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Uniformly flowing states and vortices in the classical XY model in an external field are 
studied. This is done by using a continuum approximation and by paying attention to parti
cular solutions to nonlinear partial differential equations for two angles 8 and cp of rotation of 
spins for which cp satisfies the Laplace equation. For these two states equations for 8 have 
forms similar to that in the classical Ising model in a transverse field. The uniformly flowing 
states are therefore described by kink-type excitations identical to those in the two-dimensional 
Ising model. Phonon modes associated with the uniformly flowing states are also studied, 
which are similar to Bogoliubov phonons. Vortex solutions and vortex formation energy are 
studied in close similarity to the case of liquid He'. By comparing the energies of these two 
states, an expression for critical velocity is obtained. By making correspondence to the case of 
liquid He', numerical values of the critical velocity and of the velocity of phonons around the 
uniformly flowing states are estimated. For the former the numerical value is in fair agreement 
with experimental data. 

§ 1. Introduction 

In recent years there has been much interest in soliton-like nonlinear excita
tions in classical continuous spin systems. In a one-dimensional case much effort 
has been made to obtain soliton solutions to various types of nonlinear partial 
differential equations for certain magnetic systems. Here one of the most in
teresting problems is to find completely integrable systems which admit exact 
multi-soliton solutions.1)~3) In higher dimensional cases attention has been 
focussed to time-independent or stationary solutions corresponding to pseudo
particle solutions such as vortex or vortex string solutions. 4)~7) On the other 
hand, it is well known that several of models of magnetic systems are similar to 
superfluid helium in that ground states of their ordered phases exhibit broken 
symmetry with respect to a continuous symmetry of the Hamiltonian. Of these, 
the planar Heisenberg model or the XY model in an external field has received 
particular attention, since an equivalence of this system to a lattice gas model for 
Bose condensation in liquid helium has been noted by Matsubara and Matsuda. 8

) 

By the use of this model, Halperin and Hohenberg have developed a theory to 
gain insight into the foundation of two-fluid hydrodynamics. 9

) These workers8
),9) 

and others 10
) have been primarily interested in static phenomena and linear 
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Flowing States and Vortices in the Classical XY Model 1591 

excitations. It is therefore reasonable to make an attempt to deduce the pro
perties of nonlinear excitations in this magnetic system, just as we can derive the 
theory of vortex excitations in superfluid helium along the line with the theories 
of Ginzburg and Pitaevskii 11

) and of Gross.12) In a previous paper,13) two of the 
present authors (S.T. and S.H.) made a step toward this objective, obtaining 
vortex solutions. This work, however, is rather preliminary in this respect, since 
much of discussion there was given on the mathematical aspect of the problem 
such as soliton-like solutions in the one-dimensional case. 

The purpose of the present paper, which forms a sequel to the previous one,13) 
is to make a more detailed study of the properties of stationary solutions or 
pseudo-particle solutions to field equations and their bearing on the nonlinearity 
properties of the three-dimensional classical planar Heisenberg ferromagnet or 
the XY model in an external field. In doing this we pay attention to particular 
solutions to nonlinear partial differential equations for two angles e and 'P of 
rotation of spins for which 'P satisfies the Laplace equation. Uniform-flow 
solutions and vortex solutions of physical interest are thereby obtained. It is 
shown that the equations for e for these two states have forms similar to that for 
the Ising model in a transverse field. In contrast with the previous paper,13) we 
are primarily concerned here with physical aspects of the problem. Namely, 
from these two types of solutions we study the energy of uniformly flowing state, 
phonon excitations around this state, the vortex formation energy, critical 
velocity corresponding to the case of liquid helium, and so on. We also hope that 
the present approach may shed some light on the problem of nonlinear excitations 
in superfluid helium, which is, in fact, more difficult than that of the present model 
magnetic system. 

This paper is organized as follows. In the next section equations of motion 
are set up for spins in the system. Uniformly flowing states and vortex states are 
studied in §§ 3 and 4 from stationary solutions to the equations. In § 5 small 
fluctuations about the stationary solutions are studied. This is done for phonons 
associated with the uniformly flowing states. In § 6 a critical velocity is studied 
by comparing the energies of these two states. A brief discussion is given in § 7 
on implications of results obtained for the model magnetic system to the problem 
of superfluid helium. 

§ 2. Equations of motion 

We consider a classical planar Heisenberg ferromagnet in an external field 
(CPHFF) defined by the Hamiltonian 

H=-E ~ Snz-~[j(n, m)(SnXSmx+SnYSmY)+ r(n, m)SnZSmz ]. (2 .1) 
n nm 
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1592 S. Homma, T. Aoki and S. Takeno 

Here Sn = (SnX, SnY, SnZ) is the spin angular momentum with magnitude S on the 
lattice site n, Sn a (a = x, y, z) being its Cartesian a-component, and t ( > 0) is the 
external field. The coupling constants ]( n, m) and F( n, m) are taken to be all 
positive and assumed to depend only on the coordinate difference between the 
lattice sites nand m. It is understood that for our model system the inequality 

~ fen, m»~ F(n, m) (2-2) 
m m 

holds. 13
) The components Sna of Sn are parametrized by two angles of rotation 

Snx=S sin en cos rpn, SnY=S sin en sin rpn, Snz=S cos en. (2-3) 

Equations of motion obeyed by en and rpn are generally written as*)·7) 

(2·4) 

In terms of 

nn=Scosen and on=Ssinen with nn 2+on2=S2, (2·5) 

explicit expressions for Eqs. (2·4) are written as 

nn=On ~ ]I(n, m)Om sin(rpm-rpn), (2'6a) 
m 

(2'6b) 

In the above equations we have put 

]zen, m)=2F(n, m). (2'7) 

We employ a continuum approximation to reduce Eqs. (2'1) and (2' 6) to 

with 

and 

n=V'(02Vrp) or n=V'(pV'rp) with p=02=sin2 e, 

09 = - ,(0-7}0(1 +Ll )n+ n[l-( V rp )2+ Ll]o , 

(2'8) 

(2'10a) 

(2'10b) 

respectively. In the above equations we have taken the lattice constant of the 
system to be unity for the sake of simplicity and put 

TJ = ]z(O)/]J(O), (2'11) 

*) We use units with h=l from § 2 to § 6. 
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Flowing States and Vortices in the Classical XY Model 1593 

in which Ji(O) (i=l, 2) is the value of 

Ji(q)=2.}, Ji(n, m)exp[iq·(m-n)], 
m 

(i=1,2) (2·12) 

at q = O. Further we have assumed that Ji( q) in the long wavelength region 
takes the form 

(2·13) 

and rescaled the coordinate variables as 

y' = y/af~2---> y , (2·14) 

Equations (2 ·10) are basic equations to study nonlinear excitations in the 
CPHFF. In what follows we consider the specific case 

],(n,m)=]z(n,m)=O or 77=0 (2·15) 

for the sake of simplicity. Namely, we are concerned with the classical XY 
model in an external field. This specification of the problem, however, does not 
alter the essential feature of the CPHFF, that is the axial symmetry of the system 
around the z-axis. Equation (2·10a) then remains unchanged, while Eqs. (2·9) 
and (2 ·10b) reduce to 

or 

9'( = - r( 52 - 62 )l/2 - 0/2)62 
- (1/2)6L16+ 0/2)62

( 17 ip Y , 

6q,=-r6+n[1-( l7ip)2+L1]6. 

(2·9') 

(2·9") 

(2·10b') 

In studying Eqs. (2·10a) and (2·10b'), we limit our discussion to stationary 
solutions, namely solutions of the following equations: 

or (2·16a) 

(2·16b) 

and small oscillations about the stationary solutions. It is seen that except the 
factor (17 ip Y Eq. (2 ·16b) is entirely identical to the stationary form of field 
equations for the Ising model in a transverse field. 14) Here we pay attention to 
particular solutions for which the quantity ip satisfies the Laplace equation 

It is convenient to work with gradient of ip. We therefore put 
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1594 S. Homma, T Aoki and S. Takeno 

The quantities v and p = 62 can be considered as velocity and density of "spin 
fluid". Equation (2·16a) is then satisfied provided 

fi'6'fi'<p=0 or fi'p·v=O. (2'19) 

This implies that the spin fluid under consideration flows in the direction per
pendicular to its density gradient. Let (x, y, z) and (r, ¢, z) be the Cartesian 
and cylindrical coordinates, respectively. We are then interested in the follow
ing two types of particular solutions of physical interest: 

(i) uniform-flow solutions 

v=const=vo=voz or <p=voz and ()=()(x,Y). (2'20) 

(ii) vortex string type solutions 

<p=q¢ or v=(q/r)if; and ()=()(r), 

q=±1,±2,······ with r=(x 2+y2)112, ¢=tan-1 (y/x). (2'21) 

In the above equations z and if; are unit vectors in the directions of the z-axis and 
of the ¢, respectively. Inserting Eqs. (2' 20) and (2' 21) into Eq. (2 '16b), we get 
equations for 6 or n for these two types of particular solutions. Equation (2' 20) 
represents a uniformly flowing state in the direction of the z-axis, while Eq. 
(2· 21) represents a vortex string localized at r = O. The stationary solutions 
corresponding to the cases (i) and (ii) will be studied in detail in §§ 3 and 4, 
respecti vely. 

§ 3. Uniformly flowing states 

We insert Eqs. (2'20) into Eq. (2'16b) to obtain 

(o26/0X 2)+ (o26/oy2) + (1 - V02 )6- Y6( 52 - 6 2 )-112 = 0 . 

We first observe that a nontrivial solution to Eq. (3'1) corresponding to a 
spatially uniform spin alignment is given by 

6= ± [52-{ 1'2/(1 - vo2n]112 == ± 60 with no =( 5 2- 602rl2 . (3'2) 

The symmetry-breaking state (3'2) is realizable under the condition 

r<5 or 25~J(n,m»E. (3·3) 
m 

The maximum value 60(max) of 60 which exists for Vo = 0 is given by 

with 

J8(0) = 25J(0). (3'4) 
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Flowing States and Vortices in the Classical XY Model 1595 

The maximum velocity vo(max) at which the symmetry-breaking state vanishes 
is given by 

vo(max) = [1- (,/5) ]1/2 = [1- {t/fs( O)} ]1/2 . (3-5) 

The energy density of the symmetry breaking statel}{=j{(6=60)=Euf(VO) is 
obtained by inserting Eqs. (2-20) and (3-2) into Eq. (2-9') as follows: 

(3-6) 

It is seen that EUf( vo) increases monotonically from its minimum value EUf(O) 
= -(1/2)( 5 2 + ,2) to its maximum value EUf( vo(max)) = - ,5= - St/fl(O) cor
responding to the state in which all the spins in the system are aligned in the 
positive z-direction (see Fig. 1). The energy difference LJEuf of the uniformly 
flowing state from the ground state of the system is therefore given by 

LJEUf = EUf( vo) - EUf( 0) = ( v0 2 /2 )[5 2 
- { ,2/ (1 - v0 2

)}]. (3-7) 

-IS 

-(1I2)(S2+ 12) 

o vo(max) Vo 

Fig. 1. Schematic feature of the energy 
density EUf( vo) of uniformly flowing 
states as a function of Vo. 

The symmetry breaking state (3-2) with 
energy eigenvalue given by Eq. (3-6) can be 
considered as corresponding to the flowing 
ground state of liquid He4II. 

We next study the effect of a wall on the 
uniformly flowing state. Let us assume for 
the sake of simplicity that the extension of 
the wall under consideration is infinite and 
that the spin fluid flows in the direction 
parallel to the wall. We thus take the wall 
as the yz-plane, where the flowing state is 
assumed to be uniform in the y-direction, 
namely 6 is taken to be independent of y. 

We are then concerned with a specific form of Eq. (3 -1): 

with the boundary condition 

6={0 
60 

as x -> 0, 

as x ->= . 

(3-8) 

(3-9) 

Equation (3 -8) is identical to a stationary form of a nonlinear differential 
equation for the one-dimensional Ising model in a transverse fielp-. By the use of 
the result obtained in another previous paper,14) the solution to Eq. (3 -8) with Eq. 
(3 -9) is obtained as follows: 
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1596 S. Homrna, T. Aoki and S. Takeno 

5!n = 5!ono tanh[(O"o/2no){(l-vo2)1/2 x - sin- 1(o/5)}]. 

(T 

0"0 ,------'-'-'-'-'-'-

;' 
;' 

;' 
,;,' 

oL----x~O----------------x 

(3·10) 

Fig. 2. Schematic feature of (J as a function of x 
given by Eq. (3'10). The broken line repre
sents the approximation (3'1l) to the solution 
of Eq. (3'10). 

A schematic feature of the solution is 
shown in Fig. 2. Inserting Eq. (3·10) 
into Eqs. (2·8) and (2·9'), we obtain 
an increase of the energy of the sym' 
metry breaking state due to the pres' 
ence of the wall. This corresponds to 
the surface energy. To evaluate this, 
we employ an approximation to 
replace the curve in Fig. 2 by two 
pieces of straight line: 

where 

The quantity 

0"= {bx 
0"0 

for O:S::x :S::xo , 

for xo<x , 

Xo = O"o/b 

(3·11) 

(3·12) 

(3·13) 

can be identified as the width of the kink obtained above, which corresponds to 
healing length studied by Gross. 12) By the use of this approximation procedure, 
the increase LlE of the energy of the uniformly flowing state due to the presence 
of the wall is given by 

LlE = lIO dx [ - r( 52 - b2 x 2 )1/2 - 1-
2

vo
2 

b2 x 2 + r( 52 - 0"02 )1/2 + 1-
2
v

o2 
0"02 + ~ b2 ] 

= ~[ -r52 sin-1( ~)+ r 0"0(52-0"02)1/2+ 1-
3

vo
2 

0"0 3 + O"°t J. (3·14) 

The quantity LlE for Vo = 0 corresponds to the surface energy obtained by 
Ginzburg and Pitaevskii in their theory of superfluidity.1I) 

§ 4. Vortex states 

The vortex solutions given by Eqs. (2·21) are characterized by the circulation 

fv. ds = 2J[q , ( 4·1) 
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Flowing States and Vortices in the Classical XY Model 1597 

where ds denotes the line element. We insert Eqs. (2 -21) into Eq. (2 -16b) to 
obtain 

O. (4-2) 

We first consider the solution to Eq. (4-2) under the following boundary condi
tion: 

as y->CXJ , 

as r-->O. 

(4-3a) 

(4-3b) 

Since Eq. (4 -2) cannot be solved as it stands, here we content ourselves by 
obtaining only its asymptotic solutions: 

_{60(max)-q2[r2/(5 2-r2)1/2](1/r2) for large y, 

6- Jq( r') with r' = [1-( 1'/5)] y for small y, 

where Jq( r') is the Bessel function of the qth order. 

(4-4a) 

(4-4b) 

Weare then concerned with the energy Ev of a single vortex. In doing this, 
we consider only the cases q = ± 1, since the solutions corresponding to these two 
(degenerate) cases are the solutions with the lowest energy. In the evaluation of 
Ev we assume that the system under consideration is enclosed in a cylinder of 
radius R and length L. By the use of Eqs. (2 -9") and (4 -2), it is written as 

where 

Egn
) = - 27rrL IT' rdr[( n/2) + (52 /2n)], 

E~out) = - 2lfrL 1: rdr[( n/2) + (52 /2n)] 

(4-5) 

(4-6) 

are contributions to Ev from the regions inside and outside the vortex core with 
radius Yl, respectively. For the evaluation of E~out) we assume that 6 is a slowing 
varying function of r outside the vortex core region, thus neglecting the first and 
the second derivatives of 6 in Eq. (4 -2). An approximate solution of Eq. (4 -2) 
for q = ± 1 is then given by 

(4-7) 

Inserting this into the second or Eqs. (4-6), we obtain 

E(Out)=-lfrL -(R2 -r 2
) 1'+- +lln -[

1 (52) R2 1 
v 2 1 I' 2 r/-1 

_52 In RJ. 
I' rl 

(4-8) 
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1598 S. Homma, T. Aoki and S. Takeno 

Since 1:sr1:sR1,*) we can approximate Eq. (4·8) as 

(4·8') 

The quantity Eyn) is obtained by using Eqs. (Z· 5) and (4· 4b). Actually, this could 
be done by numerical integration. Since it is independent of the system size R 
and its explicit expression is not required in our later discussion, we simply write 
it as 

Eyn)=ZTCLEo with Eo= ~ lTl rdr[(n/Z)+(S2/2n)], (4·9) 

omitting the evaluation of the integral. Combining Eqs. (4·8') and (4·9), we 
obtain the vortex formation energy for q = ± 1 as follows: 

(4·10) 

This result should be compared with that obtained by Gross.12) Defining the 
excitation energy LlEv of a single vortex by the equation 

LlEv = Ev ~ TCLR2 E( VO = 0), (4·11) 

we obtain 

(4·1Z) 

This is the energy required to create a vortex with q = ± 1 from the ground state. 
The characteristic feature of LlEv is the appearance of the factor In( R/r1). This 
is entirely analogous to the case of liquid He4

•
1l ).12) 

§ 5. Small fluctuations about uniformly flowing states 

In this section we are concerned with small fluctuations around stationary 
states determined by Eqs. (2·16). Namely, we inquire into small oscillations 
about the uniformly flowing states and the vortex states which are local minima 
of the Hamiltonian. Let the solution to Eq. (Z·16) for 15, nand rp be denoted by 
15(0), nCO) and rp(O), respectively. We treat Eqs. (2·10a) and (Z·10b') by putting 

n=n(O)+n' , (5·1) 

retaining only terms linear in 15', n' and rp'. A straightforward calculation leads 
to a pair of equations for n' and rp': 

*) The lattice constant of the spin system has been taken to be unity. 
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Flowing States and Vortices in the Classical XY Model 

n'=-2n(0)vo-/7n'+6(0)2,d9'+ /76(0)2-/79', 

cp'= -2n(0)vo-/7 9' 

+ [1- v 2+{S2/6(On,d6(0»)n' - nCO) ,d[ nCO) n'J 
o 6(0) 6(0) . 

Here we have made use of the relation 

6' = - [n(O)/6(O»)n' . 

lS99 

(S-2a) 

(S-2b) 

(S-3) 

In studying Eqs. (S -2) three cases can be considered, in which 6( 0) or n( 0) and 
9(0) are given by: (i) Eqs. (3-2) and the first of Eqs. (2-20), (ii) Eq. (3-10) and the 
same 9(0) and (iii) Eq. (4-2) and the first of Eqs. (2-21). 

Here we limit our discussion to the case (i). Then, 6( 0), n( 0) and 9( 0) are 
spatially uniform and Eqs. (S-2) reduce to 

n'=-2novo-/7n'+602,d9' , 

cp'=-2novo-/79'+(l-vo2)n'-(no2/60 2),dn' . 

(S-4a) 

(S-4b) 

The dispersion relation of linear waves is then easily obtained by putting 

n' = A exp[i( wt - k- r »), 9' = B exp[i( wt- k· r»), (S-S) 

where w, k and rare frequency, wave vector and the vector r = (x , y, z), 
respectively, and A and B are constants. A result of such a calculation is written 
as 

For vo=O Eq. (5-6) reduces to 

W(k)=[602+no2e]112k--->6ok as k-tO. 

(S-6) 

(5 -6') 

Equation (5-6') corresponds to the frequency of Bogoliubov phonons/ 5
) in which 

602 has the analogy of the density of condensate as seen from the last of Eqs. 
(2-10a). 

§ 6_ Critical velocity 

In §§ 3 and 4 we have obtained the energies to create the uniformly flowing 
state with velocity Vo and the vortex state with vorticity q = ± 1. For small Vo the 
energy of the uniformly flowing state is lower than that of the vortex state. With 
increasing Vo, however, the former state becomes less and less energetically 
favorable. At a certain value of Vo, the energies of these two states become 
equal. Such a value of Vo is called a critical velocity in close analogy with the 
case of superfluid He4 and denoted by voc. For the evaluation of Voc let us 
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1600 S. Homma, T. Aoki and S. Takeno 

consider a cylinder of radius R and length L as in the case for the vortex state. 
From Eqs. (3·7) and (4 ·12) the critical velocity Voc is determined by the equation 

(6' 1) 

or 

(6·2) 

where 

(6·3) 

is the energy associated with the vortex core. Since the radius YI of the vortex 
core is of the order of atomic scale, we can neglect the quantity EI in comparison 
with the second term in the square bracket on the right-hand side of Eq. (6·2). 

By the use of this approximation procedure Eq. (6·2) is solved as 

~~(8S2 /R 2)In(R/rl) }1/2] 
(S2 - )'2){ 1 + (2/R2 )In( R/rl nz . 

(6·4) 

Thus, an approximate expression for VOc is obtained as follows: 

Voc = [2 In( R/rl) ]1/2 /R . (6·5) 

It is seen that the critical velocity Voc depends on the system size R and the radius 
of the vortex core rl. The result obtained above is similar to the critical velocity 

Vcr = (h/mR )In ( R/rl) (6·6) 

obtained by Feynman for the case of liquid He II,16) where m is the mass of He 
atom. Equation (6·5) is, however, different from Eq. (6·6) in that in the former 
the factor [In( R/rl) ]1/2 appears instead of the factor In( R/rl). *) Implications of 
Eq. (6·5) to the case of superfluid He4 will be discussed in the next section. 

§ 7. Implications of the result to liquid He II 

We begin the discussion of this section by observing that a pertinent quantity 
of the XY model in an external field corresponding to the condensate wave 
function cjJ in superfluid He4 is given by l3) 

(7·1) 

*) Here we are concerned only with the (R/rl)-dependence of Voe, since by definition (2'18) the 

dimension of 1'oe given by Eq. (6' 5) does not coincide with that of the critical velocity given by Eq. (6· 6). 
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Flowing States and Vortices in the Classical XY Model 1601 

As shown in the previous paper, an equation obeyed by i.fJ in the continuum 
approximation takes the form l3

) 

(7·2) 

where a is the lattice constant of the spin system and we have put (I'll = (1'12 = (1'13 

=(1' in Eqs. (2·13) and (2·14) for the sake of simplicity. Here and hereafter in 
this section we use ordinary units to make a correspondence between two sys
tems. Equation (7·2) is to be compared with the time-independent Gross-Pitaev
skii equation I

1).12) 

- (h2 /2m)Lli.fJ- (3i.fJ + gli.fJ12i.fJ = 0 (7·3) 

for the condensate wave function i.fJ. In the above equation the quantities (3 and 
g are constants. It is seen that the interaction constant fs( 0) of the XY model 
in a transverse field has the following correspondence: 

(7·4) 

Equation (7·2) is, though similar, different from Eq. (7·3) in that it contains a 
nonlinearity of the form .(l-li.fJn- 1/2 i.fJ in contrast with the form 1i.fJ12i.fJ derivable 
from the q:>4-potential. Expanding the factor (l-li.fJn- 1/2 in powers of 1i.fJ12 and 
retaining only the first two terms, we get 

(7·5) 

Within this approximation, we can also make the following correspondence: 

fs(O)- e-->(3 , (7·6) 

The difference of the nonlinearity in the XY model from that in liquid He4 is that 
in the former it is kinematical in origin inherent in the spin system, while in the 
latter it is dynamical essentially due to the existence of strong repulsive part of 
pair potential. 

Rewriting the results obtained so far in ordinary units and using Eq. (7·4), we 
make a brief study of implications to the case of liquid He II. By the use of this 
procedure, vo(max), w(k) and Voe are rewritten as 

vo(max) = (h/ma(l'1/2)[1 - (E/fs( 0» ]1/2 , 

w( k) = (h/ma(l'1/2 )[1- (E2 /fs( 0 )2) Ji /2 k= ck , 

voc=(h/mR)[2ln(R/rd]1/2, 

(7·7) 

(7·8) 

(7·9) 

respectively. It is seen that vo(max) and c, the velocity of phonons, are of the 
same order of magnitude. Equation (7·8) is coincident with the result obtained 
by Matsubara and Matsuda. S

) Putting 
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m=2.7X 10-24 g, a = 3 X 10-8 em , a = 1/6, 

(7·10) 

we get 

vo(max) "" c"" 6 X 10 m/sec . (7·11) 

The numerical value of c thus obtained here is much smaller than the experi
mental value Cex of velocity of phonons of liquid He II: 

Cex"" 2.4 X 102 m/ sec. (7'12) 

A large discrepancy of C from Cex is due to the fact that the Bogoliubov-phonon 
approximation for phonons is only applicable for very weak interactions, namely 
for the case no"" 1, where no, is the fraction of condensates. On the other hand, 
numerical value of no estimated by using various methods for liquid He II is no 
""0.1. The result that vo(max) is nearly equal to C is understood by observing 
that the former is the critical velocity at which the symmetry-breaking state 
disappears. 

Our principal objective in this section is to obtain numerical value of VOe 

given by Eq. (7'8). By putting 

R=1O- 5 em, Yl = 4 X 10- 8 em , (7'13) 

which are entirely equal to the numerical values adopted by Feynman in estimat
ing the numerical value of Eq. (6'6), we get 

Voe "" 50 em sec-I, (7'14) 

while the Feynman formula gives 

(7·15) 

It is seen that Voe so obtained is smaller than Vcr. It is also seen that agreement 
of the R-dependence of the critical velocity and its numerical value with the 
experimental data 171 appears to be better than those given by Eq. (6'6). 
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