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FLOWS, COALESCENCE AND NOISE

BY YVES LE JAN AND OLIVIER RAIMOND

Université Paris-Sud

We are interested in stationary “fluid” random evolutions with indepen-
dent increments. Under some mild assumptions, we show they are solutions
of a stochastic differential equation (SDE). There are situations where these
evolutions are not described by flows of diffeomorphisms, but by coalescing
flows or by flows of probability kernels.

In an intermediate phase, for which there exist a coalescing flow and a
flow of kernels solution of the SDE, a classification is given: All solutions
of the SDE can be obtained by filtering a coalescing motion with respect to
a subnoise containing the Gaussian part of its noise. Thus, the coalescing
motion cannot be described by a white noise.

0. Introduction. A stationary motion on the real line with independent
increments is described by a Levy process, or equivalently by a convolution
semigroup of probability measures. This naturally extends to “rigid” motions
represented by Levy processes on Lie groups. If one assumes the continuity of
the paths, a convolution semigroup on a Lie groupG is determined by an element
of the Lie algebrag (the drift) and a scalar product ong (the diffusion matrix) (see,
e.g., [31]). We call them the local characteristics of the convolution semigroup.

We will be interested in stationary “fluid” random evolutions which have
independent increments. Strong solutions of stochastic differential equations
(SDEs) driven by smooth vector fields define such evolutions. Those are of a
regular type, namely:

(a) The probability that two points thrown in the fluid at the same time and at
distanceε separate at distance one in one unit of time tends to 0 asε tends to 0.

(b) Such points will never hit each other.

Their laws can be viewed as convolution semigroups of probability measures on
the group of diffeomorphisms.

On a compact manifold, letV0,V1, . . . , Vn be vector fields and letB1, . . . ,Bn

be independent Brownian motions. Consider the SDE

dXt =
n∑

k=1

Vk(Xt ) ◦ dBk
t + V0(Xt ) dt,(0.1)
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which equivalently can be written

df (Xt ) =
n∑

k=1

Vkf (Xt ) dBk
t + 1

2Af (Xt) dt(0.2)

for every smooth functionf and Af = ∑n
k=1 Vk(Vkf ) + V0f . Note that

Af 2 − 2fAf =∑n
k=1(Vkf )2. Then, strong solutions (when they exist), as de-

fined, for example, in [38], of this SDE produce a flow of mapsϕt , such that,
for everyx, ϕt (x) is a strong solution of the SDE withϕ0(x) = x, which means
that ϕt is a function of the Brownian pathsB1, . . . ,Bn up to time t . When the
vector fields are smooth, strong solutions are known to exist, and to be unique.
The framework can be extended to include flows of maps driven by vector field
valued Brownian motions, which means essentially thatn = ∞ (see, e.g., [3, 17,
20, 21, 27]).

In a previous work [23], this was extended again to include flows of Markovian
operatorsSt solutions of the SPDE

dStf =
∞∑

k=1

St(Vkf ) dBk
t + 1

2St (Af )dt,(0.3)

assuming the covariance functionC =∑∞
k=1 Vk ⊗ Vk of the Brownian vector field∑∞

k=1 VkB
k is compatible withA, namely that

Af 2 − 2fAf ≤
∞∑

k=1

(Vkf )2.(0.4)

Existence and uniqueness of a flow of Markovian operatorsSt , which is a strong
solution of the previous SPDE in the sense thatSt is a function of the Brownian
paths(Bi)i≥1 up to time t , holds under rather weak assumptions. However, it
is assumed in [23] thatA is self-adjoint with respect to a measurem and the
Markovian operators act onL2(m) only. To avoid confusion with the usual notion
of strong Itô solutions of SDEs, these solutions will be called Wiener solutions
when they are not associated with a flow of maps.

The local characteristics of these flows are given byA and the covariance
function C, and they determine the SDE or the SPDE. But it was shown in [23]
that covariance functions which are not smooth on the diagonal [e.g., covariance
associated with Sobolev norms of order betweend/2 and (d + 2)/2, d being
the dimension of the space] can produce Wiener solutions, which define random
evolutions of different type:

(i) turbulent evolutions where (a) is not satisfied, which means that two points
thrown initially at the same place separate, though there is no pure diffusion; that
is, thatAf 2 − 2fAf =∑∞

k=1(Vkf )2.
(ii) coalescing evolutions where (b) does not hold.
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In this paper, we adopt a different approach based on consistent systems of
n-point Markovian Feller semigroups which can be viewed as determining the law
of the motion ofn indivisible points thrown into the fluid. Regular and coalescing
evolutions are represented by flows of maps. Turbulent evolutions by flows of
probability kernelsKs,t (x, dy) describe how a point mass (made of a continuum
of indivisible points) inx at times is spread at timet . (Note that in that case, the
motion of an indivisible point is not fully determined by the flow.)

Among turbulent evolutions, we can distinguish the intermediate ones where
two points thrown in the fluid at the same place separate but can meet after, that is,
where (a) and (b) are both not satisfied.

In the intermediate phase, it has been shown in [9] (for gradient fields) and (at a
physical level) in [10, 11, 14] that a coalescing solution of the SDE can be defined
in law, that is, in the sense of the martingale problems for then-point motions.
We present a construction of a coalescing flow in the intermediate phase. This
flow obviously differs from the Wiener solution(Ss,t , s ≤ t) and corresponds to an
absorbing boundary condition on the diagonal for the two-point motion.

This flow generates a vector field valued white noiseW and we can identify
the Wiener solution to the coalescing flow(ϕs,t , s ≤ t) filtered by the velocity
field σ(W). The noise, in Tsirelson sense (see [41]), associated to the coalescing
flow, is not linearizable, that is, cannot be generated by a white noise though it
containsW .

A classification of the solutions of the SDE (or of the SPDE) can be given: They
are obtained by filtering a coalescing motion defined on an extended probability
space with respect to a subnoise containing the Gaussian part of its noise.

Let us explain in more detail the contents of the paper. We give in Sections
1 and 2 construction results, which generalize a theorem by de Finetti on
exchangeable variables (see, e.g., [18]). A stochastic flow of kernelsK is
associated with a general compatible family(P(n)

t , n ≥ 1) of Feller semigroups.
The flowK is induced by a flow of measurable mappings when

P(2)
t f ⊗2(x, x) = Pt f

2(x),

for all f ∈ C(M), x ∈ M and t ≥ 0. The Markov process associated withP(n)
t

represents the motion ofn indivisible points thrown in the fluid. The two notions
are shown to be equivalent: the law of a stochastic flow of kernels is uniquely
determined by the compatible system ofn-point motions. This construction is
related to a recent result of Ma and Xiang [28] where an associated measure valued
process was constructed in a special case (the flow can actually be viewed as giving
the genealogy of this process, i.e., as its “historical process”) and to a result of
Darling [9]. Note, however, that Darling did not get flows of measurable maps
except in very special cases. See also Tsirelson [43] for an alternative approach to
this construction.

In Section 3, we define the noise associated withK and introduce the notion of
“filtering with respect to a subnoise.”
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In Section 4, coalescing flows are constructed and briefly studied. They can
be obtained from any flow whose two-point motion hits the diagonal. Then the
original flow is shown to be recovered by filtering the coalescing flow with respect
to a subnoise.

In Section 5, we restrict our attention to diffusion generators. We define the
vector field valued white noiseW associated with the stochastic flow of kernelsK

and prove that the flow solves the SDE driven by the white noiseW .
In Section 6, under some off-diagonal uniqueness assumption for the law of

the n-point motion, we show there is only one Wiener solution of the SDE. In
the intermediate phase described above, the classification of other solutions by
filtering of the coalescing solution is established. Then we identify the linear part
of the noise generated by these solutions to the noise generated byW .

The examples related to our previous work (see [23]) are presented in Section 7,
with an emphasis on the verification of the Feller property for the semigroupsP(n)

t ,
the classification of the solutions and the appearance of nonclassical noise, that is,
predictable noises which cannot be generated by white noises.

1. Stochastic flow of measurable mappings.

1.1. Compatible family of Feller semigroups.Let M be a compact metric
space and letd be a distance onM .

DEFINITION 1.1. Let (P(n)
t , n ≥ 1) be a family of Feller semigroups,

respectively, defined onMn and acting onC(Mn). We say that this family is
compatible as soon as, for allk ≤ n,

P(k)
t f (x1, . . . , xk) = P(n)

t g(y1, . . . , yn),(1.1)

wheref andg are any continuous functions such that

g(y1, . . . , yn) = f
(
yi1, . . . , yik

)
(1.2)

with {i1, . . . , ik} ⊂ {1, . . . , n} and(x1, . . . , xk) = (yi1, . . . , yik ).
We will denote byP(n)

(x1,...,xn)
the law of the Markov process associated withP(n)

t

starting from(x1, . . . , xn). This Markov process will be called then-point motion
of this family of semigroups. It is defined on the set of càdlàg paths onMn.

REMARK 1.1. P(n)
t is a Feller semigroup onMn if and only if P(n)

t is positive
(i.e., P(n)

t f ≥ 0 for everyf ≥ 0), P(n)
t 1 = 1 and for every continuous functionf ,

P(n)
t f is continuous and limt→0 P(n)

t f (x) = f (x), which implies the uniform
convergence ofP(n)

t f towardsf (see Theorem 9.4 in Chapter I of [7]).

1.2. Convolution semigroups on the space of measurable mappings.We equip
M with its Borelσ -field B(M). Let (F,F ) be the space of measurable mappings
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on M equipped with theσ -field generated by the mappingsϕ 	→ ϕ(x) for every
x ∈ M .

DEFINITION 1.2. A probability measureQ on(F,F ) is called regular if there
exists a measurable mappingJ : (F,F ) → (F,F ) such that(

M × F,B(M) ⊗ F
)→ (

M,B(M)
)
,

(x,ϕ) 	→ J(ϕ)(x),

is measurable and, for everyx ∈ M ,

Q(dϕ)-a.s., J(ϕ)(x) = ϕ(x),(1.3)

that is,J is a measurable modification of the identity mapping on(F,F ,Q). We
call it a measurable presentation ofQ.

PROPOSITION 1.1. Let Q1 and Q2 be two probability measures on(F,F ).
AssumeQ1 is regular. LetJ be a measurable presentation ofQ1. Then the mapping

(F 2,F ⊗2) → (F,F ),

(ϕ1, ϕ2) 	→ J(ϕ1) ◦ ϕ2,

is measurable. Moreover, if J′ is another measurable presentation ofQ1, then for
everyx ∈ M ,

Q1(dϕ1) ⊗ Q2(dϕ2)-a.s., J(ϕ1) ◦ ϕ2(x) = J′(ϕ1) ◦ ϕ2(x).(1.4)

REMARK 1.2. (i) (ϕ1, ϕ2) 	→ J(ϕ1)◦ϕ2 is measurable but(ϕ1, ϕ2) 	→ ϕ1◦ϕ2
is not measurable.

(ii) The law ofJ(ϕ1) ◦ ϕ2 does not depend on the chosen presentationJ.

PROOF OF PROPOSITION 1.1. Let J be a measurable presentation ofQ1.
For everyx ∈ M , the mapping(ϕ1, ϕ2) 	→ J(ϕ1) ◦ ϕ2(x) is measurable since
it is the composition of the measurable mappings(ϕ1, ϕ2) 	→ (ϕ1, ϕ2(x)) and
(ϕ1, y) 	→ J(ϕ1)(y). By definition of F , the mapping(ϕ1, ϕ2) 	→ J(ϕ1) ◦ ϕ2
is measurable.

For everyx ∈ M , we have

Q1(dϕ1)-a.s., J(ϕ1)(x) = ϕ1(x).

Thus, for allx ∈ M andϕ2 ∈ F ,

Q1(dϕ1)-a.s., J(ϕ1) ◦ ϕ2(x) = ϕ1 ◦ ϕ2(x) = J′(ϕ1) ◦ ϕ2(x).

Therefore, using Fubini’s theorem, for everyx ∈ M ,

Q1(dϕ1) ⊗ Q2(dϕ2)-a.s., J(ϕ1) ◦ ϕ2(x) = J′(ϕ1) ◦ ϕ2(x). �



1252 Y. LE JAN AND O. RAIMOND

DEFINITION 1.3. We denoteQ1 ∗ Q2, and we call the convolution product of
Q1 andQ2, the law of the random variable(ϕ1, ϕ2) 	→ J(ϕ1) ◦ ϕ2 defined on the
probability space(F 2,F ⊗2,Q1 ⊗ Q2).

DEFINITION 1.4. A convolution semigroup on(F,F ) is a family (Qt )t≥0
of regular probability measures on(F,F ) such that, for all nonnegatives and t ,
Qs+t = Qs ∗ Qt .

DEFINITION 1.5. A convolution semigroup(Qt )t≥0 on (F,F ) is called
Feller if:

(i) ∀f ∈ C(M), limt→0 supx∈M

∫
(f ◦ ϕ(x) − f (x))2Qt (dϕ) = 0.

(ii) ∀f ∈ C(M), ∀ t ≥ 0, limd(x,y)→0
∫
(f ◦ ϕ(x) − f ◦ ϕ(y))2Qt (dϕ) = 0.

PROPOSITION1.2. Let (Qt )t≥0 be a Feller convolution semigroup on(F,F ).
For all n ≥ 1, f ∈ C(Mn) andx ∈ Mn, set

P(n)
t f (x) =

∫
f ◦ ϕ⊗n(x)Qt (dϕ).(1.5)

Then(P(n)
t , n ≥ 1) is a compatible family of Feller semigroups onM satisfying

P(2)
t f ⊗2(x, x) = Pt f

2(x),(1.6)

for all f ∈ C(M), x ∈ M andt ≥ 0.

PROOF. It is easy to see that this family is compatible and that, for alln ≥ 1
andt ≥ 0, P(n)

t is Markovian. Lets andt be inR+, f ∈ C(Mn) andx ∈ M ; then

P(n)
s+t f (x) =

∫
f ◦ ϕ⊗n(x)Qs+t (dϕ)

=
∫

f ◦ J(ϕ1)
⊗n ◦ ϕ⊗n

2 (x)Qt (dϕ1) ⊗ Qs(dϕ2)

=
∫

P(n)
t f ◦ ϕ⊗n

2 (x)Qs(dϕ2)

= P(n)
s P(n)

t f (x),

whereJ is a measurable presentation ofQs . This proves thatP(n)
t is a semigroup.

Let us now prove the Feller property. Leth ∈ C(Mn) be in the form
f1 ⊗ · · · ⊗ fn, x = (x1, . . . , xn) and y = (y1, . . . , yn). We have, forM large
enough,

∣∣P(n)
t h(y)− P(n)

t h(x)
∣∣≤ M

n∑
k=1

(∫ (
fk ◦ϕ(yk)−fk ◦ϕ(xk)

)2Qt (dϕ)

)1/2

,(1.7)

which converges toward 0 asd(x, y) goes to 0 since (ii) in Definition 1.5 is
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satisfied. We also have

∣∣P(n)
t h(x) − h(x)

∣∣≤ M

n∑
k=1

(∫ (
fk ◦ ϕ(xk) − fk(xk)

)2
Qt (dϕ)

)1/2

,(1.8)

which converges toward 0 ast goes to 0 since (i) in Definition 1.5 is satisfied. These
properties extend to every functionh in C(Mn) by an approximation argument.
This proves the Feller property of the Markovian semigroupsP(n)

t .
It remains to prove (1.6). This follows from

P(2)
t f ⊗2(x, x) =

∫
f ⊗2 ◦ ϕ⊗2(x, x)Qt (dϕ)

=
∫

f 2 ◦ ϕ(x)Qt (dϕ) = P(1)
t f 2(x). �

REMARK 1.3. The semigroup(Qt )t≥0 is uniquely determined by(P(n)
t , n ≥ 1).

1.3. Stochastic flows of mappings.

DEFINITION 1.6. Let (�,A,P) be a probability space. A family of
(F,F )-valued random variables(ϕs,t , s ≤ t) is called a measurable stochastic flow
of mappings if, for alls ≤ t , the mapping(

M × �,B(M) ⊗ A
)→ (

M,B(M)
)
,

(x,ω) 	→ ϕs,t (x,ω),

is measurable and if it satisfies the following properties:

(a) For all s < u < t and x ∈ M , P-a.s.,ϕs,t (x) = ϕu,t ◦ ϕs,u(x) (cocycle
property).

(b) For alls ≤ t , the law ofϕs,t only depends ont − s (stationarity).
(c) The flow has independent increments; that is, for allt1 < t2 < · · · < tn, the

family {ϕti ,ti+1,1≤ i ≤ n − 1} is independent.
(d) For everyf ∈ C(M),

lim
(u,v)→(s,t)

sup
x∈M

E
[(

f ◦ ϕs,t (x) − f ◦ ϕu,v(x)
)2]= 0.

(e) For allf ∈ C(M) ands ≤ t ,

lim
d(x,y)→0

E
[(

f ◦ ϕs,t (x) − f ◦ ϕs,t (y)
)2]= 0.

DEFINITION 1.7. A family of (F,F )-valued random variablesϕ = (ϕs,t ,

s ≤ t) is called a stochastic flow of mappings if there existsϕ′ = (ϕ′
s,t , s ≤ t),

a measurable stochastic flow of mappings, such that, for allx ∈ M ands ≤ t ,

P-a.s., ϕ′
s,t (x) = ϕs,t (x).(1.9)

The stochastic flowϕ′ is called a measurable modification ofϕ.
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PROPOSITION1.3. Letϕ = (ϕs,t , s ≤ t) be a stochastic flow of mappings. For
all n ≥ 1, f ∈ C(Mn) andx ∈ Mn, set

P(n)
t f (x) = E[f ◦ ϕ⊗n

0,t (x)].(1.10)

Then (P(n)
t , n ≥ 1) is a compatible family of Feller semigroups onM satisfy-

ing (1.6).

PROOF. The proof is similar to the one of Proposition 1.2 (proving first the
Feller property forf Lipschitz). �

REMARK 1.4. The law ofϕ is uniquely determined by(P(n)
t , n ≥ 1).

1.4. Construction and characterization.In this section, we present a theorem
stating that to any compatible family(P(n)

t , n ≥ 1) of Feller semigroups, one
can associate a Feller convolution semigroup on(F,F ) and a stochastic flow
of mappings.

Let (�0,A0) denote the measurable space(
∏

s≤t F,
⊗

s≤t F ). For s ≤ t ,
let ϕ0

s,t denote the random variableω 	→ ω(s, t). Let ϕ0 be the random variable
(ϕ0

s,t , s ≤ t). Then ϕ0(ω) = ω. Let (Th)h∈R be the one-parameter group of
transformations of�0 defined byTh(ω)(s, t) = ω(s +h, t +h), for all s ≤ t , h ∈ R

andω ∈ �0.

DEFINITION 1.8. A probability space(�,A,P) is said to be separable if
the Hilbert spaceL2(�,A,P) is separable. [Note that this implies that, for every
1 ≤ p < ∞, Lp(�,A,P) is separable.]

THEOREM 1.1. (i) Let (P(n)
t , n ≥ 1) be a compatible family of Feller

semigroups onM satisfying

P(2)
t f ⊗2(x, x) = Pt f

2(x),(1.11)

for all f ∈ C(M), x ∈ M and t ≥ 0. Then there exists a unique Feller convolution
semigroup(Qt )t≥0 on (F,F ) such that, for all n ≥ 1, t ≥ 0, f ∈ C(Mn) and
x ∈ Mn,

P(n)
t f (x) =

∫
f ◦ ϕ⊗n(x)Qt (dϕ).(1.12)

(ii) For every Feller convolution semigroupQ = (Qt )t≥0 on (F,F ), there
exists a unique(Th)h∈R-invariant probability measurePQ on (�0,A0) such that
(�0,A0,PQ) is separable, the family of random variablesϕ0 = (ϕ0

s,t , s ≤ t) is a
stochastic flow of mappings and, for all s ≤ t , the law ofϕ0

s,t is Qt−s . There exists
a measurable modification ofϕ0, ϕ′ such thatϕ′

s+h,t+h = ϕ′
s,t ◦ Th.

The flowϕ0 is called the canonical stochastic flow of mappings associated
with Q [or equivalently with(P(n)

t , n ≥ 1)].
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REMARK 1.5. Theorem 1.1 is also satisfied whenM is a locally compact
separable metric space. In this case,(P(n)

t , n ≥ 1) is a compatible family of
Markovian semigroups acting continuously onC0(M

n), the set of continuous
functions onMn converging toward 0 at∞ (we call them Feller semigroups).
In Definitions 1.5 and 1.6 and in the statement of Theorem 1.1, the functionf

has to be taken inC0(M) or in C0(M
n). Moreover (ii) of Definition 1.5 must be

modified by: for allx ∈ M , f ∈ C0(M) andt ≥ 0,

lim
y→x

∫ (
f ◦ ϕ(y) − f ◦ ϕ(x)

)2

Qt (dϕ) = 0 and

(1.13)
lim

y→∞

∫ (
f ◦ ϕ(y)

)2Qt (dϕ) = 0.

In Definition 1.6, (e) must be modified by: for allx ∈ M ands ≤ t ,

lim
y→x

E
[(

f ◦ ϕs,t (y) − f ◦ ϕs,t (x)
)2]= 0 and

(1.14)
lim

y→∞ E
[(

f ◦ ϕs,t (y)
)2]= 0.

PROOF. In order to prove this remark, note that the one-point compactification
of M , M̂ = M ∪ {∞}, is a compact metric space. On̂M , we define the compatible
family of Feller semigroups,(P̂(n)

t , n ≥ 1), by the following relations:
for everyn ≥ 2 and every family of continuous functions on̂M , {fi, i ≥ 1},

P̂(n)
t f1 ⊗ · · · ⊗ fn

= P(n)
t g1 ⊗ · · · ⊗ gn

(1.15)
+

n∑
i=1

fi(∞)P̂(n−1)
t f1 ⊗ · · · ⊗ fi−1 ⊗ gi+1 ⊗ · · · ⊗ gn

and

P̂(1)
t f1 = f1(∞) + P(1)

t g1,(1.16)

where gi = fi − fi(∞) ∈ C0(M) and with the conventionP(n)
t g1 ⊗ · · · ⊗

gn(x1, . . . , xn) = 0 if there existsi such thatxi = ∞. We apply Theorem 1.1 tôM
and to the family(P̂(n)

t , n ≥ 1) to construct a Feller convolution semigroupQ̂
and a stochastic flow of mappings(ϕ̂s,t , s ≤ t) on M̂. This stochastic flow of
mappings satisfies:

(i) ϕ̂s,t (∞) = ∞ for all s ≤ t and
(ii) ϕ̂s,t (x) �= ∞ for all x ∈ M ands ≤ t .
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Proof of (i). For everyf ∈ C(M̂),

E
[(

f ◦ ϕ̂s,t (∞) − f (∞)
)2]= P̂(2)

t−sf
⊗2(∞,∞) − 2f (∞)P̂(1)

t−sf (∞) + f (∞)2

= 0,

sinceP̂(2)
t−sf

⊗2(∞,∞) = f (∞)2 andP̂(1)
t−sf (∞) = f (∞). This implies (i).

Proof of (ii) . Let gn be a sequence inC0(M) such thatgn ∈ [0,1] and simply
converging towards 1. Thenfn = 1− gn ∈ C(M̂) is such thatfn(∞) = 1 and, for
everyx ∈ M ,

E
[(

fn ◦ ϕ̂s,t (x)
)2]= P̂(2)

t−sg
⊗2
n (x, x) + 1− 2P̂(1)

t−sgn(x).

This implies that limn→∞ E[(fn ◦ ϕ̂s,t (x))2] = 0. Assertion (ii) follows since
1{ϕ̂s,t (x)=∞} = limn→∞ fn ◦ ϕ̂s,t (x).

For everyx ∈ M , let us denoteϕ̂s,t (x) by ϕs,t (x). Assertions (i) and (ii)
imply thatϕs,t ∈ F and that(ϕs,t , s ≤ t) is a stochastic flow of mappings onM .
In a similar way, one can show thatQ̂ induces a Feller convolution semigroup
on (F,F ). �

Let us explain briefly the method we use to prove Theorem 1.1. We first suppose
we are given a compatible family of Feller semigroups satisfying (1.6). Then we
define a convolution semigroup(Qt , t ≥ 0) on measurable mappings onM . For
everyt , to defineQt , we defineP(∞)

t , the law of(ϕ(zl), l ∈ N), where the law ofϕ
is Qt , for some dense family(zl, l ∈ N) in M and getQt by an approximation.
HenceQt is defined as the law of a random variable, which takes its values in the
“bad” spaceE, but is defined on a “nice” spaceMN.

The approximation used to construct this convolution semigroup allows us to
define a stochastic flow of mappings onM in such a way that these mappings
are measurable, defining it first on the dyadic numbers. We get a measurable flow
defined on a “nice” space. Note that a difficulty in getting this measurability comes
from the fact that the composition of mappings fromM ontoM is not measurable
with respect to the naturalσ -field.

1.5. Proof of the first part of Theorem1.1. In the following, we assume we
are given(P(n)

t , n ≥ 1), a compatible family of Feller semigroups satisfying (1.6).
We intend to construct a Feller convolution semigroup(Qt )t≥0 on (F,F )

satisfying (1.12). The uniqueness of such a convolution semigroup is immediate
since (1.12) characterizesQt .

1.5.1. A measurable choice of limit points inM . It is known that, as a compact
metric space,M is homeomorphic to a closed subset of[0,1]N (see Corollaire 1
in Section 6.1 of Chapter 9 in [8]). A pointy can be represented by a sequence
(yn)n∈N ∈ [0,1]N. Let y = (yi)i∈N be a sequence of elements ofM .
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Let y1 = lim supi→∞ y1
i . Let i1

k = inf{i, |y1 − y1
i | < 1/k}. By induction, for

every integerj , we constructyj and{ijk , k ∈ N} by the relations

yj = lim sup
k→∞

y
j

i
j−1
k

and i
j
k = inf

{
i ∈ {ij−1

k , k ∈ N}, |yj − y
j
i | < 1/k

}
.

We denote(yn)n∈N by l(y). Note thatl(y)j = limn→∞ y
j
inn

. Hencel(y) belongs
to M . It is easy to see thatl satisfies the following lemma.

LEMMA 1.1. l :MN → M is a measurable mapping, M being equipped with
the Borelσ -field B(M) and MN with the productσ -field B(M)⊗N. Moreover,
l((yi)i∈N) = y∞ whenyi converges towardy∞.

1.5.2. Notation and definitions. Let {zl, l ∈ N} be a dense family inM ,
which will be fixed in the following. We wish to define a measurable mapping
i :MN → F such thati((yj )j∈N)(zl) = yl for every integerl.

Let (εk)k∈N be a positive sequence decreasing toward 0 (this sequence will be
fixed later). Leti :MN → F be the injective mapping defined by

i(y)(x) = l
((

ynx
k

)
k∈N

)
,(1.17)

where

nx
k = inf{n,d(zn, x) ≤ εk},(1.18)

for (y, x) ∈ MN × M . Note thati(y) defined this way is a measurable mapping
sincel is measurable andx 	→ (ynx

k
)k∈N is measurable. Note also that the relation

i(y)(zl) = yl is satisfied for every integerl.

LEMMA 1.2. For n ≥ 1, the mappings�n : (MN)n → F and �n :M ×
(MN)n → M , defined by

�n(y
1, . . . , yn) = i(yn) ◦ i(yn−1) ◦ · · · ◦ i(y1),

�n(x, y1, . . . , yn) = �n(y
1, . . . , yn)(x),

are measurable. [(MN)n andM × (MN)n are equipped with the productσ -field.]
In particular, i is measurable.

PROOF. Note that�1 is the composition of the mappingsl and (x, y) 	→
(ynx

k
)k∈N. Since these mappings are measurable,�1 is measurable. By induction,

we prove that�n is measurable since, forn ≥ 2,

�n(x, y1, . . . , yn) = �1
(
�n−1(x, y1, . . . , yn−1), yn

)
.

For allA ∈ B(M) andx ∈ M ,

�−1
n

({ϕ ∈ F,ϕ(x) ∈ A})= {y ∈ (MN)n, (x, y) ∈ �−1
n (A)}.

This event belongs to(B(M)⊗N)⊗n since �n is measurable. This shows the
measurability of�n. �
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We need to introduce�n because the composition applicationFn → F ,
(ϕ1, . . . , ϕn) 	→ ϕn ◦ · · · ◦ ϕ1 is notF ⊗n-measurable in general.

Let j :F → MN be the mapping defined by

j (ϕ) = (
ϕ(zl)

)
l∈N

.(1.19)

LEMMA 1.3. The mappingj is measurable and satisfiesj ◦ i(y) = y for
everyy ∈ MN.

PROOF. We have, for everyA ∈ B(M)⊗n,

j−1({y ∈ MN, (y1, . . . , yn) ∈ A})= {
ϕ ∈ F,

(
ϕ(z1), . . . , ϕ(zn)

) ∈ A
}
.

This set belongs toF . �

Note that, for alll ∈ N andϕ ∈ F , i ◦ j (ϕ)(zl) = ϕ(zl).

1.5.3. Constructions of probabilities onMN and onF . By Kolmogorov’s the-
orem, we construct onMN a probability measureP(∞)

t such thatP(∞)
t (A×MN) =

P(n)
t 1A(z1, . . . , zn) for anyA ∈ B(M)⊗n. We now prove useful lemmas satisfied

by P(∞)
t .

LEMMA 1.4. For every positiveT , there exists a positive functionεT (r)

converging toward0 asr goes to0 such that

sup
t∈[0,T ]

E(2)
(x,y)

[(
d(Xt , Yt )

)2]≤ εT

(
d(x, y)

)
.(1.20)

PROOF. For every continuous functionf , we have

E(2)
(x,y)

[(
f (Xt) − f (Yt )

)2]= Pt f
2(x) + Pt f

2(y) − 2P(2)
t f ⊗2(x, y)

= P(2)
t f ⊗2(x, x) + P(2)

t f ⊗2(y, y) − 2P(2)
t f ⊗2(x, y),

since (1.6) is satisfied. Let(fn)n≥1 be a dense sequence in{f ∈ C(M),‖f ‖∞ ≤ 1}.
Thend ′(x, y) = (

∑
n≥1 2−n(fn(x) − fn(y))2)1/2 is a distance equivalent tod and

we have

E(2)
(x,y)

[(
d ′(Xt , Yt )

)2]= P(2)
t h(x, x) + P(2)

t h(y, y) − 2P(2)
t h(x, y),

whereh is the continuous function
∑

n≥1 2−nfn⊗fn. We conclude the lemma after
remarking that this function is uniformly continuous in(t, x, y) on [0, T ] × M2.

�

From now on we fixT and define the sequence(εk)k∈N [which defines the
sequence(nx

k)k∈N for every x ∈ M by (1.18)] such that 0≤ r ≤ 2εk implies
εT (r) ≤ 2−3k. The sequence(εk)k∈N is well defined since limr→0 εT (r) = 0.
Sincei depends onT , we now denotei by iT , �n by �T

n and�n by �T
n .
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LEMMA 1.5. For everyt ∈ [0, T ] and for any independent random variables
X and Y , respectively, in M and MN, such that the law ofY is P(∞)

t , then
YnX

k
converges almost surely towardsl((YnX

k
)k∈N) = iT (Y )(X) ask goes to∞.

PROOF. Note that(YnX
k
)k∈N is a random variable [the mapping(x, y) 	→

(ynx
k
)k∈N is measurable]. For every integerk, d(znx

k
, znx

k+1
) ≤ 2εk and

P
[
d
(
YnX

k
, YnX

k+1

)
> 2−k]≤ 22kE

[
εT

(
d
(
znX

k
, znX

k+1

))]≤ 2−k.(1.21)

Using the Borel–Cantelli lemma, we prove that a.s.,(YnX
k
)k∈N is a Cauchy

sequence and therefore converges. Its limit can only bel((YnX
k
)k∈N). �

LEMMA 1.6. Let (Xn)n∈N be a sequence of random variables inM converg-
ing in probability toward a random variableX. LetY be a random variable inMN

of law P(∞)
t independent of(Xn)n∈N. TheniT (Y )(Xn) = l((Y

n
Xn
k

)k∈N) converges
in probability towardsiT (Y )(X) = l((YnX

k
)k∈N) asn tends to∞.

PROOF. Let Zn = l((Y
n

Xn
k

)k∈N) and Z = l((YnX
k
)k∈N). For every integerk,

we have

P[d(Zn,Z) > ε] ≤ P
[
d
(
Zn,Yn

Xn
k

)
> ε/3

]+ P
[
d
(
Y

n
Xn
k

, YnX
k

)
> ε/3

]
+ P

[
d
(
YnX

k
,Z
)
> ε/3

]
.

Lemma 1.5 implies that the first and last terms of the right-hand side of the
preceding equation converge toward 0 ask goes to∞. The second term is lower
than(9/ε2)E[εT (d(z

n
Xn
k

, znX
k
))]. Since for every positiveα, there exists a positiveη

such that|r| < η implies(9/ε2)|εT (r)| < α, we get

P
[
d
(
Y

n
Xn
k

, YnX
k

)
> ε/3

]≤ α + CP
[
d
(
z
n

Xn
k

, znX
k

)
> η

]
≤ α + CP[d(Xn,X) > η − 2εk],

where C = 9D2/ε2 and D is the diameter ofM (one can chooseεT such
that εT (r) ≤ D2 for every r). Therefore, we getP[d(Zn,Z) > ε] ≤ α +
CP[d(Xn,X) ≥ η] and for every positiveα, lim supn→∞ P[d(Zn,Z) > ε] ≤ α.
Thus we prove thatZn converges in probability towardZ. �

For everyt ∈ [0, T ], setQt = i∗T (P(∞)
t ). It is a probability measure on(F,F )

and it satisfies the following proposition.

PROPOSITION1.4. Qt is the unique probability measure on(F,F ) such that,
for any continuous functionf onMn and anyx ∈ Mn,∫

F
f ◦ ϕ⊗n(x)Qt (dϕ) = P(n)

t f (x).(1.22)
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Moreover, j∗(Qt ) = P(∞)
t and(iT ◦ j)∗(Qt ) = i∗T (P(∞)

t ) = Qt .

PROOF. The unicity is obvious since (1.22) characterizesQt . Let us check that
Qt = i∗T (P(∞)

t ) satisfies (1.22). LetY be a random variable of lawP(∞)
t . Then, for

everyf ∈ C(Mn) and everyx ∈ Mn,∫
F

f ◦ ϕ⊗n(x)Qt (dϕ) = E
[
f
(
iT (Y )(x1), . . . , iT (Y )(xn)

)]
= lim

k→∞ E
[
f
(
Y

n
x1
k

, . . . , Yn
xn
k

)]
= lim

k→∞ P(n)
t f

(
z
n

x1
k

, . . . , zn
xn
k

)= P(n)
t f (x),

using first dominated convergence theorem and Lemma 1.5, then the definition

of P(∞)
t and the fact thatP(n)

t is Feller. �

REMARK 1.6. SinceT can be taken arbitrarily large, we can defineQt for
every positivet and the definition ofQt is independent of the chosenT , since
Qt satisfies Proposition 1.4.

1.5.4. A convolution semigroup on(F,F ).

LEMMA 1.7. For everyt ≥ 0, Qt is regular. And for everyT ≥ t , iT ◦ j is a
measurable presentation ofQt .

PROOF. Let 0≤ t ≤ T . For allx ∈ M andϕ ∈ F , iT ◦j (ϕ)(x) = �T
1 (x, j (ϕ)).

Since�T
1 andj are measurable, the mapping(x,ϕ) 	→ iT ◦j (ϕ)(x) is measurable.

Let x ∈ M . SinceQt = i∗T (P(∞)
t ), if Y is a random variable of lawP(∞)

t ,

Qt

[
d
(
ϕ
(
znx

k

)
, ϕ(x)

)
> 2−k

]= P
[
d
(
Ynx

k
, iT (Y )(x)

)≥ 2−k
]

= lim
l→∞ P

[
d
(
Ynx

k
, Ynx

l

)≥ 2−k]≤ 2−k,

since for alll ≥ k, d(znx
k
, znx

l
) ≤ 2εk [see (1.21)]. Using the Borel–Cantelli lemma,

we prove thatϕ(znx
k
) converges a.s. towardϕ(x). Therefore,

Qt (dϕ)-a.s., iT ◦ j (ϕ)(x) = ϕ(x).

This proves the lemma.�

REMARK 1.7. Letϕ andX be independent random variables, respectively,
F -valued andM-valued. Then, if the law ofϕ is Qt and if M × � � (x,ω) 	→
ϕ(x,ω) ∈ M is measurable, Fubini’s theorem implies that, for everyT ≥ t ,

P-a.s., iT ◦ j (ϕ)(X) = ϕ(X).(1.23)
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LEMMA 1.8. For all t1, . . . , tn in [0, T ],
(�T

n )∗
(
P(∞)

t1
⊗ · · · ⊗ P(∞)

tn

)= Qt1+···+tn .(1.24)

PROOF. Let us prove that(�T
n )∗(P(∞)

t1
⊗ · · · ⊗ P(∞)

tn ) satisfies (1.22) for all
f ∈ C(Mk), x ∈ Mk and t = t1 + · · · + tn. To simplify, we prove this fork = 1.
Let f ∈ C(M) andx ∈ M ; then, applying Fubini’s theorem,∫

F
f (ϕ(x))(�T

n )∗
(
P(∞)

t1
⊗ · · · ⊗ P(∞)

tn

)
(dϕ)

=
∫

f
(
iT (yn) ◦ iT (yn−1) ◦ · · · ◦ iT (y1)(x)

)
P(∞)

t1
(dy1) ⊗ · · · ⊗ P(∞)

tn (dyn)

=
∫

P(1)
tn f

(
i(yn−1) ◦ · · · ◦ iT (y1)(x)

)
P(∞)

t1
(dy1) ⊗ · · · ⊗ P(∞)

tn−1
(dyn−1)

= · · · = P(1)
t1+···+tn

f (x).

The proof is similar forf ∈ C(M)k and x ∈ Mk. We conclude using Proposi-
tion 1.4. �

PROPOSITION1.5. (Qt )t≥0 is a Feller convolution semigroup on(F,F ).

PROOF. For all nonnegatives and t , �T
2 ◦ j⊗2 is measurable. Proposi-

tion 1.4 and Lemma 1.8 imply that(�T
2 ◦ j⊗2)∗(Qs ⊗ Qt ) = Qs+t . Since

(�T
2 ◦ j⊗2)(ϕ1, ϕ2) = (iT ◦ j)(ϕ1) ◦ (iT ◦ j)(ϕ2), we have easily thatQs ∗ Qt =

Qs+t . The Feller property forQ is easy to prove. �

This proves the first part of Theorem 1.1.

1.6. Proof of the second part of Theorem1.1. We now assume we are given
a Feller convolution semigroupQ = (Qt )t≥0. With Q, we associate a compatible
family of Feller semigroups(P(n)

t , n ≥ 1) and constructP(∞)
t as in Section 1.5.3.

1.6.1. Construction of a probability space.For every n ∈ N, let Dn =
{j2−n, j ∈ Z} and letD =⋃

n∈N Dn be the set of the dyadic numbers. We take
T = 1 and seti = i1 and�n = �1

n.
For every integern ≥ 1, let (Sn,Sn,Pn) denote the probability space(MN,

B(M)⊗N,P(∞)

2−n )⊗Z. Let πn−1,n :Sn → Sn−1, ωn 	→ ωn−1, where

ωn−1
i/(2n−1)

= j ◦ �2
(
ωn

(2i−1)/2n,ω
n
2i/2n

)= j
(
i
(
ωn

2i/2n

) ◦ i
(
ωn

(2i−1)/2n

))
.(1.25)

From Lemma 1.8,π∗
n−1,n(Pn) = Pn−1.

Let � = {(ωn)n∈N ∈∏Sn,πn−1,n(ω
n) = ωn−1} and letA be theσ -field on�

generated by the mappingsπn :� → Sn, with πn((ω
k)k∈N) = ωn. Let P be the

unique probability on(�,A) such thatπ∗
n (P) = Pn (see Theorem 3.2 in [34]).
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For all dyadic numberss < t , let Fs,t be theσ -field generated by the mappings
(ωk)k∈N 	→ ωn

u for all n ∈ N andu ∈ Dn ∩ [s, t].

1.6.2. A measurable stochastic flow of mappings onM .

DEFINITION 1.9. On(�,A,P), we define the following random variables:

1. For alls < t ∈ Dn, let ϕn
s,t ((ω

k)k∈N) = �(t−s)2n(ωn
s , . . . ,ω

n
t−2−n).

2. For alls < t ∈ D, let ϕs,t = ϕn
s,t wheren = inf{k, (s, t) ∈ D2

k }.

Then, for everys ∈ Dn, ϕs,s+2−n(ω) = i(ωn
s ). Let us remark that, for all

s < t ∈ Dn, the law ofϕs,t and ofϕn
s,t is Qt−s (this is a consequence of Lemma 1.8)

and thatM × � � (x,ω) 	→ ϕs,t (x,ω) ∈ M is measurable. Note also that, for all
s < u < t ∈ Dn, we haveϕn

s,t = ϕn
u,t ◦ ϕn

s,u.

PROPOSITION1.6. For all s < t ∈ Dn and everyM-valued random variable
X independent ofFs,t ,

ϕn
s,t (X) = ϕs,t (X) P-a.s.

PROOF. It is enough to prove that, for alls < t ∈ Dn, ϕn
s,t (X) = ϕn+1

s,t (X) a.s..
This holds since

ϕn
s,t (X) = i(ωn

t−2−n) ◦ · · · ◦ i(ωn
s )(X)

= (i ◦ j)(ϕn+1
t−2−n,t

) ◦ · · · ◦ (i ◦ j)(ϕn+1
s,s+2−n)(X).

Using Remark 1.7 and the independence of the family of random variables
{ωn+1

u , u ∈ Dn+1}, we prove that the last term is a.s. equal toϕn+1
t−2−n,t

◦ · · · ◦
ϕn+1

s,s+2−n(X) = ϕn+1
s,t (X). �

REMARK 1.8. The preceding proposition implies that, for alls < u < t ∈ D

and everyM-valued random variableX independent ofFs,t ,

ϕs,t (X) = ϕu,t ◦ ϕs,u(X), P-a.s.(1.26)

We now intend to define by approximation, for alls < t in R, an(F,F )-valued
random variableϕs,t of law Qt−s . In order to do this, we prove the follow-
ing lemma.

LEMMA 1.9. For every continuous functionf onM2, the mapping

(s, t, u, v, x, y) 	→ E
[
f
(
ϕs,t (x), ϕu,v(y)

)]
(1.27)

is continuous on{(s, t) ∈ D2, s ≤ t}2 × M2 (and therefore uniformly continuous
on every compact).
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PROOF. For all s ≤ u ≤ t ≤ v in D, using the cocycle property, we have

E
[
f
(
ϕs,t (x), ϕu,v(y)

)]= E
[
f
(
ϕu,t ◦ ϕs,u(x), ϕt,v ◦ ϕv,t (y)

)]
= (

P(1)
u−s ⊗ I

)
P(2)

t−u

(
I ⊗ P(1)

v−t

)
f (x, y).

For all s ≤ u ≤ v ≤ t in D, using the cocycle property, we have

E
[
f
(
ϕs,t (x), ϕu,v(y)

)]= E
[
f
(
ϕv,t ◦ ϕu,v ◦ ϕs,u(x), ϕu,v(y)

)]
= (

P(1)
u−s ⊗ I

)
P(2)

v−u

(
P(1)

t−v ⊗ I
)
f (x, y).

For all s ≤ t ≤ u ≤ v in D,

E
[
f
(
ϕs,t (x), ϕu,v(y)

)]= (
P(1)

t−s ⊗ P(1)
v−u

)
f (x, y).

All these functions are continuous and they join. This implies the lemma.�

For every realt and every integern, let tn = sup{u ∈ Dn,u ≤ t}. For
all s < t ∈ R, we define the increasing sequences(sn)n∈N and (tn)n∈N. Using
Lemma 1.9 forf (x, y) = d(x, y) and the Markov inequality, for every positiveε,
we have

lim
n→∞ sup

k>n

sup
x∈M

P
[
d
(
ϕsn,tn(x), ϕsk,tk (x)

)≥ ε
]= 0.(1.28)

Set ϕs,t (x) = l((ϕsn,tn (x))). Then M × � � (x,ω) 	→ ϕs,t (x,ω) ∈ M is
measurable andϕs,t is an(F,F )-valued random variable.

LEMMA 1.10. For every positiveε and all s ≤ t ,

lim
n→∞ sup

x∈M

P
[
d
(
ϕsn,tn(x), ϕs,t (x)

)≥ ε
]= 0.(1.29)

PROOF. Equation (1.28) implies thatϕsn,tn(x) converges in probability to-
wardsϕs,t (x). Thus, for every positiveε,

P
[
d
(
ϕsn,tn(x), ϕs,t (x)

)≥ ε
]= lim

k→∞ P
[
d
(
ϕsn,tn(x), ϕsk,tk (x)

)≥ ε
]
.

Therefore,

sup
x∈M

P
[
d
(
ϕsn,tn(x), ϕs,t (x)

)≥ ε
]≤ sup

k>n

sup
x∈M

P
[
d
(
ϕsn,tn(x), ϕsk,tk (x)

)≥ ε
]
,

which implies the lemma. �

PROPOSITION1.7. For all s < t ∈ R, the law ofϕs,t is Qt−s .
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PROOF. For all k ≥ 1, f ∈ C(Mk) and x ∈ Mk , Lemma 1.10 and the
dominated convergence theorem imply that

E[f ◦ ϕ⊗k
s,t (x)] = lim

n→∞ E
[
f ◦ ϕ⊗k

sn,tn
(x)
]

= lim
n→∞ P(k)

tn−sn
f (x) = P(k)

t−sf (x)

sinceP(k)
t is Feller. This implies that the law ofϕs,t is Qt−s . �

Let us now prove the cocycle property.

PROPOSITION1.8. For all x ∈ M ands < u < t , P-a.s.,

ϕs,t (x) = ϕu,t ◦ ϕs,u(x).(1.30)

PROOF. Almost surely we haveϕsn,tn(x) = ϕun,tn ◦ϕsn,un(x) sincesn< un< tn
belong toD. On one hand,ϕsn,tn(x) converges in probability towardsϕs,t (x). On
the other hand,

P
[
d
(
ϕun,tn ◦ ϕsn,un(x), ϕu,t ◦ ϕs,u(x)

)≥ ε
]

≤ P
[
d
(
ϕun,tn ◦ ϕsn,un(x), ϕu,t ◦ ϕsn,un(x)

)≥ ε/2
]

+ P
[
d
(
ϕu,t ◦ ϕsn,un(x), ϕu,t ◦ ϕs,u(x)

)≥ ε/2
]
.

Lemma 1.10 shows that the first term converges towards 0 and Lemma 1.6 shows
that the second term converges towards 0 [withXn = ϕsn,un(x), X = ϕs,u(x),
Y = j (ϕu,t ) and using the fact thati ◦ j (ϕu,t )(x) = ϕu,t (x) a.s. for everyx ∈ M ].

�

Thus we have constructed a stochastic flow of measurable mappings onM

associated with the compatible family of Feller semigroups(P(k)
t , k ≥ 1) and with

the Feller convolution semigroup(Qt , t ≥ 0).
Let ϕ be the(�0,A0)-valued random variable defined byϕ = (ϕs,t , s ≤ t). Let

PQ = ϕ∗(P) be the law ofϕ. Then by a monotone class argument, we show that
T ∗

h (PQ) = PQ for everyh ∈ R.
Let us now prove that on(�0,A0,PQ) the canonical random variableϕ0(ω) = ω

is a stochastic flow. For everyt ≥ 0, there existsJt a measurable presentation
of Qt (one can takeJt = it ◦ j ). For all s ≤ t , setϕ′

s,t = Jt−s(ϕ
0
s,t ). Then, for all

x ∈ M ands ≤ t , PQ-a.s.ϕ′
s,t (x) = ϕ0

s,t (x). Then,ϕ′ = (ϕ′
s,t , s ≤ t) is a measurable

stochastic flow of mappings. Indeed, to prove (a) in Definition 1.6, we remark that,
for s ≤ u ≤ t andx ∈ M , the mapping

G : (F 3,F ⊗3) → (
M2,B(M)⊗2),

(ϕ1, ϕ2, ϕ3) 	→ (
Jt−u(ϕ1) ◦ Ju−s(ϕ2)(x),Jt−s(ϕ3)(x)

)
,
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is measurable. ThusG(ϕu,t , ϕs,u, ϕs,t ) and G(ϕ0
u,t , ϕ

0
s,u, ϕ

0
s,t ) have the same

law. Since

P-a.s., Jt−s(ϕs,t )(x) = Jt−u(ϕu,t ) ◦ Js−u(ϕs,u)(x),

we have

PQ-a.s., Jt−s(ϕ
0
s,t )(x) = Jt−u(ϕ

0
u,t ) ◦ Js−u(ϕ

0
s,u)(x).

This proves (a) andϕ′ is a measurable stochastic flow of mappings, proving also
thatϕ is a stochastic flow of mappings. Finally, fors ≤ t andh ∈ R, we have

ϕ′
s+h,t+h = Jt−s(ϕs+h,t+h)

= Jt−s(ϕs,t ◦ θh) = ϕ′
s,t ◦ θh.

Thus, we have constructed the canonical stochastic flow of mappings onM

associated with the Feller convolution semigroupQ. Note thatPQ is uniquely
determined byQ and is associated to a unique compatible family of Feller
semigroups. The fact that(�0,A0,PQ) is separable is a consequence of the
construction ofϕ. The proof of Theorem 1.1 is finished.

1.7. The example of Lipschitz SDEs.We first show a sufficient condition
for a compatible family of Markovian kernel semigroups to be constituted of
Feller semigroups.

LEMMA 1.11. A compatible family(P(n)
t , n ≥ 1) of semigroups of Markov-

ian kernels is constituted of Feller semigroups when the following condition
is satisfied:

(F) For all f ∈ C(M) and x ∈ M , limt→0 P(1)
t f (x) = f (x) and for all x ∈ M ,

ε > 0 and t > 0, limy→x P(2)
t fε(x, y) = 0, wherefε(x, y) = 1d(x,y)>ε.

PROOF. Let h ∈ C(Mn) be in the formf1 ⊗ · · · ⊗ fn andx = (x1, . . . , xn)

in Mn. We have, forM large enough,

∣∣P(n)
t h(x) − h(x)

∣∣≤ M

n∑
k=1

(
P(1)

t f 2
k + f 2

k − 2fkP(1)
t fk

)1/2
(xk),(1.31)

which converges toward 0 ast goes to 0 since, for everyf ∈ C(M) and every
x ∈ M , limt→0 P(1)

t f (x) = f (x). We also have, fory = (y1, . . . , yn) in Mn,

∣∣P(n)
t h(y) − P(n)

t h(x)
∣∣≤ M

n∑
k=1

P(2)
t (|1⊗ fk − fk ⊗ 1|)(yk, xk),(1.32)

which converges toward 0 asy tends tox since, for allf ∈ C(M) andx ∈ M ,
limy→x P(2)

t (|1 ⊗ f − f ⊗ 1|)(y, x) = 0. Indeed,∀α > 0, ∃ ε > 0 such that
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d(x, y) < ε implies |f (y) − f (x)| < α. This implies

P(2)
t (|1⊗ f − f ⊗ 1|)(y, x) ≤ α + 2‖f ‖∞P(2)

t fε(x, y).(1.33)

This implies lim supy→x P(2)
t (|1⊗ f − f ⊗ 1|)(y, x) ≤ α for everyα > 0. �

REMARK 1.9. (i) The previous result extends to the locally compact case
[using the fact thatC0(M) is constituted of uniformly continuous functions].

(ii) When (F) is satisfied, for all positivet , f ∈ C0(M) andx ∈ M , P(2)
t f ⊗2(x,

x) = P(1)
t f 2(x). This implies that (F) is not a necessary condition. Theo-

rem 1.1 shows that a stochastic flow of mappings is associated with this family
of semigroups.

DEFINITION 1.10. A two parameter family(Ws,t , s ≤ t) of real random
variables is called a real white noise if:

(i) for all s < t , Ws,t is a centered Gaussian variable with variancet − s,
(ii) for all ((si, ti),1 ≤ i ≤ n) with si ≤ ti ≤ si+1, the random variables

(Wsi,ti ,1 ≤ i ≤ n) are independent, and
(iii) for all s ≤ t ≤ u, Ws,u = Ws,t + Wt,u.

Let V,V1, . . . , Vk be bounded Lipschitz vector fields on a smooth locally
compact manifoldM . We also assume thatV1, . . . , Vk areC1. Let W1, . . . ,Wk

bek independent real white noises. We consider the SDE onM

dXt =
k∑

i=1

Vi(Xt ) ◦ dWi
t + V (Xt) dt, t ∈ R.(1.34)

From the usual theory of strong solutions of SDEs (see, e.g., [20]), it is possible
to construct a stochastic flow of diffeomorphisms(ϕs,t , s ≤ t) such that, for
everyx ∈ M , ϕs,t (x) is a strong solution of the SDE (1.34) withϕs,s(x) = x.

Using this stochastic flow, it is possible to construct a compatible family of
Markovian semigroups(P(n)

t , n ≥ 1) with

P(n)
t h(x1, . . . , xn) = E

[
h
(
ϕ0,t (x1), . . . , ϕ0,t (xn)

)]
(1.35)

for h ∈ C(Mn) andx1, . . . , xn in M . Using Lemma 1.11, it is easy to check that
these semigroups are Feller (these properties were previously observed in [3]).

It can easily be shown that the canonical stochastic flow of maps associated with
this family of semigroups is equal in law to(ϕs,t , s ≤ t).

2. Stochastic flow of kernels.

2.1. Notation and definitions.We denote byP (M) the space of probability
measures onM , equipped with the weak convergence topology. Let(fn)n∈N be a
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sequence of functions dense in{f ∈ C(M),‖f ‖∞ ≤ 1}. We will equipP (M) with
the distanceρ(µ, ν) = (

∑
n 2−n(

∫
fn dµ− ∫ fn dν)2)1/2 for all µ andν in P (M).

ThusP (M) is a compact metric space.
Let us recall that a kernelK onM is a measurable mapping fromM into P (M),

M andP (M) being equipped with their Borelσ -fields. For allf ∈ C(M) and
x ∈ M , Kf (x) denotes

∫
f (y)K(x, dy). For everyµ ∈ P (M), µK denotes the

probability measure defined by
∫

f (y)µK(dy) = ∫
Kf (x)µ(dx). We denote by

E the space of all kernels onM and we equipE with the σ -field generated by
the mappingsK 	→ µK , for everyµ ∈ P (M) [P (M) is equipped with its Borel
σ -field B(P (M))]. We denote thisσ -field byE .

Let � denote the space of measurable mappings onP (M). We equip� with
theσ -field generated by the mappings� 	→ �(µ) for everyµ ∈ P (M). Note that
(�,G) = (F,F ) once we have replacedM by P (M).

2.2. Convolution semigroups on the space of kernels.Let I denote the
measurable mapping from(E,E) on (�,G) defined byI(K)(µ) = µK . Note that
I(E) is not measurable in� butI is measurable.

DEFINITION 2.1. (i) A probability measureν on (E,E) is called regular if
I∗(ν) is a regular probability measure on(�,G).

(ii) A convolution semigroup on(E,E) is a family(νt )t≥0 of regular probability
measures on(E,E) such that(I∗(νt ))t≥0 is a convolution semigroup on(�,G).

Let δ :� → E be the mapping defined byδ(�)(x) = �(δx). Note thatδ is not
measurable in general.

PROPOSITION2.1. Let Q be a regular probability measure on(�,G) and let
J be a measurable presentation ofQ. Thenδ ◦J is measurable and the probability
measureν = (δ ◦ J)∗(Q) is a regular probability measure on(E,E) if I∗(ν) = Q.

PROOF. Let Q be a regular probability measure on(�,G) and letJ be a
measurable presentation ofQ. The mappingsP (M) × � � (µ,�) 	→ J(�)(µ) ∈
P (M) and M � x 	→ δx ∈ P (M) are measurable. ThusM × � � (x,�) 	→
δ ◦ J(�)(x) = J(�)(δx) ∈ P (M) is measurable, which implies thatδ ◦ J is mea-
surable. �

REMARK 2.1. The probability measureν defined in Proposition 2.1depends
only onQ. Indeed, ifJ′ is another measurable presentation ofQ, for everyx ∈ M ,
Q(d�)-a.s.,δ ◦ J(�)(x) = δ ◦ J′(�)(x), which implies by the Fubini theorem
that, for everyµ ∈ P (M), Q(d�)-a.s.,µ(δ ◦ J(�)) = µ(δ ◦ J′(�)) and then that
(δ ◦ J)∗(Q) = (δ ◦ J′)∗(Q).

DEFINITION 2.2. A convolution semigroup(νt )t≥0 on (E,E) is called
Feller if:
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(i) for everyf ∈ C(M), limt→0 supx∈M

∫
(Kf (x) − f (x))2νt (dK) = 0,

(ii) for every f ∈ C(M) and everyt ≥ 0, limd(x,y)→0
∫
(Kf (x) − Kf (y))2 ×

νt (dK) = 0.

PROPOSITION2.2. Let (νt )t≥0 be a Feller convolution semigroup on(E,E).
For all n ≥ 1, f ∈ C(Mn) andx ∈ Mn, set

P(n)
t f (x) =

∫
K⊗nf (x)νt (dK).(2.1)

Then(P(n)
t , n ≥ 1) is a compatible family of Feller semigroups onM .

PROOF. This is the same proof as the one of Proposition 1.2.�

PROPOSITION 2.3. Let (Qt )t≥0 be a convolution semigroup on(�,G). Let
Jt be a measurable presentation ofQt and νt = (δ ◦ Jt )

∗(Qt ). If Qt = I∗(νt ),
(νt )t≥0 is a convolution semigroup on(E,E). Then, (Qt )t≥0 is Feller if and only if
(νt )t≥0 is Feller.

PROOF. The fact that(νt )t≥0 is a convolution semigroup follows from
Definition 2.1.

Note that(Qt )t≥0 is Feller if and only if, for everyf ∈ C(M),

lim
t→0

sup
µ∈P (M)

∫ (
�(µ)f − µf

)2Qt (d�) = 0,(2.2)

lim
ρ(µ,ν)→0

∫ (
�(µ)f − �(ν)f

)2Qt (d�) = 0.(2.3)

We first prove (2.2) and (i) in Definition 2.2 are equivalent. Equation (2.2)
implies (i) since

∫
(Kf (x) − f (x))2νt (dK) = ∫

(�(δx)f − δxf )2Qt (d�). And
(i) implies (2.2) since∫ (

�(µ)f − µf
)2

Qt (d�) =
∫

(µKf − µf )2νt (dK)

≤
∫ (∫ (

Kf (x) − f (x)
)2

νt(dK)

)
µ(dx).

We now prove (2.3) and (ii) in Definition 2.2 are equivalent. Equation (2.3)
implies (ii) since

∫
(Kf (x) − Kf (y))2νt(dK) = ∫

(�(δx)f − �(δy)f )2Qt (d�)

and limd(x,y)→0ρ(δx, δy) = 0. Assume (ii) holds. Forµ andν in P (M), we have∫ (
�(µ)f − �(ν)f

)2Qt (d�) =
∫

(µKf − νKf )2νt (dK)

= (µ − ν)⊗2
∫

K⊗2f ⊗2νt (dK).

We conclude since
∫

K⊗2f ⊗2νt (dK) is a continuous function (see Proposi-
tion 2.2). �
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2.3. Stochastic flows of kernels.

DEFINITION 2.3. Let (�,A,P) be a probability space. Then a family of
(E,E)-valued random variables(Ks,t , s ≤ t) is called a measurable stochastic flow
of kernels if, for alls ≤ t ,

(x,ω) 	→ Ks,t (x,ω)(2.4)

is a measurable mapping from(M ×�,B(M)⊗A) onto(P (M),B(P (M))) and
if it satisfies the following properties:

(a) For all s < u < t and x ∈ M , P-a.s., for everyf ∈ C(M), Ks,tf (x) =
Ks,u(Ku,tf )(x) (cocycle property).

(b) For alls ≤ t , the law ofKs,t only depends ont − s (stationarity).
(c) The flow has independent increments; that is, for allt1 < t2 < · · · < tn, the

family {Kti,ti+1,1 ≤ i ≤ n − 1} is independent.
(d) For everyf ∈ C(M),

lim
(u,v)→(s,t)

sup
x∈M

E
[(

Ks,tf (x) − Ku,vf (x)
)2]= 0.(2.5)

(e) For allf ∈ C(M) ands < t ,

lim
d(x,y)→0

E
[(

Ks,tf (x) − Ks,tf (y)
)2]= 0.(2.6)

DEFINITION 2.4. A family of (E,E)-valued random variablesK = (Ks,t ,

s ≤ t) is called a stochastic flow of kernels if there existsK ′ = (K ′
s,t , s ≤ t),

a measurable stochastic flow of kernels, such that, for alls ≤ t andµ ∈ P (M),

P-a.s., µK ′
s,t = µKs,t .(2.7)

The stochastic flowK ′ is called a measurable modification ofK .

PROPOSITION 2.4. Let (Ks,t , s ≤ t) be a stochastic flow of kernels. For all
n ≥ 1, f ∈ C(Mn) andx ∈ Mn, set

P(n)
t f (x) = E[K⊗n

0,t f (x)].(2.8)

Then(P(n)
t , n ≥ 1) is a compatible family of Feller semigroups onM .

PROOF. This is the same proof as the one to prove Proposition 1.2.�

2.4. Construction and characterization.Let (�0,A0) denote the measur-
able space(

∏
s≤t E,

⊗
s≤t E). For s ≤ t , let K0

s,t denote the random variable

ω 	→ ω(s, t). Let alsoK0 be the random variable(K0
s,t , s ≤ t). ThenK0(ω) = ω.

Let (Th)h∈R be the one-parameter group of transformations of�0 defined by
Th(ω)(s, t) = ω(s + h, t + h), for all s ≤ t , h ∈ R andω ∈ �0.
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THEOREM 2.1. (i) For every compatible family(P(n)
t , n ≥ 1) of Feller

semigroups onM , there exists a unique Feller convolution semigroup(νt )t≥0
on (E,E) such that, for all n ≥ 1, t ≥ 0, f ∈ C(Mn) andx ∈ Mn,

P(n)
t f (x) =

∫
K⊗nf (x)νt (dK).(2.9)

(ii) For every Feller convolution semigroupν = (νt )t≥0 on (E,E), there
exists a unique(Th)h∈R-invariant probability measurePν on (�0,A0) such that
(�0,A0,Pν) is separable, the family of random variables(K0

s,t , s ≤ t) is a
stochastic flow of kernels and, for all s ≤ t , the law ofK0

s,t is νt−s . There exists a
measurable modification ofK0, K ′ such thatK ′

s+h,t+h = K ′
s,t ◦ Th.

The flowK0 is called the canonical stochastic flow of kernels associated withν

[or equivalently with(P(n)
t , n ≥ 1)].

REMARK 2.2. In the case (1.6) is satisfied, the stochastic flow of kernels
K is induced by a stochastic flow of mappingsϕ. More precisely, there exists a
measurable modification ofK in the form(δϕs,t , s ≤ t), whereϕ is a measurable
flow of mappings.

2.5. Proof of Theorem2.1. Let (P(n)
t , n ≥ 1) be a compatible family of Feller

semigroups onM . Starting with this family of semigroups, we intend to construct
a Feller convolution semigroupν = (νt )t≥0 on (E,E). The idea is to construct a
compatible family of Feller semigroups onP (M), then to apply Theorem 1.1 to
construct a Feller convolution semigroupQ = (Qt )t≥0 on (�,G) and to constructν
using the mappingsδ ◦ Jt , whereJt is a measurable presentation ofQt .

2.5.1. Construction of a compatible family of Feller semigroups onP (M).
For every integerk, we define a Feller semigroup�(k)

t acting on the continuous
functions onP (M)k (see [28] for a similar construction whenk = 1).

Let Ak denote the algebra of functionsg :P (M)k → R such that

g(µ1, . . . ,µk) = 〈f,µ
⊗n1
1 ⊗ · · · ⊗ µ

⊗nk

k 〉(2.10)

[here and in the following, for all measureµ andf ∈ L1(µ), we denote
∫

f dµ

by 〈f,µ〉, 〈µ,f 〉 or µf ] for f ∈ C(Mn) and n1, . . . , nk integers such that
n = n1 + · · · + nk (Ak is the union of an increasing family of algebrasAn1,...,nk

).
For everyg ∈ Ak , given by (2.10), let

�
(k)
t g(µ) = 〈P(n)

t f,µ
⊗n1
1 ⊗ · · · ⊗ µ

⊗nk

k 〉,(2.11)

with µ = (µ1, . . . ,µk) ∈ P (M)k . Since the family of semigroups(P(n)
t , n ≥ 1) is

compatible, (2.11) is independent of the expression ofg in (2.10).
Let us notice that�(k)

t acts onAk and that, by the theorem of Stone and
Weierstrass, the algebraAk is dense inC(P (M)k).
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LEMMA 2.1. �
(k)
t is a Markovian operator acting onAk .

PROOF. The only thing to be proved is the positivity property (it is obvious
that�(k)

t 1= 1).
For every integerN , let (Xj,i ,1 ≤ i ≤ k,1 ≤ j ≤ N) be a Markov process

associated with the Markovian semigroupP(Nk)
t such that the random variables

(X
j,i
0 ,1 ≤ i ≤ k,1 ≤ j ≤ N) are independent and the law ofXj,i

0 is µi ,
where(µ1, . . . ,µk) ∈ P (M)k . Let us introduce the following Markov process on

P (M)k , µN
t = (µ

N,1
t , . . . ,µ

N,k
t ), where

µ
N,i
t = 1

N

N∑
j=1

δ
X

j,i
t

for 1 ≤ i ≤ k.(2.12)

Forg(µ1, . . . ,µk) = 〈f,µ
⊗n1
1 ⊗ · · · ⊗ µ

nk

k 〉, we have

E[g(µN
t )] = E[〈f, (µ

N,1
t )⊗n1 ⊗ · · · ⊗ (µ

N,k
t )⊗nk 〉]

= 1

Nn

k∑
i=1

nk∑
l=1

N∑
j l
i =1

E
[
f
(
X

j1
1 ,1

t ,X
j2
1 ,1

t , . . . ,X
j

n1
1 ,1

t ,X
j1
2 ,2

t , . . . ,X
j

nk
k ,nk

t

)]

= 〈
P(n)

t f,µ
⊗n1
1 ⊗ · · · ⊗ µ

nk

k

〉+ RN.

The remainder termRN comes from terms in whichja
i = jb

i for somea �= b

and somei and is therefore dominated by 2‖f ‖∞(1 −∏k
i=1(N(N − 1) · · · (n −

ni + 1)/Nni )). Thus

lim
N→∞E[g(µN

t )] = 〈
P(n)

t f,µ
⊗n1
1 ⊗ · · · ⊗ µ

nk

k

〉
(2.13)

= �
(k)
t g(µ1, . . . ,µk).(2.14)

This shows that�(k)
t is positive. �

Using this lemma, it is easy to define�(k)
t g for every continuous functiong and

to show that�(k)
t is a Markovian semigroup acting onC(Mn).

LEMMA 2.2. (�
(k)
t , k ≥ 1) is a compatible family of Feller semigroups

onP (M) satisfying(1.6).

PROOF. Since the semigroupsP(n)
t are Feller, the semigroups�(k)

t are also
Feller: for everyg in Ak , �

(k)
t g is continuous and limt→0 �

(k)
t g = g and these

properties extend to every continuous function.
It is clear that the family of semigroups(�(k)

t , k ≥ 1) is compatible (in the
sense given in Section 1.1). Thus(�

(k)
t , k ≥ 1) is a compatible family of Feller
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semigroups onP (M). We denote�(2)
(µ,ν) the law of the Markov process associated

with �
(2)
t starting from(µ, ν) and we denote this process by(µt , νt ).

Forg ∈ A1 in the form (2.10),t ≥ 0 andµ ∈ P (M), we have

�
(2)
t g⊗2(µ,µ) = 〈

P(2n)
t f ⊗2,µ⊗2n〉= �

(1)
t g2(µ).

Thus (1.6) is satisfied forg ∈ A1 and this extends toC(P (M)). �

2.5.2. Proof of the first part of Theorem2.1. Using Theorem 1.1, we construct
(Qt )t≥0 a Feller convolution semigroup on(�,G). Let Jt be a measurable
presentation ofQt . Setνt = (δ ◦ Jt )

∗Qt .

LEMMA 2.3. For all µ ∈ P (M) and t ≥ 0,

Qt (d�)-a.s., �(µ) = µ
(
δ ◦ Jt (�)

)
.(2.15)

And for everyt ≥ 0, I∗(νt ) = Qt .

PROOF. For everyf ∈ C(M), setg(µ) = µf ; then

E
[(

µ
(
δ ◦ Jt (�)

)
f − �(µ)f

)2]
= E

[(∫
g
(
�(δx)

)
µ(dx) − g

(
�(µ)

))2]

=
∫

�
(2)
t g⊗2(δx, δy)µ(dx)µ(dy) + �

(2)
t g⊗2(µ,µ)

− 2
∫

�
(2)
t g⊗2(δx,µ)µ(dx).

Since for allµ andν in P (M),

�
(2)
t g⊗2(µ, ν) =

∫
P(2)

t f ⊗2(x, y)µ(dx)ν(dy),

we getE[(µ(δ ◦ Jt (�))f − �(µ)f )2] = 0. This proves the lemma.�

Lemma 2.3 implies thatν = (νt )t≥0 is a Feller convolution semigroup
on (E,E) (we apply Proposition 2.3) and (2.9) holds. This proves the first part
of Theorem 2.1.

2.5.3. Proof of the second part of Theorem2.1. Suppose now we are
given ν = (νt )t≥0 a Feller convolution semigroup on(E,E). For t ≥ 0, set
Qt = I∗(νt ). ThenQ = (Qt )t≥0 is a Feller convolution semigroup on(�,G). Using
Theorem 1.1, we constructPQ the law of a stochastic flow of mappings onP (M)

associated withQ. Let (�s,t , s ≤ t) be a measurable stochastic flow of mappings
of law PQ. For s ≤ t , set Ks,t = δ ◦ Jt−s(�s,t ), whereJt−s is a measurable
presentation ofQt−s .
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We now show thatK = (Ks,t , s ≤ t) is a stochastic flow of kernels. Note that
the law ofKs,t is νt−s . Thus it is easy to check thatK satisfies (b)–(e). In order to
show (a), we use the following lemma.

LEMMA 2.4. For all µ ∈ P (M) ands ≤ t ,

P-a.s., µKs,t = �s,t (µ).(2.16)

PROOF. For everyf ∈ M , setg(µ) = µf ; then as in the proof of Lemma 2.3,

E
[(

µKs,tf − �s,t (µ)f
)2]

= E
[(∫

g
(
�s,t (δx)

)
µ(dx) − g

(
�s,t (µ)

))2]

=
∫

�
(2)
t−sg

⊗2(δx, δy)µ(dx)µ(dy) + �
(2)
t−sg

⊗2(µ,µ),

− 2
∫

�
(2)
t−sg

⊗2(δx,µ)µ(dx)

= 0.

This proves the lemma.�

Let s ≤ u ≤ t andµ ∈ P (M). Lemma 2.4 and the cocycle property of� imply
that a.s.,

µKs,t = �s,t (µ) = �u,t ◦ �s,u(µ).

Lemma 2.4 implies that a.s.,�u,t ◦ �s,u(µ) = �u,t (µKs,u). Fubini’s theorem,
Lemma 2.4 and the fact thatµKs,u and�u,t are independent imply that a.s.,

�u,t (µKs,u) = µKs,uKu,t .

This proves (a), that is, a.s.µKs,t = µKs,uKu,t . We let Pν be the law ofK .
Then T ∗

h (Pν) = Pν . The rest of the proof is similar to the end of the proof of
Theorem 1.1.

2.6. Sampling the flow. Let (Ks,t , s ≤ t) be a stochastic flow of kernels defined
on a probability space(�,A,P) and let (Th)h∈R be a one-parameter group of
transformations of� preservingP and such thatKs,t ◦ Th = Ks+h,t+h. In this
section, we construct on an extension of(�,A,P) a random pathXt starting atx
such that, for every positivet ,

K0,tf (x) = E[f (Xt )|A].(2.17)

For x ∈ M and ω ∈ �, by Kolmogorov’s theorem, we define onMR
+

,
a probabilityP0

x,ω such that

E0
x,ω

[
n∏

i=1

fi

(
X0

ti

)]= K0,t1

(
f1
(
Kt1,t2f2

(· · · (fn−1Ktn−1,tnfn

))))
(x),(2.18)
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for all f1, . . . , fn in C(M), 0< t1 < t2 < · · · < tn.
With P andP0

x,ω, we construct a probabilityP0
x(dω,dω′) = P(dω)⊗P0

x,ω(dω′)
on�×MR

+
. Then, on the probability space(�×MR

+
,A⊗B(M)⊗R

+
,P0

x), the
random process(X0

t , t ≥ 0), defined byX0
t (ω,ω′) = ω′(t), is a Markov process

starting atx with semigroupP(1)
t since

E0
x

[
n∏

i=1

fi

(
X0

ti

)]= P(1)
t1

(
f1
(
P(1)

t2−t1
f2
(· · · (fn−1P(1)

tn−tn−1
fn

))))
(x),(2.19)

for all f1, . . . , fn in C(M), 0< t1 < t2 < · · · < tn.
Therefore, there is a càdlàg (or continuous whenP(1)

t is the semigroup of a
continuous Markov process) modificationX = (Xt , t ≥ 0) of (X0

t , t ≥ 0). Let
nowPx,ω be the law ofX knowingA. It is a law onD(R+,M), the space of càdlàg
functions [or C(R+,M) when P(1)

t is the semigroup of a continuous Markov
process]. Equipped with the Skorohod topology (see [29] or [5]),D(R+,M)

becomes a Polish space [resp.C(R+,M) is equipped with the topology of uniform
convergence on every compact onR

+].
On the probability space(� × D(R+,M),A ⊗ B(D(R+,M)),Px) [resp.

on (� × C(R+,M),A ⊗ B(C(R+,M)),Px)], where Px(dω,dω′) = P(dω) ⊗
Px,ω(dω′), let X be the random processX(ω,ω′) = ω′. ThenX is a càdlàg (resp.
continuous) process and

Ex

[
n∏

i=1

fi

(
Xti

)∣∣∣∣A
]

= Ex,ω

[
n∏

i=1

fi

(
Xti

)]

(2.20)
= K0,t1

(
f1
(
Kt1,t2f2

(· · · (fn−1Ktn−1,tnfn

))))
(x),

ar whereEx denotes the expectation with respect toPx .
Let (K ′

s,t , s ≤ t) be the stochastic flow of kernels defined on(�,A,P) by

K ′
s,tf (x,ω) = K ′

0,t−sf (x, Tsω),(2.21)

where

K ′
0,tf (x) = Ex[f (Xt)|A] =

∫
f
(
Xt(ω,ω′)

)
Px,ω(dω′)(2.22)

for f ∈ C(M), x ∈ M . Then(K ′
s,t , s ≤ t) is a càdlàg int (resp. continuous int)

modification of(Ks,t , s ≤ t).

REMARK 2.3. The concept of sampling will be used in Section 5.4.

ReplacingK0,t by K⊗n
0,t and P(1)

t by P(n)
t in the above, we obtain a random

processX(n) in Mn which represents ann-sampling of the flow. The coordinates
of X(n) are independent given the flowK .
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Let (xi)i≥1 be a sequence inM . For ω ∈ �, let Px1,...,xn,ω = ⊗n
i=1 Pxi,ω,

P(xi)i≥1,ω =⊗n
i≥1 Pxi,ω, Px1,...,xn(dω,dω′

1, . . . , dω′
n) = P(dω) ⊗ Px1,...,xn,ω(dω′

1,

. . . , dω′
n) and P(xi)i≥1(dω,dω′) = P(dω) ⊗ P(xi)i≥1,ω(dω′). Then the process

X(n)(ω,ω′) = (ω′
1, . . . ,ω

′
n) defines ann-sampling of the flow (underPx1,...,xn

or P(xi)i≥1). Let Xi(ω,ω′) = ω′
i . Then, underP(xi)i≥1, the sequence(Xi)i≥1 is

independent conditionally toA. Moreover, if for everyi ≥ 1,xi = x, this sequence
is identically distributed and the law of large numbers implies that, for every
f ∈ C0(M), 1

n

∑n
i=1 f (Xi

t ) converges a.s. towardEx[f (X1
t )|A] = K0,t f (x).

Since, underP(xi)i≥1, X(n) is equal in law to then-point motion ofK starting
from (x1, . . . , xn), if for everyn ≥ 1, we letX(n) denote then-point motion starting
from (x, . . . , x), we have that1

n

∑n
i=1 f (Xi

t ) converges in law towardK0,tf (x)

for everyf ∈ C0(Mn). This gives an intuitive way to recoverK0,t (x) out of the
n-point motions.

3. Noise and stochastic flows.

3.1. Noise generated by a stochastic flow of kernels.The definition of a noise
we give here is very close to the one given by Tsirelson in [41].

DEFINITION 3.1. A noise consists of a separable probability space(�,A,P),
a one-parameter group(Th)h∈R of P-preservingL2-continuous transformations
of � and a family{Fs,t ,−∞ ≤ s ≤ t ≤ ∞} of sub-σ -fields ofA such that:

(a) Th sendsFs,t ontoFs+h,t+h for all h ∈ R ands ≤ t ,
(b) Fs,t andFt,u are independent for alls ≤ t ≤ u,
(c) Fs,t ∨ Ft,u = Fs,u for all s ≤ t ≤ u.

Moreover, we will assume that, for alls ≤ t , Fs,t contains allP-negligible sets
of F−∞,∞, denotedF .

In the following, (�0,A0,Pν) denotes the canonical probability space of a
stochastic flow of kernels associated with a Feller convolution semigroupν.
K0 = (K0

s,t , s ≤ t) denotes this canonical flow. When this stochastic flow is
induced by a flow of maps, one can take, for(�0,A0,Pν), the canonical
probability space associated to this stochastic flow of mappings.

For all −∞ ≤ s ≤ t ≤ ∞, let F ν
s,t be the sub-σ -field of A0 generated by the

random variablesK0
u,v for all s ≤ u ≤ v ≤ t completed by allPν -negligible sets

of A0. Then the cocycle property ofK0 implies thatNν := (�0,A0, (F ν
s,t )s≤t ,Pν,

(Th)h∈R) is a noise (Th is L2-continuous because of the Feller property). We call
it the noise generated by the canonical flowK0.

DEFINITION 3.2. Letν be a Feller convolution semigroup, letN = (�,A,

(Fs,t )s≤t ,P, (Th)h∈R) be a noise and letK be a measurable stochastic flow
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of kernels of lawPν defined on(�,A,P) such that, for alls < t , Ks,t is
Fs,t -measurable and, for everyh ∈ R,

Ks+h,t+h = Ks,t ◦ Th a.s.(3.1)

We will call (N,K) an extension of the noiseNν .

Let (N1,K1) and(N2,K2) be two extensions of the noiseNν . Let� = �1×�2,
A = A1 ⊗ A2 and letP be the probability measure on(�,A) defined by

E[Z] =
∫

E1[Z1|K1 = K]E2[Z2|K2 = K]Pν(dK),(3.2)

for any bounded random variableZ(ω1,ω2) = Z1(ω1)Z2(ω2). Let (Th)h∈R be
the one-parameter group ofP-preserving transformations of� defined by
Th(ω1,ω2) = (T 1

h (ω1), T
2
h (ω2)). For all s < t , let Fs,t = F 1

s,t ⊗ F 2
s,t . Then

N := (�,A, (Fs,t )s≤t ,P, (Th)h∈R) is a noise. And ifK denotes the random
variable K(ω1,ω2) = K1(ω1)(= K2(ω2) P-a.s.), then(N,K) is an extension
of Nν . We will call (N,K) the product of the extensions(N1,K1) and(N2,K2).
Note thatN1 andN2 are isomorphic to subnoises ofN .

3.2. Filtering by a subnoise. Let N̄ be a subnoise of an extension(N,K)

of Nν ; that is, N̄ is a noise(�,A, (F̄s,t )s≤t ,P, (Th)h∈R) such thatF̄s,t ⊂ Fs,t

for all s ≤ t .

REMARK 3.1. A subnoise is characterized bȳF−∞,∞, denotedF̄ . This
σ -field has to be stable underTh, to contain allP-negligible sets ofF , and be
such thatF̄ = (F̄ ∩ F−∞,0) ∨ (F̄ ∩ F0,∞).

For everyn ≥ 1, let P̄(n)
t be the operator acting onC(Mn) defined by

P̄(n)
t (f1 ⊗ · · · ⊗ fn)(x1, . . . , xn) = E

[
n∏

i=1

E[K0,tfi(xi)|F̄0,t ]
]
,(3.3)

for all x1, . . . , xn in M and allf1, . . . , fn in C(M).

LEMMA 3.1. The family (P̄(n)
t , n ≥ 1) is a compatible family of Feller

semigroups.

PROOF. The semigroup property of̄P(n)
t follows directly from the indepen-

dence of the increments of the flow. The Markovian property and in particular the
positivity property hold since, for everyh ∈ C(Mn),

P̄(n)
t h(x1, . . . , xn) = E

[〈
h,

n⊗
i=1

E[K0,t (xi)|F̄0,t ]
〉]

.(3.4)
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From this, it is clear that(P̄(n)
t , n ≥ 1) is a compatible family of Markovian

semigroups, respectively, acting onC(Mn).
It remains to prove the Feller property. For all continuous functionsf1, . . . , fn,

h = f1 ⊗ · · · ⊗ fn, x = (x1, . . . , xn) and y = (y1, . . . , yn) in Mn, for M

large enough,

∣∣P̄(n)
t h(x) − P̄(n)

t h(y)
∣∣≤ M

n∑
i=1

E
[(

E[K0,t fi(xi) − K0,tfi(yi)|F̄0,t ])2]1/2

(3.5)

≤ M

n∑
i=1

E
[(

K0,t fi(xi) − K0,tfi(yi)
)2]1/2

,

which converges toward 0 asy tends tox since (e) in Definition 2.3 is satisfied.
We also have, for allh = f1 ⊗ · · · ⊗ fn and x = (x1, . . . , xn) in Mn, for M

large enough,

∣∣P̄(n)
t h(x) − h(x)

∣∣≤ M

n∑
i=1

E
[(

E[K0,t fi(xi) − fi(xi)|F̄0,t ])2]1/2

(3.6)

≤ M

n∑
i=1

E
[(

K0,tfi(xi) − fi(xi)
)2]1/2

,

which converges toward 0 ast tends to 0 since (d) in Definition 2.3 is sat-
isfied. Hence, for every functionh ∈ C(Mn) such thath is a linear combi-
nation of functions of the typef1 ⊗ · · · ⊗ fn, we haveP̄(n)

t h is continuous
and limt→0 P̄(n)

t h(x) = h(x) for every x ∈ Mn. This extends to all functions
h ∈ C(Mn). �

Let us denote bȳν = (ν̄t )t≥0 the Feller convolution semigroup on(E,E)

associated with(P̄(n)
t , n ≥ 1). Note that the one-point motion ofν and ν̄ is the

same, that is,̄P(1)
t = P(1)

t .

LEMMA 3.2. (i) Let K be an(E,E)-valued random variable defined on a
probability space(�,A,P). Assume that

lim
d(x,y)→0

E
[
ρ
(
K(x),K(y)

)2]= 0.(3.7)

Let G be a sub-σ -field of A. Then there exists an(E,E)-valued random
variable KG which is G-measurable and such that(x,ω) 	→ KG(x,ω) is
measurable and that

KGf (x) = E[Kf (x)|G], P-a.s.(3.8)

for all f ∈ C(M) and x ∈ M . ThusKG = E[K|G]. Note thatKG = K G̃, where
G̃ = σ(KG).
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(ii) Let (N,K) be an extension ofNν and letN̄ be a subnoise ofN . Then there
existsK̄ = (K̄s,t , s ≤ t) a stochastic flow of kernels of lawPν̄ such that(N̄, K̄) is
an extension ofNν̄ and

K̄s,tf (x) = E[Ks,tf (x)|F̄s,t ] = E[Ks,tf (x)|F̄ ], P-a.s.(3.9)

for all s ≤ t , x ∈ M and f ∈ C(M). We sayK̄ is obtained by filteringK with
respect toN̄ .

PROOF. (i) Let (xi)i∈N be a dense sequence inM . Equation (3.7) implies the
existence of a sequence(εk)k∈N such that ifd(x, y) ≤ εk , then

E
[
ρ
(
K(x),K(y)

)2]≤ 2−3k.(3.10)

For everyx ∈ M , let (nx
k)k∈N be defined bynx

k = inf{n ∈ N, d(xn, x) ≤ εk}. Then
limk→∞ xnx

k
= x and the Borel–Cantelli lemma shows that

lim
k→∞K

(
xnx

k

)= K(x), P-a.s.(3.11)

(sinceP[ρ(K(xnx
k
),K(x)) ≥ 2−k] ≤ 2−k). Then by dominated convergence,

lim
k→∞ E

[
K
(
xnx

k

)|G]= E[K(x)|G], P-a.s.(3.12)

Let us choose an everywhere definedG-measurable version ofE[K(xi)|G] for
everyi ∈ N.

LetKG be defined byKG(x) = l((E[K(xnx
k
)|G])k∈N). ThenKG is an(E,E)-va-

lued G-measurable random variable,(x,ω) 	→ KG(x,ω) is measurable and, for
everyx ∈ M ,

KG(x) = lim
k→∞ E

[
K
(
xnx

k

)|G]= E[K(x)|G], P-a.s.(3.13)

(ii) Since for everyt ≥ 0, νt is the law of a random variable satisfying (3.7),
(i) shows that, for alls ≤ t , there existsK̄s,t an (E,E)-valuedF̄s,t -measurable
random variable such that(x,ω) 	→ K̄s,t (x,ω) is measurable and

K̄s,tf (x) = E[Ks,tf (x)|F̄s,t ], P-a.s.(3.14)

for all s ≤ t , x ∈ M andf ∈ C(M).
It is easy to see that̄K = (K̄s,t , s ≤ t) is a measurable stochastic flow of kernels

of law Pν̄ and that(N̄, K̄) is an extension ofNν̄ . Let us just show the cocycle
property. For alls ≤ u ≤ t , x ∈ M andf ∈ C(M), Pν-a.s.,

E[Ks,tf (x)|F̄s,t ] = E[Ks,uKu,tf (x)|F̄s,t ]
= E

[
E[Ks,uKu,tf (x)|Fs,u ∨ F̄u,t ]|F̄s,t

]
= K̄s,uK̄u,tf (x).

Thus the lemma is proved.�
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DEFINITION 3.3. Given two Feller convolution semigroups on(E,E),
ν1 andν2, we say thatν1 dominates (resp. weakly dominates)ν2, denotedν1 � ν2

(resp.ν1 w� ν2), if there exists a subnoise ofNν1 [resp. of an extension(N1,K1) of
Nν1] such thatPν2 is the law of the flow obtained by filtering the canonical flow of
law Pν1 (resp. by filteringK1) with respect to this subnoise.

Notice that in Lemma 3.2,ν weakly dominates̄ν andν dominatesν̄ if N̄ is
a subnoise ofNν . Note that the domination relation is in fact an extension of the
notion of barycenter.

LEMMA 3.3. Let ν and ν̄ be two Feller convolution semigroups such thatν

dominatesν̄. Let (N,K) be an extension ofNν . Let Ñν be the subnoise
(isomorphic toNν) of N generated byK . Then there exists a subnoisēN of Ñν

such thatPν̄ is the law of the flow obtained by filteringK with respect toN̄ .

PROOF. LetNν := (�0,A0, (F ν
s,t )s≤t ,Pν, (Th)h∈R) be the noise generated by

the canonical flow associated withν. Notice thatν � ν̄ means the existence of̄N0

a subnoise ofNν such thatPν̄ is the law ofK̄0, the flow obtained by filtering the
canonical flow of lawPν with respect toN̄0.

Note that the mappingK : (�,A) → (�0,A0) is measurable. LetF̄ be the
completion ofK−1(F̄ 0) by all P-negligible sets ofA and, for all s ≤ t , set
F̄s,t = F̄ ∩ Fs,t . Then N̄ = (�,A, (F̄s,t )s≤t ,P, (Th)h∈R) is a subnoise ofN .
Lemma 3.2 allows us to definēK the flow obtained by filteringK with respect
to N̄ . One can check that̄K = K̄0(K). This implies that the law of̄K is Pν̄ . Thus
the proposition is proved.�

PROPOSITION 3.1. The domination relation and the weak domination rela-
tion are partial orders on the class of Feller convolution semigroups.

PROOF. (i) The transitivity of the domination relation follows from Lem-
ma 3.3 by the chain rule for conditional expectations.

Let us observe that ifν1 � ν2 andν2 � ν1, thenν1 = ν2. Indeed, ifν1 � ν2,
Jensen’s inequality shows that, for allf1, . . . , fn in C(M), x1, . . . , xn in M

andt ≥ 0,

Eν1

[
exp

(
n∑

i=1

K0,tfi(xi)

)]
≥ Eν2

[
exp

(
n∑

i=1

K0,tfi(xi)

)]
.(3.15)

Therefore, if moreoverν1 � ν2, the preceding inequality becomes an equality. This
provesν1 = ν2.

(ii) For the weak domination relation, the proof is similar. We prove the

transitivity using the product of extensions. Indeed, ifν̄
w� ν, given any extension

(N1,K1) of Nν , there exist a larger extension(N,K) and a subnoisēN of N such
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thatK̄ has lawPν̄ . Let N̄2 be a subnoise of an extension(N2,K2) of Nν such that
K̄2 has lawPν̄ ; then (N,K) is taken as the product of the extensions(N1,K1)

and(N2,K2), andN̄ is induced byN̄2. �

REMARK 3.2. The concept of filtering will be used in Sections 4.3, 5.5 and 6.2
and an example is given in the following section.

3.3. An example of filtering. Let M = {0,1}. Then F , the set of maps
from {0,1} on {0,1} is constituted of the mapsσ , I , f0 andf1, with I the identity,
σ(0) = 1, σ(1) = 0, f0 = 0 andf1 = 1. Let (Nt) be a Poisson process onR and
let (ϕn)n∈Z be a sequence, independent of the Poisson process, of independent
random variables taking their values inF with law

1
4

(
δf0 + δf1 + δI + δσ

)
.

We then define a stochastic flow of mappings on{0,1} by

ϕs,t = I, if Nt − Ns = 0,

ϕs,t = ϕNt−1 ◦ · · · ◦ ϕNs , if Nt − Ns > 0,

for all s ≤ t . Note thatϕ is a coalescing flow since for everys, there is a.s. a finite
timeT such that, for allt ≥ T , ϕs,t (0) = ϕs,t (1). The one-point motion of this flow
is given by the symmetric random walk with generatorA(1) given by

A(1) =
(

1/2 1/2
1/2 1/2

)
.

Note also that, since{0,1} has only two points, then-point motions associ-
ated with this stochastic flow of mappings are determined by the two-point
motion. The generatorA(2) of the two-point motion is [the state space is
{(0,0), (1,1), (0,1), (1,0)}]

A(2) =




1/2 1/2 0 0
1/2 1/2 0 0
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4


 .

With the stochastic flowϕ and an independent sequence of random variables
(Yn)n∈Z with P[Yn = 1] = p = 1 − P[Yn = 0], we define a stochastic flow of
kernelsK , by

Ks,t (i) = δi, if Nt − Ns = 0,

Ks,t = KNs · · ·KNt−1, if Nt − Ns > 0,

whereKn = Ynδϕn + (1− Yn)
1
2(δ0 + δ1).

Denote byNc the noise ofϕ, byN the noise ofK and byN̂ the noise of(ϕ,Y ).
ThenNc is the noise of(Nt, ϕNt ), N̂ is the noise of(Nt, ϕNt , YNt ) andN is the
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noise of (Nt,KNt ). The noisesNc and N are subnoises of̂N . And N cannot
be isomorphic to a subnoise ofNc. Indeed, forε small, F Nc

0,ε has one atom of

probability e−ε and four atoms of probability14εe−ε, and F N
0,ε has one atom

of probabilitye−ε as well but one atom of probability(1− p)εe−ε and four atoms
of probability p

4εe−ε.
The flowK coincides with the flow obtained by filteringϕ with respect toN .

Thus the law ofK is weakly dominated by the law ofϕ but is not dominated.

3.4. Continuous martingales.Let (Ks,t , s ≤ t) be a stochastic flow of kernels.
For all s ≤ t , setFs,t = σ(Ku,v, s ≤ u ≤ v ≤ t). Let F be the filtration(F0,t )t≥0.
Let M(F ) be the space of locally square integrableF -martingales.

PROPOSITION 3.2. Suppose thatP(1)
t is the semigroup of a Markov process

with continuous paths. Then all martingales ofM(F ) are continuous.

PROOF. Let M ∈ M(F ) be a martingale in the formE[F |F0,t ], where
F =∏n

i=1 Ksi,ti fi(xi), with f1, . . . , fn in C(M), x1, . . . , xn in M and 0≤ si < ti
(we take here the continuous modification int of the stochastic flow of kernels).
By definition of the filtration, functions in this form are dense inL2(F0,∞). This
implies that martingales of this form are dense inM(F ). Since the space of
continuous martingales is closed inM(F ), it is enough to prove the continuity
of these martingales.

For everyt , let K̃t be the kernel defined onR+ × M by

K̃t (s, x) =
{

δs−t ⊗ δx, for s ≥ t,

δ0 ⊗ Ks,t (x), for s ≤ t.
(3.16)

Then we can rewriteF in the form
∏n

i=1 K̃ti f̃i (si, xi), wheref̃i(s, x) = fi(x).
Note that(K̃ti (si, xi),1 ≤ i ≤ n) is a Markov process on(B(R+) ⊗ P (M))n.

This Markov process is continuous and Feller [the Feller property follows from
the Feller property of the semigroups(�(k)

t , k ≥ 1)]. It is well known that the

martingales relative to the filtration denoted here(F
{si ,xi}1≤i≤n
t , t ≥ 0) generated

by such a process are continuous (see [38], tome II).
This proves thatE[F |F {si ,xi}1≤i≤n

t ] is a continuous martingale. We conclude

after remarking thatMt = E[F |F {si ,xi}1≤i≤n
t ], which holds since theσ -field

F
{si ,xi}1≤i≤n
t is a sub-σ -field of Ft andMt is easily seen to beF

{si ,xi}1≤i≤n
t -mea-

surable. �

4. Stochastic coalescing flows. In this section, we study stochastic coalescing
flows, we denote by(ϕs,t , s ≤ t). In Section 4.2, it is shown that, for all
s < t , ϕ∗

s,t (λ) is atomic (whereλ denotes any positive Radon measure onM).
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We study this point measure valued process which provides a description of the
coalescing flow.

In Section 4.3, starting from a compatible family of Feller semigroups, under the
hypothesis that starting close to the diagonal the two-point motion hits the diagonal
with a probability close to 1, we construct another compatible family of Feller
semigroups to which is associated a stochastic coalescing flow. We then show that
the stochastic flow of kernels associated with the first family of semigroups can be
defined by filtering the stochastic coalescing flow with respect to a subnoise of an
extension of its canonical noise.

Finally, we give three examples. The first one, due to Arratia [2], describes
the flow of independent Brownian motions sticking together when they meet. The
second one is due to Propp and Wilson [35] in the context of perfect simulation of
the invariant distribution of a finite-state irreducible Markov chain, their stochastic
flows being indexed by the integers. The third one is the construction of a stochastic
coalescing flow solution of Tanaka’s SDE

dXt = sgn(Xt ) dWt,(4.1)

whereW is a real white noise. This coalescing flow was constructed by Watanabe
in [45] and Warren in [44]. In [23], a stochastic flow of kernels solution of this
SDE was constructed as the only Wiener solution of this SDE.

4.1. Definition. Let M be a locally compact separable metric space.

DEFINITION 4.1. A stochastic flow of mappings onM , (ϕs,t , s ≤ t), is
called a stochastic coalescing flow if, for some(x, y) ∈ M2, Tx,y = inf{t ≥ 0,

ϕ0,t (x) = ϕ0,t (y)} is finite with a positive probability and, for everyt ≥ Tx,y ,
ϕ0,t (x) = ϕ0,t (y). In other words, a pair of points stick together after a finite time
with a positive probability.

REMARK 4.1. This definition depends only on the two-point motion.

Let (P(n)
t , n ≥ 1) be a compatible family of Feller semigroups. We denote

by P(2)
(x,y) the law of the Markov process associated withP(2)

t starting from(x, y)

and we denote this process(Xt , Yt ) or X
(2)
t . Let T� = inf{t ≥ 0,Xt = Yt}.

REMARK 4.2. A compatible family(P(n)
t , n ≥ 1) of Feller semigroups defines

a stochastic coalescing flow if and only if, for every(x, y) ∈ M2, for everyt ≥ T�,

Xt = Yt , P(2)
(x,y)-a.s., and for some(x, y) ∈ M2, P(2)

(x,y)[T� < ∞] > 0.
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4.2. A point measure valued process associated with a stochastic coalescing
flow. In this section, we suppose we are given a compatible family of Feller
semigroups(P(n)

t , n ≥ 1) such that

∀x ∈ M,∀ t > 0, lim
y→x

P(2)
(x,y)[Xt �= Yt ] = 0,

(4.2)
∀ (x, y) ∈ M2, P(2)

(x,y)[T� < ∞] > 0.

REMARK 4.3. Assumption (4.2) implies that the associated stochastic flow
is a stochastic coalescing flow and is verified in all the examples of coalescing
flows we will study except for the example presented in Section 4.4.3, where
P(2)

(x,y)[Xt �= Yt ] does not converge toward 0 asy tends tox whenx �= 0.

Let ϕ = (ϕs,t , s ≤ t) be a measurable stochastic coalescing flow associated with
(P(n)

t , n ≥ 1). For all s < t ∈ R, let µs,t = ϕ∗
s,t (λ), whereλ is any positive Radon

measure onM .

PROPOSITION4.1. (a)For all s < t ∈ R, a.s., µs,t is atomic.
(b) For all s < u < t ∈ R, a.s.,µs,t is absolutely continuous with respect toµu,t .

PROOF. Fix s < t ∈ R. For allε > 0 andx ∈ M , let

mx
ε =

∫
B(x,ε)

1ϕs,t (x)=ϕs,t (y)λ(dy)

[mx
ε is well defined since(x,ω) 	→ ϕs,t (x,ω) is measurable]. For allα ∈]0,1[ and

x ∈ M , let

Aα,x
n = {

mx
εx
n
< (1− α)λ

(
B(x, εx

n)
)}

,(4.3)

whereεx
n is a positive sequence such thatd(x, y) ≤ εx

n implies

P(2)
(x,y)[Xt−s �= Yt−s] ≤ 2−n.

LEMMA 4.1. For all positiveα, x ∈ M andn ∈ N, P(Aα,x
n ) ≤ 1

α2n .

PROOF. For every integern, we have

E
[
mx

εx
n

]= ∫
B(x,εx

n)
P(2)

(x,y)[Xt−s = Yt−s]λ(dy)

=
∫
B(x,εx

n)

(
1− P(2)

(x,y)[Xt−s �= Yt−s])λ(dy) ≥ (1− 2−n)λ
(
B(x, εx

n)
)
.

And we conclude since

E
[
mx

εx
n

]≤ P(Aα,x
n )(1− α)λ

(
B(x, εx

n)
)+ (1− P(Aα,x

n )
)
λ
(
B(x, εx

n)
)

[we use the fact thatmx
εx
n

≤ λ(B(x, εx
n))]. �
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LEMMA 4.2. For everyx ∈ M , a.s., mx
εx
n

∼ λ(B(x, εx
n)) asn → ∞.

PROOF. Using the Borel–Cantelli lemma, for everyα ∈]0,1[,

1− α ≤ lim inf
n→∞

mx
εx
n

λ(B(x, εx
n))

≤ lim sup
n→∞

mx
εx
n

λ(B(x, εx
n))

≤ 1 a.s.

This implies limn→∞
mx

εxn

λ(B(x,εx
n))

= 1 a.s. �

Since for every(x,ω) ∈ M × �,

µs,t

({ϕs,t (x)})= λ
({y,ϕs,t (y) = ϕs,t (x)})

≥ λ
({y ∈ B(x, εx

n), ϕs,t (y) = ϕs,t (x)}),
Lemma 4.2 implies that, for everyx ∈ M ,

µs,t

({ϕs,t (x)})> 0 a.s.(4.4)

Since(x,ω) 	→ µs,t ({ϕs,t (x)}) is measurable,

λ(dx) ⊗ P(dω)-a.e., µs,t

({ϕs,t (x)})> 0.(4.5)

This equation implies [sinceµs,t = ϕ∗
s,t (λ)]

µs,t (dy)-a.e., µs,t ({y}) > 0 a.s.(4.6)

This last equation is one characterization of the atomic nature ofµs,t and (a)
is proved.

To prove (b), note first thatλ(dx)⊗ P(dω)-a.e.,ϕ∗
u,t (δx) = δϕu,t (x) is absolutely

continuous with respect toϕ∗
u,t (λ) = µu,t since (4.4) holds. Note also that

λ(dx) ⊗ P(dω)-a.e.,ϕs,t (x) = ϕu,t ◦ ϕs,u(x). This implies

µs,t = ϕ∗
u,t (µs,u) a.s.(4.7)

Sinceµs,u is atomic, independent ofϕu,t andE[µs,u] = λ, it follows thatµs,t is
absolutely continuous with respect toµu,t . This proves (b). �

REMARK 4.4. (i) (µs,t , s ≤ t) is Markovian int .
(ii) Since µs,t is atomic for t > s, there exist a point processξs,t = {ξ i

s,t}
and weights{αi

s,t} ∈ RN such thatµs,t =∑
i α

i
s,t δξ i

s,t
. The point processξs,t and

the marked point process(ξs,t , αs,t ) are Markovian int since, for alls < u < t ,
ξs,t = ϕu,t (ξs,u) andαi

s,t =∑
{j,ξ i

s,t=ϕu,t (ξ
j
s,u)} α

j
s,u.

(iii) Let Ai
s,t = ϕ−1

s,t (ξ i
s,t ) and let�s,t be the collection of the setsAi

s,t . Note
that

⋃
i A

i
s,t = M λ-a.e, the union being disjoint. Note also thatξs,t and �s,t

determineϕs,t λ-a.e. Note finally that�s,t is Markovian ins whens decreases,
since for all s < u < t , �s,t = {ϕ−1

s,u(Ai
u,t )}. This Markov process has also a

coalescence property: one can have, fori �= j , ϕ−1
s,u(Ai

u,t ) = ϕ−1
s,u(A

j
u,t ). Whens

decreases, the partition�s,t becomes coarser.
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4.3. Construction of a family of coalescent semigroups.Let (P(n)
t , n ≥ 1) be

a compatible family of Feller semigroups on a locally compact separable metric
spaceM and let ν = (νt )t∈R be the associated Feller convolution semigroup
on (E,E). Let �n = {x ∈ Mn,∃ i �= j, xi = xj } andT�n = inf{t ≥ 0,X

(n)
t ∈ �n},

where X
(n)
t denotes then-point motion, that is, the Markov process onMn

associated with the semigroupP(n)
t . We will denote�2 by �.

THEOREM 4.1. There exists a unique compatible family(P(n),c
t , n ≥ 1) of

Markovian semigroups onM such that ifX(n),c is the associatedn-point motion
andT c

�n
= inf{t ≥ 0,X

(n),c
t ∈ �n}, then:

(i) (X
(n),c
t , t ≤ T c

�n
) is equal in law to(X(n)

t , t ≤ T�n),

(ii) for t ≥ T c
�n

, X
(n),c
t ∈ �n.

Moreover, this family is constituted of Feller semigroups if condition(C) is
satisfied:

(C) For all t > 0, ε > 0 andx ∈ M ,

lim
y→x

P(2)
(x,y)[{T� > t} ∩ {d(Xt, Yt ) > ε}] = 0,

where(Xt , Yt ) = X
(2)
t . And for somex andy in M , P(2)

(x,y)[T� < ∞] > 0.

In this case, (P(n),c
t , n ≥ 1) satisfies(1.6)and is associated with a coalescing flow.

PROOF. For everyn ≥ 1, letPn be the set of all partitions of{1, . . . , n}. The
number of elements ofπ ∈ Pn is denoted|π |. For everyπ ∈ Pn, we define the
equivalent relationi

π∼ j if i andj belong to the same element ofπ . We define a

partial order onPn by π ′ ≤ π if i
π∼ j implies i

π ′∼ j (π is finer thanπ ′).
For everyπ ∈ Pn, we letEπ be the set of elementsx ∈ Mn such thatxi = xj

if i
π∼j and∂Eπ =⋃

π ′<π Eπ ′ , the set of elementsx ∈ Eπ such that there exists

i andj with i
π�∼ j andxi = xj . Let jπ be an isometry betweenM |π | andEπ .

By induction onk = |π |, we define a Markov processXπ on Eπ . For k = 1,
we let Xπ = jπ (X(1)). Assume now we have defined a Markov process onEπ

for every π such that|π | ≤ k. Let π ∈ Pn with |π | = k + 1; we defineXπ

concatenating the processjπ (X(k+1)) stopped at the entrance timeT in ∂Eπ with
the processXπ ′

starting from the corresponding point and whereπ ′ is the finest
partition such thatjπ (X

(k+1)
T ) ∈ Eπ ′ . This way, we construct a Markov process

onMn, X(n),c = Xπ for π = {{1}, . . . , {n}}.
For every integern, let P(n),c

t be the Markovian semigroup associated with the
Markov processX(n),c. From the above construction, it is clear that the family
(P(n),c

t , n ≥ 1) of Markovian semigroups is compatible.
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It remains to prove that when (C) is satisfied, this family of Markovian
semigroups is constituted of Feller semigroups. This holds since (C) implies (F)

in Lemma 1.11: for every positiveε, P(2),c
(x,y)[d(Xt , Yt) > ε] ≤ P(2)

(x,y)[{T� > t} ∩
{d(Xt , Yt) > ε}], which converges toward 0 asy → x. Note that when (C) holds,
it is easy to see that the canonical flow is a coalescing flow.�

We now suppose that(P(n),c
t , n ≥ 1) is constituted of Feller semigroups

[which is true when (C) holds]. We denote byνc the associated Feller convolu-
tion semigroup.

THEOREM 4.2. The convolution semigroupνc weakly dominatesν.

PROOF. The idea of the proof is to define a coupling between the flows of
kernelsK andKc, respectively, of lawPν andPνc . [Since we did not assume (C)
holds, it is not clear thatKc is a flow of mappings.]

In a way similar to the construction of the Markov processX(n),c in the proof
of Theorem 4.1, for every integern ≥ 1, we construct a Markov procesŝX(n) on
(M × M)n identified withMn × Mn such that:

(i) (X̂
(n)
1 , . . . , X̂

(n)
n ) is then-point motion ofνc,

(ii) (X̂
(n)
n+1, . . . , X̂

(n)
2n ) is then-point motion ofν,

(iii) between the coalescing times,X̂(n) is described by the(k+n)-point motion
of ν [when(X̂

(n)
1 , . . . , X̂

(n)
n ) belongs toEπ , with |π | = k].

Let P̂(n)
t be the Markovian semigroup associated withX̂(n). One easily checks

that this semigroup is Feller using the fact thatP(n)
t and P(n),c

t are Feller. Then
(P̂(n)

t , n ≥ 1) is a compatible family of Feller semigroups, associated with a Feller
convolution semigroup̂ν.

Let K̂ be the canonical stochastic flow associated with this family of semi-
groups. Straightforward computations show that, for alls < t , (f, g) ∈ C(M)2

and(x, y) ∈ M2,

E
[(

K̂s,t (f ⊗ g)(x, y)
)2]= P(3)

t−sf
2 ⊗ g ⊗ g(x, y, y),

E
[(

K̂s,t (f ⊗ 1)K̂s,t (1⊗ g)
)2

(x, y)
]= P(3)

t−sf
2 ⊗ g ⊗ g(x, y, y),

E
[(

K̂s,t (f ⊗ g)K̂s,t (f ⊗ 1)K̂s,t (1⊗ g)
)
(x, y)

]= P(3)
t−sf

2 ⊗ g ⊗ g(x, y, y).

This implies that

E
[(

K̂s,t (f ⊗ g) − K̂s,t (f ⊗ 1)K̂s,t (1⊗ g)
)2

(x, y)
]= 0.(4.8)

Thus we haveK̂s,t (x, y) = Kc
s,t (x) ⊗ Ks,t (y) and it is easy to check that the laws

of Kc and ofK are, respectively,Pνc andPν . Thus(Nν̂,K
c) is an extension ofNνc .

Let Ñν be the subnoise ofNν̂ generated byK .
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Let us notice now that, for allg,f1, . . . , fn in C0(M), all y, x1, . . . , xn in M

and all s < t , we have (settingyi = xn+1 = y and for i ≤ n, hi = fi ⊗ 1 and
hn+1 = 1⊗ g)

E

[
Kc

s,tg(y)

n∏
i=1

Ks,tfi(xi)

]
= E

[
n+1∏
i=1

K̂s,thi(xi, yi)

]

= P(n+1)
t−s f1 ⊗ · · · ⊗ fn ⊗ g(x1, . . . , xn, y).

More generally, one can prove in a similar way, for allg, f1, . . . , fn in C0(M),
all y, x1, . . . , xn in M , all s < t and all(si, ti)1≤i≤n with si ≤ ti , that

E

[
Kc

s,tg(y)

n∏
i=1

Ksi,ti fi(xi)

]
= E

[
Ks,tg(y)

n∏
i=1

Ksi,ti fi(xi)

]
.(4.9)

This implies thatKs,tg(y) = E[Kc
s,t (y)|σ(K)] and therefore thatνc

w� ν. �

REMARK 4.5. Let (X(n), n ≥ 1) be a family of strong Markov processes,
respectively, taking their values inMn. We suppose that the associated family of
Markovian semigroups(P(n)

t , n ≥ 1) is compatible and that, for everyx ∈ M ,

lim
y→x

P(2)
(x,y)[{T� > t} ∩ {d(Xt , Yt) > ε}] = 0(4.10)

for all ε > 0 and t > 0. Then (P(n)
t , n ≥ 1) [and (P(n),c

t , n ≥ 1)] are Feller
semigroups.

One can prove this with a coupling similar to the coupling given in the proof of
the previous theorem: the idea is to construct on the same probability space two
Markov processesX(n) andY (n) associated toP(n)

t and such thatX(n)
i (t) = Y

(n)
i (t)

if t ≥ inf{s,X(n)
i (s) = Y

(n)
i (s)}.

REMARK 4.6. The example given in Section 3.3 gives an illustration of the
two theorems of this section, first withP(n)

t = P⊗n
t , then withP(n)

t the semigroup
of the n-point motion ofK . This example shows in particular that one can have

ν
w� νc andν �� νc.

4.4. Examples.

4.4.1. Arratia’s coalescing flow of independent Brownian motions.The first
example of coalescing flows was given by Arratia [2]. OnR, let Pt be the
semigroup of a Brownian motion. With this semigroup we define the compatible
family (P⊗n

t , n ≥ 1) of Feller semigroups. Note that then-point motion of this
family of semigroups is given byn independent Brownian motions. Let us also
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remark that the canonical stochastic flow of kernels associated with this family of
semigroups is not random and is given by(Pt−s , s ≤ t).

Let (P(n)
t , n ≥ 1) be the compatible family of Markovian coalescent semigroups

associated with(P⊗n
t , n ≥ 1) (see Section 4.3). Note that then-point motion of

this family of semigroups is given byn independent Brownian motions who stick
together when they meet.

PROPOSITION 4.2. The family (P(n)
t , n ≥ 1) is constituted of Feller semi-

groups and is associated with a coalescing flow.

PROOF. It is obvious after remarking that two real independent Brownian
motions meet each other a.s. [condition (C) is verified].�

4.4.2. Propp–Wilson algorithm. Similarly to Arratia’s coalescing flow, letPt

be the semigroup of an irreducible aperiodic Markov process on a finite setM ,
with invariant probability measurem. Let (P(n)

t , n ≥ 1) be the compatible family
of Markovian coalescent semigroups associated with(P⊗n

t , n ≥ 1). The coalescing
flow in Section 3.3 is of this type.

PROPOSITION 4.3. The family (P(n)
t , n ≥ 1) is constituted of Feller semi-

groups and is associated with a coalescing flow.

PROOF. It is obvious since the two-point motion defined byP⊗2
t hits the

diagonal almost surely.�

Let ϕ = (ϕs,t , s ≤ t) denote this coalescing flow. Then a.s., for allx, y

in M , τx,y = inf{t > 0, ϕ0,t (x) = ϕ0,t (y)} is finite. Therefore, after a finite time,
Card{ϕ0,t (x), x ∈ M} = 1.

In [35], an algorithm to exactly simulate a random variable distributed according
to the invariant probability measure of a Markov chain with finite state space
is given. The method consists in constructing a stochastic coalescing flow.
We explain this in our context.

Let τ = inf{t > 0, ϕ−t,0(x) = ϕ−t,0(y) for all (x, y) ∈ M2}.
PROPOSITION 4.4. τ is a.s. finite and the law ofXτ , the random variable

ϕ−τ,0(x) (independent ofx ∈ M), is m.

PROOF. Let us remark that, fort > τ and everyx ∈ M , the cocycle property
implies thatϕ−t,0(x) = Xτ .

For every positivet ,

P[τ ≥ t] = P[∃x, y,ϕ−t,0(x) �= ϕ−t,0(y)]
(4.11)

≤ ∑
(x,y)∈M2

P[τx,y ≥ t],
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which converges toward 0 ast goes to∞. Thusτ < ∞ a.s.
For every functionf onM and everyx ∈ M , limt→∞ Pt f (x) =∑

y∈M f (y) ×
m(y) and

Pt f (x) = E
[
f
(
ϕ−t,0(x)

)]= E
[
f
(
ϕ−t,0(x)

)
1t≤τ

]+ E[f (Xτ )1τ<t ].(4.12)

Since τ is a.s. finite, ast goes to∞, the first term of the right-hand side
of the preceding equation converges toward 0 and the second term converges
towardE[f (Xτ )]. Therefore we prove thatE[f (Xτ )] =∑

y∈M f (y)m(y). �

4.4.3. Tanaka’s SDE. In [23], starting from a real Brownian motionB, we
constructed a family of random operators(St , t ≥ 0), Wiener solution of the SDE

dXt = sgn(Xt ) dBt, t ≥ 0.(4.13)

Forf continuous,

Stf (x) = f (Rx
t )1t<Tx + 1

2

(
f (Rx

t ) + f (−Rx
t )
)
1t≥Tx ,(4.14)

whereRx
t is the Brownian motionx + Bt reflected at 0 andTx is the first time it

hits 0. For all continuous functionsf1, . . . , fn, let

P(n)
t (f1 ⊗ · · · ⊗ fn)(x1, . . . , xn) = E

[
n∏

i=1

Stfi(xi)

]
.(4.15)

Then it is easy to see that(P(n)
t , n ≥ 1) is a compatible family of Feller semigroups.

Let (P(n),c
t , n ≥ 1) be the family of semigroups constructed by Theorem 4.1.

Let us describe then-point motion associated with(P(n),c
t , n ≥ 1). Let

(Xt , t ≥ 0) be a Brownian motion starting at 0. LetBt = ∫ t
0 sgn(Xs) dXs ;

(Bt , t ≥ 0) is also a Brownian motion starting at 0. For everyx ∈ R, let τx =
inf{t ≥ 0, |x| + Bt = 0}. Note thatXτx = 0. For everyx ∈ R, let

Xx
t =

{
x + sgn(x)Bt , if t < τx,

Xt, if t ≥ τx .
(4.16)

ThenBt = ∫ t
0 sgn(Xx

t ) dXx
t andXx is a solution of the SDE

dXx
t = sgn(Xx

t ) dBt, t ≥ 0,Xx
0 = x.(4.17)

Thus, for allx1, . . . , xn in M , ((X
x1
t , . . . ,X

xn
t ), t ≥ 0) is then-point motion of the

family of semigroups(P(n),c
t , n ≥ 1).

PROPOSITION 4.5. The family(P(n),c
t , n ≥ 1) is constituted of Feller semi-

groups and is associated with a coalescing flow.
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PROOF. It is easy to see that(P(n),c
t , n ≥ 1) is constituted of Feller semigroups

since, for all t and x0, x 	→ Xx
t is a.s. continuous atx0 [it implies that (F)

in Lemma 1.11 is satisfied]. This also implies that (1.6) is satisfied. Thus, the
associated stochastic flow is a flow of mappings. And it is a coalescing flow
since a.s., every pair of points meets after a finite time. Note that condition (C) is
verified. �

5. Stochastic flows of kernels and SDEs.

5.1. Hypotheses. In this section,M is a smooth locally compact manifold and
we suppose we are given(P(n)

t , n ≥ 1), a compatible family of Feller semigroups,
or equivalently a Feller convolution semigroupν = (νt )t≥0 on (E,E). For every
positive integern, we will denote byX(n)

t then-point motion, that is, the Markov
process associated with the semigroupP(n)

t . We denote byA(n) the infinitesimal
generator ofP(n)

t and by D(A(n)) its domain. (f is in the domain of the
infinitesimal generatorA of a Feller semigroupPt if and only if Pt f −f

t
converges

uniformly ast goes toward 0. Its limit is denotedAf .) We assume that:

(i) The spaceC2
K(M) ⊗C2

K(M) of functions of the formf (x)g(y), with f,g

in C2
K(M) andx, y in M , is included inD(A(2)).

(ii) The one-point motionX(1)
t has continuous paths.

[CK(M), resp.C2
K(M), denotes the set of continuous, resp.C2, functions with

compact support.] In that case, we say thatν is adiffusion convolution semigroup
on (E,E) and that theP(n)

t are diffusion semigroups.

5.2. Local characteristics of a diffusion convolution semigroup.Let us denote
by A the restriction ofA(1) to C2

K(M). Note that it follows easily from (i) and (ii)
that, for everyf ∈ C2

K(M),

M
f
t = f

(
X

(1)
t

)− f
(
X

(1)
0
)− ∫ t

0
Af
(
X(1)

s

)
ds(5.1)

is a martingale. Sincef 2 also belongs toC2
K(M), using the martingaleMf 2

, it is
easy to see that

〈Mf 〉t =
∫ t

0
�(f )

(
X(1)

s

)
ds,(5.2)

where

�(f ) = Af 2 − 2fAf.(5.3)

In the following�(f,g) will denoteA(fg)−f Ag −gAf , for f andg in C2
K(M).
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LEMMA 5.1. On a smooth local chart on an open setU ⊂ M , there exist
continuous functions onU , ai,j andbi such that, for everyf ∈ C2

K(M),

Af = 1

2
ai,j ∂2f

∂xi ∂xj
+ bi ∂f

∂xi
.(5.4)

PROOF. For everyx ∈ U , let ϕi(x) = xi denote the coordinate functions of
the local chart. We can extendϕi into an element ofC2

K(M). For f ∈ C2
K(M),

using Itô’s formula, fort < TU , the exit time ofU ,

f
(
X

(1)
t

)− f
(
X

(1)
0

)− ∫ t

0

(
1

2
ai,j

(
X(1)

s

) ∂2f

∂xi ∂xj

(
X(1)

s

)+ bi
(
X(1)

s

) ∂f

∂xi

(
X(1)

s

))
ds,

is a martingale, wherebi(x) = Aϕi(x) and ai,j (x) = �(ϕi, ϕj )(x). And we

get (5.4) since for everyx ∈ U , Af (x) = lim t→0
P(1)

t f (x)−f (x)

t
. �

Note that the two-point motionX(2)
t has also continuous trajectories and these

results also apply to functions inC2
K(M) ⊗ C2

K(M). For allf,g in C2
K(M), let

C(f,g) = A(2)(f ⊗ g) − f ⊗ Ag − Af ⊗ g.(5.5)

It is clear that on a local chart onU × V ⊂ M × M ,

C(f,g)(x, y) = ci,j (x, y)
∂f

∂xi
(x)

∂g

∂yj
(y),(5.6)

whereci,j ∈ C(U ×V ). Then we can shortly writeA(2) = A⊗ I + I ⊗A+C. On
a local chart onU × V , for everyh ∈ C2

K(M) ⊗ C2
K(M),

A(2)h(x, y) = 1

2
ai,j (x)

∂2

∂xi ∂xj
h(x, y) + bi(x)

∂

∂xi
h(x, y)

+ 1

2
ai,j (y)

∂2

∂yi ∂yj
h(x, y) + bi(y)

∂

∂yi
h(x, y)(5.7)

+ ci,j (x, y)
∂2

∂xi ∂yj
h(x, y).

We will call �(f,g)(x) − C(f,g)(x, x) = 1
2A(2)(1 ⊗ f − g ⊗ 1)2(x, x) −

(1 ⊗ f − g ⊗ 1)(1 ⊗ Af − Ag ⊗ 1)(x, x) the pure diffusion form. It can easily
be seen that it is nonnegative and it vanishes if the associated canonical flow is a
flow of maps. Indeed,

�(f,f )(x) = lim
t→0

1

t

(
P(1)

t f 2(x) − P(2)
t f ⊗2(x, x)

)

= lim
t→0

1

2t

(
P(2)

t (1⊗ f − f ⊗ 1)2(x, x)
)
.
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The converse is not true (see examples in Section 7). Diffusive flows for which the
pure diffusion form vanishes may be calledturbulent.

The two-point motionX(2)
t = (Xt , Yt ) solves the following martingale problem

associated withA(2):

M
f ⊗g
t := f (Xt)g(Yt ) − f (X0)g(Y0) −

∫ t

0
A(2)(f ⊗ g)(Xs,Ys) ds(5.8)

is a martingale for allf andg in C2
K(M).

Note that for all functionsh1 and h2 in C2
K(M) ⊗ C2

K(M), the martingale
bracket〈h1(X

(2)), h2(X
(2))〉t is equal to∫ t

0
(A(2)(h1h2) − h1A

(2)h2 − h2A
(2)h1)

(
X(2)

s

)
ds,(5.9)

and for all functionsf andg in C2
K(M),

〈f (X), g(Y )〉t =
∫ t

0
C(f,g)(Xs,Ys) ds.(5.10)

DEFINITION 5.1. (i) A covariance function on the space of vector fields is
a symmetric mapC from T ∗M2 in R such that its restriction toT ∗

x M × T ∗
y M

is bilinear and, for anyn-uples (ξ1, . . . , ξn) of T ∗M2,
∑

1≤i,j≤n C(ξi, ξj ) ≥ 0
(see [23]). Forf andg in C1

K(M), we denoteC(df (x), dg(y)) by C(f,g)(x, y).
(ii) We say the covariance function is continuous ifC(f,g) is continuous for

all f andg in C1
K(M).

PROPOSITION5.1. (i) C is a continuous covariance function on the space of
vector fields.

(ii) For all f1, . . . , fn in C2
K(M), g = f1 ⊗ · · · ⊗ fn ∈ D(A(n)), and for

x = (x1, . . . , xn) ∈ Mn,

A(n)g(x) =∑
i

∏
j �=i

fj (xi)Afi(xi) +∑
i<j

C(fi , fj )(xi, xj )
∏

k �=i,j

fk(xk).(5.11)

PROOF. For allf andg in C2
K(M), C(f,g)(x, y) is a function ofdf (x) and

of dg(y) we denoteC(df (x), dg(y)). HenceC is a symmetric map fromT ∗M2

in R and its restriction toT ∗
x M ×T ∗

y M is bilinear. To prove (i), it remains to prove∑
i,j C(ξi, ξj ) ≥ 0 for all ξ1, . . . , ξn in T ∗M2. This holds since, for allf1, . . . , fn

in C2(M) and allx1, . . . , xn in M ,∑
i,j

C(fi , fj )(xi, xj ) = (
A(n)g2 − 2gA(n)g

)
(x1, . . . , xn),(5.12)

where g(x1, . . . , xn) = ∑n
i=1 fi(xi) ∈ D(A(n)). This expression is nonnegative

sinceA(n)g2 − 2gA(n)g = lim t→0
1
t
(P(n)

t g2 − (P(n)
t g)2 + (P(n)

t g − g)2).
The proof of (ii) is an application of Itô’s formula.�
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DEFINITION 5.2. The diffusion generatorA and the covariance functionC are
called the local characteristics of the family(P(n)

t , n ≥ 1) or of the diffusion con-
volution semigroup.

When there is no pure diffusion, to give the local characteristics(A,C) in a
system of local charts is equivalent to giving a driftb andC (this corresponds to
the usual definition of the local characteristics of a stochastic flow) since in this
caseai,j (x) = ci,j (x, x).

REMARK 5.1. When(P(n)
t , n ≥ 1) satisfies (C), (i) and (ii) of Theorem 4.1,

then(P(n),c
t , n ≥ 1) also satisfies (i) if and only if, for everyx in M and allf , g

in C2
K(M), C(f,g)(x, x) = �(f,g)(x) [this holds since we haveC(f,g)(x, x) −

�(f,g)(x) = lim t→0
1
t
(P(2),c

t (f ⊗ g)(x, x) − P(1)
t (fg)(x))], that is, when there is

no pure diffusion. So the results of this section also apply to(P(n),c
t , n ≥ 1).

Then in this case(P(n)
t , n ≥ 1) and (P(n),c

t , n ≥ 1) have the same local
characteristics.

Let K = (Ks,t , s ≤ t) be a measurable stochastic flow of kernels associated
with (P(n)

t , n ≥ 1) defined on a probability space(�,A,P). We here consider the
modification ofK , which is continuous int (see Section 2.6).

DEFINITION 5.3. LetC be a covariance function on the space of vector fields.
A two-parameter familyW = (Ws,t , s ≤ t) of random variables taking their values
in the space of vector fields onM is called a vector field valued white noise of
covarianceC if:

(i) for all si ≤ ti ≤ si+1, the random variables(Wsi,ti ,1 ≤ i ≤ n) are
independent,

(ii) for all s ≤ u ≤ t , Ws,t = Ws,u + Wu,t a.s. and
(iii) for all s ≤ t , {〈Ws,t, ξ 〉, ξ ∈ T ∗M} [when ξ = (x,u), 〈Ws,t , ξ 〉 =

〈Ws,t (x), u〉] is a centered Gaussian process of covariance given by

E[〈Ws,t , ξ 〉〈Ws,t, ξ
′〉] = (t − s)C(ξ, ξ ′),(5.13)

for ξ andξ ′ in T ∗M .

In this section, we intend to define on(�,A,P) a vector field valued white
noiseW of covarianceC such thatK solves a SDE driven byW .

In Section 6, under an additional assumption, we will prove that the linear (or
Gaussian) part of the noise generated byK (in the case it is the canonical flow) is
the noise generated by the vector field valued white noiseW .
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5.3. The velocity fieldW . For all s ≤ t , f ∈ C2
K(M) andx ∈ M , let

Ms,tf (x) = Ks,tf (x) − f (x) −
∫ t

s
Ks,u(Af )(x) du.(5.14)

LEMMA 5.2. For all s ∈ R, f ∈ C2
K(M) and x ∈ M , M

f,x
s = (Ms,tf (x),

t ≥ s) is a martingale with respect to the filtrationF s = (Fs,t , t ≥ s) and

d

dt
〈Mf,x

s ,Mg,y
s 〉t = K⊗2

s,t C(f, g)(x, y),(5.15)

for all f , g in C2
K(M) and allx, y in M .

PROOF. SinceK is a measurable stochastic flow of kernels and since, for
every positiveh and everyf in C2

K(M), a.s.

Ms,t+hf (x) − Ms,tf (x) = Ks,t (Mt,t+hf )(x),(5.16)

M
f,x
s is a martingale. Note that (5.16) also implies that, for every positiveh, all f ,

g in C2
K(M) and allx, y in M ,

E
[(

Ms,t+hf (x) − Ms,tf (x)
)(

Ms,t+hg(y) − Ms,tg(y)
)|Fs,t

]
= K⊗2

s,t (E[Mt,t+hf ⊗ Mt,t+hg])(x, y).

The stationarity implies thatE[Mt,t+hf (x)Mt,t+hg(y)] = E[M0,hf (x)M0,hg(y)].
Elementary computations using the fact thatP(1)

t f − f = ∫ t
0 P(1)

s Af ds and

P(2)
t (f ⊗ g) − f ⊗ g = ∫ t

0 P(2)
s A(2)(f ⊗ g)ds give

E[M0,hf (x)M0,hg(y)] =
∫ h

0
P(2)

s

(
C(f,g)

)
(x, y) ds.(5.17)

SinceP(2)
t is Feller andC(f,g) is continuous with compact support,

E[M0,hf (x)M0,hg(y)] = hC(f,g)(x, y) + o(h),(5.18)

uniformly in (x, y) ∈ M2.
ThereforeE[(Ms,t+hf (x)−Ms,tf (x))(Ms,t+hg(y)−Ms,tg(y))|Fs,t ] is equiv-

alent ash tends to 0 tohK⊗2
s,t C(f, g)(x, y). This proves the lemma.�

REMARK 5.2. In the case of Arratia’s coalescing flow(ϕs,t , s ≤ t), C = 0
but d

dt
〈Mf,x

s ,M
g,y
s 〉t = 1{ϕs,t (x)=ϕs,t (y)}. In this case,C2

K(M) ⊗ C2
K(M) is not

included inD(A(2)). This property also fails for the coalescing flow associated
with Tanaka’s SDE.
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For all s < t , n ≥ 1 and 0≤ k ≤ 2n − 1, let tnk = s + k2−n(t − s) and

Wn
s,tf =

2n−1∑
k=0

Mtnk ,tnk+1
f,(5.19)

wheref ∈ C2
K(M). Note that(Mtnk ,tnk+1

)0≤k≤2n−1 are independent equidistributed
random variables.

5.3.1. Convergence in law.

LEMMA 5.3. For all s < t and ((xi, fi),1 ≤ i ≤ m) ∈ (M × C2
K(M))m, we

have
∑m

i=1 Wn
s,tfi(xi) converges in law toward

∑m
i=1 Ws,tfi(xi) asn tends to∞,

whereW is a vector field valued white noise of covarianceC.

PROOF. Using Lemma 5.2, we have, for allf , g in C2
K(M) and allx, y in M ,

E
[
Mtnk ,tnk+1

f (x)Mtnk ,tnk+1
g(y)

]= ∫ 2−n(t−s)

0
P(2)

u C(f, g)(x, y) du

(5.20)
= 2−n(t − s)C(f,g)(x, y) + o(2−n),

and this development is uniform inx andy in M .
We will only prove the proposition whenm = 1 (the proof being the same

for m > 1). The proposition is just an application of the central limit theorem
for arrays (see [6]), which we can apply since (5.20) is satisfied provided the
Lyapounov condition

lim
n→∞

2n−1∑
k=0

E
[∣∣Mtnk ,tnk+1

f (x)
∣∣2+δ]= 0,(5.21)

for some positiveδ, is satisfied.
Using the Burkholder–Davies–Gundy inequality and Lemma 5.2,

E
[∣∣Mtnk ,tnk+1

f (x)
∣∣2+δ]≤ CE

[(∫ 2−n(t−s)

0
K⊗2

0,u

(
C(f,f )

)
(x, x) du

)(2+δ)/2]

≤ C2−((2+δ)n)/2,

whereC is a constant (changing every line) depending only onf , (t − s) andδ.
This implies

2n−1∑
k=0

E
[∣∣Mtnk ,tnk+1

f (x)
∣∣2+δ]≤ C2n2−((2+δ)n)/2 ≤ C2−nδ/2.(5.22)

�

REMARK 5.3. For Arratia’s coalescing flow, one can show the convergence
in law asn goes to∞ of (Wn

s,t (x1), . . . ,W
n
s,t (xk)) toward(B1

s,t , . . . ,B
k
s,t ), where

(B1, . . . ,Bk) is ak-dimensional white noise.
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5.3.2. Convergence inL2(P). In the preceding section, we proved the conver-
gence in law ofWn toward a vector field valued white noise of covarianceC. In
this section, we prove that this convergence holds inL2(P).

LEMMA 5.4. For all s < t , x ∈ M and f ∈ C2
K(M), Wn

s,tf (x) converges
in L2(P).

PROOF. For allf ∈ C2
K(M), x ∈ M ands < t ,

E
[(

Wn
s,tf (x) − Wn+k

s,t f (x)
)2]

(5.23)
= E

[(
Wn

s,tf (x)
)2]+ E

[(
Wn+k

s,t f (x)
)2]− 2E[Wn

s,tf (x)Wn+k
s,t f (x)].

Elementary computations using (5.18) imply

E
[(

Wn
s,tf (x)

)2]= (t − s) C(f,f )(x, x) + o(1),(5.24)

E
[(

Wn+k
s,t f (x)

)2]= (t − s) C(f,f )(x, x) + o(1),(5.25)

as n goes to∞ and this uniformly ink ∈ N. Using the independence of the
increments, the last term in (5.23) can be rewritten as

E[Wn
s,tf (x)Wn+k

s,t f (x)] =
2n−1∑
i=0

(i+1)2k−1∑
j=i2k

E
[
Mtni ,tni+1

f (x)M
tn+k
j ,tn+k

j+1
f (x)

]
.(5.26)

Note that fors ≤ u ≤ v ≤ t , using first the martingale property, then (5.18) and the
uniform continuity ofC(f,f ), we have

E[Ms,tf (x)Mu,vf (x)] = E[Ms,vf (x)Mu,vf (x)]
= E[(Ks,u ⊗ I )(Mu,vf ⊗ Mu,vf )(x, x)]

(5.27)
= E[(Ks,u ⊗ I )(E[Mu,vf ⊗ Mu,vf ])(x, x)]
= (v − u)C(f,f )(x, x) + o(v − u),

uniformly in x ∈ M . This implies

E[Wn
s,tf (x)Wn+k

s,t f (x)] = (t − s)C(f,f )(x, x) + o(1)(5.28)

asn tends to∞ and uniformly ink ∈ N. We therefore have

lim
n→∞ sup

k∈N

E
[(

Wn
s,tf (x) − Wn+k

s,t f (x)
)2]= 0,(5.29)

that is,(Wn
s,tf (x), n ∈ N) is a Cauchy sequence inL2(P). This proves the lemma.

�

REMARK 5.4. For Arratia’s coalescing flow, this lemma is not satisfied since
(Wn

s,tf (x), n ∈ N) fails to be a Cauchy sequence inL2(P).
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Thus, for alls < t , we have defined the vector field valued random variableWs,t

such thatWs,tf (x) is theL2(P)-limit of Wn
s,tf (x) for all x ∈ M andf ∈ C(M).

Then, using Lemma 5.3, it is easy to see thatW = (Ws,t , s ≤ t) is a vector field
valued white noise of covarianceC.

5.4. The stochastic flow of kernels solves a SDE.In [23], it is shown that
a vector field valued white noiseW of covarianceC can be constructed with a
sequence of independent real white noises(Wα)α by the formulaW =∑

α VαWα,
where(V α)α is an orthonormal basis ofHC , the self-reproducing space associated
with C.

For every predictable [with respect to the filtration(F−∞,t , t ∈ R)] pro-
cess(Ht )t∈R taking its values in the dual ofHC , we define the stochastic integral
of H with respect toW by the formula∫ t

s
Hu

(
W(du)

)=∑
α

∫ t

s
〈Hu,Vα〉Wα(du),(5.30)

for s < t . Note that the above definition is independent of the choice of the
orthonormal basis(V α)α .

In particular, this applies toHu(V ) = Ks,u(Vf )(x)1s≤u<t for f ∈ CK(M) and
x ∈ M . Then the stochastic integral

∑
α

∫ t
s Ks,u(V

αf )Wα(du) is denoted∫ t

s
Ks,u

(
Wf (du)

)
(x).(5.31)

REMARK 5.5. The stochastic integral (5.31) is equal to the limit inL2(P) of
2n−1∑
k=0

Ks,tnk

(
Wtnk tnk+1

f
)
(x)

asn tends to∞, wheretnk = s + k2−n(t − s). Indeed,

E

[(∫ t

s
Ks,u

(
Wf (du)

)
(x) −

2n−1∑
k=0

Ks,tnk

(
Wtnk tnk+1

f
)
(x)

)2]

=
2n−1∑
k=0

∫ tnk+1

tnk

P(2)

tnk −s

(
I + P(2)

u−tnk
− 2I ⊗ P(1)

u−tnk

)
C(f,f )(x, x) du,

which tends to 0 asn tends to∞.

PROPOSITION5.2. W is the unique vector field valued white noise such that,
for all s < t , x ∈ M andf ∈ C2

K(M), P-a.s.,

Ks,tf (x) = f (x) +
∫ t

s
Ks,u

(
Wf (du)

)
(x) +

∫ t

s
Ks,u(Af )(x) du.(5.32)

Note that giving the local characteristics of the flow is equivalent to giving this
SDE. This SDE will be called the(A,C)-SDE.
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PROOF. For all s < t , from Remark 5.5,

∫ t

s
Ks,u

(
Wf (du)

)
(x) = lim

n→∞
2n−1∑
k=0

Ks,tnk

(
Wtnk ,tnk+1

f
)
(x)(5.33)

in L2(P), wheretnk = s + k2−n(t − s).
For all integersi, l, k andn such thatl ≥ n andk2l−n ≤ i ≤ (k + 1)2l−n − 1,

the development (5.27) implies

E
[
Mtli ,t

l
i+1

f (x)Mtnk ,tnk+1
f (x)

]= 2−l(t − s)C(f,f )(x, x) + o(2−l),(5.34)

uniformly in x ∈ M . This implies that, forl ≥ n,

E

[(
(k+1)2l−n−1∑

i=k2l−n

Mtli ,t
l
i+1

f (x) − Mtnk ,tnk+1
f (x)

)2]
= o(2−n),(5.35)

uniformly in x ∈ M . Taking the limit asl goes to∞, we get

E
[(

Wtnk ,tnk+1
f (x) − Mtnk ,tnk+1

f (x)
)2]= o(2−n),(5.36)

uniformly in x ∈ M . We use this estimate to prove that

∫ t

s
Ks,u

(
W(du)f

)
(x) = lim

n→∞
2n−1∑
k=0

Ks,tnk

(
Mtnk ,tnk+1

f
)
(x)(5.37)

in L2(P). This holds since

E

[(2n−1∑
k=0

Ks,tnk

(
Wtnk ,tnk+1

f
)− 2n−1∑

k=0

Ks,tnk

(
Mtnk ,tnk+1

f
))2

(x)

]

=
2n−1∑
k=0

E
[(

Ks,tnk

(
Wtnk ,tnk+1

f − Mtnk ,tnk+1
f
))2

(x)
]

≤
2n−1∑
k=0

P(1)

tnk −s

(
E
[(

Wtnk ,tnk+1
f − Mtnk ,tnk+1

f
)2])

(x)

≤ 2no(2−n) = o(1).

Note now that

2n−1∑
k=0

Ks,tnk

(
Mtnk ,tnk+1

f
)
(x) =

2n−1∑
k=0

Ks,tnk

(
Ktnk ,tnk+1

f − f −
∫ tnk+1

tnk

Ktnk ,u(Af )du

)
(x)

= Ks,tf (x) − f (x) −
∫ t

s
Ks,u(Af )(x) du.
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This proves thatK solves the(A,C)-SDE driven byW . Finally, note that ifK
solves the(A,C)-SDE driven by a vector field valued white noiseW ′, then we
must haveW ′ = W . �

Let X = (Xt , t ≥ 0) be the Markov process defined in Section 2.6 on(� ×
C(R+,M),A ⊗ B(C(R+,M)),P(dω) ⊗ Px,ω(dω′)) by X(ω,ω′) = ω′.

PROPOSITION5.3. Assume there is no pure diffusion[i.e., for all f ∈ C2
K(M)

and x ∈ M , �(f )(x) = C(f,f )(x, x)]. Then, for all t ≥ 0, x ∈ M and
f ∈ C2

K(M), P(dω) ⊗ Px,ω(dω′)-a.s.,

f (Xt ) = f (x) +
∫ t

0
W(du)f (Xu) +

∫ t

0
Af (Xu)du,(5.38)

that is, X is a weak solution of this SDE(in the sense given in[38]).

PROOF. As in the proof of (5.37) in Proposition 5.2, we show that

∫ t

0
W(du)f (Xu) = lim

n→∞
2n−1∑
k=0

Mtnk ,tnk+1
f
(
Xtnk

)
(5.39)

in L2(Px), with Px = P(dω) ⊗ Px,ω(dω′)). Let

M
f
t = f (Xt) − f (x) −

∫ t

0
Af (Xu)du;

then (M
f
t , t ≥ 0) is a martingale relative to the filtration(F X

t , t ≥ 0) generated

by the Markov processX. We now prove thatEx[(Mf
t − ∫ t

0 W(du)f (Xu))
2] = 0,

whereEx denotes the expectation with respect toPx . It is easy to see that, since
there is no pure diffusion,

Ex[(Mf
t )2] = Ex

[(∫ t

0
W(du)f (Xu)

)2]
= Ex

[∫ t

0
C(f,f )(Xu,Xu) du

]
.(5.40)

Equation (5.39) and the martingale property ofM
f
t imply that

Ex

[
M

f
t

∫ t

0
W(du)f (Xu)

]

= lim
n→∞

2n−1∑
k=0

Ex

[
M

f

tnk+1
× Mtnk ,tnk+1

f
(
Xtnk

)]
.(5.41)

= lim
n→∞

2n−1∑
k=0

Ex

[(
M

f

tnk+1
− M

f

tnk

)× Mtnk ,tnk+1
f
(
Xtnk

)]
.
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Since, for all 0≤ s < t , Ex[Mf
t − M

f
s |A ∨ F X

s ] = Ms,tf (Xs), we get

Ex

[
M

f
t

∫ t

0
W(du)f (Xu)

]
= lim

n→∞
2n−1∑
k=0

Ex

[(
Mtnk ,tnk+1

f
(
Xtnk

))2]
(5.42)

= Ex

[(∫ t

0
W(du)f (Xu)

)2]
.

ThereforeEx[(Mf
t − ∫ t

0 W(du)f (Xu))
2] = 0. �

5.5. The(A,C)-SDE. In this section and the following, we letA be a second-
order differential operator mappingC2

K(M) in CK(M) and letC be a continuous
covariance on vector fields.

DEFINITION 5.4. LetK be a stochastic flow of kernels and letW be a vector
field valued white noise, defined on a probability space(�,A,P).

(i) (K,W) is a solution of the(A,C)-SDE if the covariance ofW is
C and(K,W) satisfies (5.32) for alls < t , x ∈ M andf ∈ C2

K(M).
(ii) (K,W) is called a Wiener solution of the(A,C)-SDE if moreover, for all

s ≤ t , Ks,t is F W
s,t -measurable, whereF W

s,t is the completion by allP-negligible
sets ofA of theσ -field σ(Wu,v, s ≤ u ≤ v ≤ t).

(iii) When a solution(K,W) of the (A,C)-SDE is not a Wiener solution, we
say it is a weak solution.

REMARK 5.6. The Wiener solution is the usual strong Itô solution of the SDE
when the solution is a flow of mappings, which is the case for the SDE (1.34), or
whenC satisfies condition (8.2) in [23] and when there is no pure diffusion.

REMARK 5.7. Let(K,W) be a solution of the(A,C)-SDE and letν be the
Feller convolution semigroup associated withK . Thenν is a diffusion convolution
semigroup with local characteristics(A,C).

The proof of this remark is left to the reader.

REMARK 5.8. The fact that(K,W) is a Wiener (resp. a weak) solution of the
(A,C)-SDE only depends on the law ofK . So that we can say shortly thatK is a
Wiener (resp. a weak) solution of the(A,C)-SDE.

DEFINITION 5.5. We will say that(P(n)
t , n ≥ 1), a compatible family of Feller

semigroup, orν = (νt ), a Feller convolution semigroup, defines a Wiener (resp. a
weak) solution of the(A,C)-SDE if Pν is the law of a stochastic flow of kernels,
which is a Wiener (resp. a weak) solution of the(A,C)-SDE.

Under some additional assumptions, we will give in Section 6 a representation
of all solutions of the(A,C)-SDE.
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DEFINITION 5.6. We say that (Wiener) uniqueness holds for the(A,C)-SDE
when there is only one diffusion convolution semigroup with local characteris-
tics (A,C) defining a (Wiener) solution.

5.6. Wiener solution and filtering.Let us now consider the canonical flow
associated withν, a diffusion convolution semigroup, with local characteris-
tics (A,C). Let NW

ν := (�0,A0, (F W
s,t )s≤t ,Pν, (Th)h∈R) be the noise generated

by the vector field valued white noiseW . Note thatNW
ν is a linear or Gaussian

subnoise ofNν , the noise generated by the canonical flow. [The noise(Gs,t )s≤t is
Gaussian if and only if there exists a countable family of independent real white
noises{Wα} such that, up to negligible sets,Gs,t is generated by the random vari-
ablesWα

u,v for all s ≤ u ≤ v ≤ t and everyα.]
Let K̄ = (K̄s,t , s ≤ t) be the stochastic flow of kernels obtained by filtering the

canonical flow with respect to the subnoiseNW (see Section 3.2). It is easy to see
that K̄ also solves the(A,C)-SDE (see the proof of Lemma 3.9 in [23]) and has
the same local characteristics as the canonical flow. Since, for alls ≤ t , K̄s,t is
F W

s,t -measurable,(K̄,W) is a Wiener solution of the(A,C)-SDE. Letνs denote
the associated diffusion convolution semigroup.

For anyf ∈ C0(M) andx ∈ M , K̄s,tf (x) can be expanded into a sum of Wiener
chaos elements, that is, iterated Wiener integrals of the form∑

α1,...,αn

∫
Cα1,...,αn(s1, . . . , sn) dWαn

sn
· · ·dWα1

s1
.(5.43)

SinceW was constructed from the flow, it is clear that the functionsCα1,...,αn

are determined by the law of the flow. (We will give, under some additional
assumptions, an explicit form of them in the following section.)

5.7. The Krylov–Veretennikov expansion.We still assume we are given
ν = (νt )t≥0 a diffusion convolution semigroup, in the sense of Section 5.1,
associated with a set of local characteristics(A,C).

We suppose in this section the existence of a Radon measurem onM such that
A is symmetric with respect tom.

Moreover, we assume that Im(I − A) is dense inC0(M) (it implies thatP(1)
t is

symmetric with respect tom and is the unique Feller semigroup whose generator
extendsA).

Following [23], starting from the vector field valued white noiseW , one can
define(Ss,t , s ≤ t) a stochastic flow of Markovian operators [acting onL2(m)]
such that, for alls ≤ t , Ss,t is σ(W)-measurable and, forf ∈ L2(m) ands ≤ u ≤ t ,

Ss,tf = Ss,uSu,tf,

Ss,tf = P(1)
t−sf +

∫ t

s
Ss,uW(du)P(1)

t−uf,
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where both equalities hold inL2(m⊗ P). These operators are given by the Wiener
chaos expansion (called the Krylov–Veretennikov expansion)

Ss,tf = P(1)
t−sf +∑

n≥1

Jn
s,tf,(5.44)

with

Jn
s,tf =

∫
s≤s1≤···≤sn≤t

P(1)
s1−sW(ds1)P

(1)
s2−s1

· · ·P(1)
sn−sn−1

W(dsn)P
(1)
t−sn

f.(5.45)

They can be characterized (Theorem 3-2 in [23]) as the unique flow of random
operators onL2(m), σ(W)-measurable, such thatE[(Ss,tf )2] ≤ P(1)

t−sf
2 and

Ss,tf − f =
∫ t

s
Ss,uW(du)f + 1

2

∫ t

s
Ss,uĀf du in L2(m ⊗ P)(5.46)

for every f in the domain of theL2-generatorĀ, denotedD(Ā). It implies
the following.

PROPOSITION 5.4. (i) If ν defines a Wiener solution(K,W) of the(A,C)-
SDE, then for alls ≤ t , m ⊗ P-a.e., for everyf ∈ CK(M),

Ks,tf = Ss,tf.(5.47)

(ii) Wiener uniqueness holds.

PROOF. (i) It is clear thatK induces a flow of Markovian operators onL2(m)

which verifies (5.46) forf ∈ C2
K(m). Then (5.46) extends to functions in the

domain of the Feller generator and finally toD(Ā).

(ii) From (i), it is clear thatm⊗n-a.e., P(n)
t = E[S⊗n

0,t ]. Since it is a Feller
semigroup, it is uniquely determined.�

6. Noise and classification.

6.1. Assumptions. In this section, as before,M denotes a smooth locally
compact manifold. We fix a pair of local characteristics(A,C) on M . A is
a second-order differential operator mappingC2

K(M) in CK(M) and C is a
continuous covariance on vector fields. The associated differential operatorsA(n)

onC2
K(M)⊗n are defined by (5.11).

Let M(n, x) be the following martingale problem associated withA(n) and
x ∈ Mn: There exists a probability space on which is constructed anMn-valued
stochastic processX(n) = (X

(n)
t , t ≥ 0) such that

f
(
X

(n)
t

)− f (x) −
∫ t

0
A(n)f

(
X(n)

s

)
ds(6.1)

is a martingale for every test functionf in C2
K(M) ⊗ · · · ⊗ C2

K(M).
We suppose that the local characteristics(A,C) verify the following assumption.
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(U) For everyn ≥ 1, the martingale problemM(n, x) has a unique solution in law
on the set of continuous trajectories stopped at�n.

REMARK 6.1. Condition (U) is satisfied when the coefficients of the local
characteristics areC2 outside of�n (see Theorem 12.12 and Section V.19 in [38])
or whenA(n) is elliptic outside of�n (see Section V.24 in [38]).

Our purpose is to classify Feller convolution semigroups associated with these
local characteristics. We will treat two cases:

(A) The noncoalescing case where the solution of the martingale problemM(2, x)

does not hit the diagonal whenx = (x1, x2) with x1 �= x2.
(B) The coalescing case where there is no pure diffusion [i.e.,(1

2Af 2 −
f Af )(x) = C(f,f )(x, x) for all f ∈ C2

K(M) and x ∈ M ], and where as-

sumption (C) of Theorem 4.1 holds forX
(2)
t = (Xt , Yt ) a solution ofM(2, x).

When the local characteristics are noncoalescing [case (A)], these local
characteristics are associated with at most a unique convolution semigroup and
a unique canonical flow (which is not always a flow of maps). From Section 5.5,
we know the latter has to be a Wiener solution of the SDE (otherwise uniqueness
would be violated). Assumption (F) (see Section 1.7) is a sufficient (but not
necessary) condition for existence. The family of semigroups given in the example
of Lipschitz SDEs (see Section 1.7) satisfies these assumptions.

In Sections 6.2–6.4, we assume (B) is satisfied.

6.2. The coalescing case: classification. Following [15], M(n, x) has a
unique solution in law on the set of coalescing trajectories; that is,X(n)(ω) ∈ C(n),
where C(n) is the set of continuous functionsf :R+ → Mn such that if
fi(s) = fj (s) for 1 ≤ i, j ≤ n ands ≥ 0, then for allt ≥ s, fi(t) = fj (t). (In [15],
this martingale problem is solved whenM = R, but the proof can obviously be
adapted to our framework.) Since assumption (C) holds, Remark 4.5 implies that
the associated semigroups are Feller.

Hence all coalescing flows with these local characteristics have the same
law Pνc . They induce the same family of semigroups(P(n),c

t , n ≥ 1) and the same
convolution semigroupνc. This convolution semigroup is a diffusion convolution
semigroup with local characteristics(A,C) since, for allf andg in C2

K(M) and
all x, y in M ,

f (Xt)g(Yt ) − f (x)g(y) −
∫ t

0
A(2)(f ⊗ g)(Xs,Ys) ds

is a martingale, where(Xt , Yt ) denotes the two-point motion ofνc started at(x, y).
Let Nνc be the noise generated by the canonical coalescing flow asociated with

the local characteristics(A,C).
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Let W be the vector field valued white noise defined on(�0,A0,Pνc) in
Section 5 and letNW

νc be the subnoise ofNνc generated byW . ThenNW
νc is a

Gaussian subnoise ofN and it is possible to represent it by a countable family of
independent real white noises{Wα} such thatW =∑

α VαWα , where{Vα} is a
countable family of vector fields onM .

We denote byνs the diffusion convolution semigroup associated with the flow
obtained by filtering the canonical coalescing flow of lawPνc with respect toNW

νc .
The following theorem gives a representation of all flows with the same local

characteristics. They lie “between” the Wiener solution and the coalescing solution
of the SDE, which are distinct when the coalescing solution is not a Wiener
solution of the SDE.

THEOREM 6.1. Suppose we are given a set of local characteristics(A,C)

and that assumption(B) is verified. Then:

(a) νc is the unique diffusion convolution semigroup associated with(A,C)

and defining a flow of maps(which is coalescing).
(b) νs is the unique diffusion convolution semigroup associated with(A,C)

and defining a Wiener solution of the(A,C)-SDE.
(c) The diffusion convolution semigroups associated with(A,C) are all the

Feller convolution semigroups weakly dominated byνc and dominatingνs .

Note thatνc andνs are not necessarily distinct.

PROOF OFTHEOREM 6.1. We have already proved (a) at the begining of this
section. Theorem 4.2 implies that every diffusion convolution semigroupν̄ with
local characteristics(A,C) is weakly dominated byνc so that a stochastic flow̄K
of law Pν̄ can be obtained by filtering on an extension(N,ϕ) of Nνc the coalescing
flow ϕ with respect to a subnoisēN of N .

Let W̄ be the velocity field associated with̄K . Proposition 5.2 shows that
(K̄, W̄ ) solves the(A,C)-SDE. Notice thatW̄ can be obtained by filteringW with
respect toN̄ . Indeed, Section 5.3 shows thatW̄n

s,t (defined fromK̄) converges
(in L2) toward W̄s,t and we have that, for alls ≤ t , f ∈ C2

K(M) and x ∈ M ,
W̄n

s,tf (x) = E[Wn
s,tf (x)|F̄s,t ] a.s. and therefore that̄Ws,tf (x) = E[Ws,tf (x)|F̄s,t ]

a.s. SinceW̄ andW have the same law, we must haveWs,t = W̄s,t a.s. This proves
that ν̄ dominatesνs .

Let us now suppose that(K̄, W̄ ) is a Wiener solution of the(A,C)-SDE. Then,
sinceW̄ = W , we must haveNW

νc = N̄ (sinceK̄s,t is F W
s,t -measurable) and thus

νs = ν̄. This proves the Wiener uniqueness for the(A,C)-SDE.
Finally let ν̄ be a Feller convolution semigroup weakly dominated byνc and

dominatingνs . The fact thatν̄
w� νc implies that a stochastic flow̄K of law Pν̄

can be obtained by filtering on an extension(N,ϕ) of Nνc the coalescing flow
ϕ with respect to a subnoisēN of N . Then Section 5.3 shows that̄Wn

s,t (defined
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from K̄) converges (inL2) towardW̄s,t = E[Ws,t |F̄s,t ]. Now, sinceν̄ � νs , there

exists (see Lemma 3.3) a subnoise¯̄N of N̄ such that the flow obtained by filterinḡK
or equivalently, the coalescing flow, with respect to¯̄N has lawPνs . The associated

white noise ¯̄W verifies, for alls ≤ t , x ∈ M andf ∈ C2
K(M),

¯̄Ws,tf (x) = E[W̄s,tf (x)| ¯̄F s,t ] = E[Ws,tf (x)| ¯̄F s,t ].(6.2)

Since ¯̄W has covarianceC, it has to coincide withW andW̄ = W .
Thus, (K̄, W̄ ) solves the(A,C)-SDE so thatν̄ is a diffusion convolution

semigroup whose local characteristics are(A,C). �

6.3. The coalescing case: martingale representation.On the probability
space(�0,A0,Pνc ), let F νc

be the filtration(F νc

0,t )t≥0 and letM(F νc
) be the

space of locally square integrableF νc
-martingales.

PROPOSITION 6.1. For every F νc
-martingale M = (Mt)t∈R+ , there exist

predictable processes�α = (�α
s )s≥0 such that

Mt =∑
α

∫ t

0
�α

s Wα(ds).(6.3)

REMARK 6.2. Of course, this does not imply thatF νc
is generated byW .

PROOF OF PROPOSITION 6.1. We follow an argument by Dellacherie
(see [38], (V-25)). Suppose there existsF ∈ L2(F νc

0,∞) orthogonal inL2(F νc

0,∞)

to all stochastic integrals of(Wα)α of the form (6.3). ThenMt = E[F |F νc

0,t ] is
orthogonal toWα for everyα; that is,〈M,Wα

0,·〉t = 0.

Let τ = inf{t, |Mt | = 1/2} and P̂νc = (1 + Mτ) · Pνc . SinceM is a uniformly
integrable martingale andτ is a stopping time (with 1+ Mτ ≥ 1/2), P̂νc is a
probability measure on(�0,A0). Since〈M,Wα

0,·〉t = 0, we get that under̂Pνc ,
(Wα

0,t )α is a family of independent Brownian motions.

We are now going to prove that since (U) is satisfied, we must havePνc = P̂νc ,
which impliesMt = 0 and a contradiction.

Let F = ∏n
i=1 fi(ϕ0,ti (xi)), for f1, . . . , fn in C2

K(M), t1, . . . , tn in R+ and
x1, . . . , xn in M . We know that underPνc , for all 1 ≤ i ≤ n, (ϕ0,t (xi), t ≥ 0) is
a solution of the SDE

dgi

(
ϕ0,t (xi)

)=∑
α

Vαgi

(
ϕ0,t (xi)

)
Wα(dt) + Af

(
ϕ0,t (xi)

)
dt,(6.4)

for all g1, . . . , gn in C2
K(M). Note that under̂Pνc , these SDEs are also satis-

fied. Since under̂Pνc , (Wα)α is a family of independent Brownian motions,
((ϕ0,t (xi), t ≥ 0),1 ≤ i ≤ n) is a coalescing solution of the martingale problem
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associated withA(n) and (U) implies that the law of((ϕ0,t (xi), t ≥ 0),1 ≤ i ≤ n)

is the same underPνc and under̂Pνc . ThereforeÊ[F ] = E[F ], whereÊ denotes the
expectation with respect tôPνc .

To conclude thatP̂νc = Pνc , we need to proveÊ[F ] = E[F ] with F =∏n
i=1 fi(ϕsi ,ti (xi)) for all f1, . . . , fn in C2

K(M), 0≤ si < ti in R+ andx1, . . . , xn

in M . This can be proved the same way but using the kernelK̃t introduced in
Section 2.6. In this casẽKt = δϕ̃t

, whereϕ̃t :R+ × M → R+ × M is measurable.
Then F = ∏n

i=1 f̃i (ϕ̃ti (si, xi)) and (ϕ̃t (si, xi), t ≥ 0) is a solution of an SDE
onR

+ × M. �

6.4. The coalescing case: the linear noise. Let us remark that ifν is a diffusion
convolution semigroup, thenNν is a predictable noise (see Proposition 3.2);
that is, M(F ν) is formed of continuous martingales (in particular, a Gaussian
noise is predictable). Following [41], a linear representation of a predictable
noise N = (�,A, (Fs,t )s≤t ,P, (Th)h∈R) is a family of real random variables
X = (Xs,t , s ≤ t) such that:

(a) Xs,t ◦ Th = Xs+h,t+h for all s ≤ t andh ∈ R,
(b) Xs,t is Fs,t -measurable for alls ≤ t ,
(c) Xr,s + Xs,t = Xr,t a.s., for allr ≤ s ≤ t .

The space of linear representations is a vector space. Equipped with the norm
‖X‖ = (E[|X0,1|2])1/2, it is a Hilbert space we denote byHlin . Let H 0

lin be
the orthogonal inHlin of the one-dimensional vector space consisting of the
representationXs,t = v(t − s) for v ∈ R; thenH 0

lin is constituted with the centered
linear representations. Note that ifX ∈ H 0

lin with ‖X‖ = 1, then(X0,t )t≥0 is a
standard Brownian motion. The Hilbert spaceH 0

lin is a Gaussian system and every
X ∈ H 0

lin is a real white noise.
Note that if X and Y are orthogonal linear representations, thenX and Y

are independent.
For all −∞ ≤ s ≤ t ≤ ∞, let F lin

s,t be theσ -field generated by the random
variables Xu,v for all X ∈ H 0

lin and s ≤ u ≤ v ≤ t , and completed by all
P-negligible sets ofF−∞,+∞. Then Nlin := (�,A, (F lin

s,t )s≤t ,P, (Th)h∈R) is a
noise. It is called the linearizable part of the noiseN . The noiseNlin is a maximal
Gaussian subnoise ofN , henceN is Gaussian if and only ifNlin = N . WhenNlin is
trivial (i.e., consisting of trivialσ -fields), one says thatN is a black noise (when
N is not trivial).

THEOREM 6.2. NW
νc = N lin

νc .

PROOF. Let HW be the space of centered linear representations of the
noiseNW

νc . ThenHW is an Hilbert space [an orthonormal basis ofHW is given by
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{(Wα
s,t )s≤t }] and we haveHW ⊂ H 0

lin . This implies thatNW
νc is a Gaussian subnoise

of N lin
νc .

If NW
νc �= N lin

νc , then there exists a linear representationX �= 0 ∈ H 0
lin orthogo-

nal toHW and therefore independent of{Wα}. Since(X0,t )t≥0 ∈ M(F ), Proposi-
tion 6.1 implies that the martingale bracket ofX0,t equals 0. This is a contradiction.

�

In Section 7, we give an example of a stochastic coalescing flow whose noise
is predictable but not Gaussian. It is an example of nonuniqueness of the diffusion
convolution semigroup associated with a set of local characteristics.

REMARK 6.3. In Section 4.4.3, although the covariance functionC is not
continuous, it is still possible to construct a white noiseW from the coalescing
flow (ϕs,t , s ≤ t). For all s < t , we setWs,t = ∫ t

s sgn(ϕs,u(0)) dϕs,u(0). Then we
haveWs,t = ∫ t

s sgn(ϕs,u(x)) dϕs,u(x) for everyx ∈ R. Therefore one can check
thatW = (Ws,t , s ≤ t) is a real white noise.

The coalescing flow(ϕs,t , s ≤ t) solves the SDE

ϕs,t (x) =
∫ t

s
sgn(ϕs,u(x)) dWu for s < t andx ∈ R.(6.5)

The results of this section apply since Proposition 6.1 is also satisfied if we
only assume the uniqueness in law of the coalescing solutions [i.e. such that if
(X1, . . . ,Xn) solves the SDE, then if, fori �= j ands ≥ 0,Xi

s = X
j
s , thenXi

t = X
j
t

for all t ≥ s] of the SDE satisfied by then-point motion [i.e., the SDE (6.4)],
which here is almost obvious. Therefore, the linear part of the noise generated by
the coalescing flow is given by the noise generated byW . But since the Wiener
solution of the SDE (6.5) is not a flow of mappings, the coalescing flow is not a
strong solution. Therefore, we recover the result of [44] and [45] that the noise of
this stochastic coalescing flow is predictable but not Gaussian.

The Wiener solution given in Section 4.4.3 can be recovered by filtering the
coalescing solution with respect to the noise generated byW .

7. Isotropic Brownian flows. In this section, we give examples of compatible
families of Feller semigroups. They are constructed onM , a two-point symmetric
space, withC an isotropic covariance function on the space of vector fields and
the semigroup of a Brownian motion onM .

7.1. Isotropic covariance functions.Let M = G/K be a two-point symmetric
space. This class of spaces includes euclidean spaces, hyperbolic spaces and
spheres; see [16], Chapter III.G is the group of isometries onM . A covariance
functionC is said to be isotropic if

C(g · ξ, g · ξ ′) = C(ξ, ξ ′)(7.1)
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for all g ∈ G and (ξ, ξ ′) ∈ (T ∗M)2 and whereg · ξ = T g(ξ) [or g · (x,u) =
(gx,T gxu) for (x,u) ∈ T ∗M ].

Examples of isotropic covariances are given in [32] onRd and in [37, 36]
on the sphere and on the hyperbolic plane. In these examples, the groupG of
isometries onRd (making Rd homogeneous) is generated byO(d) and by the
translations. For the sphereSd , this group isO(d + 1), and for the hyperbolic
space, it isO(d,1).

7.2. A compatible family of Markovian semigroups.Let C be an isotropic
covariance onX(M), the space of vector fields on the two-point symmet-
ric spaceM = G/K . To this isotropic covariance function is associated a
Brownian vector field onM [i.e., aX(M)-valued Brownian motionW such that
E[〈Wt, ξ 〉〈Ws, ξ

′〉] = t ∧ sC(ξ, ξ ′)]. Let P be the associated Wiener measure, con-
structed on the canonical space� = {ω :R+ → X(M)}, equipped with theσ -field
A generated by the coordinate functions.

We denote byW the random variableW(ω) = ω. W is a Brownian vector
field of covarianceC which is isotropic in the sense that, for everyg ∈ G,
(T g−1

x Wt(gx), t ∈ R+, x ∈ M) is a Brownian vector field of covarianceC.
Let Pt be the heat semigroup onM , let m be the volume element and let� be

the Laplacian.
Let (St , t ≥ 0) be the family of random operators defined in [23], associated

with W and to the heat semigroupPt . Following [23], we define the associated
semigroups of then-point motion,P(n)

t = E[S⊗n
t ] (with P(1)

t = Pt ). Then, it is
obvious that(P(n)

t , n ≥ 1) is a compatible family of Markovian semigroups of
operators acting onL2(m⊗n). We now prove that these semigroups are induced
by Feller semigroups (the question was raised in [28]).

One can extend(Wt)t≥0 into a vector field valued white noise(Ws,t , s ≤ t) of
covarianceC such thatWt = W0,t for t ≥ 0 and associate to it a stationary cocycle
of random operators(Ss,t , s ≤ t) such thatS0,t = St for t ≥ 0.

7.3. Verification of the Feller property.For everyg ∈ G, let Lg :� → �

defined byLgωt(·) = T g−1(ωt (g·)), for all t ∈ R andx ∈ M . ThenLg is linear
and, for allg1 andg2 in G, Lg1g2 = Lg1Lg2 (i.e.,g 	→ Lg is a representation ofG).
It is easy to check that, for everyg ∈ G, (Lg)

∗P = P. Note that this last condition
is also a characterization thatC is isotropic.

For everyg ∈ G, Lg induces a linear transformation onL2(�,A,P) we will
also denote byLg . Then for everyf ∈ L2(�,A,P), we haveLgf (ω) = f (Lgω).
This transformation is unitary since

‖Lgf ‖2 =
∫

f 2(Lgω) P(dω) =
∫

f 2(ω)
(
(Lg)

∗P
)
(dω) = ‖f ‖2

[where‖ · ‖ denotes theL2(P)-norm].
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PROPOSITION 7.1. For everyv ∈ L2(�,A,P), the mappingg 	→ Lgv is
continuous.

PROOF. Note that, sinceL is a representation, it is enough to prove the
continuity ate, the identity element inG.

REMARK 7.1. Let (vn, n ∈ N) be a sequence inL2(�,A,P) converging
toward v ∈ L2(�,A,P) as n → ∞ such that limg→e Lgvn = vn for every
integern; then limg→e Lgv = v. Indeed, since for everyg ∈ G, Lg is unitary,
‖Lgv−v‖ ≤ 2‖vn −v‖+‖Lgvn −vn‖. Hence lim supg→e ‖Lgv−v‖ ≤ 2‖vn −v‖
for every integern.

We first prove that limg→e Lgv = v for everyv of the form
∑

i Wti (ξi) [with
Wt(x,u) = 〈Wt(x), u〉, where〈·, ·〉 denotes the Riemannian metric]:∥∥∥∥∥Lg

(∑
i

Wti (ξi)

)
−∑

i

Wti (ξi)

∥∥∥∥∥
2

= 2
∑
i,j

ti ∧ tj
(
C(ξi, ξj ) − C(g · ξi, ξj )

)
,

which converges toward 0 asg tends toe.
Let H denote the closure (inL2(�,A,P)) of the class of everyv of the form∑
i Wti (ξi). Remark 7.1 implies that limg→e Lgv = v holds for everyv ∈ H .
It is well known thatL2(�,A,P) is the orthogonal sum of the Wick powersHn

of H (see [39]), also called thenth Wiener chaos (see [33]);H 0 is constituted by
the constants. The spaceHn is isometric to the symmetric tensor product Hilbert
spaceH⊗sn. We now prove that limg→e Lgv = v holds for everyv ∈ Hn. For every
v = v1 ⊗s · · ·⊗s vn ∈ Hn (or :v1v2 · · ·vn : in wick notation), withv1, . . . , vn in H ,

‖Lgv − v‖ ≤∑
j

‖Lgv1 ⊗s · · · ⊗s Lgvj−1 ⊗s (Lgvj − vj ) ⊗s vj+1 ⊗s · · · ⊗s vn‖

≤ √
n!∑

j

‖Lgvj − vj‖ × ∏
i �=j

‖vi‖,

which converges toward 0 asg tends toe. Since the class of linear combinations
of elements of the formv1 ⊗s · · · ⊗s vn is dense inHn, we have limg→e Lgv = v

for everyv in Hn. And we conclude sinceL2(�,A,P) =⊕
n≥0 Hn. �

For all x ∈ M , s ≤ t andf ∈ C0(M), sinceP(1)
ε is absolutely continuous with

respect tom, we have

P(1)
ε Ss+ε,tf (x) = E

[
P(1)

ε′ Ss+ε′,tf (x)|Fs+ε′,t
]
,(7.2)

for 0 < ε′ ≤ ε. Thus, for all s < t , P(1)
ε Ss+ε,t f (x) is a martingale asε

decreases. This martingale converges and we denote its limit byKs,tf (x).

Then Ss,tf = Ks,tf in L2(m ⊗ P) and P(n)
t = P̃

(n)
t m⊗n-a.e., whereP̃

(n)
t

denotesE[K⊗n
s,t ].
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LEMMA 7.1. The mappingx 	→ Ks,tf (x) is continuous for every Lipschitz
functionf and all s ≤ t .

PROOF. Note that for allg ∈ G andx ∈ M ,

LgKs,tf (x) = Ks,tf
g−1

(gx),(7.3)

wheref g−1
(x) = f (g−1x). We then have

‖Ks,tf (gx) − Ks,tf (x)‖
≤ ∥∥Ks,tf (gx) − Ks,tf

g−1
(gx)

∥∥+ ‖LgKs,tf (x) − Ks,tf (x)‖.
Hence limg→e Ks,tf (gx) = Ks,tf (x) since limg→e LgKs,tf (x) = Ks,tf (x)

and ‖Ks,tf (gx) − Ks,tf
g−1

(gx)‖ ≤ ‖f − f g−1‖∞, which converges toward 0
[since |f (x) − f g−1

(x)| ≤ Cd(x, g−1x), which converges toward 0 asg → e].
This implies the lemma. �

PROPOSITION 7.2. (i) (P̃(n)
t , n ≥ 1) is a compatible family of Feller semi-

groups.
(ii) The associated convolution semigroupνs = (νs

t )t≥0 is a diffusion convolu-
tion semigroup with local characteristics(1

2�,C).

PROOF. For all bounded Lipschitz functionsf1, . . . , fn, Lemma 7.1 implies
that(x1, . . . , xn) 	→ P̃(n)

t f1 ⊗ · · · ⊗ fn(x1, . . . , xn) = E[∏n
i=1 Ks,tfi(xi)] is contin-

uous. This suffices to prove (i). [The proof that limt→0 P(n)
t h(x) = h(x) for every

h ∈ C(Mn) is the same as in Lemma 1.11.]
To prove (ii), notice that Itô’s formula for(Ss,t , s ≤ t) (see Theorem 3.2 in [23])

implies that, for allf ∈ C2
K(M) ands ≤ t ,

Ks,tf (x) = f (x) +
∫ t

s
Ks,u

(
Wf (du)

)
(x) + 1

2

∫ t

s
Ks,u(�f )(x) du,(7.4)

that is,(K,W) solves the(1
2�,C)-SDE. �

7.4. Classification. Let νs be the diffusion convolution semigroup constructed
above. It defines a Wiener solution of the(1

2�,C)-SDE. Note that there is no
pure diffusion.

Let (dt )t≥0 denote the distance process induced by the two-point motion
X

(2)
t = (Xt , Yt ) [thendt = d(Xt , Yt)]. The isotropy condition and the fact that in

two-point homogeneous spaces, pairs of equidistant points can be exchanged by
an isometry imply thatdt is a real diffusion. We denote in the following the law of
this diffusion starting fromr ≥ 0 by Pr . Let Hr = inf{t > 0, dt = r}.
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PROPOSITION 7.3. (i) νs defines a noncoalescing flow of maps(i.e., such
that the two-point motion starting outside of the diagonal never hits the diagonal)
if and only if0 is a natural boundary point, that is, if

∀ r > 0 Pr [H0 < ∞] = 0 and P0[Hr < ∞] = 0.(7.5)

(ii) νs defines a coalescing flow of maps if and only if0 is a closed exit
boundary point, that is, if

∃ r > 0 Pr[H0 < ∞] > 0 and ∀ r > 0 P0[Hr < ∞] = 0.(7.6)

(iii) νs defines a turbulent flow without hitting(i.e., such that the two-point
motion starting outside of the diagonal never hits the diagonal) if and only if0 is
an open entrance boundary point, that is, if

∀ r > 0 Pr [H0 < ∞] = 0 and ∃ r > 0 P0[Hr < ∞] > 0.(7.7)

[We recall that a turbulent flow was defined as a stochastic flow of kernels which
is not a flow of maps and without pure diffusion.]

(iv) νs defines a turbulent flow with hitting(i.e., such that the two-point motion
starting outside of the diagonal hitsthe diagonal with a positive probability) if and
only if 0 is a reflecting regular boundary point, that is, if

∃ r > 0 Pr [H0 < ∞] > 0 and ∃ r > 0 P0[Hr < ∞] > 0.(7.8)

In all cases except(iv), νs is the unique diffusion convolution semigroup with
local characteristics(1

2�,C).
In case(iv), called the intermediate phase, νc �= νs and Theorems6.1 and 6.2

apply. ThusNνc is a predictable non-Gaussian noise.

PROOF. The proof of (i)–(iv) is straightforward. Notice that the local charac-
teristics satisfy (U). In all cases,νs defines a Wiener solution of the(1

2�,C)-SDE.
This with Theorem 6.1 implies that in the coalescing case (ii), sinceνs = νc,
νs is the unique diffusion convolution semigroup whose local characteristics
are(1

2�,C).
In the noncoalescing case (i) and in the turbulent case without hitting (iii),

the fact thatνs is the unique diffusion convolution semigroup whose local
characteristics are(1

2�,C) follows directly from (U).
In the intermediate phase (iv), we must haveνc �= νs sinceνs defines a turbulent

flow andνc a flow of maps. Moreover, condition (B) holds so that we can conclude
using Theorems 6.1 and 6.2.�

REMARK 7.2. The(1
2�,C)-SDE has a solution, unique in law except in the

intermediate phase, in which case all solutions are obtained by filtering, on an
extension(N,ϕ) of the noise of the coalescing solution, this coalescing solutionϕ

with respect to a subnoise ofN containingW .

REMARK 7.3. The conditions involving the distance process can be verified
using the speed and scale measures of this process which are explicitly determined
by the spectral measures of the isotropic fields (cf. [23] forRd and forSd ).
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7.5. Sobolev flows. In [23], Sobolev flows(Ss,t , s ≤ t) on Rd and onSd

are studied. The Sobolev covariances are described with two parametersα > 0
and η ∈ [0,1]. The associated self-reproducing spaces are Sobolev spaces of
vector fields of order(d + α)/2. The incompressible and gradient subspaces are
orthogonal and, respectively, weighted by factorsη and 1− η.

Let us apply the results obtained in [23]. We will call the stochastic flow
associated with(Ss,t , s ≤ t) (see Sections 5.7 and 7.3) Sobolev flow as well. When
α > 2, we are in case (i) and Sobolev flows are flows of diffeomorphisms. More
interestingly, when 0< α < 2 then:

(i) if d ∈ {2,3} andη < 1− d
α2 , we are in case (ii) of Proposition 7.3 and the

Sobolev flow is a coalescing flow,
(ii) if d ≥ 4 or if d ∈ {2,3} andη > 1

2 − (d−2)
2α

, we are in case (iii) and the
Sobolev flow is turbulent without hitting,

(iii) if d ∈ {2,3} and 1− d
α2 < η < 1

2 − (d−2)
2α

, we are in case (iv) (i.e., the
intermediate phase) and the Sobolev flow is turbulent with hitting.

In dimension 1, the parameterη vanishes. The critical case was studied in [1, 12,
30]. There is a strong coalescing solution forα ∈ [1,2[ and an intermediate phase
for α ∈]0,1[.

By construction, in all these cases, the noises generated by the Sobolev flows
are Gaussian noises. For the intermediate phase, in which there exist two different
solutions to the(1

2�,C)-SDE (namely the coalescing one and the turbulent one),
the noise of the associated coalescing flow is predictable but not Gaussian.

These different cases are represented by the phase diagram (Figure 1) for the
homogeneous spaceS3. Recall that a flow of diffeomorphisms is called stable

FIG. 1.
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(resp. unstable) when the first Lyapounov exponent is negative (resp. positive).
These exponents actually converge actually toward−∞ or to+∞ asα approaches
the critical value 2.

8. Conclusion. Looking at the phase diagram in Figure 1, it looks as if this
case has been fully analyzed.

The three different types of motion which can be defined by a consistent system
of Feller semigroups appear in Figure 1. Flows of noncoalescing maps occur
when, for the two-point motion, the diagonal and the complement of the diagonal
are absorbing.

When the first condition fails, that is,when the diagonal is not absorbing, we
get a diffusive flow, that is, a flow of nontrivial Markov kernels. We see in this
example that this can happen without pure diffusion, that is, when the evolution
equation has no dissipative term. In that case we say that the flow is turbulent. It
can be viewed as an effect of extreme instability due to the importance of very high
frequency divergence-free components in the velocity field near the diagonal.

When the second condition fails, that is, when the complement of the diagonal is
not absorbing, we get flows of coalescing maps. We see, in the intermediate phase,
that a turbulent and a coalescing flow can have the same local characteristics. This
happens when both conditions fail for the two-point motion associated with the
turbulent flow.

Moreover, it is likely that at least in the other isotropic situations, a very similar
picture will occur, the parameters being the singularity of the covariance on the
diagonal and the balance between gradient and incompressible velocity fields.

Yet there is still some important work to do about the intermediate phase. We
know there exist two remarkable distinct solutions in that case for the SDE: the
coalescing flow, the noise of which is not linear but for which the linear part has
been identified as the velocity white noiseW , and the unique Wiener solution
which is a flow of nontrivial kernels obtained by averaging the coalescing flow
with respect toW . Other solutions do exist and we have shown that their associated
convolution semigroups are weakly dominated by the “coalescing” convolution
semigroup and dominate the “Wiener” or “linear” one. But this classification
should be made analytically precise and one can conjecture it involves a “gluing”
parameter on the diagonal (see Section 3.3, [24–26] for first steps in this direction.)
Moreover, the nonlinear part of the relevant noises remains to be fully analyzed.
Finally, one can expect that more complex phenomena occur for SDEs in which
a multiplicity of weak solutions with different one-point motions do exist. Hence
this paper can only be a step in the understanding of the multiplicity of flows with
given velocity field, or given local characteristics.
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nal version.
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