris rapae L., and Pieris napi L. are
specialized on the plant family Brassicaceae. Interactions between these butterflies and their
host plants have been explored in detail, and they have acquired the status of a model
system in the field of insect–plant biology (Feltwell 1982; Chew and Renwick 1995;
Renwick 2002). Glucosinolates, characteristic of the Brassicaceae, play a crucial role as
chemical mediators of these interactions. Adult females of P. brassicae and P. rapae, as
well as their larvae, exploit glucosinolates as token stimuli during selection of host plants
for oviposition and feeding (Renwick et al. 1992; van Loon et al. 1992; Moyes et al. 2000;
Schoonhoven and van Loon 2002). The majority of Pieris–Brassica interaction studies has
focused on cultivated forms of Brassica oleracea L., which are biennials. Other wild
crucifers, such as the annual black mustard, Brassica nigra L. (Koch), are reported to be
host plants for P. brassicae in Europe as well (Harvey et al. 2003). We studied within-plant
feeding site location in detail on three genotypes of B. nigra. We included the analysis of
leaf and flower glucosinolates to assess whether a chemical basis for selection of either
plant organ in terms of quality or quantity of these compounds could be determined. In
addition, we investigated whether growth rates differed between caterpillars feeding on
either leaves or flowers to assess whether the observed preference behavior would confer a
nutritional benefit.

Methods and Materials

Plants Seeds of B. nigra var. abyssinica A. Braun from three early flowering accessions
were obtained from the Centre for Genetic Resources (CGN, Wageningen, The Netherlands).
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The accessions were: A, CGN06619 (feral population, collected in 1975 from the
Peloponesus, Greece); B, Junius CGN06618 (advanced cultivar, collected in 1977 in
Germany); and C, Giebra CGN06620 (advanced cultivar, donated in 1965 by the Botanical
Garden of the Justus Liebig University, Giessen, Germany). Sowing was done on April 7,
2004, in a greenhouse at 22±2°C and 60±5% RH. Two weeks later, plants were individually
transplanted into 1.5-l pots and transferred to another greenhouse compartment on April 30,
2004. This compartment was kept at 22±2°C, 60% RH, natural light supplemented by
additional illumination by 500-W SON-T lamps (Philips, Eindhoven, The Netherlands) for
16 hr per day. Flower bud formation and flower opening were recorded daily to determine
developmental stage (Harper and Berkenkamp 1975).

Insects Pieris brassicae caterpillars were obtained from a laboratory strain established in 2004
and reared on Brussels sprouts (B. oleracea var. gemmifera cv Cyrus) plants grown in a
climatized greenhouse, under the same conditions as given above for B. nigra plants. The colony
was maintained in a climatized room at 22±1°C, RH 40±5%, and a photoperiod of L16:D8.

Caterpillar Position on the Plant On the first day of an experiment, newly hatched P.
brassicae larvae were collected from the laboratory culture and taken to the greenhouse.
Three caterpillars were placed on the first true leaf below the lowest flowering branch of a
plant in growth stage 4.1 (Harper and Berkenkamp 1975). Total numbers of plants used from
each accession were A, 8; B, 7; and C, 9. Caterpillar position on the plants was scored each
morning in four categories: on a true leaf, on a small leaf in the inflorescence, on a flower,
and on the stem. Caterpillar instar stage was recorded daily until the fifth instar was reached.
In the late fifth instar, caterpillars that had entered the wandering phase left the plants.

Caterpillar Growth on Leaves and Flowers Three neonate caterpillars were inoculated on
each of 20 plants of accession A, on a mature leaf just below the inflorescence. The inoculation
took place when plants had just started to flower (growth stage 4.1). Just after caterpillars had
molted to the third instar, they were transferred to the lowest branches of the inflorescence on
half of the plants. We applied a specially constructed water barrier to prevent caterpillars from
migrating from leaves to the inflorescence or vice versa, while not influencing the microclimate
around the plant (Fig. 1). Fresh body weights of larvae were determined to the nearest
milligram on a Mettler electronic balance at three time points separated by 3-d intervals.

Preparation of Plant Samples for Glucosinolate Analysis Ten seedlings of each of the three
accessions were individually transplanted to 1 1/2-l pots. Plants were maintained at 22±2°C,
RH 60±5%, during the 16-hr photophase (8 Philips SON-T Agro 400-W sodium lamps) and
8-hr scotophase.

At day 47 after sowing, leaf and flower samples were taken from all 10 plants of each
accession. After sampling, five plants of each accession were designated untreated
(controls). Three groups of 10 newly hatched P. brassicae caterpillars were placed on
three leaves of the five treated plants. As soon as the caterpillars had migrated to the
flowers, which took place late in the second or early in the third instar (days 5–6), leaves
damaged by the caterpillars were sampled. Leaves of a similar age were sampled from the
control plants and intact flowers were sampled from both control and treated plants.

The flower and leaf samples were kept in paper envelopes and stored in a −20°C freezer
before and after freeze-drying. Samples were freeze-dried in the envelopes for 2 d
(Labconco Freedry system). After freeze-drying, the envelopes were sealed in plastic and
sent to the laboratory of NA in Denmark for chemical analysis.
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Determination of Glucosinolate Content Freeze-dried samples were weighed accurately
into 10-ml centrifuge tubes (excluding the petiole part of leaves). For samples below
300 mg, the entire sample [27–257 mg dry weight (DW)] was used to avoid errors
associated with subsampling, but from a few samples above 300 mg, a representative
subsample was taken. Each sample was extracted 3× in 70% boiling aq. methanol with
benzylglucosinolate as internal standard. The combined extracts were adjusted to 10.00 ml,
of which an amount was applied to an anion exchange column (Agerbirk et al. 2001a). To
keep within the linear range of the additional sample preparation steps, the amount of crude
extract applied depended on the weight of the sample extracted as follows (DW extracted/
volume applied): 25–75 mg/8 ml, 75–150 mg/4 ml, and 150–300 mg/2 ml. Glucosinolates
were converted to desulfoglucosinolates (Agerbirk et al. 2007), which were eluted and
quantified by high-performance liquid chromatography (HPLC) (Agerbirk et al. 2001a) and
identified by comparison of retention times and diode array UV spectra with those of
authentic standards (Agerbirk et al. 2001b). A number of unidentified trace peaks with areas
typically less than 0.2% of the desulfosinigrin area were ignored. Generally accepted
relative response factors were used for calculation of glucosinolate levels based on the
HPLC peak areas (at 229 nm, band width 8 nm) of the desulfoderivatives (Wathelet et al.
2004). The recoveries of internal standard in the three extraction series were [mean (SD)]
99% (6%), 97% (13%), and 98% (4%), as compared to HPLC peak areas obtained after
application of the internal standard only to DEAE columns in parallel control experiments.
Preliminary experiments without the addition of internal standard (comprising both leaf and
flower samples from plants both with and without caterpillars feeding) confirmed the
absence of benzylglucosinolate as an endogenous glucosinolate in the material, in

Fig. 1 Schematic drawing (top and lateral views) and dimensions of water barrier applied around the stem of
B. nigra plants to prevent movement of caterpillars from leaves to flowers and vice versa. A circular water
container was manufactured of plastic. The middle circle consisted of a central platform, preventing
drowning of caterpillars feeding on the inflorescence in the rare events of falling down or downward
migration. In the center of the platform, a hole allowed the main stem to grow through. The platform was put
in place around the main stem just below the branch carrying the first flower buds. The circular opening
between the central hole and the stem was blocked with soft foam (not drawn)
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accordance with previous reports (Feeny and Rosenberry 1982; Sang et al. 1984), allowing
the use of this glucosinolate as internal standard. The identities of all desulfoglucosinolate
peaks were confirmed by liquid chromatograph mass spectrometry (LC–MS) of
representative samples with an Agilent 1100 Series LC (Agilent Technologies, Waldbronn,
Germany) coupled to a Bruker Esquire 3000+ ion trap mass spectrometer (Bruker
Daltonics, Bremen, Germany). An XTerra MS C18 column (Waters, Milford, MA, USA;
3.5 μM, 2.1×100 mm) was used at a flow rate of 0.2 ml min−1. The mobile phases were as
follows: A, 0.1% (v/v) HCOOH and 50 μM NaCl; B, 0.1% (v/v) HCOOH and 80% (v/v)
MeCN. The gradient program was 0 to 4 min, isocratic 2% (v/v) B; 4 to 10 min, linear
gradient 2 to 8% B; 10 to 30 min, linear gradient 8% to 50% (v/v) B; 30 to 35 min, linear
gradient 50 to 100% (v/v) B; 35 to 40 min, isocratic 100% B. The mass spectrometer was
run in electrospray mode, observing positive ions. Mass spectral data were treated with the
native DataAnalysis software.

The extraction procedure was somewhat simplified compared to the standard protocol
(Agerbirk et al. 2001a, originally optimized for seed extraction), as variable sample weights
were accepted, and mechanical homogenization during extraction was avoided. These
simplifications were justified by results of initial control experiments: A number of both
leaf and flower samples of varying weights (up to 400 mg) were first subjected to the
extraction described above. Then, the residue was further extracted for another three times,
but this time with mechanical homogenization. In all cases, low relative amounts of
glucosinolates (1–16% compared to the first extract) were detected in the extract obtained
with mechanical homogenization (with a tendency for increasing percentage with
increasing sample weight). Proportional amounts of internal standard were similarly
recovered in all the extracts obtained with mechanical homogenization, showing that the
internal standard had already been completely mixed with endogenous analytes during the
extraction without homogenization. Hence, it was concluded that the ratio of internal
standard to endogenous glucosinolates extracted without mechanical homogenization was
representative of their initial concentrations.

Statistical Analyses Proportion of days caterpillars spent on different positions on the plant
was treated as binomial data. Distributions over the four positions were compared by using the
Kolmogorov–Smirnoff test (GenStat release 8.11; Anonymous 2005). Caterpillar weights were
analyzed by analysis of variance. The amount (μmol/g DW) of each glucosinolate detected in the
leaf and flower samples were analyzed with a generalized linear model after a logarithmic
transformation. The effect of time (before and during caterpillar feeding), treatment (undamaged
and damaged by caterpillars), plant tissue (leaf and flower), and genotype (accessions) and all
possible two- and three-way interactions were investigated (GenStat release 8.11).

Results

Position on the Plant First and second instars fed primarily on leaves, whereas third instars
migrated via the small leaves of the flower branches to the flower buds and flowers. Once
flower feeding began, no further leaf feeding was observed (Fig. 2). The distribution of
caterpillars over the four positions was statistically similar for the three genotypes
(Kolmogorov–Smirnoff test, P>0.05).

Caterpillars fed in discrete meals two to three times each hour, interspersed with phases
without feeding. On a leaf, after termination of a meal, they moved away from the freshly
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damaged wound, after which they rested most of the time elsewhere on the leaf until they
moved back to the feeding site. By contrast, in the inflorescence, during a single meal,
caterpillars moved from flower to flower along flowering branches. A fifth-instar caterpillar
consumed on average 135±21 buds and flowers. When they were not feeding, P. brassicae
larvae rested on stems immediately adjacent to the flowers.

Caterpillar Growth Caterpillars feeding on flowers of accession A since molting to the
third instar had significantly higher fresh body weights on each of the three measuring
points (mid-L4 and early and mid-L5 and late L5; Fig. 3) than those that were confined to
leaves (P<0.01, generalized linear model).

Glucosinolate Levels Five glucosinolates were identified: the aliphatic allylglucosinolate
(sinigrin), which occurred in large amounts, and low levels of four aromatic glucosinolates
including 2-phenylethylglucosinolate and the three indole glucosinolates indol-3-ylmethyl-
glucosinolate (glucobrassicin), 4-methoxyglucobrassicin, and 4-hydroxyglucobrassicin.
Despite the minor levels of the identified aromatic glucosinolates, they were quantified

Fig. 2 Frequency distribution of caterpillar position on B. nigra plants observed daily over a period of 12–
13 d. On day 1, neonates were introduced on a true leaf just below the inflorescence. Four organ positions
were distinguished: on a true leaf, on a small leaf in the inflorescence, on a flower, or on a stem in the
inflorescence. Percentages are averaged based on three caterpillars per plant for eight, seven, and nine plants
of accessions A, B, and C, respectively
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and included in the statistical analyses because of their well established chemosensory
influences on Pieris species (Schoonhoven and van Loon 2002). No other significant peaks
were detected. 2-Phenylethylglucosinolate was either below the detection limit in leaves
(accession C) or present at very low levels (range 0.001–0.013 μmol/ g DW). We carefully
distinguished the peak with the exact retention time of (desulfo) 2-phenylethylglucosinolate
from an unidentified trace peak that was more intense in leaf chromatograms (estimated
levels 0.03–0.35 μmol/g DW in leaves, 0.01–0.08 μmol/g DW in flowers), that had a
retention time 0.7 min longer than that of (desulfo) 2-phenylethylglucosinolate, and that did
not coelute with the authentic standard of 2-phenylethylglucosinolate after spiking.

Genotype and tissue type were the most important factors affecting the levels of
identified glucosinolates, and these factors showed a significant interaction (Table 1). No
significant interactions were found between treatment and tissue (P>0.05 for all
glucosinolates). Glucosinolate concentrations have been graphically depicted for accession
A in Fig. 4. Sinigrin was by far the most abundant compound in all three genotypes, with
levels at least 44 times higher (range 44–305) in leaves and at least 87 times higher (range

Table 1 Results from generalized linear model analysis on log-transformed data of glucosinolate
concentrations in two tissue types (leaves and flowers) for three genotypes of B. nigra

Factor Sinigrin PE GB 4OHGB 4MeOGB

Time ns ns ns *** ns
Tissue *** *** ns *** ns
Treatment * ns ns * ns
Genotype *** *** *** *** ns
Tissue × genotype ** *** ns * ns

Treatment means presence or absence of third-instar caterpillars feeding on flowers during 4 d. Effect of the
factor “time” refers to changes over 4 d in intact plants

PE = phenyethylglucosinolate; GB = glucobrassicin; 4OHGB = 4-hydroxyglucobrassicin; 4MeOGB = 4-
methoxyglucobrassicin

*P<0.05; **P<0.01; ***P<0.001

Fig. 3 Fresh body mass of P. brassicae on either flowers (circles) or leaves (squares) of B. nigra in mid-
fourth, mid-fifth, and late-fifth instar developing on B. nigra, accession A. Mean and SEM are plotted for 30
caterpillars
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87–447) in flowers of any of the three genotypes and treatments than the second most
abundant compound, 4-hydroxyglucobrassicin. Sinigrin, 4-hydroxyglucobrassicin, and
phenylethylglucosinolate were present at significantly higher levels in flowers than in
leaves. Sinigrin levels were ca. fivefold higher in flowers than in leaves. In response to
caterpillar feeding, sinigrin levels in leaves were higher than in undamaged plants (P<0.05;
Table 1). In flowers of accession A (Fig. 4), there was a similar tendency for induction of
sinigrin by caterpillar feeding, but such induction was not seen with flowers from the other
two genotypes (results not shown). Levels of other glucosinolates showed moderate
variations that were not affected by the experimental variables (Table 1, Fig. 4 and results
not shown). There was no systematic induction of any indole glucosinolate or of total
indole glucosinolates in response to caterpillar feeding (results not shown).

Discussion

Our data show that P. brassicae third, fourth, and fifth instars preferentially feed on B. nigra
flowers. Preference was absolute: although leaf material was available in surplus,
caterpillars fed exclusively on flowers. Historically, P. brassicae has been commonly
considered a folivore (Feltwell 1982), with its impact on plants examined primarily from
this perspective. To the best of our knowledge, this is the first detailed study showing that P.
brassicae larvae preferentially feed on the buds and flowers of its host plant. The status of

Fig. 4 Concentrations of five glucosinolates (mean + SEM) in leaves and flowers of 10 plants of accession
A. For both leaves and flowers, the initial concentration just before treatment, the concentration in leaves or
flowers of plants damaged by feeding caterpillars during 4 d, and the concentration determined in leaves or
flowers of intact plants 4 d after caterpillars were introduced on the treated plants
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P. brassicae as an agricultural pest has invariably resulted in a focus on cultivated, biennial
forms of B. oleracea in studies of its host plant relationships. We also observed flower and
silique feeding under field conditions (Smallegange et al., unpublished results).

The impact of folivores on plants has both direct and indirect effects. Directly, these
herbivores reduce the leaf area available for photosynthesis, thereby decreasing the plants’
ability to garner resources for defense and reproduction (Marquis 1984; Mothershead and
Marquis 2000; Schoonhoven et al. 2005). Indirectly, leaf herbivory can delay flowering
(Meyer and Root 1993; Strauss et al. 1996) or can alter developing flowers both physically
(Strauss et al. 1996; Lehtilä and Strauss 1999; Mothershead and Marquis 2000) and
chemically (Lohman et al. 1996; Karban and Baldwin 1997). This may cause a reduction in
plant attractiveness to pollinators or in the efficiency of pollen delivery, resulting in
decreased pollination and, subsequently, reduction of seed set and overall fitness of the
plant. Florivory, feeding on flowers, has received less attention than folivory or feeding on
other vegetative plant parts despite its common occurrence and potentially high impact on
plant fitness (recently reviewed by McCall and Irwin 2006). Feeding on flowers causes
damage to structures essential for plant reproductive output (Juenger and Bergelson 1997;
Adler et al. 2001). Indirectly, petal damage leads to a reduction in pollinator visitation that
not only reduces reproductive success but also affects male fitness (via pollen removal) of
the plant as well (Karban and Strauss 1993; Krupnick and Weis 1998; Adler et al. 2001).
However, the compensatory abilities of plants can partially overcome the impact of floral
herbivory (Hendrix 1988; Krupnick and Weis 1998). Removal of reproductive organs as a
preferred mode of feeding has evolutionary consequences, as this type of attack is likely to
exert a stronger selection pressure than leaf feeding, especially in annual species like B.
nigra. Although many plant species accumulate higher concentrations of defensive
secondary metabolites in reproductive organs than in vegetative organs (Schoonhoven et
al. 2005), in B. nigra, these higher levels are not sufficient to deter the specialist feeder P.
brassicae. A putative barrier to florivory by generalist herbivores lies in the higher
quantities of secondary plant compounds that are typically found in these organs relative to
the levels reported for leaves (Rask et al. 2000; Fahey et al. 2001; Brown et al. 2003;
Strauss et al. 2004; this study). The location of high concentrations of defensive secondary
plant compounds, including glucosinolates, in reproductive structures is consistent with the
optimal distribution of chemical defenses predicted by plant defense theory (Zangerl and
Bazzaz 1992; van Dam et al. 1996; Wallace and Eigenbrode 2002; Strauss et al. 2004).
Myrosinases, β-thioglucosidase enzymes that convert glucosinolates into products such as
isothiocyanates and nitriles, which are volatile in the case of, e.g., sinigrin and 2-
phenylethylglucosinolate, occur in different forms in flowers and leaves (Rask et al. 2000).
By using headspace techniques, isothiocyanates and nitriles have been reported from
mechanically macerated bud samples of several Brassica species (Tollsten and Bergström
1988). Phenylacetonitrile was detected in headspace samples of intact B. rapa L. flowers
(Omura et al. 1999). Benzylcyanide was released in significantly higher amounts from
Brassica napus L. in midflowering than in bud stage (Jönsson et al. 2005). High levels of
isothiocyanates are potentially toxic to both specialist and generalist herbivorous insects
(e.g., Li et al. 2000; Agrawal and Kurashige 2003), while even low levels may be detected
by specialized sensory receptors and assist specialized herbivores in host plant finding
(Renwick et al. 2006).

The growth rate we observed for caterpillars feeding on flowers was remarkable. The
feeding site preference of L3–L5 caterpillars presents a case of within-plant selective
foraging, the adaptive value of which might be the ingestion of higher nutritional content in
flowers, known to act as nutrient sinks, compared to leaves. Nutrient acquisition during the
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larval stage can affect pupal survival, longevity, and fecundity of Lepidoptera (Feltwell
1982; Van der Meijden et al. 1984; Metspalu et al. 2003). For example, female pupae of
Tyria jacobaeae were significantly larger when caterpillars were reared on leaves and
inflorescences of Senecio jacobaea plants than when reared on leaves only. This is
advantageous because large pupae have a higher eclosion success, and it may explain why
T. jacobaeae females prefer flowering plants for oviposition (Vrieling and de Boer 1999).

Faster growth has often been interpreted as a mortality-reducing factor. It is assumed that
by reducing the amount of time that larvae are early instars, when they are most vulnerable
to attack by natural enemies, they will experience higher survival (the ‘slow-growth–high-
mortality hypothesis’ sensu Clancy and Price 1987; Benrey and Denno 1997). This has
been experimentally confirmed under field conditions for the interaction between P. rapae
feeding on B. oleracea and its predators and parasitoids such as Cladophora glomerata
(Loader and Damman 1991; Benrey and Denno 1997). However, for other tritrophic
interactions, faster growth was associated with higher mortality due to natural enemies (e.g.,
Clancy and Price 1987). Biere et al. (2002) found that larvae of the moth Hadena bicruris
exhibit a strong preference for seeds of their food plant, Silena latifolia, over leaf tissues.
Herbivore development proceeded more rapidly on seeds, and the larvae were less
susceptible to parasitism from their main endoparasitoid, Microplitis tristis.

Herbivorous insects specialized on glucosinolate-containing plants typically avoid the
formation of toxic isothiocyanates by employing specialized detoxifying mechanisms. In the
case of P. brassicae, this is accomplished by a nitrile specifier protein (NSP) in the gut that
changes the products of the myrosinase-catalysed hydrolysis of glucosinolates from
isothiocyanates to relatively harmless nitriles (Wittstock et al. 2004), which may be further
metabolized before excretion depending on side chain structure (Agerbirk et al. 2006; 2007).
Shortly before this mechanism was reported, it was discovered that allyl isothiocyanate,
the volatile hydrolysis product of sinigrin, is toxic to the specialist feeder P. rapae when
feeding on an artificial diet (Agrawal and Kurashige 2003). Assuming a 20% DW in the
artificial diet as used by Agrawal and Kurashige (2003), the maximum concentration to which
P. rapae caterpillars were exposed in their study was 8.5 μmol/g DW. This dose caused
significant negative effects on growth rate and inhibited development. In contrast, sinigrin
levels in B. nigra flowers were more than 10 times higher (Fig. 4) and flowers sustained
higher growth rates of P. brassicae than leaves, which had average levels of sinigrin two
times higher than the corresponding amount of allylisothiocyanate as applied in the artificial
diet. Assuming that isothiocyanates were produced in significant amounts during ingestion of
glucosinolate-containing foliage by P. rapae, an involvement of the glucosinolate–myrosinase
system in defense against this specialist species was suggested. Brassica nigra plants that had
been induced by previous P. rapae feeding damage had a 27% increase in sinigrin
concentration, but also 43% higher trichome density (Traw and Dawson 2002). Our data
confirm the reported induction of sinigrin in leaves upon feeding, but also demonstrate that
the magnitude of the induction is minor relative to the difference between leaves and flowers.
With the elucidation of the NSP-based mechanism for detoxification of the glucosinolate–
myrosinase system, the suggested involvement of the glucosinolate–myrosinase system and
defense to specialists now needs to be re-evaluated. Formation of isothiocyanates is to be
expected only if the myrosinase activity in the plant is so high that available NSP cannot
completely direct the reaction towards nitriles, combined with glucosinolate levels sufficiently
high to produce toxic levels of isothiocyanates. The selective foraging on flowers by P.
brassicae documented here demonstrates that the caterpillars are able to detoxify even high
levels of sinigrin, such as those present in B. nigra flower tissue. Not only high glucosinolate
levels but also high myrosinase activity would be needed to exert toxic effects on Pieris
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caterpillars, as has been experimentally demonstrated for another glucosinolate-adapted
herbivorous insect, Plutella xylostella (Li et al. 2000). Glucosinolates occur in cells of all
organs of Brassicaceous plants, whereas myrosinases can be found in scattered glucosinolate-
free cells. It remains to be examined whether flower buds of different age, flowers, and
siliques of B. nigra have cells that contain myrosinases. In the related B. napus L., expression
of the MYR1-gene coding for particular myrosinase isoforms has been demonstrated to occur
in all organs investigated, including petals (Falk et al. 1992), although myrosinase was absent
in very young flower buds in this species (Andréasson et al. 2001). Myrosinase gene
promoters fused to beta-glucuronidase as a reporter showed expression of myrosinase in
idioblast myrosin cells in immature and mature seeds and phloem myrosin cells of B. napus
(Thangstad et al. 2004). Data on headspace composition of inflorescences actually fed upon
by Pieris spp. are not available. Follow-up studies on the types and quantities of volatile
breakdown products emitted by herbivore-damaged flowers are required to quantify
myrosinase activity levels in flowers. If these levels are low, the better performance
associated with flower feeding might be reconciled with a role of the glucosinolate–
myrosinase system in defense against the specialist P. brassicae. However, a likely and simple
explanation of the better performance associated with flower-feeding may be that the
caterpillars are able to efficiently detoxify the glucosinolate–myrosinase defense system in
both organs, and that flowers, major nutrient sinks on a plant, are more nutritious than leaves.
The fact that early instars did not migrate to flowers may be an adaptation to factors other
than nutrient content: leaves are the site of oviposition, are present earlier in the season than
flowers, and may provide better refuge from natural enemies for small instars. We have never
observed P. brassicae or P. rapae ovipositing on flowers or flowering stems.

Neither P. rapae nor P. brassicae sequester glucosinolates for their own defense against
natural enemies (Müller et al. 2003), in contrast to what had been published earlier by Aplin
et al. (1975). The intensely green, clear regurgitant these caterpillars instantly, and typically,
produce when attacked may contain highly concentrated glucosinolate hydrolysis products
(nitriles) stored in the foregut. Presence of concentrated glucosinolate hydrolysis products
may explain the obvious repellent effect of regurgitant to natural enemies such as Cotesia
wasps and predators (Brodeur et al. 1996). Consequently, caterpillars may prefer flower
tissues that contain high levels of these compounds, thus boosting their defense against both
specialist and generalist natural enemies (Soler et al. 2005). Behavioral experiments with
parasitoids and predators known to act as common natural enemies of P. brassicae (Feltwell
1982) are required to test this hypothesis.
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