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Abstract

NetFlow has been a widely used monitoring tool with

a variety of applications. NetFlow maintains an active

working set of flows in a hash table that supports flow

insertion, collision resolution, and flow removing. This

is hard to implement in merchant silicon at data cen-

ter switches, which has limited per-packet processing

time. Therefore, many NetFlow implementations and

other monitoring solutions have to sample or select a

subset of packets to monitor. In this paper, we observe

the need to monitor all the flows without sampling in

short time scales. Thus, we design FlowRadar, a new

way to maintain flows and their counters that scales to a

large number of flows with small memory and bandwidth

overhead. The key idea of FlowRadar is to encode per-

flow counters with a small memory and constant inser-

tion time at switches, and then to leverage the computing

power at the remote collector to perform network-wide

decoding and analysis of the flow counters. Our eval-

uation shows that the memory usage of FlowRadar is

close to traditional NetFlow with perfect hashing. With

FlowRadar, operators can get better views into their net-

works as demonstrated by two new monitoring applica-

tions we build on top of FlowRadar.

1 Introduction

NetFlow [4] is a widely used monitoring tool for over 20

years, which records the flows (e.g., source IP, destina-

tion IP, source port, destination port, and protocol) and

their properties (e.g., packet counters, and the flow start-

ing and finish times). When a flow finishes after the in-

active timeout, NetFlow exports the corresponding flow

records to a remote collector. NetFlow has been used for

a variety of monitoring applications such as accounting

network usage, capacity planning, troubleshooting, and

attack detection.

Despite its wide applications, the key problem to im-

plement NetFlow in hardware is how to maintain an ac-

tive working set of flows using a data structure with low

time and space complexity. We need to handle collisions

during flow insertion and remove old flows to make room

for new ones. These tasks are challenging given the lim-

ited per-packet processing time at merchant silicon.

To handle this challenge, today’s NetFlow is imple-

mented in two ways: (1) Using complex custom silicon

that is only available at high-end routers, which is too

expensive for data centers; (2) Using software to count

sampled packets from hardware, which takes too much

CPU resources at switches. Because of the lack of us-

able NetFlow in data centers, operators have to mirror

packets based on sampling or matching rules and ana-

lyze these packets in a remote collector [26, 40, 44, 34].

It is impossible to mirror all the packets because it takes

too much bandwidth to mirror the traffic, and too many

storage and computing resources at the remote collector

to analyze every packet. (Section 2)

However, in data centers, there is an increasing need

to have visibility of the counters for all the flows all the

time. We need to cover all the flows to capture those tran-

sient loops, blackholes, and switch faults that only hap-

pen to a few flows in the Network and to perform fine-

grained traffic analysis (e.g., anomaly detection). We

need to cover these flows all the time to identify transient

losses, bursts, and attacks in a timely fashion. (Section 3)

In this paper, we propose FlowRadar, which keeps

counters for all the flows with low memory overhead

and exports the flow counters in short time scales (e.g.,

10 ms). The key design of FlowRadar is to identify the

best division of labor between cheap switches with lim-

ited per-packet processing time and the remote collector

with plenty of computing resources. We introduce en-

coded flowsets that only require simple constant-time in-

structions for each packet and thus are easy to implement

with merchant silicon at cheap switches. We then decode

these flowsets and perform network-wide analysis across

time and switches all at the remote collector. We make
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the following key contributions in building FlowRadar:

Capture encoded flow counters with constant time

for each packet at switches: We introduce encoded

flowsets, which is an array of cells that encode the flows

(5 tuples) and their counters. Encoded flowsets ensure

constant per-packet processing time by embracing rather

than handling hash collisions. It maps one flow to many

cells, allows flows to collide in one cell, but ensure each

cell has constant memory usage. Since encoded flowsets

are small, we can afford to periodically export the en-

tire flowsets to the remote collector in short time scales.

Our encoded flowset data structure is an extension of In-

vertible Bloom filter Lookup Table (IBLT), but provides

better support for counter updates.

Network-wide decoding and analysis at a remote col-

lector: While each switch independently encodes the

flows and counters, we observe that most flows tra-

verse multiple switches. By leveraging the redundan-

cies across switches, we make the encoded flowsets more

compact. We then propose a network-wide decoding

scheme to decode the flows and counters across switches.

With the network-wide decoding, our encoded flowsets

can reduce the amount of memory needed to track 100K

flows by 5.6% compared to an ideal (and hence imprac-

tical) implementation of NetFlow with perfect hashing

(i.e., no collisions) while providing 99% decoding suc-

cess rate1. (Section 4 and 5)

FlowRadar can support a wide range of monitoring

applications including both existing monitoring applica-

tions on NetFlow, and new ones that require monitoring

all the flows all the time. As demonstrations, we design

and build two systems on top of FlowRadar: one that

detects transient loops and blackholes using a network-

wide flow analysis and another that provides a per-flow

loss map using temporal analysis (Section 6).

We discuss the implementation issues in Section 7,

compare with related work in Section 8, and conclude

in Section 9.

2 Motivation

In this section, we discuss the key challenges of im-

plementing NetFlow. We then describe three alterna-

tive monitoring solutions (Table 1): NetFlow in high-end

routers with custom silicon, NetFlow in cheap switches

with merchant silicon, and selective mirroring. To ad-

dress the limitations of these approaches, we present

FlowRadar architecture, which identifies a good division

of labor between the switches and the remote collector.

1The decode success rate is defined as the probability of success-

fully decoding all the flows.

2.1 Key challenges of supporting NetFlow

Since NetFlow has been developed for over 20 years,

there have been many implementations and extensions of

NetFlow in routers and switches. We cannot capture all

the NetFlow solutions here, and in fact many solutions

are proprietary information. Instead, we focus on the ba-

sic function of NetFlow: storing the flow fields (e.g., 5

tuples) and the records (e.g., packet counter, flow start-

ing time, the time that the flow is last seen, etc.) in a hash

table. The key challenge is how to maintain the active

working set of flows in the hash table given the limited

packet processing time.

Maintain the active working set of flows: There are

two key tasks in maintaining the active working set of

flows:

(1) How to handle hash collisions during flow insertion?

When we insert a new flow, it may experience collisions

with existing flows. One solution is to store multiple

flows in each cell in the hash table to reduce the chances

of overflow (e.g., d-left hashing [14, 38]), which requires

atomic many-byte memory accesses. Another solution

to move existing flows around to make room for new

flows (e.g., Cuckoo hashing [33]), which requires mul-

tiple, non-constant memory accesses per packet in the

worst case. Both are very challenging to implement on

merchant silicon with high line rate. The detailed chal-

lenges are discussed in Section 8.

(2) How to remove an old flow? We need to periodi-

cally remove old flows to make room for new flows in

the hash table. If a TCP flow receives a FIN, we can re-

move it from the table. However, in data centers there

are many persistent connections reused by multiple re-

quests/responses or messages. To identify idle flows,

NetFlow keeps the time a flow is last seen and period-

ically scan the entire hash table to check the inactive

time of each flow. If a flow is inactive for more than

the inactive timeout, NetFlow removes the flow and ex-

ports its counters. The inactive timeout can only be set

between 10 and 600 seconds with a default value of 15

seconds [1]. When the hash table is large, it takes a sig-

nificant time and switch CPU resources to scan the table

and clean up the table entries.

Limited per-packet processing time at merchant sil-

icon: It is hard to maintain the active working set of

flows at the merchant silicon—the commodity switch

design in data centers. The key constraint of the mer-

chant silicon is the limited time we can spend on each

packet. Suppose a switch has 40Gbps per port, which

means 12ns per packet processing time for 64 Byte pack-

ets2. Let’s assume the entire 12 ns can be dedicated

to NetFlow by performing perfect packet pipelining and

2This becomes worse when datacenters move to 100Gbps.
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Hardware-based NetFlow Sampled software-based sFlow [40], FlowRadar

in custom silicon NetFlow in merchant silicon EverFlow [44]

Division of labor

state in switch hardware active working set of flows none none encoded flows and counters

state in switch software none (or some active flows) active working set of flows none none

data exported to collector flow records after termination flow records after termination Selected pkts and timestamps periodic encoded flow records

Coverage of traffic info

Temporal coverage No No No (if select control packets) Yes (milliseconds)

Flow coverage All or sampled packets sampled packets sampled or selected packets All

Table 1: Comparing FlowRadar with hardware-based NetFlow in custom silicon, sampling-based software NetFlow in merchant

silicon, and sFlow/EverFlow

allocating all other packet processing functions (packet

header parsing, Layer 2/3 forwarding, ACLs, etc.) to

other stages. Yet inside NetFlow, one needs to calcu-

late the hash functions, look up SRAM, run a few ALU

operations, and write back to the SRAM. Even with on-

chip SRAM which has roughly 1 ns access time, to fin-

ish all these actions in 12 ns is still a challenge. (Similar

arguments are made in [23] about the difficulties of im-

plementing data streaming at routers.)

2.2 Alternative monitoring solutions

Due to the limited per-packet time in merchant silicon,

one cannot process complex and non-constant time inser-

tion and deletion actions as required in NetFlow. There-

fore, there are three alternatives (Table 1):

Hardware-based NetFlow in custom silicon: One so-

lution is to design custom silicon to maintain the active

working set of flows in switch hardware. We can cache

popular flow entries in on-chip SRAM, but the rest in

off-chip SRAM or DRAM. We can also combine SRAM

with expensive and power-hungry TCAM to support par-

allel lookup. Even with the expensive custom silicon, the

test of Cisco high-end routers (Catalyst series) [18, 12]

shows that there is still around 16% switch CPU over-

head for storing 65K flow entries in hardware. Cisco

highly recommends NetFlow users to choose sampling

to reduce the NetFlow overhead on these routers [18].

Sampled software-based NetFlow in merchant sili-

con: Another solution is to sample packets and mir-

ror them to the switch software, and maintain the ac-

tive working set of flows in software. This solution

works with cheap merchant silicon, but takes even more

CPU overhead than hardware-based NetFlow in high-end

routers. To reduce the switch CPU overhead of NetFlow

and avoid interrupting other processes (e.g., OSPF, rule

updates) in CPU, operators have to set sampling rate low

enough (e.g., down to 1 in 4K). With such low sampling

rate, operators cannot use NetFlow for fine-grained traf-

fic analysis (e.g., anomaly detection) or capturing those

events that only happen to some flows (e.g., transient

loops or blackholes).

Selective mirroring (sFlow [40], EverFlow [44]): The

Decode analyzers

Encoded	
Flowsets

Flows & 
Counters

Encoded	
Flowsets

Encoded	
Flowsets

Periodic report

Figure 1: FlowRadar architecture

final solution data center operators take today is to only

sample packets or select packets based on match-action

rules, and then mirror these packets to a remote collec-

tor. The remote collector extracts per flow information

and performs detailed analysis. This solution works with

existing merchant silicon, and best leverages the comput-

ing resources in the cloud. However, it takes too much

bandwidth overhead to transfer all the packets to the col-

lector and too much storage and computing overhead at

the collector [44]. Therefore, operators can only get a

partial view from the selected packets.

2.3 FlowRadar architecture

Instead of falling back to sampling in existing monitor-

ing solutions, we aim at providing full visibility to all the

flows all the time (see example use cases in Section 3).

To achieve this, we propose to best leverage the capa-

bilities at both the merchant silicon at switches and the

computing power at the remote collector (Figure 1).

Capturing encoded flow counters at switches:

FlowRadar chooses to encode flows and their counters

into small fixed memory size that can be implemented in

merchant silicon with constant flow insertion time. In

this way, we can afford to capture all the flows with-

out sampling, and periodically export these encoded flow

counters to the remote collector in short time scales.

Decoding and analyzing flow counters at a remote

collector: Given the encoded flows and counters ex-

ported from many switches, we can leverage the com-

puting power at the remote collector to perform network-

wide decoding of the flows, and temporal and flow space

analysis for different monitoring applications.
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3 Use cases

Since FlowRadar provides per flow counters, it can easily

inherit many monitoring applications built on NetFlow

such as accounting, capacity planning, application mon-

itoring and profiling, and security analysis. In this sec-

tion, we show that FlowRadar provides better monitoring

support than sampled NetFlow and sFlow/EverFlow in

two aspects: (1) Flow coverage: count all the flows with-

out sampling; and (2) Temporal coverage: export these

counters for each short time slot (e.g., 10 ms).

3.1 Flow coverage

Transient loop/blackhole detection: Transient loops

and blackholes are important to detect, as they could

cause packet loss. Just a few packet losses can cause sig-

nificant tail-latency increase and throughput drops (es-

pecially because TCP treats losses as congestion sig-

nals) [31, 10], leading to violations of service level agree-

ments (SLAs) and even a decrease of revenue [19, 39].

However, transient loops and blackholes are difficult to

detect, as they may only affect a few packets during

a very short time period. EverFlow or sampled Net-

Flow only select a few packets to monitor, and thus may

miss most of the transient loops and blackholes. In ad-

dition, the transient loops and blackholes may only af-

fect a certain kind of flows, so probing methods like

Pingmesh [25] may not even notice the existence of

them. Instead, if we can capture all the packets in each

flow and maintain a corresponding counter in real time

at every switch, we can quickly identify flows that are

experiencing loops or blackholes (see Section 6).

Errors in match-action tables: Switches usually main-

tain a pipeline of match-action tables for packet process-

ing. Data centers have reported table corruptions when

switch memory experiences soft errors (i.e., bit flips) and

these corruptions can lead to packet losses or incorrect

forwarding for a small portion of the traffic [25, 44]3.

Such corruptions are hard to detect using network ver-

ification tools because they cannot see the actual cor-

rupted tables. They are also hard to detect by sampled

NetFlow or EverFlow because we cannot pre-decide the

right set of packets to monitor. Instead, since FlowRadar

can monitor all the packets, we can see problems when

they happen (Section 6).

Fine-grained traffic analysis: Previous research has

shown that packet sampling is inadequate for many fine-

grained monitoring tasks such as understanding flow size

distribution and anomaly detection [22, 20, 30]. Since

3For example, the L2 forwarding table gets corrupted. The packet

that matches the entry can be flooded or mis-forwarded, leading to tran-

sient blackholes or loops before the entry is relearnt and corrected.

FlowRadar monitors all the packets, we can provide

more accurate traffic analysis and anomaly detection.

3.2 Temporal coverage

Per-flow loss map: Packet losses can be caused by a

variety of reasons (e.g., congestion, switch interface bug,

packet corruptions) and may have significant impact on

applications. Although each TCP connection can detect

its own losses (with sequence numbers or with switch

support [17]), it is hard for the operators to understand

where the losses happen inside the network, how many

flows/applications are affected by such loss, and how the

number of losses changes over time. NetFlow with

low sampling rates cannot capture losses that happened

to flows that are not sampled; and even for those sam-

pled flows, we cannot infer losses from estimated flow

counters. EverFlow can only capture control pack-

ets (e.g., NACK (Negative Acknowledgment)) to infer

loss and congestion scenarios. Instead, if we can deploy

FlowRadar at switches, we can directly get an overall

map of the per-flow loss rate for all the flows soon after

a burst of packets passes by (see Section 6).

Debugging ECMP load imbalance: ECMP load

imbalance can lead to inefficient bandwidth usage in

network and can significantly hurt application perfor-

mance [11]. Short-term load imbalance can be caused

by either (1) the network (e.g., ECMP not hashing on the

right flow fields) or (2) the application (e.g., the appli-

cation sends a sudden burst). If operators can quickly

distinguish the two cases, they can make quick reactions

to either reconfigure the ECMP functions for the network

problem or to rate limit a specific application for the ap-

plication problem.

EverFlow can diagnose some load imbalance prob-

lems by mirroring all the SYN and FIN packets and count

the number of flows on each ECMP paths. However, it

cannot diagnose either of the two cases above because it

does not have detailed packet counters for each flow and

does not know the traffic changes for these flows over

time. Traditional NetFlow has similar limitations (i.e.,

no track of flows over time).

Timely attack detection: Some attacks exhibit specific

temporal traffic patterns, which are hard to detect if we

just count the number of packets per flow as NetFlow, or

just capture the SYN/FIN packets as EverFlow. For ex-

ample, TCP low-rate attacks [29] send a series of small

traffic bursts that always trigger TCPs retransmission

timeout, which can throttle TCP flows to a small fraction

of the ideal rate. With per-flow counters at small time

scale, we can not only detect these attacks by temporal

analysis, but also report these attacks quickly (without

waiting for the inactive timeout in NetFlow).
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Figure 2: IBLT based flow counters

4 FlowRadar Design

The key design in FlowRadar is an encoding scheme to

store flows and their counters in a small fixed-size mem-

ory, that requires constant insertion time at switches and

can be decoded fast at the remote collector. When there

is a sudden burst of flows, we can leverage network-wide

decoding to decode more flows from multiple encoded

flowsets. We also analyze the tradeoff between memory

usage and decoding success rates.

4.1 Encoded Flowsets

The key challenge for NetFlow is how to handle flow col-

lisions. Rather than designing solutions to react to flow

collisions, our design focuses on how to embrace colli-

sions: We allow flows to collide with each other without

extra memory usage, and yet ensure we can decode indi-

vidual flows and their counters at the collector.

There are two key designs that allow us to embrace

collisions: (1) First, we hash the same flow to multiple

locations (like Bloom filters). In this way, the chance

that one flow collide with other flows in one of the bins

decreases. (2) When multiple flows fall in the same cell,

it is expensive to store them in a linked list. Instead, we

use a XOR function to the packets of these flows without

using extra bits. In this way, FlowRadar can work with a

fixed-size memory space shared among many flows and

has constant update and insertion time for all the flows.

Based on the two designs, the encoded flowset data

structure is shown in Figure 2, which includes two parts:

The first part is the flow filter. The flow filter is just a

normal Bloom filter with an array of 0’s and 1’s, which

is used for testing if a packet belongs to a new flow or

not. The second part is the counting table which is used

to store flow counters. The counting table includes the

following fields:

• FlowXOR: which keeps the XOR of all the flows

(defined based on 5 tuples) mapped in the bin

• FlowCount: which keeps the number of flows

mapped in the bin

• PacketCount: which keeps the number of packets of

all the flows mapped in the bin

As indicated in Algorithm 1, when a packet arrives, we

first extract the flow fields of the packet, and check the

flow filter to see if the flow has been stored in the flowset

or not. If the packet comes from a new flow, we up-

Algorithm 1: FlowRadar packet processing

1 if ∃ i ∈ [1,k f ], s.t. FlowFilter[HF
i (p.flow)]==0 then

2 FlowFilter.add(p.flow);

3 for j= 1..kc do

4 l = HC
j (p.flow);

5 CountTable[l].FlowXOR =

CountTable[l].FlowXOR ⊕ p.flow;

6 CountTable[l].FlowCount ++;

7 end

8 end

9 for j= 1..kc do

10 CountTable[HC
j (p.flow)].PacketCount ++;

11 end

date the counting table by adding the packet’s flow fields

to FlowXOR and incrementing FlowCount and Packet-

Count at all the kc locations. If the packet comes from an

existing flow, we simply increment the packet counters

at all the kc locations.

Each switch sends the flowset to the collector every a

few milliseconds, which we defined as time slots. In the

rest of the paper, we set the value of the time slot to 10ms,

unless explicitly setting it to other values in the context.

When FlowRadar collector receives the encoded

flowset, it can decode the per flow counters by first look-

ing for cells that include just one flow in it (called pure

cell). For each flow in a pure cell, we perform the same

hash functions to locate the other cells of this flow and re-

move it from all the cells (by XORing with the FlowXOR

fields, subtracting the packet counter, and decrementing

the flow counter). We then look for other pure cells and

perform the same for the flows in each pure cell. The

process ends when there are no pure cells. The detailed

procedure is illustrated in Algorithm 3 in the appendix.

4.2 Network-wide decoding

Operators can configure the encoded flowset size based

on the expected number of flows. However, there can

be a sudden burst in terms of the number of flows. In

that case, we may fail to decode some flows, when we

do not have any cell with just one flow in the middle of

the SingleDecode process. To handle a burst of flows,

we propose a network-wide decoding scheme that can

correlate multiple encoded flowsets at different switches

to decode more flows. Our network-wide decoding pro-

cess has two steps: decoding flows across switches and

decoding counters inside a single switch.

FlowDecode across switches: The key observation

is that if we use different hash functions at different

switches, and if we cannot decode one flow in one en-

coded flowset, it is likely that we may be able to de-
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code the flow at another encoded flowset at a different

switch the flow traverses. For example, suppose we col-

lect flowsets at two neighboring switches A1 and A2. We

know that they have a common subset of flows from A1

to A2. Some of these flows may be single-decoded at A1

but not A2. If they match A2’s flow filter, we can remove

these flows from A2, which may lead to more one-flow

cells. We can run SingleDecode on A2 again.

Algorithm 2: FlowDecode

1 for i=1..N do

2 Si = SingleDecode(Ai);

3 end

4 f inish = false;

5 while not f inish do

6 f inish = true;

7 foreach Ai,A j are neighbor do

8 foreach f low in Si −S j do

9 if A j .FlowFilter.contains( f low) then

10 S j.add( f low);

11 for p=1..kc do

12 l = H
j,C
p ( f low);

13 A j.CountTable[l].FlowXOR =

A j.CountTable[l].FlowXOR ⊕ flow;

14 A j.CountTable[l].FlowCount -= 1;

15 end

16 end

17 end

18 foreach f low in S j −Si do

19 Update Si and Ai same as S j and A j

20 end

21 end

22 for i=1..N do

23 result = SingleDecode(Ai);

24 if result �= /0 then

25 f inish = false;

26 end

27 Si.add(result);

28 end

29 end

The general process of FlowDecode is described in Al-

gorithm 2. Suppose we have the N encoded flowsets:

A1..AN , and the corresponding sets of flows we get from

SingleDecode S1..SN . For any two neighboring Ai and

A j, we check the all the flows we can decode from Ai but

not A j (i.e., Si−S j) to see if they also appear at A j’s flow

filter. We remove those flows that match A j’s flow filter

from A j. We then run SingleDecode for all the flowsets

again, get the new groups of S1..SN and continue check-

ing the neighboring pairs. We repeat the whole process

until we cannot decode any more flows in the network.

Note that if we have the routing information of each

packet, FlowDecode can speed up, because for one de-

coded flow at Ai, we only check the previous hop and

next hop of Ai instead of all neighbors.

CounterDecode at a single switch: Although we can

easily decode the flows using FlowDecode, we cannot

decode the counters of them. This is because the coun-

ters at A and B for the same flow may not be the same due

to the packet losses and on-the-fly packets (e.g. packets

in A’s output queue). Fortunately, from the FlowDecode

process, we may already know all the flows in one en-

coded flowset. That is, at each cell, we know all the flows

that are in the cell and the summary of these flows’ coun-

ters. Formally, we know CountTable[i].PacketCount =

∑∀ f ,∃ j,HC
j ( f )=i f .PacketCount for each cell i. Suppose the

flowset has mc cells and n flows, we have a total of mc

equations and n variables. This means we need to solve

MX = b, where X is the vector of n variables and M and b

are constructed from the above equations. We show how

to construct M and b in Algorithm 4 in the Appendix.

Solving a large set of sparse linear equations is not

easy. With the fastest solver lsqr (which is based on iter-

ation) in Matlab, it takes more than 1 minute to get the

counters for 100K flows. We speed up the computation

from two aspects. First, we provide a close approxima-

tion of the counters, so that the solver can start from the

approximation and reach the result fast. As the coun-

ters are very close across hops for the same flow, we can

get the approximated counters during the FlowDecode.

That is, when decoding Ai with the help of A j’s flows

(Algorithm 2 line 7 to 21), we treat the counter from A j

as the counter in Ai for the same flow. We feed the ap-

proximated counters to the solver as initial values to start

iteration, so that it can converge faster. Second, we use a

loose stopping criterion for the iteration. As the counter

is always an integer, we stop the iteration as long as the

result is floating within a range of ±0.5 around an in-

teger. This significantly reduces the rounds of iteration.

By these two optimizations, we reduce the computation

time by around 70 times.

4.3 Analysis of decoding errors

SingleDecode: We now perform a formal analysis of the

error rate in an encoded flowset. Suppose the flow filter

uses k f hash functions and m f cells; and the counting ta-

ble has kc hash functions and mc cells with sc bits per cell.

The total memory usage is mc · sc +m f . Assume there

are n flows in the encoded flowset. For the flow filter, the

false positive for a single new flow (i.e., the new flow be-

ing treated as an existing flow) is (1− e−k f n/m f )k f . Thus

the chance that none of the n flows experience false pos-

itives is ∏
n−1
i=1 (1− (1−e−k f i/m f )k f ). When the flow filter

has a false positive, we can detect it by checking if there

are non-zero PacketCounts after decoding. In this case

the counters are not trustful, but we still get all the flows.
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For the counting table, the decoding success rate of

SingleDecode (i.e., the chance we can decode all the

flows) is proved to be larger than O(1 − n−kc+2), if

mc > ckc
n, where ckc

is a constant associates with kc [24].

When we fail to decode some flows in the counting table,

the already decoded flows and their counters are correct.

We choose to use separated flow filter and counting

table rather than a combined one (i.e. the counting table

also serves as a bloom filter to test new flow), because

a combined one consumes much more memory. For a

combined one, for each packet, we check the kc cells it is

hashed to, and view this flow as a new flow if and only if

at least one of these kc cells’ FlowCount is 0. However,

this solution requires far more memory than the sepa-

rated solution. This is because for the counting table, a

good parameter setting is about kc = 3 and mc = 1.24n

when n is larger than 10K based on the guidelines in [24]

and our experiences in Section 5. In such a parameter set-

ting, when we treat the counting table as a Bloom filter,

the false positive rate for a new flow is (1− e−kcn/mc)kc

is larger than 99.9%. To keep the false positive rate low

enough for all the n flows, we would have to significantly

increase kc and mc.

NetDecode: We discuss FlowDecode and CounterDe-

code separately. For FlowDecode, we first consider a

simple pair-decode case, where we run NetDecode be-

tween two nodes with the same set of flows. This can

be viewed as decoding n flows in a large counting table

with 2kc hashes and 2mc cells. This means we will need

only half of the number of cells of the counting table

with 2kc hashes with SingleDecode. In our experiment,

we only need mc = 8K for decoding 10K flow appear at

both sides, which is even fewer than the number of flows.

For the more general network-wide FlowDecode, if all

nodes in the network have more flows than expected and

require FlowDecode, the decode success rate is similar

to the pair-decode case. This is because for each node A,

decoding its flows is similar to decoding the pair of A’s

flowset and the sum of flowsets from all the neighbors

containing A’s flows. However, it is more likely that only

a portion of the nodes have more flows than expected,

and the rest can SingleDecode. In this case, the decode

success rate is higher than the pair-decode case.

For CounterDecode, we need at least the same number

of linear equations as the number of variables (per flow

counters). Because we have one equation per cell, we

need the number of cells mc to be at least the number of

variables n. In practice, mc should be slightly larger than

the n, to obtain a high enough chance of having n linearly

independent equations.

The complete NetDecode process is bottlenecked by

CounterDecode not FlowDecode. This is because Coun-

terDecode requires more memory and takes more time

to decode. Since CounterDecode only runs on a single

node, the memory usage and decoding speed of NetDe-

code at a node mostly depends on the number of flows in

its own decoded flowset, rather than the number of other

flowsets that contain similar flows.

5 Evaluation

In this section, we demonstrate that FlowRadar can scale

to many flows and large networks with limited mem-

ory, bandwidth, and computing overhead, through sim-

ulations on FatTree topologies.

5.1 Scale to many flows

Parameter settings We set up a simulation network of

FatTree with k = 8 (80 switches). We set the number of

flows on each switch in 10 ms from 1K to 1000K. We

generate an equal number of flows between each inter-

Pod ToR pair. We then equally split these flows among

ECMP paths. In this way, each switch has the same num-

ber of flows. We set the flow filter to ensure that the prob-

ability that one of the n flows experiences a false positive

is 1/10 of the SingleDecode failure rate of the counting

table. We set the optimal k f and m f according to the for-

mulas in Section 4.3. We set kc = 4 because it is the best

for NetDecode. We select mc based on the guidelines

in [24]. We set the size of FlowCounter according to the

expected number of flows. We conservatively set both

NetFlow and FlowRadar packet counters as 4 Bytes, al-

though in FlowRadar we collect statistics in a short time

scale and thus would see much fewer packets and needs

fewer bytes for the packet counter. Since our results are

only related to the number of flows but not the packets,

we generate a random set of flows as input.

We run decoding on 3.60GHz CPU cores, and paral-

lelize decoding different flowsets on multiple cores.

The memory usage of FlowRadar is close to NetFlow

with a perfect hash table: We first compare the mem-

ory usage between NetFlow and FlowRadar. As dis-

cussed in Section 2, it is almost impossible in merchant

silicon to implement a hash-based design that handles

flow insertions and collisions within the per packet time

budget. If we implement a simple hash table, it would

take 8.5TB to store 100K flows to ensure a 99% chance

that there are no collisions. The actual data structure

used in custom silicon would be proprietary information.

Therefore, we compare with the best possible case for

NetFlow—a perfect hash table without any collisions.

Even with a perfect hash table, NetFlow still needs to

store in each cell the starting time of a flow and the time

the flow is last seen for calculating inactive timeout (4

Bytes each). However, in FlowRadar, we do not need

to keep timestamps in hardware because we use frequent
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Figure 3: Memory usage per switch
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Figure 4: Bandwidth usage per switch
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Figure 5: Extra #flows using NetDecode

reporting in a short scale. To fully decouple the benefit of

FlowRadar data structure and removing timestamps, we

also compare with perfect hashing without timestamps,

which can be viewed as the optimal case we can reach.

Figure 3 shows that NetFlow with perfect hashing

needs 2.5 MB per switch. FlowRadar needs only

2.88MB per switch with SingleDecode and 2.36MB per

switch with NetDecode to store 100K flows with 99% de-

coding success4, which is +15.2% and -5.6% compared

to 2.5MB used by NetFlow. The best possible memory

usage with perfect hashing without timestamps is 1.7MB

per switch. With 1M flows, we need 29.7MB per switch

for SingleDecode and 24.8MB per switch for NetDe-

code, which is +18.8% and -0.8% compared to NetFlow

with perfect hashing and timestamps.

FlowRadar requires only a small portion of band-

width to send encoded flowsets every 10ms. Figure 4

shows that we only need 2.3Gbps per switch to send en-

coded flowsets of 100K flows with 10ms time slot, and

0.23Gbps with 100ms time slot. In Facebook data cen-

ter and traffic setting [35], a rack switch connects to 44

hosts with 10Gbps links, where each host send at most

100s to 1000s of concurrent flows in 5ms. Suppose there

are a total of 2K*44 flows in 10ms in the rack switch,

FlowRadar only incurs less than 0.52% of bandwidth

overhead (2.3Gbps/(44*10Gbps)) with 10ms time slot.

FlowRadar with NetDecode can support 26.6-30%

more flows than SingleDecode, with more decoding

time Operators can configure FlowRadar based on the

expected number of flows. When the number of flows

goes beyond the expected number, we can use NetDe-

code to decode more flows given the same memory. Fig-

ure 5 shows with 1K to 1M expected number of flows,

NetDecode can decode 26.6-30% more flows than Sin-

gleDecode given the same memory. So our solution can

tolerate bursts in the number of flows.

Figure 6 shows the average decoding time of each

flowset for the case with 100K expected flows. When

the traffic is below 100K flows, the collector can run

SingleDecode to quickly detect all the flows within 10

ms. When the traffic goes beyong 100K flows, we need

4Note that even in the 1% of cases we cannot successfully decode

all flows, we can still decode 61.7% of the flows on average.

NetDecode, which takes 283ms and 3275ms to decode

flowsets with respective 101K flows and 126.8K flows.

We break down the NetDecode time into CounterDe-

code and FlowDecode. The result is shown in Figure 7.

As the number of flows increases, the CounterDecode

time increases fast, but the FlowDecode time remains

low. If we just need to decode the flows, we need only

135ms, which is very small portion compared to Coun-

terDecode’s 3140ms. Note that the burst of flows does

not always happen, so it is fine to wait for extra time to

get the decoded flows and counters.

We do not rely on the routing information to reduce

the NetDecode time, because it only helps reduce the

FlowDecode time, which is only a small portion of the

NetDecode time. The routing information can help re-

duce the FlowDecode time by 2 times.

5.2 Scale to many switches

We now investigate how FlowRadar scales with larger

networks. For direct comparison, we assume the same

number of flows per switch with different network sizes.

The memory and bandwidth usages per switch do not

change with more switches: This is because the de-

coding success rate only relates to the number of flows

and number of cells. Obviously this is true for SingleDe-

code. For NetDecode this is also true, because as long as

all flows appear in at least 2 flowsets, NetDecode’s de-

coding rate is similar no matter how many flowsets the

flows appear in. The reason is that the bottleneck of the

number of flows can be decoded is from CounterDecode,

which is independent from other flowsets. For flowsets

with 102.5K cells, two such flowsets can already decode

more than 110K flows, but the CounterDecode can only

support 100K flows (limited by the number of linearly

independent equations).

Decoding requires proportionally more cores with

more switches: The SingleDecode time per switch only

relates to the number of flows in a flowset. For example,

to decode 100K flows within 10ms, we need the same

number of cores at the remote collector as the number

of switches. This means for a network with 27K servers

(K=48 FatTree) and 16 cores per server, we need about
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Figure 6: Decoding time
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Figure 7: Breakdown of NetDecode
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Figure 8: FlowDecode Time with differ-

ent network size

S3

S2 S5

S4

S1
Figure 9: A flow path that has cycle

0.65% of the servers for the decoding.

NetDecode only happens during bursts of flows. The

decoding time per switch increases slowly with more

switches, because most time is spent on CounterDecode,

which only relates to the number of flows in a flowset.

The FlowDecode time increases with larger networks,

because it takes more time to check a decoded flow with

the neighboring switches, when there are more neighbors

in a larger network. In a FatTree network, suppose each

switch has k neighbors. The total number of switches

in the network is n =
5
4
k

2, so each flowset only checks

with O(
√

n) other flowsets. We tested the FlowDecode

time with different FatTree network sizes by increasing k

from 4 to 16. The memory on each switch is set expect-

ing 100K flows for SingleDecode. We generate traffic

such that the number of flows on each switch reaches

the maximum number (126.8K) that could be NetDe-

coded. Figure 8 shows the result. The FlowDecode time

increases linearly with k. However, it is still a small por-

tion compared to CounterDecode time. For 126.8K flows

per switch and k = 16 FatTree, FlowDecode only takes

0.24 seconds, which is 7.1% of the total decoding time.

Routing information can speed up FlowDecode to 0.093

seconds, which is 2.9% of the total decoding time.

6 FlowRadar Analyzer

We show two use cases of FlowRadar: transient loop and

blackhole detection with network-wide flow analysis and

providing per-flow loss map with temporal analysis.

6.1 Transient loop/blackhole detection

With FlowRadar, we can infer the path for each flow

by concatenating the switches that have records for that

flow. As a result, we can easily provide a network-wide

map of all the loops and blackholes, the time they hap-

pen, and the flows they affected.

Loops: We first identify all the switches that see the

same flow during each time slot. If the switches form a

cycle, then we suspect there is a loop. We cannot con-

clude that there is a loop because this may be caused by

a routing change. For example, in Figure 9, we may ob-

serve counters at all the switches in one time slot with

FlowRadar, which forms a cycle (S2,S3,S4,S5). How-

ever, this may be caused by a routing change from S1 →
S2 → S5 to S1 → S2 → S3 → S4 → s5 within the time

slot. To confirm, we need to compare the counter on the

hop that is not in the cycle (counter1), and the counter on

one hop in the cycle (counter2). If counter1 < counter2

then we can conclude that there is a loop. For example,

if counter on S1 < counter on S3, we know this is a loop.

Blackholes: If a transient blackhole is longer than a

slot’s time, we can detect it by seeing the path of some

flows stopped at some hop. If a transient blackhole is

shorter than a slot’s time, we still see a large difference

between the counters before and after the blackhole at

one slot. Note that we do not need the counters, but only

the flow information to detect blackhole. Thus, during

flow bursts, we can run FlowDecode without Counter-

Decode to detect blackholes faster.

Evaluation: We create a FatTree k=4 topology with

16 hosts and 20 switches in DeterLab [2]. We modify

Open vSwitch [6] to support our traffic collection. We

direct all the packets to the user space and maintain the

encoded flowsets. We install forwarding rules for indi-

vidual flows with different source and destination IP pair.

We send persistent flows from each host to all the other

hosts, which send one packet every 5 ms. This is to make

sure that each flow has at least one packet in each time

slot even if some packets is close to the slot’s boundary.

We simulated a case that a VM migration causes a

transient loop when the routing table on the edge switch

S1 of the old VM location is updated so it sends pack-

ets up to the aggregation switch S2. But S2 has not been

updated so it sends packets back to S1. We manually up-

dated a rule at the edge switch S1 at around 10ms, which

forms a loop S1 → S2 → S1, where S2 is an aggregation

switch. We can detect the loop within 10ms.

To generate a blackhole, we manually remove a rout-

ing rule at an edge switch. We can detect the blackhole
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Figure 10: CDF of loss detection delay

within 20 ms. This is because there are still traffic in the

first 10ms when the blackhole happens. So we can only

confirm in the next 10ms.

6.2 Per-flow loss map

FlowRadar can generate a network-wide loss map by

comparing the per-flow counters between the upstream

and downstream switches (or hosts) in a sequence of time

slots. A simple approach is that for each flow, the differ-

ence between the upstream and downstream counters is

the number of losses in each time slot. However, this

approach does not work in practice because it is impos-

sible for the two switches capture exactly the same set

of packets, even though today’s data centers often have

well synchronized clocks across switches at milliseconds

level. This is because there are always packets on the fly

between upstream and downstream switches (e.g., in the

switch output queue).

To address this problem, we can wait until the flow

finishes to compare its total number of packets at differ-

ent hops. But this takes too long. Instead, we can detect

losses faster by comparing counters for flowlets instead

of flows. Suppose a time slot in FlowRadar is 10ms.

We define flowlets as bursts of packets from a flow that

are separated by gaps larger than a time slot [27]. With

FlowRadar, we can identify flowlets between two time

slots with counters equal to zero. Given a flowlet f , the

upstream and downstream switches collect sequences of

counters: U1...Ut and D1...Dt (D0 and Dt+1 are zero). We

compute the total number of losses for the flowlet f as

∑
t
i=1(Ui)−∑

t
i=1(Di). This is because if a packet does

not arrive at the downstream switch for at least 10ms, it

is very likely this packet is lost.

With this approach, we can get the accurate loss num-

bers and rates for all the flowlets that have finished.

The key factor for our detection delay is the duration of

flowlets. Fortunately, in data centers, many flows have

short flowlets. For example, in a production web search

workload [13], 87.5% of the partition/aggregate query

flows are separated by a gap larger than 15 ms. 95% of

query flows can finish within 10ms. Moreover, 95% of

background large flows have 10-200 ms flow completion

times with potential flowlets in them.

Evaluation: We evaluate our solution in a k=8 FatTree

topology in a ns-3 simulator [5]. The FatTree has 128

hosts connected with 80 switches using 10G links. We

take the same workload distribution from a production

web search data center [13], but add the 1000 partition-

aggregate queries per second with 20 incast degree (i.e.,

the number of responding nodes) and packet sizes of

1.5KB. The queue size of each port in our experiment

is 150KB which means 100 packets of size 1.5KB. The

flowlet durations are mostly shorter than 30ms with the

maximum as 160ms. 50% of background traffic has 0ms

interarrival time indicates application sends a spike of

flows. The rest at least 40% of background traffic has

interarrival time larger than 10ms for periodical update

and short messages.

We run FlowRadar to collect encoded flowsets every

10ms at all the switches. We define detection delay as the

time difference between when the loss happens and when

we report it. Figure 10 shows the CDF of loss detection

delay. We can detect more than 57% of the losses within

20ms, and more than 99% of the losses within 50ms.

7 Implementation

We now discuss the implementation issues in FlowRadar.

Encode and export flow counters at switches:

FlowRadar only requires simple operations (e.g., hash-

ing, XOR, and counting) that can be built on existing

merchant silicon components. For example, hashing is

already used in Layer 2 forwarding and ECMP functions.

With the trend of programmable switches (e.g., P4 [8]),

FlowRadar can be easier to implement.

We have implemented our prototype in P4 simula-

tor [9], which will be released at [3]. We use an ar-

ray of counters to store our counting table and flow

filter. On each packet’s arrival, we use the mod-

ify field with hash based offset API to generate the kc

hash values for counting table and k f hash values for

flow filter, and use bit xor API to xor the header into the

flowXOR field. In the control plane, we use the state-

ful read counter API to read the content in our data.

Since the encoded flowset is small, we can export the

entire encoded flowset to the collector rather than export-

ing them on a per flow basis. To avoid the interruptions

on the data plane during the exporting phase, we can use

two encoded flowset tables: the incoming packets update

one table while we export data in another table. Note that

there is a tradeoff between the memory usage and export-

ing overhead. If we export more often (with a smaller

export interval), there are fewer flows in the interval and

thus require fewer memory usage. Operators can config-

ure the right export interval based on the number of flows

in different time scales and the switch performance. For

this paper, we set the time interval as 10 ms.
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Deployment scenarios: Similar to NetFlow, we can

deploy FlowRadar’s encoded flowset either per port or

per switch. The per-switch case would use less memory

than per-port case because of multiplexing of flows. That

is, it is unlikely that all the ports experience a burst in

terms of the number of flows at the same time.

In the per-switch case, we still need to distinguish the

incoming and outgoing flows (e.g., the two unidirectional

flows in the same connection). One way to do this is

to store the input port and output port as extra fields in

the encoded flowset such as InputPortXOR and Output-

PortXOR as what we did for the 5-tuple flow fields.5 An-

other way is to maintain two encoded flowsets, one for

incoming flows and another for outgoing flows.

FlowRadar can be deployed in any set of switches.

FlowRadar can already report the per-flow counters in

short time scales independently at each deployed switch.

If FlowRadar is deployed at more switches, we can lever-

age network-wide decoding to handle more number of

flows in a burst. Note that our network-wide decoding

does not require full deployment. As long as there are

flows that traverse two or more encoded flowsets, we

start to gain benefits from network-wide decoding. Op-

erators can choose where to deploy, and they know the

flows where they deployed FlowRadar. In the ideal case,

if all switches are deployed, then we know the per-flow

counters at all locations, and the paths of the flows. Op-

erators could also choose a subset of switches. For ex-

ample, if we deploy only on ToR switches, the counters

still cover all the events (e.g. loss) in the network, but

we no longer know the exact locations where the flows

appear in the network. As we mentioned in Section 5.2,

the decoding success rate does not change as long as we

have at least 2 flowsets, so partial deployment does not

affect decoding success rate.

8 Related Work

8.1 Monitoring tools for data centers

Due to the problems of NetFlow, data center operators

start to invent and use other monitoring tools. In addi-

tion to sFlow [40] and EverFlow [44], there are other

in-network monitoring tools. OpenFlow [32] provide

packet counters for each installed rules, which is only

useful when the operators know which flows to track.

Planck [34] leverages sampled mirroring at switches,

which may not be sufficient for some monitoring tasks

we discussed in Section 2. There are also many end-host

based monitoring solutions such as SNAP which cap-

tures TCP-level statistics [41] and pingmesh [25] which

leverages active probes. FlowRadar is complementary

5Similarly, one can easily add other flow properties (e.g., VLAN)

as XOR sum fields.

to the end-host based solutions by providing in-network

view for individual flows.

8.2 Measurement data structures

There have been many hash-based data structures for

measurement. Compared to them, FlowRadar has three

unique features: (1) Store flow-counter pairs for many

flows; (2) Easy to implement in merchant silicon; (3)

Support network-wide decoding across switches.

Data structures for performance measurement and

volume counting: Varghese et. al. proposed a group

of data structures for loss, latency, and burst measure-

ment [28, 37]. However, none of these solutions can

maintain per flow metrics and scale to a large num-

ber of flows. There are many hash-based data struc-

tures that can keep per-flow state with small mem-

ory [15, 42, 36, 43]. However, most of them do not suit

for NetFlow because they can only keep the values (i.e.,

per flow state). Instead, FlowRadar provides the key-

value pairs (i.e., the flow tuples and the packet counters)

and can scale to a large number of flows.

Hash-based data structures for storing key-value

pairs: Cuckoo hashing [33] and d-left hashing [14, 38]

are two hash table designs that can store key-value pairs

with low memory usage. However, both are hard to im-

plement in merchant silicon for NetFlow. This is because

NetFlow requires inserting a flow immediately for an in-

coming packet so that follow up packets can update the

same entry (i.e., atomic read-update operations). Other-

wise, if one packet reads a cell that is being updated by

a preceding packet, the counters become incorrect. To-

day, merchant silicon already has transactional memory

that supports read-update operations in an atomic way

for counters. However, typical merchant silicon can han-

dle read-update operations against only a few (up to four)

4B- or 8B-long counters for each packet6. This is be-

cause to support high link rate of merchant silicon (typi-

cally a few Tbps today), merchant silicon must resort to

a highly-parallelized packet-processing design, and the

atomic-execution logic is at odds with such parallelism.

In fact, to support such atomic read-update semantics

for a small number of counters, merchant silicon has

to employ various complicated hardware logic similar to

operand forward [7].

A d-way Cuckoo hash table [33] hashes each key to d

positions and stores the key in one of the empty positions.

When all the d positions are full, we need to rebuild the

table by moving items around to make room for the new

key. However, this rebuilding process can only be im-

plemented with switch software (i.e., the control plane),

6Note the total number of counters can still be larger; only the num-

ber of concurrently read-and-updatable counters is small.



322 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

because it requires multiple, and often-unbounded num-

ber of memory accesses [33]. Running the rebuilding

process in switch software is not suitable for NetFlow,

because NetFlow requires atomic read-update semantics.

d-left hashing splits a hash table with n buckets into

d equal subtables each with n/d buckets, where each

bucket contains L cells to hold up to L keys. d-left hashes

a new key to d buckets, one in each subtable, and put the

key in the bucket with the least load, breaking ties to the

left. d-left requires first reading all Ld cells and testing

if there is any match for an incoming flow. If there is

a match, we increment the counter; otherwise, we put

a new entry in an empty cell in the least-loaded bucket.

There are two key challenges in supporting d-left: First,

rather than read-update operations, d-left requires atomic

read-test-update operations. The testing logic requires

not only more ALUs and MUXes but also significantly

increase the complexity of the atomic operation logic,

making the critical section much longer in time. Second,

d-left can only make insertion decisions after the testing

on all Ld cells (each cell with 13 bytes 5-tuple fields and

4 bytes counter) are finished, which also increases the

size of the atomic operation logic. Longer atomic op-

eration duration can be a disaster for highly parallelized

packet processing in merchant silicon.

In contrast, FlowRadar is easier to implement in mer-

chant silicon, because of three reasons: First, FlowRadar

only requires atomic read-update operations (i.e., incre-

ment/xor) rather than atomic read-test-update, which is

much simpler in silicon design and has shorter atomic

operation duration. Second, FlowRadar only requires

atomic operations on a single cell and packets can up-

date different cells in parallel. Thus FlowRadar requires

significantly shorter atomic operations and is better fit for

merchant silicon with high line rate.

It is impossible to support d-left with today’s merchant

silicon because the smallest d-left configuration (i.e.,

d = 4 and L = 1) needs to atomically read-test-update

4*17=68B, but today’s silicon only supports 4*8B=32B.

Thus, we compare FlowRadar with the basic d-left set-

ting (i.e., d = 4 and L = 1) that may be supported in fu-

ture silicon, and the setting recommended by [16] (i.e.,

d = 3 and L = 5) which is even harder to implement.

To hold 100K flows on a memory of 2.74MB, the ba-

sic d-left has an overflow rate of 1.04%; both FlowRadar

and the recommended d-left have no overflow. During

flow bursts, FlowRadar can still report flows even when

the counters cannot be decoded. Such flow information

can be used for a variety of tasks like transient black-

hole detection, route verification, and flow duration mea-

surement. For example, to hold 152K flows in 2.74MB

memory, the basic d-left has an overflow rate of 10%;

the recommeded d-left has an overflow rate of 1.2%;

FlowRadar can still decode all 152K flows (but not their

counters).

Invertible Bloom filter Lookup Table (IBLT):

FlowRadar is inspired by Invertible Bloom filter

(IBF) [21] and Invertible Bloom filter Lookup Table

(IBLT) [24]. IBF is used to keep a set of items. By com-

paring two IBFs, one can easily extract the differences

between two sets. Rather then keeping a set of elements,

FlowRadar needs to collect a key-value store of flows

and their packet counters.

IBLT is an extension of IBF that can store key-value

stores. Our counting table is built upon IBLT, but has

two key extensions: (1) How to handle value updates.

Since IBLT does not have a flow filter before it to iden-

tify if a key is new or old, it treats an existing key with a

new value as a new key-value pair which has duplicated

keys with existing key-value pairs. It then uses an arith-

metic sum instead of a XOR sum in FlowXOR field, and

a sum of hash values of the flows instead of a simple flow

counter. This design takes more bits in both FlowXOR

and FlowCount fields, which takes as much memory as

FlowRadar uses for the flow filter. It also requires com-

putations over large numbers (beyond 64bit integer), and

more complex hash functions. Our experiments show

that IBLT saves only 2.6% of memory for 100K keys but

at the expense of 4.6 times more decoding time. (2) How

to decode the keys. Our single node encoding scheme is

similar to IBLT’s, but takes much less time because of

the simple FlowXOR and FlowCount fields. Moreover,

with an extra flow filter, we support network-wide flow

and counter decoding across multiple encoded flowsets.

9 Conclusion

We present FlowRadar, a new way to provide per-

flow counters for all the flows in short time scales,

which provides better visibility in data center networks.

FlowRadar encodes flows and their counters with a small

memory and constant insertion time at switches. It then

introduces network-wide decoding of flowsets across

switches to handle bursts of flows with limited memory.

Our design can be improved in many aspects to further

reduce the cost of computation, memory, and bandwidth,

such as reducing the NetDecode time and better ways to

leveraging redundancies across switch hops.
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APPENDIX

A Algorithms

Algorithm 3: Decoding at a single node

1 Function SingleDecode(A)

2 flowset = /0;

3 foreach c where CountTable[c].FlowCount==1 do

4 flow = A.CountTable[c].FlowXOR;

5 flowset.add(flow);

6 count = A.CountTable[c].PacketCount;

7 for j=1..kc do

8 l=HC
j (flow);

9 A.CountTable[l].FlowXOR =

CountTable[l].FlowXOR ⊕ flow;

10 A.CountTable[l].FlowCount -= 1;

11 A.CountTable[l].PacketCount -= count;

12 end

13 end

14 return flowset;

Algorithm 4: Linear equations for CounterDecode

1 Function ConstructLinearEquations(A,S)

2 M=ZeroMatrix; b=ColumnVector;

3 foreach f lowt in S do

4 for j=1..kc do

5 l = HC
j ( f lowt ); M[l,t] = 1;

6 end

7 end

8 foreach CountTable[ j] in A do

9 b[ j] = CountTable[ j].PacketCount;

10 end
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