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FLOWS, COALESCENCE AND NOISE
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We are interested in stationary “fluid” random evolutions with indepen-
dent increments. Under some mild assumptions, we show they are solutions
of a stochastic differential equation (SDE). There are situations where these
evolutions are not described by flows of diffeomorphisms, but by coalescing
flows or by flows of probability kernels.

In an intermediate phase, for which there exist a coalescing flow and a
flow of kernels solution of the SDE, a classification is given: All solutions
of the SDE can be obtained by filtering a coalescing motion with respect to
a subnoise containing the Gaussian part of its noise. Thus, the coalescing
motion cannot be described by a white noise.

0. Introduction. A stationary motion on the real line with independent
increments is described by a Levy process, or equivalently by a convolution
semigroup of probability measures. This naturally extends to “rigid” motions
represented by Levy processes on Lie groups. If one assumes the continuity of
the paths, a convolution semigroup on a Lie graujs determined by an element
of the Lie algebrg (the drift) and a scalar product gr(the diffusion matrix) (see,

e.g., [31]). We call them the local characteristics of the convolution semigroup.
We will be interested in stationary “fluid” random evolutions which have
independent increments. Strong solutions of stochastic differential equations
(SDEs) driven by smooth vector fields define such evolutions. Those are of a

regular type, namely:

(a) The probability that two points thrown in the fluid at the same time and at
distances separate at distance one in one unit of time tends tosteisds to O.
(b) Such points will never hit each other.

Their laws can be viewed as convolution semigroups of probability measures on
the group of diffeomorphisms.

On a compact manifold, leiy, V1, ..., V, be vector fields and leBl, ..., B"
be independent Brownian motions. Consider the SDE

n
(0.1) dX, =Y Vi(X,) odBf + Vo(X,)dt,
k=1
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which equivalently can be written

(0.2) df (X)) =Y Vif(X,)dBF +1Af(X,)dt
k=1

for every smooth functionf and Af = Y }_; Vi(Vif) + Vof. Note that
Af?—2fAf =Y"_1(Vif)? Then, strong solutions (when they exist), as de-
fined, for example, in [38], of this SDE produce a flow of maps such that,
for everyx, ¢;(x) is a strong solution of the SDE witpy(x) = x, which means
that ¢, is a function of the Brownian pathB?, ..., B" up to timer. When the
vector fields are smooth, strong solutions are known to exist, and to be unique.
The framework can be extended to include flows of maps driven by vector field
valued Brownian motions, which means essentially thatoco (see, e.g., [3, 17,
20, 21, 27]).

In a previous work [23], this was extended again to include flows of Markovian
operatorss; solutions of the SPDE

(0.3) dSif =Y Si(Vef)dBf + 3S:(Af)dt,
k=1

assuming the covariance functiéh= "7 ; Vi ® Vi of the Brownian vector field
>, Vi B¥ is compatible withA, namely that

o.¢]
(0.4) Af?=2fAf <Y (Vif)%

k=1
Existence and uniqueness of a flow of Markovian operafgrsvhich is a strong
solution of the previous SPDE in the sense thiais a function of the Brownian
paths(B');>1 up to time¢, holds under rather weak assumptions. However, it
is assumed in [23] thad is self-adjoint with respect to a measureand the
Markovian operators act ab?(m) only. To avoid confusion with the usual notion
of strong Ité solutions of SDESs, these solutions will be called Wiener solutions
when they are not associated with a flow of maps.

The local characteristics of these flows are givenAynd the covariance
function C, and they determine the SDE or the SPDE. But it was shown in [23]
that covariance functions which are not smooth on the diagonal [e.g., covariance
associated with Sobolev norms of order betweg and (d + 2)/2, d being
the dimension of the space] can produce Wiener solutions, which define random
evolutions of different type:

() turbulent evolutions where (a) is not satisfied, which means that two points
thrown initially at the same place septathough there is no pure diffusion; that
is, thatAf2? — 2fAf =322, (Vi f)2.

(i) coalescing evolutions where (b) does not hold.
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In this paper, we adopt a different approach based on consistent systems of
n-point Markovian Feller semigroups which can be viewed as determining the law
of the motion ofr indivisible points thrown into the fluid. Regular and coalescing
evolutions are represented by flows of maps. Turbulent evolutions by flows of
probability kernelsK ;(x, dy) describe how a point mass (made of a continuum
of indivisible points) inx at times is spread at time. (Note that in that case, the
motion of an indivisible point is not fully determined by the flow.)

Among turbulent evolutions, we can distinguish the intermediate ones where
two points thrown in the fluid at the same place separate but can meet after, that is,
where (a) and (b) are both not satisfied.

In the intermediate phase, it has been shown in [9] (for gradient fields) and (at a
physical level) in [10, 11, 14] that a coalescing solution of the SDE can be defined
in law, that is, in the sense of the martingale problems forstfpwint motions.

We present a construction of a coalescing flow in the intermediate phase. This
flow obviously differs from the Wiener solutioi; ;, s <) and corresponds to an
absorbing boundary condition on the diagonal for the two-point motion.

This flow generates a vector field valued white noiBeand we can identify
the Wiener solution to the coalescing flaw, ;, s <) filtered by the velocity
field o (W). The noise, in Tsirelson sense (see [41]), associated to the coalescing
flow, is not linearizable, that is, cannot be generated by a white noise though it
containsw.

A classification of the solutions of the SDE (or of the SPDE) can be given: They
are obtained by filtering a coalescing motion defined on an extended probability
space with respect to a subnoise containing the Gaussian part of its noise.

Let us explain in more detail the contents of the paper. We give in Sections
1 and 2 construction results, which generalize a theorem by de Finetti on
exchangeable variables (see, e.g., [18]). A stochastic flow of kerKels

associated with a general compatible famﬂlB}”), n > 1) of Feller semigroups.
The flowK is induced by a flow of measurable mappings when

P@ £82(x x) =P, f(x),

forall f € C(M), x e M andt > 0. The Markov process associated vvfrtﬁ”)
represents the motion efindivisible points thrown in the fluid. The two notions
are shown to be equivalent: the law of a stochastic flow of kernels is uniquely
determined by the compatible systemmpoint motions. This construction is
related to a recent result of Ma and Xiang [28] where an associated measure valued
process was constructed in a special case (the flow can actually be viewed as giving
the genealogy of this process, i.e., as its “historical process”) and to a result of
Darling [9]. Note, however, that Darling did not get flows of measurable maps
exceptin very special cases. See also Tsirelson [43] for an alternative approach to
this construction.

In Section 3, we define the noise associated \Withnd introduce the notion of
“filtering with respect to a subnoise.”
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In Section 4, coalescing flows are constructed and briefly studied. They can
be obtained from any flow whose two-point motion hits the diagonal. Then the
original flow is shown to be recovered by filtering the coalescing flow with respect
to a subnoise.

In Section 5, we restrict our attention to diffusion generators. We define the
vector field valued white nois® associated with the stochastic flow of kerngls
and prove that the flow solves the SDE driven by the white niise

In Section 6, under some off-diagonal uniqueness assumption for the law of
the n-point motion, we show there is only one Wiener solution of the SDE. In
the intermediate phase described above, the classification of other solutions by
filtering of the coalescing solution is established. Then we identify the linear part
of the noise generated by these solutions to the noise generai&d by

The examples related to our previous work (see [23]) are presented in Section 7,
with an emphasis on the verification of the Feller property for the semign@fﬁbs
the classification of the solutions and the appearance of nonclassical noise, that is,
predictable noises which cannot be generated by white noises.

1. Stochastic flow of measurable mappings.

1.1. Compatible family of Feller semigroupsLet M be a compact metric
space and lef be a distance on.

DEFINITION 1.1. Let (P,(n),n > 1) be a family of Feller semigroups,
respectively, defined oM” and acting onC(M"). We say that this family is
compatible as soon as, for &l n,

k
where f andg are any continuous functions such that
1.2) g yn) = iy -0 Vit

with {i1, ..., it} C {1, ...,n} and(x1, ..., xx) = Vigs - - -» Vi) -
We will denote bwgi ..... +,) the law of the Markov process associated vt
starting from(x1, ..., x,,). This Markov process will be called thepoint motion

of this family of semigroups. It is defined on the set of cadlag path&tn

REMARK 1.1. P is a Feller semigroup om" if and only if P is positive

(i.e.,P™ £ > 0 for every f > 0), P'1 =1 and for every continuous functiof
P™ £ is continuous and lim,oP"™ f(x) = f(x), which implies the uniform
convergence OIP,(”)f towardsf (see Theorem 9.4 in Chapter | of [7]).

1.2. Convolution semigroups on the space of measurable mappivgs equip
M with its Borelo -field 8(M). Let (F, ) be the space of measurable mappings
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on M equipped with ther-field generated by the mappings— ¢(x) for every
xeM.

DEFINITION 1.2. A probability measur@ on (F, ) is called regular if there

exists a measurable mappigg (F, ) — (F, ¥) such that
(MxF,8(M)®F)— (M, B(M)),
(x, ) = F(@)(x),

is measurable and, for everye M,
(1.3) Qdg)-as, F(p)(x) = p(x),
that is, 4 is a measurable modification of the identity mapping(6n¥, Q). We
call it a measurable presentation@f

ProPOSITION1.1. LetQ1 and Q> be two probability measures oiF, ).
Assum@); is regular Let ¢ be a measurable presentation@{. Then the mapping

(F?, F9%) — (F, %),
(@1, 92) = G(p1) 0 @2,

is measurableMoreoverif ¢’ is another measurable presentation®f, then for
everyx € M,

(1.4) Qi(de1) ® Qa(dyo)-as., F (1) 0 p2(x) = F'(91) 0 P2(x).

REMARK 1.2. (i) (¢1,92) — 4 (p1) o2 is measurable but1, ¢2) — @10¢2
is not measurable.

(i) The law of g(¢1) o @2 does not depend on the chosen presentation

PROOF OFPROPOSITION1.1. Letd be a measurable presentation@f.
For everyx € M, the mapping(p1, ¢2) — J(¢1) o p2(x) is measurable since
it is the composition of the measurable mappin@s, ¢2) — (¢1, p2(x)) and

(¢1,y) = F(p1)(y). By definition of ¥, the mapping(¢1, ¢2) = F(¢1) o @2
is measurable.
For everyx € M, we have

Qi(dg1)-a.s, F(p1) (x) = 1(x).
Thus, for allx e M andgo € F,
Qi(dp1)-as,  F(p1) o p2(x) =10 ¢2(x) = §'(p1) 0 g2(x).
Therefore, using Fubini’s theorem, for everg M,

Q1(d¢1) ® Q2(dg)-a.s, F(91) 0 p2(x) = F'(91) 0 p2(x). O
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DEFINITION 1.3. We denot®; x Q2, and we call the convolution product of
Q1 andQg, the law of the random variabl@1, ¢2) — $(¢1) o @2 defined on the
probability spacéF2, F®2, Q1 ® Qo).

DEFINITION 1.4. A convolution semigroup otF, ¥) is a family (Q;):>o
of regular probability measures @i, #) such that, for all nonnegatiseandt,

QS+Z = Qs * Qt-

DEFINITION 1.5. A convolution semigrougQ;);>0 on (F,¥) is called
Feller if:

(i) Y feCM),lim_osup.cy [(f o) — f(x))?Q(dp) =0.
(i) Y feCM),Vt>0,limyu -0 [(f opx)— fop(y)?Q(dp) =0.

PROPOSITION1.2. Let(Q;);>0 be a Feller convolution semigroup @#’, ¥).
Foralln>1, fe C(M")andx € M", set

(1.5) P £ (x) = / F 0 0®"(0)Q(dp).

Then(P,(”), n > 1) is a compatible family of Feller semigroups #f satisfying
(1.6) P2 FO2(x, x) =Py f2(x),
forall f e C(M),x € M andr > 0.

PROOF It is easy to see that this family is compatible and that, forall 1
and: > 0, P,(”) is Markovian. Lets ands be inR*, f € C(M™) andx € M; then

P F(x) = / £ 0 0® (0)Qysr (dp)

- / £ 0 §@D)®" 092" (x)Q(dp1) ® Qs (dg)

- / P £ o 6 (0)Q; (de2)
= PP (),

whered is a measurable presentation@f. This proves thaPﬁ”) is a semigroup.

Let us now prove the Feller property. Lét € C(M") be in the form
iR & fu, x = (x1,...,xy) and y = (y1,..., y»). We have, forM large
enough,

n 1/2
(L7) PP h(y) —PPh()| < M Z( [(iowtn = feopto)’e (dw)) ,

k=1
which converges toward 0 as(x, y) goes to 0 since (ii) in Definition 1.5 is
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satisfied. We also have
n 1/2
(1.8) [PVh(x) —h(x)| <M Z( / (fico plxe) — fk(xk))zQz(d(/’)) ,
k=1

which converges toward 0 agjoes to 0 since (i) in Definition 1.5 is satisfied. These
properties extend to every functignin C(M") by an approximation argument.

This proves the Feller property of the Markovian semigr
It remains to prove (1.6). This follows from

P 12,2 = [ 152052, x)Qu(dg)
= [ 12 oemuidy) =P 0. .
REMARK 1.3. The semigrouf®Q;);>o is uniquely determined b(\P,(") n>1).

1.3. Stochastic flows of mappings.

DEFINITION 1.6. Let (2, 4,P) be a probability space. A family of
(F, ¥)-valued random variable®; ;, s <) is called a measurable stochastic flow
of mappings if, for alls < ¢, the mapping

(M x Q, B(M) ® A) — (M, B(M)),

(x7 C()) = (pS,[(-x7 C()),
is measurable and if it satisfies the following properties:

(@) Foralls <u <t andx € M, P-a.s.,¢;;(x) = ¢4+ o ¢5.,(x) (cocycle
property).
(b) Foralls <t, the law ofg ; only depends on— s (stationarity).
(c) The flow has independentincrements; that is, foriaft 1o < --- < t,,, the
family {¢y, 1., 1 <i <n — 1} is independent.
(d) Foreveryf e C(M),
lim — SUPE[(f 0 ¢y () — f 0 gu,u(x))?] = 0.

(w,0)—>(s,1) yeMm

(e) Forallf e C(M) ands <t,

. 2 J—
d(xljy;]eoE[(f ops(x)— fo (ps,t(y)) ] =0.

DEFINITION 1.7. A family of (F, ¥)-valued random variableg = (¢,
s < t) is called a stochastic flow of mappings if there exigts= (¢; ,.s < 1),
a measurable stochastic flow of mappings, such that, faralM ands <,

(1.9) P-as, ¢, (x) =@ (x).
The stochastic flow’ is called a measurable modificationgf
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PROPOSITION1.3. Lety = (¢s;, s <t) be a stochastic flow of mapping®r
aln>1 feCM") andx € M", set

(1.10) P f(x) =ELf 0 o7 ().

Then (Pﬁ”),n > 1) is a compatible family of Feller semigroups @i satisfy-
ing (1.6).

PrROOF The proof is similar to the one of Proposition 1.2 (proving first the
Feller property forf Lipschitz). [

REMARK 1.4. The law ofp is uniquely determined bgp™, n > 1).

1.4. Construction and characterizationIn this section, we present a theorem
stating that to any compatible famil@Pﬁ”),n > 1) of Feller semigroups, one
can associate a Feller convolution semigroup(éh¥) and a stochastic flow
of mappings.

Let (20, 4% denote the measurable spadd,, F,®,, ). Fors <1,
let (pSJ denote the random variabte w (s, 1). Let ¢° be the random variable
(@2,.s <1). Then %w) = w. Let (Ty)ser be the one-parameter group of
transformations of2° defined byT}, (w)(s, t) = w(s+h,t+h),foralls <7, h e R
andw € Q0.

DEFINITION 1.8. A probability spaceés2, 4, P) is said to be separable if
the Hilbert spacd.?($2, 4, P) is separable. [Note that this implies that, for every
1<p<oo, LP(R2, A,P)is separable.]

THEOREM 1.1. (i) Let (P,(n),n > 1) be a compatible family of Feller
semigroups o/ satisfying
2
(1.11) PP 22(x,x) = P f2(x),
forall f € C(M), x € M andr > 0. Then there exists a unique Feller convolution

semigroup(Q;);>o on (F, ¥) such thatfor all »n > 1, >0, f € C(M") and
xeM",

(1.12) P f(x) = / £ 00®"(0)Q(dp).

(i) For every Feller convolution semigrouR = (Q;);>0 on (F, ¥), there
exists a uniqueTy,),cr-invariant probability measur@q on (20, A% such that
(Q°, A%, Pg) is separablethe family of random variableg® = (¢2,,s <) is a
stochastic flow of mappings anfor all s < ¢, the law ofgoﬁ, is Q;_s. There exists
a measurable modification @f, ¢’ such thatp] , ., = ¢} ; o Th.

The flowg? is called the canonical stochastic flow of mappings associated
with Q [or equivalently withP\™, n > 1)].
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REMARK 1.5. Theorem 1.1 is also satisfied whehis a locally compact
separable metric space. In this caslelf"),n > 1) is a compatible family of
Markovian semigroups acting continuously ¢lg(M"), the set of continuous
functions onM" converging toward 0 ato (we call them Feller semigroups).
In Definitions 1.5 and 1.6 and in the statement of Theorem 1.1, the fung¢tion
has to be taken i€o(M) or in Co(M™). Moreover (ii) of Definition 1.5 must be
modified by: for allx € M, f € Co(M) andz > 0,

2
y!ignx/<f op(y)—f ow(ﬂ) Q/(dp)=0 and
(1.13)

. 9 B
y[)moo/(f O‘/’(y)) Q:(dyp)=0.
In Definition 1.6, (e) must be modified by: for alle M ands <1,

1M E[(f 0 @ur(3) = f 09s(0))°] =0 and

(1.14) ]
y”—>moo E[(f o ¢s.1(¥)) ] =0.

PROOF In order to prove this remark, note that the one-point compactification
of M, M=MU {0}, iIs @ compact metric space. (Zfl\, we define the compatible
family of Feller semigroups(ﬁ;”), n > 1), by the following relations:

for everyn > 2 and every family of continuous functions qun, {fi,i =1},

PUA® - ® f
(1.15) n o
+Zf,-(oo)pt("— )f1®"‘®fi—1®gi+1®"'®gn
i=1
and
(1.16) PP fi= fa(o0) + PPy,

where g; = f; — fi(co) € Co(M) and with the conventiorPﬁ”)gl R - ®
gn(x1, ..., x,) =0 if there exists such that; = co. We apply Theorem 1.1 t&f
and to the family(ﬁﬁ”),n > 1) to construct a Feller convolution semigroqp
and a stochastic flow of mappingg;,,s <) on M. This stochastic flow of
mappings satisfies:

(i) @s.1(c0) =00 foralls <rand
(i) @s5.:(x)#ooforallx e M ands <.
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Proof of (i). For everyf e C(M),

E[(f 0 @s.+(00) — £(00))°] = P2, &2(00, 00) — 2 (00)PD, f(00) + f(00)?
= 0’

sinceP®, £92(c0, 00) = f(00)? andPY, f(c0) = f(c0). This implies (i).

Proof of (ii). Letg, be a sequence iio(M) such that, € [0, 1] and simply
converging towards 1. Thefy, =1 — g, € C(M) is such thatf,(co) = 1 and, for
everyx € M,

. 215 A
E[(f; 0 @s.r (0)] = P2, g®2(x, x) +1— 2P g, (x).

This implies that lim_ - E[(f, o g?)s’,(x))z] = 0. Assertion (ii) follows since
ﬂ{és,t(x)=00} =1iM,_ 00 fu 0 (/A)s,t(x)-

For everyx € M, let us denotep,,(x) by ¢s,(x). Assertions (i) and (ii)
imply thaty, ; € F and that(gs ,, s <) is a stochastic flow of mappings av.
In a similar way, one can show that induces a Feller convolution semigroup
on(rF,¥). O

Let us explain briefly the method we use to prove Theorem 1.1. We first suppose
we are given a compatible family of Feller semigroups satisfying (1.6). Then we
define a convolution semigrouj®;, t > 0) on measurable mappings a@f. For
everyt, to defineQ,, we defineP,(OO), the law of(p(z;), I € N), where the law of
is Q,, for some dense familyz;,! € N) in M and getQ, by an approximation.
HenceQ;, is defined as the law of a random variable, which takes its values in the
“pbad” spaceF, but is defined on a “nice” spacde”.

The approximation used to construct this convolution semigroup allows us to
define a stochastic flow of mappings a# in such a way that these mappings
are measurable, defining it first on the dyadic numbers. We get a measurable flow
defined on a “nice” space. Note that a difficulty in getting this measurability comes
from the fact that the composition of mappings frafonto M is not measurable
with respect to the natural-field.

1.5. Proof of the first part of Theorerh.1 In the following, we assume we
are given(P,(”), n > 1), a compatible family of Feller semigroups satisfying (1.6).
We intend to construct a Feller convolution semigro(@),>o on (F,¥)
satisfying (1.12). The uniqueness of such a convolution semigroup is immediate
since (1.12) characteriz€s.

1.5.1. Ameasurable choice of limit points M. Itis known that, as a compact
metric spaceM is homeomorphic to a closed subsef@f1]Y (see Corollaire 1
in Section 6.1 of Chapter 9 in [8]). A point can be represented by a sequence
(y"Mnen € [0, 11N Let y = (y;)ien be a sequence of elementsit
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Let y! =limsup_ oy} Letil =inf{i, |yt — y}| < 1/k}. By induction, for
every integerj, we construcy/ and{ij, k € N} by the relations
y/ =limsupy’_, and i} =infli e {ij " ke N}, |y/ — y/| < 1/k}.
k—oo

We denote(y™),en by I(y). Note that/(y)/ = lim,_ yl’ Hencel(y) belongs
to M. It is easy to see thétsatisfies the following lemma.

LEmMA 1.1. [: MY — M is a measurable mapping/ being equipped with

the Borelo-field 8(M) and MY with the products -field 8(M)®N. Moreover
1((y1)ieN) = Yoo Wheny; converges towarg. .

1.5.2. Notation and definitions. Let {z;,] € N} be a dense family inM,
which will be fixed in the following. We wish to define a measurable mapping
i: MY — F suchthat ((y;)jen)(z:) = y; for every integet.

Let (ex)ren be a positive sequence decreasing toward 0 (this sequence will be
fixed later). Leti : MY — F be the injective mapping defined by

(1.17) i) =1(¥nf)ren):
where
(1.18) ny =inf{n, d(z,, x) < &},

for (y,x) € MY x M. Note thati(y) defined this way is a measurable mapping
sincel is measurable and+— (YnfkeN is measurable. Note also that the relation

i(y)(z;) = y; is satisfied for every integér
LEMMA 1.2. For n > 1, the mappings®, :(MY)" — F and ¥,: M x
(MNy" — M, defined by
D, (vt Y =i() 0i(y" o 0i(yh),
W, vty =00 Ly (),
are measurabld(MY)" and M x (MN)" are equipped with the produet-field.]
In particular, i is measurable

PROOF Note thatW; is the composition of the mappindsand (x, y) —
(yn;)keN- Since these mappings are measurableis measurable. By induction,
we prove thatW,, is measurable since, far> 2,

\Ijn(x’ yla L] yn) = \Ijl(\pn—l(xa y17 ceey yn_l)a yn)
ForallA e 8(M) andx € M,
D, ({p e Fokx) e AY) ={y e M), (x,y) € U, 1 (A)}.

This event belongs taB(M)®Y)®" since ¥, is measurable. This shows the
measurability ofd,,. O
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We need to introduceb, because the composition applicatidgfft — F,
(@1, ..., 0n) > @ 0---0 @1 iS NOtF ®"-measurable in general.
Let j: F — M" be the mapping defined by

(1.19) J @) = (¢@D)en-

LEMMA 1.3. The mapping; is measurable and satisfigso i(y) = y for
everyy e MN,

PROOF  We have, for everyt € 8(M)®",

Pty eMY, (1, ...y e A) = e F, (9(z1), ..., 0(z)) € A}.
This set belongst¢. O

Note that, forall e Nandg € F,i o j(p)(z;) = ¢(z)).

1.5.3. Constructions of probabilities o™ and onF. By Kolmogorov’s the-
orem, we construct o/ a probability measunet(oo) such thaPEOO)(A x MYy =
P,(")]lA(zl, ...,zn) forany A € 8(M)®". We now prove useful lemmas satisfied
by P>,

LEMMA 1.4. For every positiveT, there exists a positive functiogy (r)
converging toward asr goes to0 such that

(1.20) sup EZ [(d(X,. Y))?] < er(d(x. ).
te[0,T] (x.y)

PROOF  For every continuous functiofi, we have
E? [(F(X0) = F(00)2] =Pi f200) + P, £2(3) — 2P2 92(x, y)

=P f82(x, x) + P2 fO2(y, y) — 2P17) f®2(x, ),
since (1.6) is satisfied. L&f},),,>1 be a dense sequencgific C(M), || f |loo < 1}.

Thend' (x, y) = (Y21 27" (fu(x) — £2(3))» Y2 is a distance equivalent thand
we have

2

E(x’.y)

whereh is the continuous functiop, - ; 27" £, ® f,. We conclude the lemma after
remarking that this function is uniformly continuous(nx, y) on [0, T] x M?2.
d

[(d (X, ¥))?] = PPhix, x) + PPh(y.y) — 2P h(x, y),

From now on we fixT and define the sequence, )N [which defines the
sequenceny)ken for everyx € M by (1.18)] such that G r < 2¢; implies
er(r) < 273%. The sequencésy)ren is well defined since lim,ger(r) = 0.
Sincei depends orT', we now denoté by i, ®, by ®I andw, by w!.
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LEMMA 1.5. For everyr € [0, T] and for any independent random variables

X and Y, respectivelyin M and MY, such that the law ofv is P,(OO), then
Yn,f converges almost surely tOW&rli$Y,,,§)keN) =ir(Y)(X) ask goes tooo.

PrROOF Note that(Y,,lg)keN is a random variable [the mapping, y) —
(YnfkeN is measurable]. For every integlerd(z,,-;, ZniH) < 2¢; and
—k 2k —k
(1.21) P[d(Yni(’ Yn,iLl) >2"] <2 E[ST(d(an’Znill))] <2

Using the Borel-Cantelli lemma, we prove that a(%}g)keN is a Cauchy
sequence and therefore converges. Its limit can on&(@%)keN). O

LEMMA 1.6. Let(X,),en be a sequence of random variablesihconverg-
ing in probability toward a random variabl® . LetY be a random variable i/~
of law P("o) independent ofX,,)nen. Thenir (Y)(X,) =1((Y, Xn)keN) converges
in probability towardsit (Y)(X) =1((Y, x)keN) asn tends tooo.

PROOFE Let Z, = LY xn ) keN) and Z = l((Ynf)keN). For every integek,
k
we have

Pld(Zn, Z) > €] < P[d(Zn, Yn,f") >¢/3]+ P[d(Yﬂf"’ Yn,f) > ¢/3]
+Pld(Y,x. Z) > £/3].

Lemma 1.5 implies that the first and last terms of the right-hand side of the
preceding equation converge toward Gkagoes tooco. The second term is lower
than(9/e2)E[er (d(z,xn, zng))]. Since for every positive, there exists a positive

k

such thatr| < n implies (9/¢2)|e7 (r)| < «, we get
PlA(Y,x, Y,x) > &/3] <+ CPld(z, %, 2,%) > n]
<a+ CPld(Xy,, X) > n — 2&],

where C = 9D?/¢? and D is the diameter ofM (one can chooser such
that er(r) < D? for every r). Therefore, we getP[d(Z,,Z) > €] < a +
CP[d(X,, X) > n] and for every positivex, limsup,_, ., Pld(Z,,Z) > ¢] <a.
Thus we prove thaZ,, converges in probability toward. [

For everyr € [0, T], setQ, = i}(Pﬁoo)). It is a probability measure ofF, F)
and it satisfies the following proposition.

PROPOSITION1.4. Q; is the unique probability measure ¢R, ) such that
for any continuous functioff on M" and anyx € M",

(1.22) /F £ og® (0)Q ) =P £ (x).
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Moreover j*(Q;) = P> and(ir o j)*(Q) = ix(P*™) = Q,.

PROOF The unicity is obvious since (1.22) characteri@gslLet us check that
Q= i;(P§°°>) satisfies (1.22). LeY be a random variable of Iaw,("o). Then, for
every f € C(M™) and everyr € M",

/Ff°<ﬂ®"(X)Qt(d90)=E[f(iT(Y)(M),---,iT(Y)(xn))]

= lim E[f(Ynil""’Yx")]

k—o00 g
= lim P f(z,, ... zym) =P £(x),
k—00 k k
using first dominated convergence theorem and Lemma 1.5, then the definition
of P* and the fact thap!" is Feller. O

REMARK 1.6. SinceT can be taken arbitrarily large, we can defgfor
every positiver and the definition ofQ; is independent of the chosdh since
Q; satisfies Proposition 1.4.

1.5.4. A convolution semigroup ofF, ).

LEMMA 1.7. For everyt >0, Q; is regular And for everyT' > ¢, ir o jis a
measurable presentation Qf.

PROOF LetO<t<T.Forallxe Mandp e F,iroj(¢p)(x)= \lllT(x, Jj(®)).
Since\IllT andj are measurable, the mappig ¢) — it o j (¢)(x) is measurable.
Letx € M. SinceQ; = i;(Pt(oo)), if Y is a random variable of Iaw,(oo),

Qu[d(p () 9()) > 27 = P[d(Yyr, it (V) () = 27¥]
= lim Pld(¥,;. Yyy) = 27 <27,
since for alll > k, d(Zpy, 2p¥) < 26 [see (1.21)]. Using the Borel-Cantelli lemma,
we prove thato(z,,i) converges a.s. towaa(x). Therefore,
Q/(dy)-a.s, ir o j(@)(x) =@(x).
This proves the lemma.C]
REMARK 1.7. Lety and X be independent random variables, respectively,

F-valued andM-valued. Then, if the law op is Q; and if M x Q > (x, w)
¢(x, w) € M is measurable, Fubini’s theorem implies that, for evEry t,

(1.23) P-a.s, it o j()(X)=p(X).
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LEMMA 1.8. Forall,...,5,In[0, T],
(1.24) @) (PP ® - @P) = Quip-

PROOF Let us prove tha(@,{)*(P,(fO) - ® P,(;’O)) satisfies (1.22) for all
feCMb, x e M* andr =11 + - - - + 1,,. To simplify, we prove this fok = 1.
Let f € C(M) andx € M; then, applying Fubini’s theorem,

/F FeN@D* (P - ©P™)dg)
= / Flir (™ oir(" o - 0ir(YH0))P @y @ --- @ P (dy")
= / PPLEO" Yo 0ir(GH))PVdyh) @ - @ P (dy" ™)

1
= =P, [).

The proof is similar forf € C(M)* andx € M*. We conclude using Proposi-
tion1.4. [

PROPOSITION1.5. (Q);>0 is a Feller convolution semigroup aiF, ).

PROOF For all nonnegatives and ¢, 1 o j®2 is measurable. Proposi-
tion 1.4 and Lemma 1.8 imply that®? o j®%)*(Q; ® Q;) = Q4. Since

(@5 o J®) (@1, 92) = (i1 0 j) (1) o (ir 0 j)(¢2), We have easily tha, x Q, =
Qs1+. The Feller property foQ is easy to prove. [

This proves the first part of Theorem 1.1.

1.6. Proof of the second part of Theorelrl. We now assume we are given
a Feller convolution semigrouR = (Q;);>o0. With Q, we associate a compatible

family of Feller semigroupsPﬁ”), n>1)and construcP,(oo) as in Section 1.5.3.

1.6.1. Construction of a probability spaceFor everyn € N, let D, =
{j27",j € Z} and letD = |,y D, be the set of the dyadic numbers. We take
T =1 and set =i; and®, = ®L.

For every integen > 1, let (S,, 8,, P,) denote the probability spaa@/¥,
BN, PNOT et 1,8, — Sp-1, o > "L, where

-1 . L. .
(1.25) @) 51y = J 0 P2z 120, @i jn) = J (i (Wi /20) 0 (Wzi 1yy20))-
FromLemma 1.8z, ; ,(Pn) =Py_1.

Let @ = {(@")nen € [1Sn, Tn_1.0(@") = "1} and letA be thes-field onQ

generated by the mappings : Q — S,, with 7, ((0®)rerny) = »”. Let P be the
unique probability on(€2, 4) such thatr,; (P) = P, (see Theorem 3.2 in [34]).



1262 Y. LE JAN AND O. RAIMOND

For all dyadic numbers < ¢, let ¥ ; be theo -field generated by the mappings
(@) ken > o foralln e N andu € D, N [s, t].

1.6.2. A measurable stochastic flow of mappingsin

DEFINITION 1.9. On(L2, 4, P), we define the following random variables:

1. Foralls <t € Dy, letg! ,(0")ken) = P—g2 (@], ..., " 50).
2. Foralls <t €D, letg,, = ¢!, wheren = inf{k, (s, 1) € DZ}.

Then, for everys € Dy, ¢, 12n(w) = i(0}). Let us remark that, for all
s <t € Dy, the law ofy, ; and ofg{ , is Q,—; (this is a consequence of Lemma 1.8)
and thatM x Q > (x, w) — ¢, :(x, w) € M is measurable. Note also that, for all
s <u <t € Dy, we havep], =gy , o ¢f .

ProPOSITION1.6. Forall s <t € D, and everyM-valued random variable
X independent of; ;,
oL (X) =g (X)  P-as

PROOF  Itis enough to prove that, for all< ¢ € D, ¢y ,(X) = goj,‘jl(X) a.s..

This holds since

op (X) =i(]_5) o 0i(@f)(X)

= (i 0 j)(¢] Ty ) om0 i 0 @l T, ) (X).

Using Remark 1.7 and the independence of the family of random variables
{wZ“‘l,u € D,+1}, we prove that the last term is a.s. equal@’@zl,nt 0---0

1 1
P () =0l (). O

REMARK 1.8. The preceding proposition implies that, forak u <t e D
and everyM-valued random variabl& independent of; ;,

(1.26) @5, (X) = @u,r 0 Psu(X), P-a.s.
We now intend to define by approximation, for ak 7 in R, an(F, ¥)-valued

random variabley, ; of law Q,_s. In order to do this, we prove the follow-
ing lemma.

LEMMA 1.9. For every continuous functiofi on M2, the mapping

(1.27) (s,t,u,0,x, %) > E[ f (05,0 (%), 9u,0 ()]

is continuous or{(s, t) € D2, s < t}? x M? (and therefore uniformly continuous
on every compapt
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PrROOF Foralls <u <t <wvin D, using the cocycle property, we have
ELS(5,6(X), @uv ()] = E[f (@u,r © Ps.u(xX), @10 0 00,1()) ]
= (P ® P2, (1@ PL,) f(x. 7).
Foralls <u <v <tin D, using the cocycle property, we have
ELS (¢5,6 (%), @u,u(0) ] = E[f (#v,1 © Pu,v © 5,0 (X), @u,0 (V)]
= (P2, ® NP2, (P2, ® 1) £ (x, ).
Foralls<t<u<wvin D,
ELf (5.0 (). ()] = (P @ PEY,) £ (x. y).

All these functions are continuous and they join. This implies the lemma.

For every realr and every integem, let 1, = sufu € D,,u < t}. For
all s <t eR, we define the increasing sequendey),cn and (¢,),cn. Using
Lemma 1.9 forf (x, y) = d(x, y) and the Markov inequality, for every positige
we have

(1.28) lim supsupP[d (s, .1, (X), @54 (X)) = ] =0.

>0k ~nxeM

Set @51 (x) = [((¢s,.1,(x))). Then M x Q > (x,w) — @5 (x,w) € M is
measurable ang; ; is an(F, ¥)-valued random variable.

LEMMA 1.10. For every positive and alls <,
(1.29) 1lim_supP([d(gs, q, (x), 5.1 (x)) = €] = 0.
xeM
PrRoOOF Equation (1.28) implies thapy, ; (x) converges in probability to-
wardsg; ;(x). Thus, for every positive,
P[d(fpsn,t,, (x), (ps,t(x)) = 8] = k”—>moo P[d((/’sn,t,, (%) Py (x)) = 8]-
Therefore,

SUPP[d (s, .1, (x), @s.1(x)) > €] < SUPSUPP[d (s, .1, (X), @5 (X)) > €],
xeM k>nxeM

which implies the lemma. O

PrRopPOSITION1.7. Forall s <t € R, the law ofy; ; is Q;—;.
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PROOF For all k > 1, f € C(M*) and x € M¥, Lemma 1.10 and the
dominated convergence theorem imply that

k ; k

ELf 0@ (0] = lim E[f ol (x)]
- k k

= n||—>moo Pt(n)—s,,f(x) = Pt(—)s Jx)

sinceng) is Feller. This implies that the law @f; ; is Q;—;. O

Let us now prove the cocycle property.

ProrPoOsITION1.8. Forall x e M ands < u < ¢, P-a.s,,

(1.30) @s,1(X) = @yt 0 @5 u(x).

PROOF  Almost surely we haves, ; (x) = @y, .1, ©@s, .u, (X) SINCES, < up < t,
belong toD. On one handy;, ;, (x) converges in probability towards ;(x). On
the other hand,

P[d((pun,tn O Qs ,uy, (x), Du,t ©Ps.u (x)) > 8]
< P[d((pun,tn O Qs uy, (x)a Pu,t © Ps,,,uy, (-x)) = 8/2]
+ P[d((pu,t O ¥s, ,u, (x)a Pyt © (ps,u(x)) = 5/2]

Lemma 1.10 shows that the first term converges towards 0 and Lemma 1.6 shows
that the second term converges towards 0 [With= ¢y, ,, (x), X = ¢, (x),
Y = j(gu.;) and using the fact thato j (¢, ;)(x) = ¢, (x) a.s. for every € M].

Il

Thus we have constructed a stochastic flow of measurable mappinds on
associated with the compatible family of Feller semigro(Fp(é), k > 1) and with
the Feller convolution semigroug;, ¢ > 0).

Let ¢ be the(22°, A%)-valued random variable defined by= (¢ ;, s <1). Let
Pgo = ¢*(P) be the law ofp. Then by a monotone class argument, we show that
T,/ (Pq) = Pq for everyh € R.

Let us now prove that o(2°, A°, Pg) the canonical random variab@(w) = w
is a stochastic flow. For eveny> 0, there existsf, a measurable presentation
of Q; (one can takef, =i, o j). For alls <1, sety, , = 9,—;(¢?,). Then, for all
x € M ands <1,Pq-a.5.¢} ,(x) =¢?,(x). Thengy' = (¢, ,.s <1) isameasurable
stochastic flow of mappings. Indeed, to prove (a) in Definition 1.6, we remark that,
for s <u <t andx € M, the mapping

G:(F3, %% > (M?, 8(M)®?),
(91, 92, 93) = (Fr—u (1) © Fu—s(@2)(x), F1—s(03) (X)),
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is measurable. Thus (@u,., ¢s.u. ¢s0) and G(@2,,¢2,.¢2,) have the same
law. Since

P-a.s, Fr—s (@5,0)(X) = F1—u(@u1) © Fs—u(@s,u) (X)),

we have

Po-as,  Fi—s(@2)(x) = Fr—u(@p ) 0 Fs—u(92,)(x).

This proves (a) ang’ is a measurable stochastic flow of mappings, proving also
thaty is a stochastic flow of mappings. Finally, fox ¢ andh € R, we have

Osinian = Fr—sPsth.i+h)
= F1—s (@5, 06p) = <P;,t o 0y.

Thus, we have constructed the canonical stochastic flow of mappingg on
associated with the Feller convolution semigra@pNote thatPq is uniquely
determined byQ and is associated to a unique compatible family of Feller
semigroups. The fact thaQ®, A°, Pg) is separable is a consequence of the
construction ofp. The proof of Theorem 1.1 is finished.

1.7. The example of Lipschitz SDESNe first show a sufficient condition
for a compatible family of Markovian kernel semigroups to be constituted of
Feller semigroups.

LEMMA 1.11. A compatible familyP™, n > 1) of semigroups of Markov-

ian kernels is constituted of Feller semigroups when the following condition
is satisfied

(F) For all f e C(M) andx e M, lim,_oPY f(x) = f(x) and for allx € M,
e>0andr >0, lim,_, Pﬁz)fg(x, y) =0,wheref.(x,y) = Lax,y)>e-

PROOF Leth e C(M") beinthe formfi ® --- ® f, andx = (x1,..., x,)
in M". We have, forM large enough,

(1.31) PR —ho| = MY (PY 2+ 2 = 26t fi) TP,

k=1
which converges toward 0 asgoes to O since, for every € C(M) and every
xeM,lim,_g Pﬁl)f(x) = f(x). We also have, foy = (y1, ..., y,) in M",

n
(1.32) [P™h(y) —Ph0)| <MY PP(1® fi — fi ® 1) (e, x1),
k=1

which converges toward 0 astends tox since, for allf € C(M) andx € M,
lim,,P?(1® f — f ® 1))(y.x) = 0. Indeed,¥ > 0, 3¢ > 0 such that
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d(x,y) <eimplies|f(y) — f(x)| < «. Thisimplies

(1.33)  PPU1® S~ f® 1D 0) <@ +2fllecP? fe(x, ).

This implies limsup_, Pﬁz)(|1® f—f®1)(y,x) <aforeverya >0. O

REMARK 1.9. (i) The previous result extends to the locally compact case
[using the fact thaCo(M) is constituted of uniformly continuous functions].

(i) When (F) is satisfied, for all positive f € Co(M) andx € M, P;Z)f®2(x,
x) = Pﬁl)fz(x). This implies that (F) is not a necessary condition. Theo-
rem 1.1 shows that a stochastic flow of mappings is associated with this family
of semigroups.

DEFINITION 1.10. A two parameter familyW;,,s < r) of real random
variables is called a real white noise if:

(i) forall s <t, Wy, is a centered Gaussian variable with varianees,
@iy for all ((s;,t),1 <i <n) with 5; <1 < s;51, the random variables
(Wy, 1, 1 <i <n) are independent, and
(iii) forall s <t <u, W, =Wy, + W; 4.

Let V,Vi,..., Vi be bounded Lipschitz vector fields on a smooth locally
compact manifold. We also assume that, ..., V; areCL. Let Wi, ... w*
bek independent real white noises. We consider the SDE&/on

k
(1.34) dX, =Y Vi(X)) odW, + V(X,)dt, t eR.
i=1

From the usual theory of strong solutions of SDEs (see, e.g., [20]), it is possible
to construct a stochastic flow of diffeomorphisrig ;, s < r) such that, for
everyx € M, ¢, ;(x) is a strong solution of the SDE (1.34) wigh ;(x) = x.

Using this stochastic flow, it is possible to construct a compatible family of
Markovian semigroupsP,("), n > 1) with

(1.35) P h(x1, ..., xn) = E[h(00, (x1). - ... 00 (xn))]

forh e C(M") andx1,...,x, in M. Using Lemma 1.11, it is easy to check that
these semigroups are Feller (these properties were previously observed in [3]).

It can easily be shown that the canonical stochastic flow of maps associated with
this family of semigroups is equal in law t@; ;, s <1).

2. Stochastic flow of kernels.

2.1. Notation and definitions. We denote by? (M) the space of probability
measures oM, equipped with the weak convergence topology. U&b,en be a
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sequence of functions densglifie C(M), || f llco < 1}. We will equipP (M) with
the distance (i, v) = (X, 27" (f fudp — [ f,dv)?)Y?for all u andv in P (M).
Thus# (M) is a compact metric space.

Letus recall that a kernél on M is a measurable mapping fromi into (M),
M and # (M) being equipped with their Boret-fields. For all f € C(M) and
x € M, Kf(x) denotes/ f(y)K (x,dy). For everyu € (M), nK denotes the
probability measure defined by f (y)uK (dy) = [ Kf (x)(dx). We denote by
E the space of all kernels oM and we equipE with the o-field generated by
the mappingX — wK, for everyu € £ (M) [P (M) is equipped with its Borel
o-field B(L(M))]. We denote thigr-field by €.

Let I' denote the space of measurable mappingsPom/). We equipI” with
theo-field generated by the mappings— @ (u) for everyu € 2 (M). Note that
(T, 6) = (F, F) once we have replaced by »(M).

2.2. Convolution semigroups on the space of kernelst 4 denote the
measurable mapping fronk, &) on (I', §) defined byf (K)(r) = wK . Note that
JI(E) is not measurable ift but { is measurable.

DEFINITION 2.1. (i) A probability measure on (E, &) is called regular if
J*(v) is a regular probability measure ¢n, §).

(if) A convolution semigroup oRE, &) is a family (v;),>o of regular probability
measures oQE, &) such thatd*(v;)),>o is a convolution semigroup aif", $).

Lets:I" — E be the mapping defined B(®)(x) = ©(5,). Note thats is not
measurable in general.

PROPOSITION2.1. LetQ be a regular probabity measure onT’, §) and let
4 be a measurable presentation@fThené o 4 is measurable and the probability
measure = (8 o ¢)*(Q) is a regular probability measure ofE, &) if £*(v) =Q.

PROOF Let Q be a regular probability measure @f, §) and letg be a
measurable presentation Qf The mappings? (M) x ' 5 (u, @) = F(P)(n) €
PM) and M > x — 8, € P(M) are measurable. Thu& x I' 5 (x, ®) —
80 F(P)(x) = F(®)(8;) € P (M) is measurable, which implies th&b ¢ is mea-
surable. O

REMARK 2.1. The probability measutedefined in Propdason 2.1 depends
only onQ. Indeed, if§’ is another measurable presentatio@ofor everyx € M,
Q(d®)-a.s.,8 o F(®)(x) =& o F'(®)(x), which implies by the Fubini theorem
that, for everyu € £ (M), Q(d®)-a.s.,u(8 o F(®)) = u(8 o §'(®)) and then that
B oh*(Q) =0 dH* Q.

DEFINITION 2.2. A convolution semigrougv;);>0 on (E, &) is called
Feller if:



1268 Y. LE JAN AND O. RAIMOND

(i) forevery f e C(M), lim;_osup.cy [(Kf(x) — F(x)2v(dK) =0,
(ii) for every f € C(M) and everyr >0, limg(,, -0 [(Kf(x) — Kf(y)2 x
v (dK)=0.

PROPOSITION2.2. Let(v;);>0 be a Feller convolution semigroup @i, &).
Foralln>1, f e C(M")andx € M", set

(2.1) P f @) = [ K fom@K).
Then(Pﬁ”), n > 1) is a compatible family of Feller semigroups #h
PROOF This is the same proof as the one of Proposition 1[2.

PrROPOSITION 2.3. Let (Q;);>0 be a convolution semigroup off", §). Let
9, be a measurable presentation Qf and v, = (8§ o $)*(Qy). If Q; = £*(vy),
(v)r>0 IS @ convolution semigroup ofE, &). Then (Q;);>o is Feller if and only if
(v)s>0 is Feller.

PrRoOOF The fact that(v;);>0 is a convolution semigroup follows from
Definition 2.1.
Note that(Q;);>o is Feller if and only if, for everyf € C(M),

(2.2) lim  sup [ (®(w)f — 1f)°Q(dP) =0,
t—)OMe?(M)
. 2 _
(23) m [ (@G f - 001 Quae) o

We first prove (2.2) and (i) in Definition 2.2 are equivalent. Equation (2.2)
implies () since (K f(x) — f(x)?v(dK) = [(®(G:) f — 85 /)?Q:(dP). And
(i) implies (2.2) since

[@w 1 - urieua®) = (ks - @)

= [ ([ ks = re)Putr) uan.
We now prove (2.3) and (ii) in Definition 2.2 are equivalent. Equation (2.3)

implies (ii) since[(Kf(x) — Kf ()2, (dK) = [(D(8;) f — D(8y) £)?Q(d D)
and limy(x,y)—0 0 (8x, §y) = 0. Assume (i) holds. For andv in (M), we have

/ (@) f — D) £)?Qu(dP) = / (K f — vK )2 (dK)

= (- 1)®? / K®2 %2, (dK).

We conclude since/ K®2f®2y,(dK) is a continuous function (see Proposi-
tion 2.2). O
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2.3. Stochastic flows of kernels.

DEFINITION 2.3. Let (92, 4,P) be a probability space. Then a family of
(E, &)-valued random variabléX ;, s <) is called a measurable stochastic flow
of kernels if, for alls <1,

(2.4) (x, w) > K (x, ®)

is a measurable mapping frof x Q2, B(M) ® A) onto(P (M), B(P(M))) and
if it satisfies the following properties:

(@) For alls <u <t andx € M, P-a.s., for everyf € C(M), K, f(x) =
K. (K, f)(x) (cocycle property).

(b) Foralls <t, the law ofK ; only depends on — s (stationarity).

(c) The flow has independent increments; that is, foraft 1, < --- <¢,, the
family {K}, ,.,.1<i <n — 1} is independent.

(d) Foreveryf e C(M),
(2.5) lim  SUPE[(Ks., f(x) — Kyy f(x))*]=0.

(u,v)—=(5,1) xyem

(e) Forallf e C(M) ands < t,

. 27
(26) d(xI,I;T)]eOE[(KS’If(X) - Ks,tf(y)) ] =0.

DEFINITION 2.4. A family of (E, &)-valued random variablek = (K ;,
s < 1t) is called a stochastic flow of kernels if there exi$fé= (K. ,,s < t),

st

a measurable stochastic flow of kernels, such that, foralt andu € £ (M),
(2.7) P-a.s, nK;, = ukKs,;.

The stochastic flowk”’ is called a measurable modification Kt

PROPOSITION2.4. Let (K, s <t) be a stochastic flow of kernelsor all
n>1, feCM") andx € M", set

(2.8) P f(x) = ELKE! f ().

Then(PE”), n > 1) is a compatible family of Feller semigroups &
PrROOFE This is the same proof as the one to prove Proposition I.2.

2.4. Construction and characterizationLet (9, A% denote the measur-
able space][;; £, ®,<, &). Fors <1, let Kg, denote the random variable
o> (s, 1). Let alsok© be the random variablk?,, s < 1). Thenk (o) = o.
Let (T))ner be the one-parameter group of transformationg28fdefined by
Th(w)(s, 1) =w(s +h,t +h),foralls <7, h € R andw € Q°.
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THEOREM 2.1. (i) For every compatible famin(P,(”),n > 1) of Feller
semigroups onM, there exists a unique Feller convolution semigrowp);>o
on(E, &) suchthatforalln >1,r>0, f e C(M") andx € M",

(2.9) P f(x) = / K®" £ (x)v (dK).

(i) For every Feller convolution semigroup = (v;);>0 on (E, &), there
exists a uniquéT},),cgr-invariant probability measur®, on (Q°, A% such that
(20, 4% P,) is separable the family of random variablesk?,,s < 1) is a

stochastic flow of kernels anfbr all s < ¢, the law ofKSJ is v;_s. There exists a

measurable modification &°, K’ such thatk, ., = K| , o Ty.

The flowk @ is called the canonical stochastic flow of kernels associatedwvith
[or equivalently withP™, n > 1)].

REMARK 2.2. In the case (1.6) is satisfied, the stochastic flow of kernels
K is induced by a stochastic flow of mappingsMore precisely, there exists a
measurable modification af in the form (s, ,, s < 1), wherey is a measurable
flow of mappings.

2.5. Proof of Theoren2.1. Let (Pt(”), n > 1) be a compatible family of Feller
semigroups om/. Starting with this family of semigroups, we intend to construct
a Feller convolution semigroup= (v;);>0 on (E, &). The idea is to construct a
compatible family of Feller semigroups aR(M), then to apply Theorem 1.1 to
construct a Feller convolution semigroQp= (Q;);>o0 on(I', §) and to construct
using the mappingso 4,, whereg, is a measurable presentation@f

2.5.1. Construction of a compatible family of Feller semigroups $1M).
For every integek, we define a Feller semigrourbﬁk) acting on the continuous
functions on? (M) (see [28] for a similar construction whén= 1).

Let 44, denote the algebra of functiogs & (M)* — R such that

(2.10) gty o ) = (g @ @ u™)

[here and in the following, for all measureand f € L(u), we denotef fdu
by (f, ), (u, f) or uf] for f € C(M™) and ny,...,n; integers such that
n=ny+---+ny (A is the union of an increasing family of algebrag, . ,,).
For everyg € Ay, given by (2.10), let

(2.11) MPgw) = (P f.u$" @ @ ug™),

with = (u1, ..., ux) € P(M)X. Since the family of semigroug@ﬁ”), n>1)is
compatible, (2.11) is independent of the expressiog iof (2.10).

Let us notice thaﬂ'lﬁk) acts on; and that, by the theorem of Stone and
Weierstrass, the algebs, is dense irC (2 (M)¥).
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LEMMA 2.1. Hﬁk) is a Markovian operator acting oshy.

PrROOF The only thing to be proved is the positivity property (it is obvious
thatr¥'1=1). -

For every integemV, let (X/*,1<i <k,1<j < N) be a Markov process
associated with the Markovian semigroaﬁ\'k) such that the random variables
(Xé’i,l <i<k1<j < N) are independent and the law Oifé’i iS Wi,
where(uzt, ..., ur) € P(M)X. Let us introduce the following Markov process on
P, uN =Mt . uM*), where

i 1 .
(2.12) M7’=N25er,i forl<i<k.

Forg(ua, ..., ) = (f, n$" ®--- @ uj*), we have
Elg(uM1=E[(f, (u)H®" @ - @ (u*)®m)]

. 1 Ik
ZZZE X x xR X
i=1ll= 1
:(Pt(n)f M?n]-@"'@l/lzzk)—{_RN-

The remainder ternkRy comes from terms in which! = jl.” for somea # b

and some and is therefore dominated by 2[loo(1 — [T5_{(N(N — 1) --- (n —
n; +1)/N")). Thus

(2.13) JimEfg(u)) =P fuf" ©- - ® u)

(2.14) =g, ..., o).
This shows that‘[ﬁk) is positive. [

Using this lemma, it is easy to defirﬁék)g for every continuous functiog and
to show thatl‘l,(k) is a Markovian semigroup acting an(M").

LEMMA 2.2. (Ht(k),k > 1) is a compatible family of Feller semigroups
P (M) satisfying(1.6).

PROOF Since the semlgroups,( ") are Feller, the semlgroum(k) are also

Feller: for everyg in 4, T¥¢ is continuous and lim,o Mg = g and these
properties extend to every continuous function.

It is clear that the family of semigrourxsngk),k > 1) is compatible (in the
sense given in Section 1.1). Th(lH;k), k > 1) is a compatible family of Feller
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semigroups o (M). We denotd‘lgi)’v) the law of the Markov process associated

with 1‘[§2) starting from(u, v) and we denote this process qy;, v;).
For g € A1 in the form (2.10)7 > 0 andu € (M), we have

NPg%2 (1, w) = (P 82, 182 = Y g?(w).
Thus (1.6) is satisfied fog € A1 and this extends t6'(£(M)). O

2.5.2. Proof of the first part of Theorethl Using Theorem 1.1, we construct
(Q1)r>0 a Feller convolution semigroup o, 4). Let g, be a measurable
presentation o;. Setv; = (§ o $;)*Q;.

LEMMA 2.3. Forall u e (M) andt > 0,
(2.15) Qdd)-as, D) =mu(8od(P)).
And for every > 0, £*(v;) = Q;.

PROOF Foreveryf e C(M), setg(u) = uf; then
E[(1(8 0 (@) f — @ (1) f)°]

2
=E[( [ s(@G)u@n —g(@(m)) ]
= [ 12620, b + 120, )

—2 [ 1526, o).

Since for allu andv in P (M),
26520, v) = [ PP %2, yudxviay),
we geteE[(u (8 o 4 (P)) f — d>(u)f)2] = 0. This proves the lemma.[J

Lemma 2.3 implies thatv = (v;);>0 iS a Feller convolution semigroup
on (E, &) (we apply Proposition 2.3) and (2.9) holds. This proves the first part
of Theorem 2.1.

2.5.3. Proof of the second part of Theorethl Suppose now we are
given v = (1;);>0 a Feller convolution semigroup o, §). For t+ > 0, set
Q: = 4L*(vy). ThenQ = (Q;);>0 is a Feller convolution semigroup @M, $). Using
Theorem 1.1, we construBt, the law of a stochastic flow of mappings & M)
associated witlQ. Let (d,,, s <) be a measurable stochastic flow of mappings
of law Pq. Fors <1, setK;;, =68 o §;,—s(Ps;), Where g, is a measurable
presentation o®;_.



FLOWS, COALESCENCE AND NOISE 1273

We now show thak = (K, ;, s <t) is a stochastic flow of kernels. Note that
the law of K ; is v,—,. Thus it is easy to check that satisfies (b)—(e). In order to
show (a), we use the following lemma.

LEMMA 2.4. Forall u e #(M) ands <t,

(216) P-a.S., H'KS,I = ¢S7t(M).

PROOE Foreveryf e M, setg(u) = uf; then as in the proof of Lemma 2.3,
E[(1Kyf — o) )]

2
- E[( f (@, (5))u(dx) — g(cbs,xm)) ]
- / N2, 6825, 5,)u(dx)(dy) + T2, g5, 1),

-2 [ 12,62, ()
=0

This proves the lemma.l]

Lets <u <randu € P (M). Lemma 2.4 and the cocycle propertydfimply
that a.s.,

I’LKS,I = (I)s,t(M) = q)u,t o q)s,u(M)-

Lemma 2.4 implies that a.s®, ; o &, (1) = O, (nK;,,). Fubini's theorem,
Lemma 2.4 and the fact thatK; , and®, ; are independent imply that a.s.,

(I)u,t(MKs,u) = MKs,uKu,t-

This proves (a), that is, a.g.K;; = uK; ,K, ;. We letP, be the law ofK.
ThenT,(P,) = P,. The rest of the proof is similar to the end of the proof of
Theorem 1.1.

2.6. Sampling the flow. Let (K ;, s < t) be a stochastic flow of kernels defined
on a probability spacé2, 4,P) and let(T,),cr be a one-parameter group of
transformations of2 preservingP and such thaik ; o 7, = Ksp s+n. In this
section, we construct on an extension@f, 4, P) a random patlX, starting atx
such that, for every positive

(2.17) Ko, f(x) = ELf(X;)|A]

For x e M and w € 2, by Kolmogorov’'s theorem, we define om®"
a probabilityP? , such that

(2-18) Eg,w|:n fz (Xt?):| = KO,tl(fl(Ktl,tsz(' o (fn—len_l,zn fn))))(x)7
i=1
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forall f1,..., f,INCM),0<t1<tr<---<ty.
With P andP? ,, we construct a probability? (dw, do') = P(dw) ® P2, (dw)

xX,w?
onQ x ME". Then, on the probability spa¢@ x ME", A ® B8(M)SE", P9), the
random proces(sX?,t > 0), defined be?(a), ') = o'(t), is a Markov process

starting atx with semigroupP;l) since

n
(219) E [H f (XS)} =P (PG ol (1Pl ) ),
i=1
forall f1,..., f,INCM),0<t1<tr<---<ty.

Therefore, there is a cadlag (or continuous wlﬁéﬂ is the semigroup of a
continuous Markov process) modificatioh = (X;,t > 0) of (Xf’,t > 0). Let
nowP, ., be the law ofX knowing. Itis alaw onD(R*, M), the space of cadlag
functions [or C(R*, M) when Pﬁl) is the semigroup of a continuous Markov
process]. Equipped with the Skorohod topology (see [29] or [BJR™, M)
becomes a Polish space [re6gR ™, M) is equipped with the topology of uniform
convergence on every compact®n].

On the probability spac&Q x D(R', M), A @ B(D(R*, M)),P,) [resp.
on (2 x C(RT, M), A ® B(C(R", M)),P,)], whereP,(dw, dw’) = P(dw) ®
Py »(dw), let X be the random process(w, ') = ’. ThenX is a cadlag (resp.
continuous) process and

Ex |:1£[ fi(Xy) ‘A’i| = Ex,w|:1£[ fi(th)i|
i=1

im1
= Ko.n ([1(Ki.ip f2(- - (fae1Kiy_1.00 [0)))) (X)),

ar wherekg, denotes the expectation with respecPio
Let (K! ., s <t) be the stochastic flow of kernels defined(@h, 4, P) by

s,t°

(2.20)

(2.21) K;vtf(x, w) = K(’)’,_Sf(x, T;w),
where
(2.22) Ky, @) =ELf(X)|A] = / F(Xi (@, )Py 0(de)

for f € C(M), x e M. Then(K; ,,s <t) is a cadlag irr (resp. continuous im)
modification of(K; ;, s <t1).

REMARK 2.3. The concept of sampling will be used in Section 5.4.

ReplacingKo; by Kg?;’ and Pﬁl) by P,(") in the above, we obtain a random
processY ™ in M" which represents am-sampling of the flow. The coordinates
of X are independent given the flokv.
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Let (x;);>1 be a sequence M. For w € @, let Py, ..o = ®"_1 Py 0
P(xi)izl,w = ®?21 Px,',wa le ,,,,, Xn (do, da)/l, ceey dw;l) =Pdw) ® le ,,,,, xn,w(dwa_’

. dw)) and Py, (dw,do’) = P(dw) @ P;),.,.0(do’). Then the process
XM (w, ) = (o, ..., »),) defines am-sampling of the flow (unde®, .,

Or P(x)q)- Let X' (w, @) = ). Then, undemr,,,_,, the sequenceéX’);-1 is
independent conditionally te,. Moreover, if for every > 1, x; = x, this sequence

is identically distributed and the law of large humbers implies that, for every
feCo(M), % Zl’-‘zl f(X;') converges a.s. towa@[f(X})|A] =Ko f(x).

Since, undeP,,)._,, X™ is equal in law to the:-point motion of K starting
from (x1, ..., x,), ifforeveryn > 1, we letX ™ denote thez-point motion starting
from (x,...,x), we have that% Zf-’:lf(Xf) converges in law towar&o; f (x)
for every f € CO(M™). This gives an intuitive way to recovefo;(x) out of the
n-point motions.

3. Noise and stochastic flows.

3.1. Noise generated by a stochastic flow of kernelghe definition of a noise
we give here is very close to the one given by Tsirelson in [41].

DEFINITION 3.1. A noise consists of a separable probability sg&xes, P),
a one-parameter grouf¥}),cr of P-preservingL?-continuous transformations
of 2 and a family{¥; ;, —oo < s <t < oo} of subo-fields of A such that:

(a) T, sends¥; ; onto Fsyp ¢4 forall h € R ands <,
(b) ¥;:and¥; , are independent for afl <t <u,
() F vF . =F,forals <t <u.

Moreover, we will assume that, for all< ¢, ¥ ; contains allP-negligible sets
of F_wo,00, denotedf .

In the following, (€2°, 4%, P,) denotes the canonical probability space of a
stochastic flow of kernels associated with a Feller convolution semigroup
KO:(KSJ,S <t) denotes this canonical flow. When this stochastic flow is
induced by a flow of maps, one can take, fa®O, AO, P.,), the canonical
probability space associated to this stochastic flow of mappings.

Forall —oo <s <t < o0, let }‘Sf, be the subz-field of 49 generated by the
random variables‘(ﬁv forall s <u <v <t completed by alP,-negligible sets
of A°. Then the cocycle property & implies thatV,, := (Q°, 4%, (F"),</, Py,
(Ti)ner) is a noise [}, is L2-continuous because of the Feller property). We call
it the noise generated by the canonical fl&WR.

DEFINITION 3.2. Letv be a Feller convolution semigroup, 18t = (2, 4,
(Fs.t)s<t- P, (Th)ner) be a noise and leK be a measurable stochastic flow
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of kernels of lawP, defined on(2, 4, P) such that, for alls < 7, K, is
Fs.r-measurable and, for evehye R,

(3.1) Ksihish=Ksi0T,  as.

We will call (N, K) an extension of the noigg,.

Let (N1, K1) and(N>, K») be two extensions of the noidg . LetQ = Q1 x Qo,
A = A1 ® A2 and letP be the probability measure @f, 4) defined by

(3.2) E[Z] = / Eo[Z1]K1 = K1E2[Zo|K2 = K1P,(dK),

for any bounded random variablé(w1, w2) = Z1(w1)Z2(w2). Let (Ty)ner be
the one-parameter group @#-preserving transformations of2 defined by
Th(w1, w2) = (THw1), T2 (w2)). For all s <t, let %, = F1, ® F3. Then
N := (R, A, (Fs.1)s<t» P, (Th)rer) is a noise. And ifK denotes the random
variable K (w1, w2) = K1(w1)(= K2(w2) P-a.s.), then(N, K) is an extension
of N,. We will call (N, K) the product of the extensiorid/1, K1) and (N2, K»).
Note thatN, and N> are isomorphic to subnoises M.

3.2. Filtering by a subnoise. Let {V be a subnoise of an extensioN, K)
of N,; that is, N is a noise(2, A, (F;.1)s<t, P, (Th)ner) such that¥; , C ¥ ;
forall s <t.

REMARK 3.1. A subnoise is characterized I#_ .., denoted#. This
o -field ha§ to b_e stable undé]zi, to contain allP-negligible sets off, and be
such thatf = (¥ N F_x.0) V (F N F0.00)-

For everyn > 1, letP™ be the operator acting afi(M") defined by

3.3)  PM(A® - ® L)L ... xn) = E[ I1 E[Ko,tﬁ<x,-)|fo,,]},

i=1
forall x1,...,x,in M andallfy, ..., f, in C(M).

LEMMA 3.1. The family ®"™,n > 1) is a compatible family of Feller
semigroups

PROOF The semigroup property G_f,(”) follows directly from the indepen-
dence of the increments of the flow. The Markovian property and in particular the
positivity property hold since, for evetye C(M"),

(3.4) PMh(xy, ... x) = E[<h, 03] E[Ko,t(xi)l}:o’,]ﬂ.

i=1
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From this, it is clear tha(|5t(”),n > 1) is a compatible family of Markovian
semigroups, respectively, acting aimM™).

It remains to prove the Feller property. For all continuous functifins. ., f,
h=fi® - Q fu, x = (x1,...,x,) and y = (y1,...,y,) in M", for M
large enough,

n
P h(x) — Ph(y)| < MY E[(E[Ko, fi(xi) — Ko, fi () Fo.1) ]
i=1
(3.5) .
211/2
< MZ E[(Ko, fi(xi) — Ko fi )]~
i=1
which converges toward 0 astends tax since (e) in Definition 2.3 is satisfied.
We also have, foralh = /1 ® --- ® f, andx = (x1,...,x,) iIn M", for M
large enough,
= é = \241/2
P h(x) — h(x)| < M Y E[(E[Ko, fi(xi) — fi ()| Fo.1)°TY

(3.6) =1

n
< MY E[(Koy fi(xi) — fi(x))?]™2,

i=1
which converges toward 0 astends to 0 since (d) in Definition 2.3 is sat-
isfied. Hence, for every function € C(M™) such thath is a linear combi-
nation of functions of the typef1 ® --- ® f,, we have|5,(”)h is continuous
and lim_oP™h(x) = h(x) for every x € M". This extends to all functions
heC(M™). O

Let us denote by = (v;);>0 the Feller convolution semigroup ofE, &)

associated Witr(|5,(”), n > 1). Note that the one-point motion of and v is the

same, that isl?,(l) = P,(l).

LEMMA 3.2. (i) Let K be an(E, &)-valued random variable defined on a
probability spacg2, 4, P). Assume that

. 27
(3.7) d(xl,';')LoE[p(K(x)’ K(y))°]=0.

Let ¢ be a subs-field of A. Then there exists anE, &)-valued random
variable K% which is g-measurable and such thatx,w) — K%(x,w) is
measurable and that

(3.8) K% f(x) =E[Kf(x)|4], P-as.

forall f € C(M) andx € M. Thusk% = E[K|§]. Note thatk % = K%, where
G =0(K9%).
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(ii) Let(N, K) be an extension a¥, and letN be a subnoise a¥. Then there
existsK = (KS ;,s < 1) a stochastic flow of kernels of lams such that(N, K) is
an extension oy and

(3.9) Ko f(x) =E[Ks, f ()| Fs./] = E[Ks f(X)|F], P-as.

forall s <t,xe M and f € C(M). We sayK is obtained by filteringk with
respect tov.

PrROOF (i) Let (x;);en be a dense sequenceM. Equation (3.7) implies the
existence of a sequencs, )<y such that ifd (x, y) < e, then

(3.10) E[o(K (). K (»)*] <273,

For everyx € M, let (ny)ren be defined byr; =inf{n e N, d(x,, x) < &}. Then
|imk_>ooxn; = x and the Borel-Cantelli lemma shows that

(3.11) kli_)moo K(xni) =K (x), P-a.s.

(sinceP[p (K (x,1), K (x)) > 2-%] < 27%). Then by dominated convergence,
(3.12) lim E[K (x;)Ig] =EIK()Ig].  P-as.

Let us choose an everywhere defingdneasurable version ®[K (x;)|4] for
everyi e N.
Let K% be defined byk % (x) = [((ELK (x,2)19Dken)- Thenk % isan(E, &)-va-

lued g-measurable random variable;, w) — K%(x, ) is measurable and, for
everyx e M,

(3.13) K% (x) = Iim E[K(xn.;)lg] = E[K (x)|4], P-a.s.
(ii) Since for everyr > 0, 1; is the law of a random variable satisfying (3.7),

(i) shows that, for alls < ¢, there eX|stsKs, an (E, 8&)-valued fs ,~-measurable
random variable such that, ») — K; ,(x, ») is measurable and

(3.14) K f(x) =E[Ky f(0)|F].  P-as.

foralls <t,x e Mandf € C(M).

Itis easy to see that = (IES’,, s <) is a measurable stochastic flow of kernels
of law P; and that(N, K) is an extension ofV;. Let us just show the cocycle
property. Forals <u <t,x e M andf € C(M), P,-a.s.,

ELK;.( f ()| Fs.1] = E[Ks u Kt f ()| F5.1]
= E[E[Ks,uKu,tf(xN\(Fs,u Vv ~7“:ut]|ff:sz]
=K. Ky f(x).
Thus the lemma is proved ]
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DerFINITION 3.3. Given two Feller convolution semigroups dik, &),
vl andv?, we say that! dominates (resp. weakly dominate$) denoted)! > 1?2

(resp.v = v2), if there exists a subnoise of 1 [resp. of an extensioV?, k) of
N,1] such thatP 2 is the law of the flow obtained by filtering the canonical flow of
law P 1 (resp. by filteringk 1) with respect to this subnoise.

Notice that in Lemma 3.2y weakly dominate$ andv dominatesv if N is
a subnoise ofV,. Note that the domination relation is in fact an extension of the
notion of barycenter.

LEMMA 3.3. Letv andv be two Feller convolution semigroups such that
dominatesv. Let (N, K) be an extension ofv,. Let N, be the subnoise
(isomorphic toN,) of N generated byk . Then there exists a subnoigeof N,
such thatP; is the law of the flow obtained by filteringj with respect tav.

PROOF  LetN, := (Q°, A®, (F")s=:. Py, (Th)ner) be the noise generated by

the canonical flow associated with Notice thatv > 7 means the existence 6f°
a subnoise ofV, such thaP; is the law ofK°, the flow obtained by filtering the
canonical flow of lawP, with respect tav®.

Note that the mappind : (2, A) — (220, A®) is measurable. LeF be the
completion of K~ L#9 by all P- negligible sets ofA and, for alls <z, set
Fsr=F N Fsp. Then N = (Q, +, (fs t)s<ts P, (Th)ner) IS a subnoise ofV.
Lemma 3.2 allows us to defing the flow obtained by filteringk with respect
to N. One can check tha& = K°(K). This implies that the law oK is P;. Thus
the proposition is proved.[]

PropPOsSITION3.1. The domination relation and the weak domination rela-
tion are partial orders on the class of Feller convolution semigroups

PrRooE (i) The transitivity of the domination relation follows from Lem-
ma 3.3 by the chain rule for conditional expectations.

Let us observe that if1 < v2 andv? < vl, thenv! = 2. Indeed, ifv! > 12,
Jensen’s inequality shows that, for afi,..., f, in C(M), x1,...,x, In M
andr > 0,

(3.15) E,;[exp(Z KO,tfi(xi)):| >E)2 [exp(Z Kovtf,-(x,-))}.

i=1 i=1

Therefore, if moreover! < v2, the preceding inequality becomes an equality. This
provesvl =12,

(i) For the weak domination relation, the proof is similar. We prove the
transitivity using the product of extensions. Indeed; ﬁ v, given any extension

(N1, K1) of N,, there exist a larger extensiaV, K) and a subnois& of N such
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thatK has lawP;. Let N2 be a subnoise of an extensiah2, K2) of N, such that
K2 has lawP;; then (N, K) is taken as the product of the extensigns', K1)

and(N2, K?2), andN is induced byN2. O

REMARK 3.2. The concept of filtering will be used in Sections 4.3,5.5and 6.2
and an example is given in the following section.

3.3. An example of filtering.Let M = {0,1}. Then F, the set of maps
from {0, 1} on {0, 1} is constituted of the maps, I, fo and f1, with I the identity,
0(0)=1,0(1)=0, fo=0andf, =1. Let(N,) be a Poisson process &and
let (p,)nez be a sequence, independent of the Poisson process, of independent
random variables taking their valuesnhwith law

%1(5}‘0 +8p 401+ 50)-
We then define a stochastic flow of mappingg0sl} by
@S,l‘:I’ ile‘_NS:O’
(ps,t=(pNt—1°“‘o(pNsa If NZ‘_NS>05
for all s < ¢. Note thatp is a coalescing flow since for evesythere is a.s. a finite
time T such that, for alt > T, ¢, ;(0) = ¢s.;(1). The one-point motion of this flow
is given by the symmetric random walk with generatéP given by
AD _ 1/2 1/2
~\1/2 1/2)°

Note also that, sincg0, 1} has only two points, the:-point motions associ-
ated with this stochastic flow of mappings are determined by the two-point
motion. The generatod® of the two-point motion is [the state space is
{(0,0),(1,1),(0,1), (1, 0)}]

1/2 1/2 O 0
1/2 1/2 O 0
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

With the stochastic flowp and an independent sequence of random variables
(Y)nez with P[Y, = 1] = p =1 — P[Y,, = 0], we define a stochastic flow of
kernelsk, by

AP

KS,Z(i)=6i7 if NZ_NS=05
KS’IZKNX"'KN’_]_, |f NI—NS>O,
wherek, = Y,8,, + (1 — Y,)3 (80 + 81).

Denote byN“ the noise ofy, by N the noise ok and byN the noise ofp, Y).
ThenN¢ is the noise o V;, ¢n,), N is the noise of N, ¢n,, Yn,) andN is the
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noise of (N;, Ky,). The noisesN® and N are subnoises of. And N cannot
be isomorphic to a subnoise of°. Indeed, fors small, #J". has one atom of
probability e=® and four atoms of probability}lse‘e, and }‘O{VE has one atom
of probabilitye ¢ as well but one atom of probabilitfl — p)se—¢ and four atoms
of probability fee ™.

The flow K coincides with the flow obtained by filtering with respect tov.
Thus the law ofK is weakly dominated by the law @f but is not dominated.

3.4. Continuous martingales.Let (K ;, s <) be a stochastic flow of kernels.
Foralls <7, set¥;; =0 (K., s <u <v <t). Let ¥ be the filtration(%o ;);>0.
Let M (F) be the space of locally square integraflemartingales.

PROPOSITION3.2. Suppose thaIPﬁl) is the semigroup of a Markov process
with continuous pathdhen all martingales of( (¥7) are continuous

PROOF Let M € M(¥) be a martingale in the fornE[F|¥o,], where
F =111 K, fi(xi), with f1,..., f, in C(M), x1,...,x, In M and 0<s; < ¢,
(we take here the continuous modificatiorrinf the stochastic flow of kernels).
By definition of the filtration, functions in this form are denseﬂﬁ(}‘om). This
implies that martingales of this form are dense#{¥). Since the space of
continuous martingales is closed # (), it is enough to prove the continuity
of these martingales.

For everyr, let K, be the kernel defined dRt x M by

85—t ® x, fors >1,

1 K —
(3.16) 1(8,.%) {60®KS’,(x), fors <t.

Then we can rewrité in the form[]_, K, fi (si, x;), wheref; (s, x) = f; (x).

Note that([%,l. (si,x;),1<i <n)is aMarkov process otB(R") ® £ (M))".

This Markov process is continuous and Feller [the Feller property follows from
the Feller property of the semigroupﬁ[,(k),k > 1)]. It is well known that the
martingales relative to the filtration denoted hegg™1*='= ; > 0) generated

by such a process are contous (see38], tome II).

This proves tha€[F|F,“"1*<'="] is a continuous martingale. We conclude
after remarking thatM, = E[F|F"""*<'="] which holds since ther-field
Fliih=i=n s 9 sube -field of % and M, is easily seen to b& " 1='="_mea-
surable. O

4. Stochastic coalescingflows. In this section, we study stochastic coalescing
flows, we denote by(gs;,s < t). In Section 4.2, it is shown that, for all
s <t, ¢;,(1) is atomic (wherer denotes any positive Radon measure i
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We study this point measure valued process which provides a description of the
coalescing flow.

In Section 4.3, starting from a compatible family of Feller semigroups, under the
hypothesis that starting close to the diagonal the two-point motion hits the diagonal
with a probability close to 1, we construct another compatible family of Feller
semigroups to which is associated a stochastic coalescing flow. We then show that
the stochastic flow of kernels associated with the first family of semigroups can be
defined by filtering the stochastic coalescing flow with respect to a subnoise of an
extension of its canonical noise.

Finally, we give three examples. The first one, due to Arratia [2], describes
the flow of independent Brownian motions sticking together when they meet. The
second one is due to Propp and Wilson [35] in the context of perfect simulation of
the invariant distribution of a finite-state irreducible Markov chain, their stochastic
flows being indexed by the integers. The third one is the construction of a stochastic
coalescing flow solution of Tanaka's SDE

4.1) dX, =sgnX,)dWw,,

whereW is a real white noise. This coalescing flow was constructed by Watanabe
in [45] and Warren in [44]. In [23], a stochastic flow of kernels solution of this
SDE was constructed as the only Wiener solution of this SDE.

4.1. Definition. Let M be a locally compact separable metric space.

DEFINITION 4.1. A stochastic flow of mappings oM, (¢s;,s < 1), isS
called a stochastic coalescing flow if, for sorfe y) € M?2, T, , =inf{t >0,
®o,:(x) = ¢o,:(y)} is finite with a positive probability and, for every> T ,,
wo.:(x) = @0, (y). In other words, a pair of points stick together after a finite time
with a positive probability.

REMARK 4.1. This definition depends only on the two-point motion.

Let (Pﬁ”),n > 1) be a compatible family of Feller semigroups. We denote
by PE? » the law of the Markov process associated V\Frﬁﬁ) starting from(x, y)
and we denote this procee&k;, Y;) or Xt(z). LetTA =inf{r > 0, X, = Y;}.

REMARK 4.2. A compatible familyP", n > 1) of Feller semigroups defines
a stochastic coalescing flow if and only if, for every y) € M?, for everyr > Th,

X;=Y;, Pg)y)—a.s., and for someér, y) € M?2, Pg)y)[TA <o0] > 0.
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4.2. A point measure valued process associated with a stochastic coalescing
flow. In this section, we suppose we are given a compatible family of Feller

semigroupgP™, n > 1) such that
; 2 _
VaeMVi>0,  limPE X #Y,]=0
(4.2)

2
V(x,y) e M?, P& [Ta < 00] > 0.

REMARK 4.3. Assumption (4.2) implies that the associated stochastic flow
is a stochastic coalescing flow and is verified in all the examples of coalescing
flows we will study except for the example presented in Section 4.4.3, where

E,%)})[X, # Y;] does not converge toward 0 agends tax whenx # 0.

Lety = (¢s.+, s <t) be a measurable stochastic coalescing flow associated with

(P(") n>1).Foralls <t eR,letus, = ¢, (1), wherex is any positive Radon
measure or.

PrRoOPOSITION4.1. (a)Forall s <t e R, as., us; is atomic
(b)Foralls <u <t e R, as, uy ; is absolutely continuous with respectig ;.

PROOE Fixs <t cR.Foralle >0andx € M, let

x _ 1 _ »
& /B(x,s) @s.t (X) =051 () (dy)

[m] is well defined sincéx, w) — ¢, ;(x, w) iIs measurable]. For adl €]0, 1] and
xeM,let

(4.3) Ayt ={mg < (1= a)A(B(x, &)},
wheree; is a positive sequence such thdk, y) < & implies

2
Pl [Xims # Y1 < 27",

LEMMA 4.1. For all positivea, x € M andn € N,
PROOFE For every integen, we have

x1_ (2)
E[m%] = /B oy Pl Xims = Vi)
= 1-p?
B(x,e,’;)( x,y)
And we conclude since
E[m%] < PAY) (A —a)A(B(x. &) + (1— P(AZ))A(B(x. &)
[we use the fact thaﬁ% <AB(x,gn]. O

[Xi—s # YiosD(dy) = (L— 27 (B(x, £))).
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LEMMA 4.2. Foreveryx e M, a.s.,mfcfg ~X(B(x,¢&;))) asn — oo.

PrROOF Using the Borel-Cantelli lemma, for evesye]0, 1],

mxx m X

1—a<liminf ——  <im supi‘? < a.s.
n—>oo A(B(x,e )) n—oo AB(x,e ))

This implies lim,_ % =la.s. O
Since for everyx, w) e M x €,
s, ({950 (0)}) = A({y, 05,0 () = @51 (x)})
Z )\'({y € B(-x7 82)7 (Ps,t(y) = (pS,Z(x)})a
Lemma 4.2 implies that, for evenye M,

(4.4) s ({gs:(0)}) >0 as.
Since(x, w) — s ({ps.:(x)}) is measurable,

(4.5) Aldx) @ P(dw)-a.e, ts.t({gs. (x)}) > 0.
This equation implies [since;,; = ¢; ,(1)]

(4.6) s, (dy)-a.e, us:({y) >0  as.

This last equation is one characterization of the atomic nature;gfand (a)
is proved.

To prove (b), note first that(dx) ® P(dw)-a.e..¢; ;(8x) = &y, (x) IS absolutely
continuous with respect tg; (1) = u,,, since (4.4) holds. Note also that
Adx) @ P(dw)-a.e.,ps 1 (x) = @u.r 0 @5 4 (x). This implies

(4-7) Ms,t = @:,z(ﬂs,u) a.s.

Sincepu,, , is atomic, independent @f, ; andE[u, ] = A, it follows that i ; IS
absolutely continuous with respectq ;. This proves (b). O

REMARK 4.4. (i) (us.,s <t)is Markovian inz. _

(i) Since uy,; is atomic fors > s, there exist a point process, = {&; ,}
and weightsie} ,} € R" such thayu, . = 3 of ,8,: . The point process; ; and
the marked point process; ;, o5 ;) are Markovian irn¢ since, for alls < u < ¢,
Es,t = @u,t(‘i‘_s,u) ando‘é t = Z{] S;[ —0u. t(é,:;.u)} asju

(iii) Let A{, = ¢5; (5; ;) and letIl; , be the collection of the sets; ,. Note

that |; Aé,t = M A-a.e, the union being disjoint. Note also thgt and I, ;
determiney; ; A-a.e. Note finally thafl, , is Markovian ins whens decreases,
since for alls < u <1, I, = {¢ 1(A; /)}. This Markov process has also a

coalescence property: one can have,ifef j, ¢ Al 1) =@ Ll )- Whens
decreases, the partitidil; , becomes coarser.
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4.3. Construction of a family of coalescent semigrouplset (PE”), n > 1) be
a compatible family of Feller semigroups on a locally compact separable metric
spaceM and letv = (v;);er be the associated Feller convolution semigroup

on(E,€). LetA, ={x € M",3i # j,x; =x;} andT,, =inf{t > 0, X" € A},
where X,(”) denotes thez-point motion, that is, the Markov process af”
associated with the semigroﬂ’;S”). We will denoteA; by A.

THEOREM 4.1. There exists a unique compatible famiy‘,n > 1) of
Markovian semigroups oM such that ifX ®)-¢ is the associated-point motion
and7g =inf{r >0, Xt(”)’c e A,}, then

() (x™t< T5 ) is equal in law to(Xt("),t <Ta,),
(i) forr>Tg , X" € A,.

Moreover this family is constituted of Feller semigroups if conditi¢@) is
satisfied

(C) Forallt >0,e >0andx € M,
lim PO [Ta > 1) N {d(Xe, Yy) > €)1 =0,

where(X;, Y;) = X,(z). And for somer andy in M, Pg?y)[TA <o0] > 0.
In this case(P,(”)’c, n > 1) satisfieq1.6)and is associated with a coalescing flow

PROOF For everyn > 1, let $, be the set of all partitions dfL, ..., n}. The
number of elements ot € », is denotedr|. For everynr € £,, we define the

equivalent relation le if i andj belong to the same elementaf We define a

partial order on?, by 7’ < if i ~ j impliesi ~ j (x is finer thanz’).
For everyr € #,, we letE; be the set of elementse M" such thaty; = x;
if i ~janddE, =, _, E, the set of elements € E, such that there exists

i and;j with i;j andx; = x;. Let j, be an isometry betweeM ! andE, .

By induction onk = ||, we define a Markov proces§™ on E,. Fork =1,
we let X7 = j,(XD). Assume now we have defined a Markov procességn
for every = such thatjz| < k. Let & € £, with |7| =k + 1; we defineX”™
concatenating the procegs(X 1) stopped at the entrance tirfiein 3 £, with
the procesg(”’ starting from the corresponding point and wheres the finest
partition such thatj, (X(T"+l)) € E,/. This way, we construct a Markov process
onM", X™-¢ = X7 form ={{1},..., {n}}.

For every integen, let Pﬁ”)’c be the Markovian semigroup associated with the
Markov processx™-¢. From the above construction, it is clear that the family

(Pﬁ”)’c, n > 1) of Markovian semigroups is compatible.
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It remains to prove that when (C) is satisfied, this family of Markovian
semigroups is constituted of Feller semuigps. This holds since (C) implies (F)

in Lemma 1.11: for every positive, P( )C[d(X,, Y;)) >¢] < PEX)})[{TA >t} N
{d(X;, Y;) > &}], which converges toward 0 as— x. Note that when (C) holds,

it is easy to see that the canonical flow is a coalescing flaw.

We now suppose tha(P(”)c n > 1) is constituted of Feller semigroups
[which is true when (C) holds]. We denote by the associated Feller convolu-
tion semigroup.

THEOREM4.2. The convolution semigrouwg weakly dominates.

PrROOF The idea of the proof is to define a coupling between the flows of
kernelskK andK¢, respectively, of lawp,, andP,.. [Since we did not assume (C)
holds, it is not clear thak  is a flow of mappings.]

In a way similar to the construction of the Markov procé&®)-¢ in the proof
of Theorem 4.1, for every integer> 1, we construct a Markov process™ on
(M x M)" identified withM" x M" such that:

G X\™,..., X" is then-point motion ofve,
(ii) (X,(;ﬂzl, .. (")) is then-point motion ofv,
(i) between the coalescing times ™ is described by thék +)-point motion

of v when (X", ..., X{") belongs toE,,, with || = k].

Let |5§”) be the Markovian semigroup associated witf). One easily checks
that this semigroup is Feller using the fact tidt’ and P are Feller. Then

(P(”) n > 1) is a compatible family of Feller semigroups, associated with a Feller
convolution semigroup.

Let K be the canonical stochastic flow associated with this family of semi-
groups. Straightforward computations show that, forsa#t ¢, (f, g) € C(M)?
and(x, y) € M?,

E[(Rs:(f @ ), )] =P, f2@ ¢ @ g(x, v, ),
E[(Ky (f ® DK, /(1 9)) (x. ] =P, f2® g ® g(x, v, ),
E[(Rss(f ® 9Kyt (f ® DR, (1@ 9)(x. 1] =P, 2@ g @ g(x. . y).
This implies that
(4.8) E[(Kt(f ® &) — Kon(f @ DK, (1® 9))°(x, )] =

Thus we havd?s,,(x, y) =K ,(x) ® K, () and it is easy to check that the laws
of K< and ofK are, respectively,. andP,,.. Thus(N;, K¢) is an extension oW ..
Let N, be the subnoise a¥; generated bk .
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Let us notice now that, for al§, f1,..., f, in Co(M), all y,x1,...,x, In M
and alls < ¢, we have (setting; = x,11 =y and fori <n, h; = f; ® 1 and
hpy1=1®g)

n n+1
E[Kf’,g(y) I1 Ks,tfi(xi):| = E[H K thi(xi, yi)}
i=1

i=1

1
=P§T§ )f1®---®fn®g(x1,...,xn,y).

More generally, one can prove in a similar way, for @ll f1, ..., f, in Co(M),
all y, x1,...,x,in M, all s <t and all(s;, t;)1<i <, With s; <1, that

(4.9) E|:Ksc’tg(y) 1_[ K, 1, fi (xi)i| = E|:Ks,tg(y) 1_[ Ksi,tiﬁ (xi)i| .

i=1 i=1

This implies thatk; ; g(y) = E[K ,(y)|o (K)] and therefore that* § v. O

REMARK 4.5. Let(X"™ n > 1) be a family of strong Markov processes,
respectively, taking their values if". We suppose that the associated family of

Markovian semigroupePt(”), n > 1) is compatible and that, for everye M,

(4.10) lim P UTa > )N {d(X,. Y;) > e}]] =0

for all ¢ > 0 and¢ > 0. Then (P,(”),n > 1) [and (Pﬁ”)’c,n > 1)] are Feller
semigroups.

One can prove this with a coupling similar to the coupling given in the proof of
the previous theorem: the idea is to construct on the same probability space two
Markov processex ™ andy ™ associated te" and such thak ™ (1) = ¥ (1)

if £ > inf{s, X" (s) = ¥, (s)}.

REMARK 4.6. The example given in Section 3.3 gives an illustration of the
two theorems of this section, first WiFhf") =P®" then with Pﬁ”) the semigroup
of the n-point motion of K. This example shows in particular that one can have

% % v¢ andv £ e,
4.4. Examples.

4.4.1. Arratia’s coalescing flow of independent Brownian motiorighe first
example of coalescing flows was given by Arratia [2]. ®n let P, be the
semigroup of a Brownian motion. With this semigroup we define the compatible
family (P®",n > 1) of Feller semigroups. Note that thepoint motion of this
family of semigroups is given by independent Brownian motions. Let us also
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remark that the canonical stochastic flow of kernels associated with this family of
semigroups is not random and is given(®y_;,, s <1).

Let (P,(”), n > 1) be the compatible family of Markovian coalescent semigroups
associated witiP®", n > 1) (see Section 4.3). Note that thepoint motion of
this family of semigroups is given by independent Brownian motions who stick
together when they meet.

PrRopPOSITION 4.2. The family(P,("),n > 1) is constituted of Feller semi-
groups and is associated with a coalescing flow

PROOF It is obvious after remarking that two real independent Brownian
motions meet each other a.s. [condition (C) is verified].

4.4.2. Propp—Wilson algorithm. Similarly to Arratia’s coalescing flow, e,
be the semigroup of an irreducible aperiodic Markov process on a finit®f/ set
with invariant probability measure. Let (P,(”), n > 1) be the compatible family
of Markovian coalescent semigroups associated @iftf, » > 1). The coalescing
flow in Section 3.3 is of this type.

PROPOSITION 4.3. The family(P,("),n > 1) is constituted of Feller semi-
groups and is associated with a coalescing flow

PROOF It is obvious since the two-point motion defined W’Z hits the
diagonal almost surely.(J

Let ¢ = (g5, s < t) denote this coalescing flow. Then a.s., for all y
in M, 7., =inf{t > 0, ¢ ,(x) = o (y)} is finite. Therefore, after a finite time,
Cardgo(x),x e M} =1.

In [35], an algorithm to exactly simulate a random variable distributed according
to the invariant probability measure of a Markov chain with finite state space
is given. The method consists in constructing a stochastic coalescing flow.
We explain this in our context.

Lett =inf{r > 0, ¢_; o(x) = ¢_,.0(y) forall (x, y) € M?}.

ProrPoOSITION4.4. t is as. finite and the law ofX,, the random variable
¢—r.0(x) (independent of € M), ism.

PrROOF Let us remark that, for > T and everyx € M, the cocycle property
implies thaty_; o(x) = X-.
For every positive,

Plt =] =P[3x,y, ¢—1,0(x) # ¢—,0(y)]
< Y Pluy=t1l

(x,y)eM?

(4.11)
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which converges toward 0 agjoes tooco. Thust < oo a.s.
For every functionf on M and everyr € M, lim;_, oo P; f(x) = 2yem S () X
m(y) and

(4.12) P f(x) =E[f(¢-r,0))] = E[f (¢-1,00))Li=c ] + E[f (Xt)Lr <]

Since t is a.s. finite, ag goes tooo, the first term of the right-hand side
of the preceding equation converges toward 0 and the second term converges
towardE[ f (X.)]. Therefore we prove th&l f (X;)] =3 ,cp f(Mm(y). O

4.4.3. Tanakas SDE. In [23], starting from a real Brownian motio, we
constructed a family of random operat@ss, t > 0), Wiener solution of the SDE

(4.13) dX; =sgnX;)dB;, t>0.
For f continuous,
(4.14) Sif ()= f(ROL<r, + 5(F(RD) + f(=R))Li=1,.

whereR; is the Brownian motionx + B, reflected at O and, is the first time it
hits 0. For all continuous functions, ..., f,, let

n
(4.15) PV(A® - ® f) (..., x) = E[]‘[ Stmxl-)}.
i=1
Thenitis easyto see th(ﬂﬁ”), n > 1) is a compatible family of Feller semigroups.

Let (PE”)’C, n > 1) be the family of semigroups constructed by Theorem 4.1.

Let us describe ther-point motion associated withP"“,n > 1). Let
(X;,t >0) be a Brownian motion starting at 0. Lek; = fésgr(Xs)dXs;
(B;,t > 0) is also a Brownian motion starting at 0. For everg R, let t, =
inf{r > 0, |x| + B; = 0}. Note thatX, = 0. For everyxr € R, let

S B;, if 1 <1y,
(4.16) sz{x-i- gn(x) B; <t

X, if £ >17,.
ThenB, = [5sgn(X;)dX; andX* is a solution of the SDE
(4.17) dX; =sgnX;)dB;, t>0,Xy=x.
Thus, for allxy, ..., x, in M, (X;*, ..., X;"),t > 0) is then-point motion of the

family of semigroupgP""¢, n > 1).

PROPOSITION4.5. The family(P"‘,n > 1) is constituted of Feller semi-
groups and is associated with a coalescing flow
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PROOF Itiseasyto see thaP,(”)’c, n > 1) is constituted of Feller semigroups
since, for allz and xg, x — X/ is a.s. continuous atg [it implies that (F)
in Lemma 1.11 is satisfied]. This also implies that (1.6) is satisfied. Thus, the
associated stochastic flow is a flow of mappings. And it is a coalescing flow
since a.s., every pair of points meets after a finite time. Note that condition (C) is
verified. O

5. Stochastic flows of kernelsand SDEs.

5.1. Hypotheses. In this sectionM is a smooth locally compact manifold and
we suppose we are ginP,(”), n > 1), a compatible family of Feller semigroups,
or equivalently a Feller convolution semigroup= (v;),;>0 on (E, €). For every
positive integer, we will denote be,(”) then-point motion, that is, the Markov
process associated with the semigrcﬂﬁ’ﬁ. We denote byd™ the infinitesimal
generator ofP™ and by D(A™) its domain. ¢ is in the domain of the
infinitesimal generatoA of a Feller semigroup; if and only if W converges
uniformly asr goes toward 0. Its limit is denotetlf.) We assume that:

() The space(?,z( M) ® C,Z{ (M) of functions of the formf (x)g(y), with f, g
in C2 (M) andx, y in M, is included inD (A?).

(i) The one-point motionYt(l) has continuous paths.
[Ckx (M), resp.C,Z((M), denotes the set of continuous, regp, functions with

compact support.] In that case, we say tha adiffusion convolution semigroup
on(E, &) and that thePﬁ”) are diffusion semigroups.

5.2. Local characteristics of a diffusion convolution semigroupet us denote

by A the restriction ofA to C2 (M). Note that it follows easily from (i) and (i)
that, for everyf e CZ (M),

(5.1) M/ = F(x®) = F(x®) - /0 "AF(XD)ds

is a martingale. Sincg? also belongs taf,% (M), using the martingalez, itis
easy to see that

(5.2) (M7, = /0 C(H(xP)ds,
where
(5.3) T(f)=Af2—2fAf.

In the followingI' (£, g) will denoteA(fg) — fAg—gAf, for f andg in CIZ((M).
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LEMMA 5.1. On a smqqth Iocal chart on an open détc M, there exist
continuous functions ol a"/ andb' such thatfor everyf e C,Z{ (M),
2
Lii 0°F L df

5.4 Af == A .
(5.4) ! 2a ox! 0x/ ax!

PROOF.  For everyx € U, let ¢’ (x) = x' denote the coordinate functions of
the local chart. We can extend into an element of°2 w(M). For f € CK(M)
using Ité’s formula, for < Ty, the exit time ofU,

(€] (@) (1 ij(v@ 32f @ i(y (@D of €]
7Py = 766 =[50 ()52 = (x®) + 4 (X2) 25 (x D) ) ds,
is a martingale, wheré' (x) = A¢'(x) and a/(x) = I'(¢', ¢/)(x). And we
(€3]
get (5.4) since forevery e U, Af(x) =lim,_ o w. 0

Note that the two-point motionX,(Z) has also continuous trajectories and these
results also apply to functions &2 (M) ® CZ(M). For all f, g in C% (M), let

(5.5) Clf.o)=AP(f®g - f@®Az—Af ®g.
Itis clearthatonalocalchartdi x VCc M x M,
. P 9
(5.6) C(f.9)(x,y)=c"(x, y)a—f(X)—g-(y),
xt "oyl

whereci/ € C(U x V). Then we can shortly writd @ = A® I +1® A+ C.On
alocal chart ot x V, for everyh € C2 (M) ® C%(M),

2

@ 1, i
A h(x,y) = —a J(X) h(x,y)+b (x)—h(x y)

x/

1 .. 32

5.7 Zah _h b
(5.7) + 34 (y)ayl ayi (. )+ ()7
2

dxi dy/

We will call I'(f, g)(x) — C(f, g)(x,x) = 3AP(1® f — g ® 1)?(x,x) —
1l f—gD(1® Af — Ag ® 1)(x, x) the pure diffusion formIt can easily
be seen that it is nonnegative and it vanishes if the associated canonical flow is a
flow of maps. Indeed,

+ e (x, y)

h(x,y).

L(f )00 = lim = (P(l)f (x) — P2 f€2(x, x))

1
= lim — (PP (1® f ~ f ® D*(x.)).
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The converse is not true (see examples in Section 7). Diffusive flows for which the
pure diffusion form vanishes may be calledbulent

The two-point motionXt(z) = (X;, Y;) solves the following martingale problem
associated witht @:

t
(5.8) M/®%:= F(X)g(¥,) — f(Xo)g(Yo) — fo AD(f @ g)(X,. Yy)ds

is a martingale for allf andg in CZ(M).
Note that for all functionsi; and i, in C2(M) ® C%(M), the martingale
bracket(h1(X @), ho(X@)), is equal to

t
(5_9) /o (A(Z)(hlhz) _ hlA(Z)h2 _ th(z)hl)(ng))dS,
and for all functionsf andg in C,%(M),

t
(5.10) (f(X). g(¥)) = fo C(f, 9)(Xs. Yy) ds.

DEFINITION 5.1. (i) A covariance function on the space of vector fields is
a symmetric mapC from 7*M?2 in R such that its restriction M x T/M

is bilinear and, for anyi-uples (&1, ..., &) of T*M?, Y1 -, C(&.&) = 0
(see [23]). Forf andg in C}((M), we denoteC (df (x),dg(y)) by C(f, g)(x, y).

(i) We say the covariance function is continuou<if f, g) is continuous for
all f andg in CL(M).

PrRoPOSITION5S.1. (i) C is a continuous covariance function on the space of
vector fields

(i) For all f1,....f, In C2(M), g = f1® - ® f, € D(A™), and for
x=(x1,...,x,) € M",
(6.11) A"We)=) [ fiGDAfiG)+ Y Cfi. fxixp) [] fulxo.

i i i<j ki, j
PrRoOOF Forall f andg in C,%(M), C(f, g)(x,y) is afunction ofdf (x) and

of dg(y) we denoteC (df (x), dg(y)). HenceC is a symmetric map frond™* M2
in R and its restriction td’* M x ‘M is bilinear. To prove (i), it remains to prove

Zi,j C(,&j)=0forall&y,.... & in T*M?2. This holds since, for alf1, ..., fu
in C2(M) and allxy, ..., x, in M,
(5.12) Y C(fi. [ i) = (AW g —2gAMg) (x1, ..., xp),
i,J
where g(x1, ..., %) = Y4 fi(xi) € D(A™). This expression is nonnegative
sinceA™g? — 2gAMg =lim,_0 2 (P{" g% — (P g)2 + (P{" g — £)D).
The proof of (ii) is an application of 1té’s formula.[]
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DEFINITION 5.2. The diffusion generatet and the covariance functianare
called the local characteristics of the fam(lyﬁ”), n > 1) or of the diffusion con-

volution semigroup.

When there is no pure diffusion, to give the local characterigticC) in a
system of local charts is equivalent to giving a dhfand C (this corresponds to
the usual definition of the local characteristics of a stochastic flow) since in this
casea’/ (x) = ¢ (x, x).

REMARK 5.1. When(Pﬁ”), n > 1) satisfies (C), (i) and (ii) of Theorem 4.1,
then (P, n > 1) also satisfies (i) if and only if, for every in M and all £, g
in C,Z{ (M), C(f, g)(x,x) =T(f, g)(x) [this holds since we hav€(f, g)(x,x) —
T(f, 9)x) =lim 0 2P (f ® g)(x, x) — P (f2)(x))], that is, when there is
no pure diffusion. So the results of this section also appl&bff’))’c, n>1).

Then in this case(P,(”), n>1) and (P, n > 1) have the same local
characteristics.

Let K = (K., s <t) be a measurable stochastic flow of kernels associated
with (Pﬁ”), n > 1) defined on a probability spac&, 4, P). We here consider the
modification ofK, which is continuous im (see Section 2.6).

DEFINITION 5.3. LetC be a covariance function on the space of vector fields.
A two-parameter familyv = (W ;, s <t) of random variables taking their values
in the space of vector fields aif is called a vector field valued white noise of
covarianceC if:

(i) for all s; <# < siy1, the random variablesW,, ,,1 < i < n) are
independent,
(i) forall s <u<t, Wy =Ws, + W, a.s.and
(i) for all s <, {(W,&),& € T*M} [when & = (x,u), (W, &) =
(Ws.1(x), u)] is a centered Gaussian process of covariance given by

(5.13) E[(Wr, E) (W1, EN]1=(t —5)C(E, &),
for& and&’ in T*M.

In this section, we intend to define d®, 4, P) a vector field valued white
noiseW of covarianceC such thatk solves a SDE driven by .

In Section 6, under an additional assumption, we will prove that the linear (or
Gaussian) part of the noise generatedkbyin the case it is the canonical flow) is
the noise generated by the vector field valued white ndise
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5.3. The velocity fieldv. Foralls <t, f € C,Z{(M) andx € M, let

t
(5.14) M f(x) = Kg: f(x) — f(x) —f Ky u(Af)(x)du.

LEMMA 5.2. Forall s eR, f € C2(M) andx € M, M = (M, £ (),
t > s) is a martingale with respect to the filtratiof* = (¥; ;,7 > s) and

d
(5.15) E<M{*", MEY), = KS2C(f, 8)(x, y),

forall f,gin C2(M)andallx,yin M.

PROOF SinceK is a measurable stochastic flow of kernels and since, for
every positiveh and everyf in CIZ((M), a.s.

(5-16) Ms,z+hf(x) - Ms,tf(x) = Ks,t(Mt,t-‘rhf)(x)’

Mf’x is a martingale. Note that (5.16) also implies that, for every positia! f,
gin C2(M) andallx, y in M,
E[(Ms, 10 f (x) = Myt f ) (My. 1408 () — Mys.18()) | Fs.1]
= KEHEIM: 10 f @ MiiagD(x, ¥).
The stationarity implies tha&[M; ;+, f (x)M; 1418 (y)]1 = E[Mon f (x)Mo,ng(y)].

Elementary computations using the fact th?éf')f - f= fé §1)Afds and
PP (f®8)— f@g=[3P? AP (f ®g)ds give

h
(5.17) E[Mo. f (1) Mo g ()] = /0 P@(C(f.8))(x.y)ds.

SincePt(z) is Feller andC (f, g) is continuous with compact support,

(5.18) E[Mo,n f (x)Mong(M]1=hC(f,8)(x,y)+o(h),

uniformly in (x, y) € M2.
ThereforeE[(M,;1h f (x) — My,; f (X)) (M, 1408 (y) — My :8(¥)| F5.¢ 1 IS equiv-
alent as: tendsto O tquf?tzC(f, g)(x, ). This proves the lemma.l]

REMARK 5.2. In the case of Arratia’s coalescing flaw ;,s <), C =0
but & (M, M$™), = 114, ,(0)=ps. )+ IN this caseC2 (M) ® C% (M) is not
included inD(A®@). This property also fails for the coalescing flow associated
with Tanaka’s SDE.
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Foralls <t,n>1andO0<k <2" -1, lety =s+k27"(t —s) and
21

(519) Wﬁzf: Z Mt,'cl,t,'€1+lf’
k=0

where f € C2 2 (M). Note that(M, )0§k§2"—1 are independent equidistributed
random varlables

5.3.1. Convergence in law.

LEMMA 5.3. Forall s <t and((x;, fi),1<i<m)e (M x C,%(M))’", we
have)_i ) W/, fi (x;) converges in law toward"’_ ; W; , fi(x;) asn tends tooo,
whereW is a vector field valued white noise of covariance

PROOF Using Lemma 5.2, we have, for afl, g in C,2< (M) and allx, y in M,

27" (1—s)
EMp g, S OMy g, 80 = [ PAC(f, 9)(x, y) du
(5.20) 0
=271t —5)C(f,®)x,y) + 027",
and this development is uniform mandy in M.

We will only prove the proposition whem = 1 (the proof being the same
for m > 1). The proposition is just an application of the central limit theorem
for arrays (see [6]), which we can apply since (5.20) is satisfied provided the
Lyapounov condition

2n—-1
(5.21) lim_ Z E[|My o f ®)|**]=0

for some positive, is satlsfled.
Using the Burkholder-Davies—Gundy inequality and Lemma 5.2,

(2+68)/2
E[|My g, f O] < CE[( /o KE2(C(f. ), x)du) }

< c2-(@om)2

27 (t—s)

whereC is a constant (changing every line) depending onlyforit — s) ands.
This implies
-1

(5.22) > E[|Mzg,zg+1f(x)|2+5] < 212~ (@+Om/2 - co—nd/2, .
k=0

REMARK 5.3. For Arratia’s coalescing flow, one can show the convergence
in law asn goes toco of (W (x1), ..., W{,(xx)) toward (B nyt), where

(BL,.... BY is ak-dimensional whlte noise.

ERZRRRE
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5.3.2. ConvergenceiL?(P). In the preceding section, we proved the conver-
gence in law ofW” toward a vector field valued white noise of covariaidten
this section, we prove that this convergence holds3¢p).

LEMMA 5.4. Forall s <f,xe M and f € C,%(M), W, f(x) converges
in L2(P).

PROOF Forall f € C2(M),x € M ands <1,
E[(W,f () = Wi f ()]
= E[(W! ()2 + E[(W £ (0)7] = 26100, FeoW T £ (o1,
Elementary computations using (5.18) imply
(5.24) E[(W?, f(0))?] = (t —s) C(f. /)x,x) +o(D),

(5.25) E[(WH ()2 = (1 =) C(f, [)(x, %) +o(D),

asn goes tooco and this uniformly ink € N. Using the independence of the
increments, the last term in (5.23) can be rewritten as

(5.23)

1 (i+1)2k—1

(6:26) EIW. fOOWI fl=) " > E[Myg, fOOIMpet poi f ()],

i=0  j=i2k

Note that fors < u < v <t, using first the martingale property, then (5.18) and the
uniform continuity ofC(f, f), we have

E[M;, f (x) My f(x)] = E[M; o f(x)My o f(x)]
=E[(Ks.u ® D(Myv f ® My v f)(x,x)]
=E[(Ks,u & D(E[My,p f & My, f1)(x,x)]
=@ —wC(f, Hx,x)+o(v—u),
uniformly in x € M. This implies

(5.27)

(5.28) EIW,, fOW! T f)] = = )C(f, ))x, x) +0o(D)

asn tends tooo and uniformly ink € N. We therefore have

(5.29) lim SupE[(W”, £ (x) — W' £(x))?] =0,
n—o0 keN ’ ’

thatis,(W{, f(x),n € N) is a Cauchy sequence Ir?(P). This proves the lemma.
O

REMARK 5.4. For Arratia’s coalescing flow, this lemma is not satisfied since
(W{, f(x),n €N) fails to be a Cauchy sequencelif(P).
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Thus, for alls < ¢, we have defined the vector field valued random varidle
such thatW; ; f (x) is the L2(P)-limit of W, Wi, f(x) forallx e M and f € C(M).
Then, using Lemma 5.3, it is easy to see that= (W, ,,s <t) is a vector field
valued white noise of covariancg

5.4. The stochastic flow of kernels solves a SDE. [23], it is shown that
a vector field valued white nois& of covarianceC can be constructed with a
sequence of independent real white noid&$),, by the formulaw = 3", V, W%,
where(V%), is an orthonormal basis @i, the self-reproducing space associated
with C.

For every predictable [with respect to the filtratiqF_ ;,7 € R)] pro-
cess(H;);cr taking its values in the dual d-, we define the stochastic integral
of H with respect taW by the formula

t t
(5.30) [ Hwa@w) =% [t vawe @),

for s < t. Note that the above definition is independent of the choice of the
orthonormal basigV%),.

In particular, this applies téf, (V) = K, ,(Vf)(x)1s<y<; for f € Cx (M) and
x € M. Then the stochastic integral,, f; K u (VY fYW%(du) is denoted

(5.31) [ KeulWs @)

REMARK 5.5. The stochastic integral (5.31) is equal to the limiL.&(P) of
-1

Z Ks,z,’j (Wt,:’zg+1f)(x)

k=0
asn tends tooo, wherer;! =s + k27" (t —s). Indeed,

n 1 2
[( f Kea WS @0)0) = 3 Ky W,kfmf)(x)) }

lir1
_ Z / PR (1 +PP, 21 ©PL )C(f, f)(x, x)du,
which tends to 0 as tends tooo.

PrROPOSITIONS.2. W is the unique vector field valued white noise such,that
forall s <¢,x € M and f € C2(M), P-as.,

t t
(532) K, f(x)=f(x)+ / Ky (WF (du)) (x) + / Ky u(Af) @) du.

Note that giving the local characteristics of the flow is equivalent to giving this
SDE This SDE will be called th€A, C)-SDE
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PrRooFr Foralls <, from Remark 5.5,

"1

¢ 2
6339 [ KuWr@o)w = fim 3" Ky Wy, £
$ k=0

in L2(P), wherer!! = s +k27"(t — s).
For all integers, [, k andn such that > n andk2'™" <i < (k + 1)2!~" — 1,
the development (5.27) implies

(5.34) E[Myy fMyy f0)]=27"(1=5)Cf )x,x)+0@7,
uniformly inx € M. This implies that, fol > n,

k+1)2!—"—1 2
(5.35) E[( ) M,lz,,lzﬂf(X)—Mz;g,z,ng(X)>}=0(2_"),

i=k2l-n

uniformly in x € M. Taking the limit ad goes taco, we get

FO) =My f0)]=0@7"),

(5.36) E[(W,y el
uniformly in x € M. We use this estimate to prove that

n
Ty

; 211
637 [ Ku(Wdos)em = im 3 Ko (Mg, )0

in L2(P). This holds since

2'-1 2n—1 2
E|:< Z Ks,z,’c’(Wt,?,z,L’+1f) - Z Ks,z,’j (Mz,’j,z,’;lf)) (x):|

k=0 k=0

= Z E[(Ks,t,?(Wz,’j,z,’ij - M,;:,,]?Hf))z(x)]

= Z P’(;)_S(E[(th?’tfﬂf o Mtf,;;lﬂf)z])(x)

<202 =o0(1).

Note now that
01 01

fEr1
> KoM, N0 = 3 Ko (Kipapyf =1 = [ KAy du) o
k=0 k=0 k

t
= Ky f() — f(x) — f Ky u(Af)@) du.
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This proves thak solves the(A, C)-SDE driven byW. Finally, note that ifK
solves the(A, C)-SDE driven by a vector field valued white noi®#€, then we
must havew’ =w. 0O

Let X = (X,,t > 0) be the Markov process defined in Section 2.6(@nx
CRT, M), ARQ B(CRT, M)),Pdw) ® Py.ow(dw)) by X(w, o) =o'

PROPOSITIONS.3. Assume there is no pure diffusifire., for all f € CIZ((M)
and x e M, T'(/)(x) = C(f, f)(x,x)]. Then for all +t > 0, x € M and
feC2(M),P(dw) ® Py ,(do)-as.,

t t
638 fX)=f@+ [ W fX)+ [ AF()du,
0 0

that is X is a weak solution of this SDn the sense given if38]).

PROOF As in the proof of (5.37) in Proposition 5.2, we show that

, n_1
(5.39) || wedn £ = im, 3 My g (Xy)

in L2(P,), with P, = P(dw) ® P, (do)). Let
t
Ml = 7 x) = 10 = [ Ar)du
then (Mtf,t > 0) is a martingale relative to the fiItratio(rIFtX, t > 0) generated
by the Markov procesX. We now prove thaEx[(M,f — [6 W(du) f (X,))?] =0,

whereE, denotes the expectation with respecPta It is easy to see that, since
there is no pure diffusion,

f2 ! 2 !
640) o= ([ Wawrow) |=e [ e nexu xdu )
0 0
Equation (5.39) and the martingale propert;M),f imply that

t
E. [Mf | W(du)f(xu>]

2"-1
541) = fim, 3 By < Mg, S (X))

= lim > E{(M) — Mp) x My, f(Xg)]-
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Since, forall 0< s < ¢, Ex[Mtf —M|AV FX1= My, f(Xy), we get
1

Z Ex[(Mt,:’,t,:’Hf(Xt,:’))Z]

k=0

e([ W(du)f(xu)z]

ThereforeE, [(M] — [i W(du) f(X,))?]=0. O

t
E, [Mf | W(du)f(xu}

= lim
n—oo

(5.42)

5.5. The(A, C)-SDE. In this section and the following, we lgt be a second-
order differential operator mappir(gf((M) in Cx (M) and letC be a continuous
covariance on vector fields.

DEFINITION 5.4. LetK be a stochastic flow of kernels and W&tbe a vector
field valued white noise, defined on a probability spé&ee, P).

() (K,W) is a solution of the(A, C)-SDE if the covariance ofW is
C and(K, W) satisfies (5.32) for alf <¢, x € M and f € C2(M).
(i) (K, W) is called a Wiener solution of thed, C)-SDE if moreover, for all
s <t, K, s }‘Sf‘t’—measurable, where’sf‘t’ is the completion by alP-negligible
sets of4 of theo-field o (W, ,, s <u <v <t).
(i) When a solution(K, W) of the (A, C)-SDE is not a Wiener solution, we
say it is a weak solution.

REMARK 5.6. The Wiener solution is the usual strong Itd solution of the SDE
when the solution is a flow of mappings, which is the case for the SDE (1.34), or
when(C satisfies condition (8.2) in [23] and when there is no pure diffusion.

REMARK 5.7. Let(K, W) be a solution of th€ A, C)-SDE and letv be the
Feller convolution semigroup associated wkih Thenv is a diffusion convolution
semigroup with local characteristi¢d, C).

The proof of this remark is left to the reader.

REMARK 5.8. The fact thatk, W) is a Wiener (resp. a weak) solution of the
(A, C)-SDE only depends on the law &f. So that we can say shortly th&tis a
Wiener (resp. a weak) solution of tkigd, C)-SDE.

DEFINITION 5.5.  We will say tha(P,(”), n > 1), acompatible family of Feller
semigroup, ow = (v;), a Feller convolution semigroup, defines a Wiener (resp. a
weak) solution of th€A, C)-SDE if P, is the law of a stochastic flow of kernels,
which is a Wiener (resp. a weak) solution of it®e, C)-SDE.

Under some additional assumptions, we will give in Section 6 a representation
of all solutions of thg A, C)-SDE.
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DEFINITION 5.6. We say that (Wiener) uniqueness holds for(theC)-SDE
when there is only one diffusion convolution semigroup with local characteris-
tics (A, C) defining a (Wiener) solution.

5.6. Wiener solution and filtering. Let us now consider the canonical flow
associated withv, a diffusion convolution semigroup, with local characteris-
tics (A, C). Let N)V := (Q0, 4O, (F,")s <, Py, (Th)ner) be the noise generated
by the vector field valued white nois&. Note thatN," is a linear or Gaussian
subnoise ofV,, the noise generated by the canonical flow. [The ngjse)s<; is
Gaussian if and only if there exists a countable family of independent real white
noises{W¢} such that, up to negligible se, ; is generated by the random vari-
abIesW,j{v foralls <u <v <randevery.]

LetK = (I?S,,, s <t) be the stochastic flow of kernels obtained by filtering the
canonical flow with respect to the subnois&’ (see Section 3.2). It is easy to see
that K also solves th¢A, C)-SDE (see the proof of Lemma 3.9 in [23]) and has
the same local characteristics as the canonical flow. Since, for<all, I?S’, is
ﬂf‘,’—measurable(l?, W) is a Wiener solution of théA, C)-SDE. Letv® denote
the associated diffusion convolution semigroup.

Foranyf € Co(M) andx € M, I?s,,f(x) can be expanded into a sum of Wiener
chaos elements, that is, iterated Wiener integrals of the form

(5.43) > /c“l ~~~~~ O (510 sp) AW d WL
a1,...,0p

Since W was constructed from the flow, it is clear that the functi@rg:-*

are determined by the law of the flow. (We will give, under some additional
assumptions, an explicit form of them in the following section.)

5.7. The Krylov—Veretennikov expansioriVe still assume we are given
v=(1);>0 a diffusion convolution semigroup, in the sense of Section 5.1,
associated with a set of local characteristid¢sC).

We suppose in this section the existence of a Radon measoreV such that
A is symmetric with respect ta.

Moreover, we assume that (th— A) is dense inCo(M) (it implies thatPt(l) is
symmetric with respect tex and is the unique Feller semigroup whose generator
extendsA).

Following [23], starting from the vector field valued white noiBg one can
define(S;;,s < t) a stochastic flow of Markovian operators [acting bfi(m)]
such that, for alk <, S ; iso (W)-measurable and, fof € L%(m)ands <u <1,

Ss,tf = Ss,uSu,tﬁ

t
Seaf =PP 4 / SsuW(dwP? £
S
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where both equalities hold ib?(m ® P). These operators are given by the Wiener
chaos expansion (called the Krylov—Veretennikov expansion)

(5.44) Seif =PEF+Y I,
n>1
with
(5.45) JI.f= PO WdspPS PP Wdsy)PD, f.

§<s1<-<sp<t
They can be characterized (Theorem 3-2 in [23]) as the unique flow of random
operators orL.2(m), o (W)-measurable, such thaf (S, £)2] < P'Y, £2 and

(5.46) ss,,f—f=/t SS,MW(du)er%ft SeuAfdu  inL%(m®P)

for every f in the domain of theL2-generatorA, denotedD(A). It implies
the following.

ProPOSITIONS.4. (i) If v defines a Wiener solutio(K, W) of the (A, C)-
SDE then for alls <, m ® P-a.e., for everyf € Cx (M),

(5.47) Ksif =851 f
(i) Wiener unigueness holds

PrRoOF (i) Itis clear thatk induces a flow of Markovian operators @A (m)
which verifies (5.46) forf € C2(m). Then (5.46) extends to functions in the
domain of the Feller generator and finallyfo(A).

(iiy From (i), it is clear thatm®-a.e.,P{"’ = E[S$"]. Since it is a Feller
semigroup, it is uniquely determined]

6. Noise and classification.

6.1. Assumptions. In this section, as before/ denotes a smooth locally
compact manifold. We fix a pair of local characteristic§, C) on M. A is
a second-order differential operator mappiﬁﬁ(M) in Ck(M) and C is a
continuous covariance on vector fields. The associated differential opergtors
onC2 (M)®" are defined by (5.11).

Let M(n,x) be the following martingale problem associated with” and
x € M": There exists a probability space on which is constructed/drvalued
stochastic process™ = (X", t > 0) such that

(6.1) F) = s - LA £ (X) ds

is a martingale for every test functighin C,Z( MR- C,Z( (M).
We suppose that the local characteris{ig¢sC) verify the following assumption.
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(U) Foreveryn > 1, the martingale problem( (n, x) has a unique solution in law
on the set of continuous trajectories stopped at

REMARK 6.1. Condition (U) is satisfied when the coefficients of the local
characteristics ar€? outside ofA,, (see Theorem 12.12 and Section V.19 in [38])
or whenA®™ is elliptic outside ofA,, (see Section V.24 in [38]).

Our purpose is to classify Feller convolution semigroups associated with these
local characteristics. We will treat two cases:

(A) The noncoalescing case where the solution of the martingale proklémx)
does not hit the diagonal whan= (x1, x2) with x1 # x».

(B) The coalescing case where there is no pure diffusion [i(.éAf2 —
fAPH(x) =C(f, fHx,x) for all f e C,2<(M) andx € M], and where as-

sumption (C) of Theorem 4.1 holds fmfz) = (X;, Y;) a solution ofM (2, x).

When the local characteristics are noncoalescing [case (A)], these local
characteristics are associated with at most a unique convolution semigroup and
a unigue canonical flow (which is not always a flow of maps). From Section 5.5,
we know the latter has to be a Wiener solution of the SDE (otherwise uniqueness
would be violated). Assumption (F) (see Section 1.7) is a sufficient (but not
necessary) condition for existence. The family of semigroups given in the example
of Lipschitz SDEs (see Section 1.7) satisfies these assumptions.

In Sections 6.2—6.4, we assume (B) is satisfied.

6.2. The coalescing caseclassification. Following [15], M(n,x) has a
unique solution in law on the set of coalescing trajectories; that(8(w) € C™,
where C™ is the set of continuous functiong:R* — M" such that if
fits) = fj(s)forl<i, j <nands>0,thenforall >s, fi(r) = f; (). (In [15],
this martingale problem is solved wheéii = R, but the proof can obviously be
adapted to our framework.) Since assumption (C) holds, Remark 4.5 implies that
the associated semigroups are Feller.

Hence all coalescing flows with these local characteristics have the same
law P,c. They induce the same family of semigrouﬁé”)’c, n > 1) and the same
convolution semigroup¢. This convolution semigroup is a diffusion convolution
semigroup with local characteristi¢d, C) since, for all f andg in C,2< (M) and
all x, yin M,

t
F(X)g¥) — f(x)g(y) — /0 AP (f ® g)(Xy, Yy)ds

is a martingale, whereX,, Y;) denotes the two-point motion of started atx, y).
Let N, be the noise generated by the canonical coalescing flow asociated with
the local characteristiosA, C).
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Let W be the vector field valued white noise defined @@°, A%, P,c) in
Section 5 and letv)! be the subnoise oN,. generated byw. Then NY is a
Gaussian subnoise &f and it is possible to represent it by a countable family of
independent real white nois¢®*} such thatw =", V, W%, where{V,} is a
countable family of vector fields oM.

We denote by* the diffusion convolution semigroup associated with the flow
obtained by filtering the canonical coalescing flow of Iaw with respect tav, ! .

The following theorem gives a representation of all flows with the same local
characteristics. They lie “between” the Wiener solution and the coalescing solution
of the SDE, which are distinct when the coalescing solution is not a Wiener
solution of the SDE.

THEOREM 6.1. Suppose we are given a set of local characteristigsC)
and that assumptio(B) is verified Then

(a) v is the unique diffusion convolution semigroup associated wAthC)
and defining a flow of magsvhich is coalescing

(b) v* is the unique diffusion convolution semigroup associated YAthC)
and defining a Wiener solution of tkid, C)-SDE

(c) The diffusion convolution semigroups associated WwhhC) are all the
Feller convolution semigroups weakly dominatedbyand dominating?®.

Note thatv andv® are not necessarily distinct.

PROOF OFTHEOREMG6.1. We have already proved (a) at the begining of this
section. Theorem 4.2 implies that every diffusion convolution semigiowugth
local characteristicéA, C) is weakly dominated by® so that a stochastic flow
of law P; can be obtained by filtering on an extens{@n ¢) of N, the coalescing
flow ¢ with respect to a subnoigé of N.

Let W be the velocity field associated witki. Proposition 5.2 shows that
(K, W) solves th& A, C)-SDE. Notice thaW¥ can be obtained by filtering/ with
respect toN. Indeed, Section 5.3 shows that", (defined fromK) converges
(in L?) toward W, , and we have that, for all <¢, f € C2(M) andx € M,
W2, f(x) = E[W!, f(x)|F;,.] a.s. and therefore th#ll; , f (x) = E[W, , f (x)| ;]
a.s. Sincé¥ andW have the same law, we must hawe , = Ws,, a.s. This proves
thatv dominates”.

Let us now suppose thék , W) is a Wiener solution of théA, C)-SDE. Then,
sinceW = W, we must haveV) = N (sincek,, is ¥,V -measurable) and thus
v’ = v. This proves the Wiener uniqueness for tiAe C)-SDE.

Finally let v be a Feller convolution semigroup weakly dominatedvbyand

dominatingv®. The fact thatv % v¢ implies that a stochastic floi of law P;
can be obtained by filtering on an extensigw, ¢) of N,. the coalescing flow
@ with respect to a subnoisg of N. Then Section 5.3 shows th#{, (defined
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from K) converges (inL?) toward W, , = E[W, ;| %;.;]. Now, sincev > v*, there
exists (see Lemma 3.3) a subnasef N such that the flow obtained by filteririg
or equivalently, the coalescing flow, with respecMdas lawP,s. The associated
white noiseW verifies, foralls <z, x e M andf € C,Z{ (M),

(6.2) Wi f(x) = E[Wy, fOIF 501 =E[Ws, fQOF 1.

SinceWw has covarianc€, it has to coincide with¥ andw = Ww.
Thus, (K, W) solves the(A, C)-SDE so thatv is a diffusion convolution
semigroup whose local characteristics é4eC). [

6.3. The coalescing casemartingale representation.On the probability
space(Q20, A%, P,c), let #¥° be the filtration(Fy,),=0 and let M (F"°) be the

space of locally square integralie’ -martingales.

PROPOSITION 6.1. For every #" -martingale M = (M;),.g+, there exist
predictable processed* = (d¢) >0 such that

t
(6.3) M, :Z/o DYWY (ds).

REMARK 6.2. Of course, this does not imply that” is generated byv.

PROOF OF PROPOSITION 6.1. We follow an argument by Dellacherie
(see [38], (V-25)). Suppose there exigiss L%(Fy',) orthogonal inL2(5y,,)
to all stochastic integrals afw®), of the form (6.3). ThenM; = E[FWOV,;] is
orthogonal toW“ for everya; that is, (M, W&,)t =

Let r = inf{s, |M,;| = 1/2} and Py = (L+ M;) - P,c. SinceM is a ur)iformly
integrable martingale and is a stopping time (with & M, > 1/2), P,c is a
probability measure 01Q°, 4%). Since (M, W§.); = 0, we get that undep,,
(W&t)a is a family of independent Brownian motions.

We are now going to prove that since (U) is satisfied, we must Rave: P,
which impliesM; = 0 and a contradiction.

Let F = H,r'lzlﬁ(@o,ti(xi))a for f1,..., fu in C12<(M), f1,...,t, in Rt and
X1,...,X, In M. We know that undeP,, for all 1 <i <n, (¢o;(x;),t > 0) is
a solution of the SDE

(6.4)  dgi(go,() = Vagi (0o (x)) W (@) + Af (g0 (x1)) dt,

for all g1,...,g, in C,%(M). Note that undeP,, these SDEs are also satis-

fied. Since undeP,., (W%), is a family of independent Brownian motions,
((po+(x;),t > 0),1 <i <n) is a coalescing solution of the martingale problem
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associated witld ™ and (U) implies that the law of(go;(x;),t > 0),1<i <n)
is the same unde¥, and undeP,.. ThereforeE[ F] = E[F], whereE denotes the
expectation with respect ®,c.

To conclude thatP,c = P,c, we need to proveE[F] = E[F] with F =
[Ty fi(@s; 4 (xi)) forall f1,..., f, in C2(M), 0<s; <t in RT andxy, ..., x,
in M. This can be proved the same way but using the kekheintroduced in
Section 2.6. In this cask, = 8g,» Whereg, ‘Rt x M — RT x M is measurable.
Then F = H?zlf,-(@,i (si, x;)) and (¢, (s;, x;),t > 0) is a solution of an SDE
onRt* x M. O

6.4. The coalescing casthe linear noise. Let us remarkthat if is a diffusion
convolution semigroup, thewv, is a predictable noise (see Proposition 3.2);
that is, M(F") is formed of continuous martingales (in particular, a Gaussian
noise is predictable). Following [41], a linear representation of a predictable
noise N = (2, A, (¥5.1)s<t, P, (Th)ner) is a family of real random variables
X = (X5, s <t) such that:

(a) Xs1oTh = Xsth.i+h foralls <t andh € R,
(b) X is F;,-measurable for all <z,
(€) Xrs+ X5 =X,ras., forallr<s<rt.

The space of linear representations is a vector space. Equipped with the norm
IX|l = (E[|X0.1/?DY?, it is a Hilbert space we denote bfii,. Let HY, be
the orthogonal inHjj, of the one-dimensional vector space consisting of the
representatio, , = v(r — s) for v € R; then HY, is constituted with the centered
linear representations. Note thatXf e Hl% with | X|| = 1, then(Xo,)/>0 iS a
standard Brownian motion. The Hilbert spaﬁi’@1 is a Gaussian system and every
X e HY, is a real white noise.

Note that if X and Y are orthogonal linear representations, thérand Y
are independent.

For all —co <5 <t < o0, let M be thes-field generated by the random
variables X, , for all X € HI% ands <u <v <t, and completed by all
P-negligible sets off o 4o0. Then Niip = (R, A, (F M-, P, (Ti)her) is a
noise. It is called the linearizable part of the nodeThe noiseV, is a maximal
Gaussian subnoise 8f, henceN is Gaussian if and only iV, = N. WhenNj, is
trivial (i.e., consisting of triviab -fields), one says thaY is a black noise (when
N is not trivial).

THEOREM6.2. NW =N,

ProoF Let HY be the space of centered linear representations of the
noiseN, . ThenH " is an Hilbert space [an orthonormal basisgb¥ is given by
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{(W&)s=}]and we havedV C HY,. Thisimplies thatv? is a Gaussian subnoise
of NIn.

If N £ N,'j{.‘, then there exists a linear representatog: 0 € Hl?n orthogo-
nal to #Y and therefore independentd¥*}. Since(Xo,),>0 € M (F), Proposi-
tion 6.1 implies that the martingale bracketf ; equals 0. This is a contradiction.

O

In Section 7, we give an example of a stochastic coalescing flow whose noise
is predictable but not Gaussian. It is an example of nonuniqueness of the diffusion
convolution semigroup associated with a set of local characteristics.

REMARK 6.3. In Section 4.4.3, although the covariance funciidtis not
continuous, it is still possible to construct a white noigefrom the coalescing
flow (¢, s <t). Foralls < ¢, we setW; ; = fs’ sgnes.,(0)) dys ,(0). Then we
have W, = [S’ sgngs., (x)) des 4 (x) for everyx € R. Therefore one can check
thatW = (W, ;, s <t) is a real white noise.

The coalescing flowg; ;, s <) solves the SDE

t
(6.5) s, (x) =/ SgN(@s., (x)) dW, fors <t andx € R.

The results of this section apply since Proposition 6.1 is also satisfied if we
only assume the uniqueness in law of the coalescing solutions [i.e. such that if
(X1, ..., X" solves the SDE, then if, far# j ands > 0, X! = X{, thenX! = X/
for all + > 5] of the SDE satisfied by the-point motion [i.e., the SDE (6.4)],
which here is almost obvious. Therefore, the linear part of the noise generated by
the coalescing flow is given by the noise generatedtyBut since the Wiener
solution of the SDE (6.5) is not a flow of mappings, the coalescing flow is not a
strong solution. Therefore, we recover the result of [44] and [45] that the noise of
this stochastic coalescing flow is predictable but not Gaussian.

The Wiener solution given in Section 4.4.3 can be recovered by filtering the
coalescing solution with respect to the noise generateidl by

7. Isotropic Brownian flows. In this section, we give examples of compatible
families of Feller semigroups. They are constructedfra two-point symmetric
space, withC an isotropic covariance function on the space of vector fields and
the semigroup of a Brownian motion a.

7.1. Isotropic covariance functions.Let M = G/K be a two-point symmetric
space. This class of spaces includes euclidean spaces, hyperbolic spaces and
spheres; see [16], Chapter I is the group of isometries oW. A covariance
function C is said to be isotropic if

(7.1) C(g-&.8-&)=CE8)
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for all g € G and (¢,&) € (T*M)? and whereg - £ = Tg(¢) [or g - (x,u) =
(gx, Tgyu) for (x,u) € T*M].

Examples of isotropic covariances are given in [32]®h and in [37, 36]
on the sphere and on the hyperbolic plane. In these examples, the Grodip
isometries orR? (making R? homogeneous) is generated Byd) and by the
translations. For the sphef¢, this group isO(d + 1), and for the hyperbolic
space, itisO(d, 1).

7.2. A compatible family of Markovian semigroupd.et C be an isotropic
covariance onX (M), the space of vector fields on the two-point symmet-
ric spaceM = G/K. To this isotropic covariance function is associated a
Brownian vector field onV/ [i.e., a X (M)-valued Brownian motiorW such that
E[(W;, EY(Wy, Y] =1t AsC(E,&")]. Let P be the associated Wiener measure, con-
structed on the canonical spaRe= {w:R*T — X(M)}, equipped with the -field
4 generated by the coordinate functions.

We denote byW the random variabléV (w) = w. W is a Brownian vector
field of covarianceC which is isotropic in the sense that, for evegye G,
(Tgx_lW, (gx),t e RT x € M) is a Brownian vector field of covariance

Let P; be the heat semigroup ad, let m be the volume element and latbe
the Laplacian.

Let (S;,t > 0) be the family of random operators defined in [23], associated
with W and to the heat semigroup. Following [23], we define the associated
semigroups of the:-point motion,P,(”) = E[S®"] (with Pﬁl) =P,). Then, it is
obvious that(P,(”),n > 1) is a compatible family of Markovian semigroups of
operators acting o.?(m®"). We now prove that these semigroups are induced
by Feller semigroups (the question was raised in [28]).

One can extendW;);>o into a vector field valued white noig@V; ;, s <t) of
covarianceC such thatW; = Wy, for + > 0 and associate to it a stationary cocycle
of random operatorsS; ;, s < t) such thatSp ; = S; for > 0.

7.3. Verification of the Feller property.For everyg € G, let L;:Q — Q
defined byL w;(-) = Tg Y(wi(g+)), forallt e R andx € M. ThenL, is linear
and, forallgy andg2 in G, Lg,e, = Ly, Ly, (i.€.,8 — L, is arepresentation ).

It is easy to check that, for evegye G, (L,)*P = P. Note that this last condition
is also a characterization th@tis isotropic.

For everyg € G, L, induces a linear transformation drt (2, 4, P) we will
also denote by .. Then for everyf L%(Q, A, P), we haveL, f(w) = f(L,w).
This transformation is unitary since

ILg fI2 = / FALyw) Pdw) = / FA0)(Le)*P)(dw) = || f |12

[where|| - | denotes thé.2(P)-norm].
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PROPOSITION 7.1. For everyv € L%(Q, #, P), the mappingg — Lgv is
continuous

PROOF Note that, sincel is a representation, it is enough to prove the
continuity ate, the identity element i

REMARK 7.1. Let(v,,n € N) be a sequence if?(Q2, 4, P) converging
toward v € L%(2, 4,P) asn — oo such that liM_.Lyv, = v, for every
integern; then lim,_,, L,v = v. Indeed, since for every € G, L, is unitary,
[Lgv—vll < 2llvy — v+ [ILgvn — vull. Hence limsup_, , [[Lgv —v]| < 2||v, —v]|
for every integen.

We first prove that lip_,, L v = v for everyv of the form}_; W;, (&) [with
W (x, u) = (Wi(x), u), where(-, -) denotes the Riemannian metric]:

2
L, (Z A (&-)) A

=2 1 Atj(C&i. ) — C(g - &L &),
LJ

which converges toward 0 gstends toe.

Let H denote the closure (ib2(S2, #, P)) of the class of every of the form
> Wi (&). Remark 7.1 implies that lijy, . L v = v holds for every € H.

Itis well known thath(Q, A, P) is the orthogonal sum of the Wick powetE'
of H (see [39]), also called theth Wiener chaos (see [33]}° is constituted by
the constants. The spaég' is isometric to the symmetric tensor product Hilbert
spaceH®". We now prove that linp,, L,v = v holds for every € H”". For every
v=v1Q®°---®%v, € H" (Or :viv2--- v, :inwick notation), withv1, ..., v, in H,

”Lgv - U” =< Z ”LgUl ®S ®S Lgvj—l ®S (Lgvj - U/) ®S Uj—}—l ®S ®S Un”
J

<Vnty lLgvj — vl x [T vill,
J i#]
which converges toward 0 gstends toe. Since the class of linear combinations
of elements of the form; ®° --- ®° v, is dense inH", we have lim_,, L,v =v
for everyv in H". And we conclude sincez(Q, A,P)=@D,s0H". U
Forallx e M,s <t andf € Co(M), sinceP,El) is absolutely continuous with
respect ton, we have

1 P
(7.2) PO S e f () = E[PP Sy e s £ Foper ],

for 0 < ¢ < e. Thus, for alls < t, P§1)Ss+g’,f(x) is a martingale as
decreases. This martingale converges and we denote its limiKy (x).
Then S, f =K,.f in L2m ® P) and P'” = B™ m®"-a.e., where ™
denote€[K E)'].
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LEMMA 7.1. The mappinge — K;;f(x) is continuous for every Lipschitz
function f and all s <.

PrROOF Note that for allg € G andx € M,
(7.3) LKy i f(x) =K f$ (g),
where ¢ (x) = f(g~1x). We then have
1Kt f(gx) — Ky, f ()]
< | Ko f(gx) = Ko f8 (g0)] + ILgKs,i f(x) — Ks i f (O

Hence lim_,, K, f(gx) = Ky f(x) since lim_. LK, ,f(x) = K;;f(x)
and ||Ky ., f(gx) — Kyo f¢(g0) < I1f — £¢ ' llos, Which converges toward 0
[since | f(x) — fgfl(x)l < Cd(x, g 1x), which converges toward 0 as— e].
This implies the lemma. O

PROPOSITION7.2. (i) (P"™,n > 1) is a compatible family of Feller semi-
groups

(i) The associated convolution semigraip= (v});>¢ is a diffusion convolu-
tion semigroup with local characteristic(%A, 0).

PrRooF For all bounded Lipschitz functiong, ..., f;, Lemma 7.1 implies
that(xy, ..., x,) —> P 1@+ ® fu(x1..... xn) = E[[T/_y K., fi(x;)] is contin-
uous. This suffices to prove (i). [The proof that Jigy Pt(”)h(x) = h(x) for every
h e C(M")isthe same asin Lemma 1.11.]

To prove (ii), notice that Ité’s formula fofS; ;, s < t) (see Theorem 3.2 in [23])
implies that, for allf € C2 (M) ands <1,

t t
(7.4) Koof(0)=f(x)+ / Ky (WF (du)) @) + / Ky u(AS) @) du,
thatis,(K, W) solves the(3A, C)-SDE. O

7.4. Classification. Letv* be the diffusion convolution semigroup constructed
above. It defines a Wiener solution of tloéA, C)-SDE. Note that there is no
pure diffusion.

Let (d;);>0 denote the distance process induced by the two-point motion
x? = (X,,Y,) [thend, = d(X,, ¥,)]. The isotropy condition and the fact that in
two-point homogeneous spaces, pairs of equidistant points can be exchanged by
an isometry imply thad; is a real diffusion. We denote in the following the law of
this diffusion starting fromr > 0 by P,.. Let H, = inf{t > 0,d; =r}.
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ProPOSITION7.3. (i) v® defines a noncoalescing flow of mape., such
that the two-point motion starting outside of the diagonal never hits the diagonal
if and only ifO is a natural boundary pointhat is, if

(7.5) Vr>0 P.[Hy<oo]=0 and Pg[H, <oo]=0.

(i) v* defines a coalescing flow of maps if and only0ifs a closed exit
boundary pointthat is, if

(7.6) Ir>0 P.[Hy<oo]>0 and Vr=>0 PolH, <o0]=0.

(i) v* defines a turbulent flow without hittin@.e., such that the two-point
motion starting outside of the diagonal never hits the diagifednd only ifO is
an open entrance boundary pajtiiat is, if

(7.7) vVr>0 P.[Hy<oo]=0 and 3r >0 PolH, <o0] > 0.

[We recall that a turbulent flow was defined as a stochastic flow of kernels which
is not a flow of maps and without pure diffusipn

(iv) v* defines a turbulent flow with hittin@.e., such that the two-point motion
starting outside of the diagonal hitke diagonal with a positive probabilityf and
only if O is a reflecting regular boundary poirthat is, if

(7.8) Ir>0 P.[Hop<oo]>0 and 3r>0 PolH, < oc0] > 0.

In all cases excefiv), v* is the unique diffusion convolution semigroup with
local characteristicg3 A, C).

In case(iv), called the intermediate phase® # v* and Theorem$.1and 6.2
apply. ThusN,. is a predictable non-Gaussian noise

PROOF The proof of (i)—(iv) is straightforward. Notice that the local charac-
teristics satisfy (U). In all cases defines a Wiener solution of théA, C)-SDE.
This with Theorem 6.1 implies that in the coalescing case (ii), sirice: v,
v¥ is the unique diffusion convolution semigroup whose local characteristics
are(3A, O).

In the noncoalescing case (i) and in the turbulent case without hitting (iii),
the fact thatv® is the unique diffusion convolution semigroup whose local
characteristics aré%A, C) follows directly from (U).

In the intermediate phase (iv), we must haves v* sincev® defines a turbulent
flow andv® a flow of maps. Moreover, condition (B) holds so that we can conclude
using Theorems 6.1 and 6.2(]

REMARK 7.2. The(%A, C)-SDE has a solution, unique in law except in the
intermediate phase, in which case all solutions are obtained by filtering, on an
extension N, ¢) of the noise of the coalescing solution, this coalescing solytion
with respect to a subnoise &f containingW.

REMARK 7.3. The conditions involving the distance process can be verified
using the speed and scale measures of this process which are explicitly determined
by the spectral measures of the isotropic fields (cf. [23[RK®rand forS?).
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7.5. Sobolev flows. In [23], Sobolev flows(S;;,s < t) on R? and onS?
are studied. The Sobolev covariances are described with two parametets
and n € [0, 1]. The associated Beaeproducing paces are Sobolev spaces of
vector fields of ordeld + «)/2. The incompressible and gradient subspaces are
orthogonal and, respectively, weighted by factpend 1— 7.

Let us apply the results obtained in [23]. We will call the stochastic flow
associated witliS; ;, s < r) (see Sections 5.7 and 7.3) Sobolev flow as well. When
o > 2, we are in case (i) and Sobolev flows are flows of diffeomorphisms. More
interestingly, when G « < 2 then:

() ifde{2,3}andn <1— % we are in case (ii) of Proposition 7.3 and the
Sobolev flow is a coalescing flow,

(i) if d>4orifd e{2, 3} andn > % — ("2—;2), we are in case (iii) and the
Sobolev flow is turbulent without hitting,

(iii) if de{2.3) and 1— % <y < 3 — 2, we are in case (v) (i.e., the
intermediate phase) and the Sobolev flow is turbulent with hitting.

In dimension 1, the parametgrvanishes. The critical case was studied in [1, 12,
30]. There is a strong coalescing solution do [1, 2[ and an intermediate phase
for o €]0, 1I.

By construction, in all these cases, the noises generated by the Sobolev flows
are Gaussian noises. For the intermediate phase, in which there exist two different
solutions to the(%A, C)-SDE (namely the coalescing one and the turbulent one),
the noise of the associated coalescing flow is predictable but not Gaussian.

These different cases are represented by the phase diagram (Figure 1) for the
homogeneous spa&@?. Recall that a flow of diffeomorphisms is called stable

4

35

3 stable flow

25
unstable flow

coalescing
flow

| turbulent with
hitting: non wriqueness

turbulent without hitting

FiG. 1.
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(resp. unstable) when the first Lyapounov exponent is negative (resp. positive).
These exponents actually converge actually towasd or to +-oo asa approaches
the critical value 2.

8. Conclusion. Looking at the phase diagram in Figure 1, it looks as if this
case has been fully analyzed.

The three different types of motion which can be defined by a consistent system
of Feller semigroups appear in Figure 1. Flows of noncoalescing maps occur
when, for the two-point motion, the diagonal and the complement of the diagonal
are absorbing.

When the first condition fails, that isyhen the diagonal is not absorbing, we
get a diffusive flow, that is, a flow of nontrivial Markov kernels. We see in this
example that this can happen without pure diffusion, that is, when the evolution
equation has no dissipative term. In that case we say that the flow is turbulent. It
can be viewed as an effect of extreme instability due to the importance of very high
frequency divergence-free components in the velocity field near the diagonal.

When the second condition fails, that is, when the complement of the diagonal is
not absorbing, we get flows of coalescing maps. We see, in the intermediate phase,
that a turbulent and a coalescing flow can have the same local characteristics. This
happens when both conditions fail for the two-point motion associated with the
turbulent flow.

Moreover, it is likely that at least in the other isotropic situations, a very similar
picture will occur, the parameters being the singularity of the covariance on the
diagonal and the balance between gradient and incompressible velocity fields.

Yet there is still some important work to do about the intermediate phase. We
know there exist two remarkable distinct solutions in that case for the SDE: the
coalescing flow, the noise of which is not linear but for which the linear part has
been identified as the velocity white noi¥é, and the unique Wiener solution
which is a flow of nontrivial kernels obtained by averaging the coalescing flow
with respect tdV. Other solutions do exist and we have shown that their associated
convolution semigroups are weakly dominated by the “coalescing” convolution
semigroup and dominate the “Wiener” or “linear” one. But this classification
should be made analytically precise and one can conjecture it involves a “gluing”
parameter on the diagonal (see Section 3.3, [24—26] for first steps in this direction.)
Moreover, the nonlinear part of the relevant noises remains to be fully analyzed.
Finally, one can expect that more complex phenomena occur for SDEs in which
a multiplicity of weak solutions with different one-point motions do exist. Hence
this paper can only be a step in the understanding of the multiplicity of flows with
given velocity field, or given local characteristics.
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nal version.
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