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1. INTRODUCTION 

The basic concepts-mass, force, and acceleration-were first correctly 

interrelated by Newton. Three hundred years ago he explained the regular 

motion of the planets about the Sun on the basis of pairwise-additive 

gravitational forces. The possibility of solving Newton's equations of 

motion for N-body systems of atoms or molecules had to wait unti11953, 

when suitable computers had become available at Los Alamos. 

On a human time scale, the night sky has a relatively stable appearance. 

It is amusing that, from a mathematical viewpoint, gravitational N-body 

systems are much less "stable" than the molecular systems studied by 

molecular dynamics. Mathematical stability can be monitored by observ­

ing the separation between two neighboring trajectories. In a stable case, 

the separation grows linearly with time. In the typical unstable case, this 

distance increases exponentially with time. This "Lyapunov" instability is a 

ubiquitous feature of interesting dynamical systems. Whether or not it 

affects other properties of such systems in any important way is a 
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fascinating unresolved problem. Interest in astronomical problems, the 

original focus of many-body studies, is still an active field of research 

(Lightman & Shapiro 1978). 

Molecular dynamics has come to mean the numerical solution of 

classical differential equations of motion for many-body problems. The 

number of particles N has varied from 2 to the current world record of 

N = 161,604 (Abraham et al. 1984). The first serious efforts in this field 

involved simple one-dimensional systems with N = 16. These studies were 

suggested by Fermi (Fermi et al. 1955). 

Fermi's early calculations (Tuck & Menzel 1972) were designed to 

illustrate the approach toward equilibrium of an anharmonic one­

dimensional chain. The failure of such chains to equilibrate led to a still­

growing industry: chaos, solitons, and catastrophes. Fermi et al. evidently 

also solved some two-dimensional dynamical problems in their exploratory 

work (Miller 1964, 1971). Within five years, both solid-phase (Gibson et al. 

1959) and fluid-phase (Alder & Wainwright 1956) simulations in three 

dimensions appeared. Recent "large" dynamic simulations (Meiburg 1985) 

of 40,000 flowing gas particles, 59,573 vibrating solid particles (Kinney & 

Guinan 1982), and 161,604 adsorbed atoms (Abraham et al. 1984) on a 

graphite substrate are about four orders of magnitude "larger" than those 

Fermi inspired in 1953. 

The deterministic nature of the underlying differential equations sim­

plifies intercomparisons and checks of the work, but this determinism 

should not be taken too seriously, since Lyapunov instability interferes. 

Thus the "true" trajectory is not followed for long. Lyapunov instability 

complicates the lives of physicists seeking help from mathematicians in 

analyzing their problems. Mathematicians suspect that the instability is 

responsible for whatever bizarre behavior the physicist finds (Fox 1983). 

Physicists know that no significant features of the systems they study can be 

grossly altered by this sensitivity to small perturbations. 

G. A. Bird's "direct-simulation method" takes advantage of the macro­

scopic insensitivity to exact microscopic details. With this approach and its 

many variants (Nanbu 1983a), pairs of particles collide statistically rather 

than deterministically. The resulting simulations are somewhat cheaper 

than those of true molecular dynamics. Millions of gas-phase particles can 

be treated with these techniques (Potter 1973). 

As with any computer technique, molecular dynamics can furnish 

excruciating detail (Ravech6 et al. 1972). Any reproducible features of the 

calculations can be used to test and expand theories and to curtail 

misguided hunches. 

Molecular dynamics, when coupled with graphic displays, is useful in 

unraveling unexpected phenomena and mechanisms that are not under­
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stood (Erpenbeck 1984). Flow visualization is simplest in two-dimensional 

systems. In three-dimensional systems, a slow rotation is useful in 

presenting solutions in movie form. 

In comparing molecular-dynamics results with true laboratory experi­

ments, not only forces but also boundary conditions must be specified. Even 

in the largest simulations, the fraction of surface particles would be a few 

percent if a real boundary were present. For this reason, techniques 

reducing the influence of boundaries, or eliminating them altogether, have 

been extensively studied. This effort has generated interest in many familiar 

ideas: viscous damping, smoothing, and Gaussian noise. Many of the 

schemes used to <larry out constant-temperature or constant-energy 

simulations are straightforward examples of "control theory." Even so, a 

lack of diligence, candor, or curiosity has led to a wide variety of ill­

conceived techniques, which G. Stell refers to as "setbacks in physics." 

Systems "far from equilibrium" occur whenever nonequilibrium prop­

erties vary in just a few mean free paths or over a very few collision times. 

Most of the nonequilibrium simulations using molecular dynamics are far 

from equilibrium. Otherwise, the interesting flow phenomena being studied 

would be obscured by thermal and statistical fluctuations. In fluid 

mechanics, typical examples include Knudsen gases and shock waves, as 

well as interfacial regions bounding rapidly vaporizing or condensing 

phases. If such systems could be explained from a theoretical point of view, 

then there would be no point in simulating them. So far, theory is oflittle use 

in predicting the nonlinear aspects of flows far from equilibrium. 

In this review, we begin by considering the current state of the theory and 

pointing out directions in which it might soon be improved. The computer 

simulations play an important role in furnishing detailed information on 

which theoretical developments can be based. We next describe the 

simulation techniques, emphasizing the relatively new idea of constraining 

macroscopic variables at fixed instantaneous or average values. 

As an illustration, we apply several (nine) techniques to the simulation of 

heat flow in the simplest possible system, a three-particle one-dimensional 

chain. From this simple model some features common to the more complex 

systems of interest far from equilibrium are revealed. 

We then focus on problems-shock waves, shear flow, and heat flow-in 

which the result is in doubt from a continuum viewpoint. An area of interest 

in this sense is the principal of material frame indifference (Lumley 1970, 

Jaynes 1980). This "principle," really just an approximation, has led a long 

life, in large part owing to the difficulties in performing unambiguous 

experimental tests. Molecular dynamics furnishes such tests. Finally, we 

close this review, which reflects mainly the areas of our own research 

interests, with speculations on future developments. 
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2. THEORY OF SYSTEMS 

FAR FROM EQUILIBRIUM 

So far, little is known about systems far from equilibrium. Even the 

Boltzmann equation, which applies at densities low enough that three-body 

collisions and two-body correlations can be ignored, has to be solved 

numerically in all but the simplest cases. 

Of course, very general scaling or similarity arguments can be applied to 

nonequilibrium systems, yielding restricted forms of the principle of 

corresponding states. The idea of scaling, and scale models, is familiar in 

mechanical engineering. Consider a material in which stress depends only 

upon strain. In this case the macroscopic equation of motion, 

p du/dt V' 0", (1) 

can be written in a scaled form by multiplying by a characteristic 

macroscopic length L. If the time is scaled by the same multiplicative 

factor-proportional to a sound traversal time-then the scaled equation 

of motion is independent of L. Thus the fact that scale models do not exactly 

mimic full-scale experience is a consequence of exceptions to the assumed 

dependence of stress on strain. The effects of strain rate and temperature on 

stress complicate real behavior. 

The microscopic equations of motion are ordinary, rather than partial, 

differential equations, but these too can satisfy scaling relationships. If the 

coordinates and velocities in two systems differ by only a scale factor, and if 

the forces also give the same scaled accelerations, then the detailed time 

developments of the trajectories in the two systems will correspond. A 

similar correspondence, but with a scaled time, holds if the coordinates and 

accelerations differ by independent scale factors. The two scales can be 

combined if the force law is an inverse power. The usual range runs from 

Maxwellian particles (inverse fourth-power potential) to hard spheres. 

To obtain corresponding microscopic trajectories in the most general 

nonequilibrium case, each of the terms in the nonequilibrium equations of 

motion, 

(2) 

must obey the same scaling relation. Here Fa indicates the "applied" forces 

derived from an interparticle potential <1>, Fb the "boundary" forces, Fe the 

constraint forces, and Fd the driving forces. 
It would be appealing if J. W. Gibbs' equilibrium statistical mechanics 

could be easily extended to the nonequilibrium case. Jaynes (1980) has 
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rightly suggested that nonequilibrium ensembles could be constructed by 

restricting the phase space to regions consistent with macroscopic know­

ledge. In practice, this prescription is somewhat barren because it is not 

easily applied. For instance, consider a system undergoing planar Couette 

flow with an average shear stress (v) = (P",y)' Jaynes' prescription leads 

to a phase-space distribution function somewhat different from the 

equilibriumfo: 

fifo exp( - ),v), (3) 

where }, is a Lagrange mUltiplier chosen to reproduce the average stress 

(v). We know that this distribution function (3) is oversimplified. The true 

steady-state distribution function 

f(t 00 )/fo = exp[ -('IV/kT) t'" v( - t) dt] (4) 

for the special case of adiabatic plane Couette flow has been known since 

the work of Yamada & Kawasaki (1967). For dilute gases, the correspond­

ing Boltzmann equation result has been known since 1935 (Chapman & 

Cowling 1970). If an external field Fe induces a dissipation 

dHo/dt = JF., (5) 

then it is possible to show that the nonequilibrium distribution function 

takes the form 

f(t)/fo = exp[ - J: {JJ( -s)Fe ds], (6) 

where {J = 1/kT. Surprisingly, this formal expression remains valid even in 

thermostated systems (Morriss & Evans 1985). In this case the thermostated 

field-dependent equations of motion must be used to compute J( - s) from 

the initial coordinates and velocities. 

One of the important families of relations that has been discovered for 

transport coefficients is that due to M. S. Green & R. Kubo. The Green­

Kubo relations relate a transport coefficient L, where J = to the decay 

of equilibrium fluctuations: 

L:::::: Ia'Xl (J(t)J(O»o dt. (7) 

As we shall see, these expressions have played a major role in the 

development of algorithms for computing transport coefficients. 
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The Green-Kubo relations suggest an obvious strategy for computing 

transport coefficients from computer simulations. One could simply 

perform an equilibrium simulation and by time averaging compute the 

required time correlation function (J(t)J(O»o. It turns out that such an 

a pproach is very inefficient. The results depend strongly and nonmonotoni­

cally on system size (Holian & Evans 1983). Furthermore, such calculations 

must be carried out to very long simulated times in order to achieve 

convergence of the Green-Kubo integrals (Evans 1981a). 

3. ATOMISTIC SIMULATION TECHNIQUES 

In equilibrium molecular-dynamics simulations, periodic boundaries are 

used to reduce finite size effects. With this choice, the size dependence of the 

energy per particle and the pressure is typically liN. In nonequilibrium 

systems, special boundaries have to be considered if mass, momentum, or 

energy are to be introduced at a physical boundary. A convenient way of 

adding mass in dense systems has yet to be developed. Momentum and 

energy can be added in several ways. The most rudimentary technique is to 

reset the velocities of particles colliding with the "wall" (Lebowitz & Spohn 

1978). New velocities are chosen from a Maxwell-Boltzmann distribution 

with specified mean and mean-squared velocities. A more sophisticated 

approach is necessary in dense fluids to combat the tendency of particles to 

order parallel to such boundaries. For this purpose, Ashurst (1973) used 

"fluid walls" in which the velocities of a few dozen wall particles were 

constrained to have fixed first and second moments. This was done by an ad 

hoc scaling process equivalent to using a constraint force Fe = A +B •v, 

with A(t) and B(t) chosen to maintain the first and second moments 

unchanged. 

An alternative is to use additional "stochastic" forces in reservoir regions. 

The reservoirs impose a mean temperature (through the second velocity 

moment) on the reservoir particles. This approach has been used success­

fully by Karplus and his coworkers (Brooks & Karplus 1983). 

More recently, homogeneous techniques using periodic boundaries 

have been used both to drive and thermostat nonequilibrium flows. 

Homogeneous algorithms are particularly useful in reducing the number 

dependence of computed results. 

For both heat and momentum flow, the simulation methods can be 

viewed as employing fictitious driving forces Fd' These forces homo­

geneously interact with the molecules in such a way as to mimic precisely 

the bulk response of a real system to externally imposed temperature or 

velocity gradients. Statistical-mechanical theory is used to prove the 

equivalence (Evans & Morriss 1984a) of (a) the mechanical response to the 
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driving force and (b) the thermal response to the applied thermodynamic 

gradient. The latter is described, at least in the linear regime close to 

equilibrium, by a Green-Kubo relation. This represents one of the most 

useful applications of these relations. For shear flow it has been possible to 

develop exact homogeneous methods for simulating flows far from 

equilibrium. 

These methods have been successfully applied to fluids and solids over 

the entire range of temperatures and densities (Ladd & Hoover 1983, 

Hanley 1983, Hoover et aL 1984, Gillan & Dixon 1983, Evans 1982a, 

Hoover et aL 1982). 

4. CONTROL OF HYDRODYNAMIC AND 

THERMODYNANIIC VARIABLES 

"Feedback" allows the regulation of a "control variable" Cin terms of an 

error variable Ll(t). The simplest dependence is linear in Ll and its time 

derivative or integral: 

C= a dLlfdt+bLl+c rLl(s) ds, (8) 

where the coefficients a, b, and c could be chosen either arbitrarily or so as to 

satisfy a variational principle such as Gauss' (Pars 1979). A series "RLC" 

circuit is described by Equation (8). In this case, Ccorresponds to voltage 

and Ll to current. The coefficients a, b, and c describe inductive, resistive, 

and capacitive circuit elements, respectively. 

A damped oscillator is another simple illustration. If the oscillator 

velocity were to be controlled, then b would be a friction coefficient and a 
would correspond to an effective mass. Linear relations of the form (8) have 

been studied extensively because they can be solved easily with Laplace 

transforms. 

Consider now a many-body system to be studied at constant kinetic 

energy. If the kinetic energy is calculated in a comoving "Lagrangian" 

coordinate frame, then fixing the kinetic energy is equivalent to controlling 

the temperature. Gauss' principle (Pars 1979) suggests that the appropriate 

control variable is the friction coefficient C, where Newton's equations of 

motion are extended to 

dp/dt = F(q)-Cp. (9) 

If Cwere a control variable, then the simplest energy-based relations for 
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its time development would be 

d'idt cc d[E(t) - EoJ/dt, 

cc [E(t) - EoJ, (10) 

oc J
1"[ 

0 [E(s) - EoJ ds. 

Relations similar to these have been used for carrying out "isothermal" 

molecular dynamics (Hoover et aI. 1982, Evans 1983) (in which kinetic 

energy K rather than total energy E is fixed). The control variable , is 

proportional to the negative time derivative of the potential energy <D. 

Ashurst (1974) used an equivalent "velocity-scaling" technique in his 

extensive study of dense-fluid transport properties. Alternatively, , could be 

chosen to be proportional to the kinetic-energy error K - Ko as in 

Berendsen's more recent effort (Berendsen et al. 1984), or to the time integral 

of the kinetic-energy error as in Nose's (1984a,b) method. The Nose 

relations are of special interest because in an ergodic system they should 

generate the canonical distribution. Of the three choices, only Berendsen's 

is not time reversible. This irreversibility leads to substantial theoretical 

difficulties. For instance, the equilibrium distribution generated by time­

averaging Berendsen trajectories is not known. The time-dependent prop­

erties of Berendsen dynamics are also very difficult to analyze. In 

contrast, the fundamental statistical properties of isothermal dynamics and 

Nose dynamics are basically understood (Morriss & Evans 1985, Evans & 

Morriss 1984b, Evans & Holian 1985). If, in the absence of external fields, 

any of these schemes is applied to total energy, rather than to kinetic or 

potential energy, the equations of motion eventually generate the micro­

canonical ensemble. 

An alternative to the steady-state approaches was developed by Ciccotti 

et al. (1979). They suggested analyzing the linear response to very small 

external driving forces. The random noise that would normally make such a 

calculation impossible was reduced by performing pairs of simulations, 

with and without the external driving field. Differencing the response 

from the two calculations substantially reduces the short-time noise. 

Unfortunately, the intrinsic Lyapunov instability requires substantial and 

computationally expensive ensemble averaging over the initial phases 

before even reasonably accurate results can be obtained. These difficulties 

become insurmountable at longer times. 

It is possible that this long-time difficulty with "differential non­

equilibrium molecular dynamics" could be alleviated by constraining 

the system to eliminate unwanted fluctuations. It would probably be 

worthwhile to also consider the response of systems to the simultaneous 

application of both a momentum gradient and a heat flux. 
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In the following section we apply the three types of control-differential, 

proportional, and integral-to the one-dimensional heat-flow problem. 

This problem is artifidal, but interesting nonetheless. 

5. AN EXAMPLE: HEAT FLOW IN A 

THREE-BODY PERIODIC CHAIN 

With Hooke's law forces, the Hamiltonian H for a three-particle chain is 

(11) 

where the Xi are the displacements from equally spaced rest positions. This 

system has two independent normal-mode vibrations, 

Xl = A sin (wt), X2 = Asin(wt±2I1/3), X3 = A sin (wt±4I1/3), (12) 

which represents right-moving (minus signs) and left-moving (plus signs) 

phonons. 

Ifwe set the stress-free interparticle spacing, the force constant K, and the 

atomic mass m all equal to unity, the phonon wavelengths are 3 and the 

frequency is w = 3. A convenient property of the phonons (12) is that their 

kinetic and potential energies are constants of the motion. Thus the 

phonons (12) are solutions of the control relations (10) specifying steady 

values for the kinetic, potential, or total energies. 

In the presence of a driving force Fd, the three methods (integral, 

proportional, differential) lead to different results. Consider the force used 

by Evans and Gillan to generate a heat current (Gillan & Dixon 1983, 

Evans 1982b). In the one-dimensional case, this force depends on the 

contribution of each particle to the energy and to the pressure tensor: 

(13) 

where tlE is the difference between the ith particle's energy and the mean 

EIN E13. Likewise, tlp<li is the contribution of each particle to the 

potential part of the pressure tensor, again relative to the instantaneous 

value <p<li) = L P~xl3. If the three-particle chain were in a state of motion 

corresponding to the right-moving phonon (12), then the pressure-tensor 

terms from (13) would drive the motion of each particle with a frequency 

twice the normal-mode frequency. 

This driving force gradually excites the phonon (12) with minus signs and 

causes the chain to heat up. The heating can be prevented in nine different 

ways, according to the suggestions displayed in (10). That is, the total, 

kinetic, or potential energy can be stabilized by a derivative, proportional, 

or integral thermostat. 
In Figure 1 we exhibit the results of numerical calculations using these 



252 EVANS & HOOVER 

Nose IE)Gauss (El Berendsen 

Benmdsen 

Berendsen (K) Nose (K}Gauss (K) 

Gauss 

Figure 1 Trajectories for heat flow in a one-dimensional three-particle chain, with periodic 

boundaries. Numbering the particles from left to right, the abscissa corresponds to the 

coordinate of particle 1, and the ordinate represents the velocity of particle 2. The amplitude of 

the displacements is initially 1/15, where the particle masses, force constants, and average 

interparticle spacings are all set equal to unity. The driving force on each particle has the form 

O.l(AE+Ap'l>V). The initial conditions are given by Equation (12) with plus signs (correspond­

ing to a left-moving phonon). The three simulations shown in the first column were carried out 

with the total (E), kinetic (K), or potential (<1» energies constrained at their initial values. The 

last of these calculations is unstable, which is indicated by the gradual divergence of the 

amplitude of particle 2's velocity. This calculation was followed for a reduced time of 100. The 

others were all followed to 1000. In the second column, each of the three energies in turn obeys 

the "Berendsen" relaxation equations suggested by the Rayleigh and van der Pol equations. In 

the final column, the friction coefficient is calculated by integrating the total, kinetic, or 

potential energy with respect to time. 
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nine techniques. Those that have been used before-Gauss (E or K), 

Berendsen (K), and Nose (K)-to stabilize the total or kinetic energy all 

work in this case, as do all but one [Gauss ($)] of the rest of the methods 

stabilizing the total or potential energies. Ifthe potential energy is stabilized 

by the differential method (Gauss' method) and is made a constant of the 

motion, the coupling to the chain's kinetic energy is not strong enough to 

prevent the rapid divergence of the total energy. This is evidenced by the 

relatively rapid kinetic-energy increase shown in Figure 1. Of the other 

techniques, the relaxation technique used by Berendsen allows somewhat 

greater fluctuations than the rest. It is interesting that this technique, 

applied to a one-dimensional harmonic oscillator, results in the Rayleigh 

equation if the kinetic energy is controlled, 

d2 x/dt2 = -x-dx/dt[(dx/dt? IJ, (14) 

and in the van der Pol equation if the potential energy is controlled: 

(15) 

These two equations are closely related and have been intensively studied. 

The van der Pol equation (for the velocity rather than the coordinate) 

results if the Rayleigh equation is differentiated with respect to time. 

In the simple example studied here, all of the convergent methods for 

generating steady flows gradually force the three-body system into a nearly 

pure state corresponding to a phonon propagating in the positive direction. 

In Figure 1, this corresponds to a nearly elliptical orbit with foci in the first 

and third quadrants. In the more physically reasonable examples where a 

scattering mechanism allows energy to flow out of excited modes, this 

natural decay would be offset by the driving force F d' Here the driving force 

and the thermostat Fe balance because no decay mechanism is present in 

harmonic systems. 

Calculations of transport and thermodynamic properties of steady states 

are much more complex for three-dimensional systems. There is evidence 

that the temperature is best stabilized by Gauss' differential method in three 

dimensions. This method is about one order of magnitude more efficient 

than the proportional or integral methods (Evans & Holian 1985). 

6. EXAMPLE APPLICATIONS TO 
FLUID MECHANICS 

6.1 Strong Shock Waves 

Molecular dynamics has been successfully applied to the simulation of 

simple fluid shock waves (Klimenko & Dremin 1980a,b, Niki & Ono 1977, 
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Holian et at. 1980, Yen & Ng 1974). In this work chemical reactions, 

radiation transport, and electronic transport are all omitted. In the most 

comprehensive simulation (Holian et al. 1980), a twofold compression of 

liquid argon, starting at the triple point, was simulated. A periodic 

rectangular parallelepiped, with an aspect ratio of about 20 and containing 

4800 particles, was compressed, with periodic images of the system used as 

pistons. The resulting pair of 400-kbar shock waves ran toward the box 

center. The density, heat flux, and pressure tensor were measured in 

coordinate frames moving along with the shock waves. Comoving profiles 

of the longitudinal and transverse temperatures were also accumulated. 

The results indicated that the effective viscosity and thermal conductivity 

at the shock-wave center exceed the Newtonian and Fourier values by 

about 30%. In this region the longitudinal temperature exceeds the 

transverse temperature by a factor of two. Because the gradients in such a 

strong shock wave are so much larger than those found in other flow 

problems, it can be concluded that truly nonlinear transport coefficients are 

relatively small. 

In dilute gases the Boltzmann equation can be used to describe highly 

nonlinear flows, such as shock waves. The equation can be solved directly, 

by introducing suitable grids in velocity and coordinate space (Yen 1984). 

The equation can also be "solved" in G. A. Bird's more physical way, by 

introducing gas particles in macroscopic physical zones and allowing these 

to undergo "stochastic" long-range collisions. Because the Boltzmann 

equation describes the collisions of particles at the same space point, Bird's 

longer-range collisions between pairs are carried out in an approximate 

way. Particles in the same space zone are allowed to collide, with a 

randomly chosen impact parameter and a collision probability propor­

tional to their relative velocity and cross section. Between stochastic 

collisions, the particles are advanced along noninteracting trajectories 

described by the streaming terms in the Boltzmann equation. (The 

trajectories are straight lines in the absence of gravitational or electro­

magnetic fields.) For an example application to shock-wave propa­

gation, through a mixture of gases in the presence of a wall, see the paper by 

Schmidt et aL (1984). 

Bird's stochastic-collision approach, elaborated by Nanbu (l983a,b, 

1984), conserves energy and linear momentum but not angular momentum. 

Two spatially separated particles traveling clockwise around a point in 

their common cell can suffer a head-on "stochastic" collision and travel 

counterclockwise after that collision. Meiburg (1985) carried out an 

interesting comparison of Bird's technique with molecular dynamics on a 

large-scale problem-40,OOO hard spheres flowing past an inclined plate. 

Figure 2 shows the resulting flow, calculated using the two differ~nt 

methods. Molecular dynamics reveals vortex generation at the plate 
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boundaries. The vortices did not appear using the stochastic-collision 

approach. Hybrid methods (using molecular dynamics where small vortices 

are important, and stochastic collisions elsewhere) could combine the 

realism of the molecular-dynamics model with the efficiency of Bird's 

approach. 

6.2 Plane Couette Flow 

Of all the flows involving shear, plane Couette flow (with Ux = yy, 

for instance) is the simplest. The volume remains constant. Periodic 

boundaries taking the strain rate y into account are easy to implement. 

Simulations in which boundary regions induce the flow can be used 

(Tenenbaum et aL 1982), but they lead to greater dependence of the stress on 

system size and to a layering of particles parallel to the walls. 
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Figure 2  Flow  patterns  generated  using  (a) molecular  dynamics  and  (b) G.  A.  Bird's 

stochastic­collision modeL In both cases a dilute hard­sphere gas flows past an inclined plate 

and is confined, at the top and bottom of the channel, by reflecting boundaries. The vortices 

shown in the molecular­dynamics simulation are absent in the stochastic model. In both cases 

the  arrows  represent  averages  of  the  velodty  directions  of  the  particles  occupying  the 

corresponding spatial zones. 
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The periodic and rigid-wall simulations have provided reliable viscosities 

for a variety of short-ranged force laws. For a recent corresponding-states 

treatment of the linear viscosities, see Rosenfeld (1977). Systems with long­

ranged Coulomb forces are harder to treat. A straightforward cutting off of 

the potential's range leads to substantial number dependence, even in 

equilibrium simulations. It seems likely that P. P. Ewald's technique could 

be used to carry out corresponding shear simulations for plasmas, metals, 

and ionic melts. 

In the nonlinear regime the flow becomes so rapid that the viscosity is 

changed-usually decreasing with higher rates-and the pressure tensor 

becomes anisotropic, with Pyy > Pxx > Pzz• The details of the thermostat 

used to impose steady-state conditions can affect the normal-stress results 

(Ladd & Hoover 1985). An isotropic constraint force 

(16) 

produces normal stresses consistent with the Boltzmann equation and with 

nonlinear-response theory(Ladd & Hoover 1985, Evans & Morriss 1984b). 

The friction coefficient ( depends upon time in such a way as to make either 

the temperature or the energy constant. "Temperature" is proportional to 

the second moment of the velocity-distribution function 

(17) 

There are many other interesting flows to study in elucidating the 

nonlinear dependence of shear and normal stresses on the mode and rate 

of deformation. Hess (1984) considered the relaxation of fluids initially 

deformed by twofold longitudinal compression. The volume-preserving 

transverse expansion was treated in two different ways, which Hess 

promises'to compare in a later publication. 

Other flows, incorporating more complicated rotations than does plane 

Couette flow, could be studied using either Bird's or Meiburg's (1985) 

approach. "Four-roller" periodic flow is an interesting possibility. 

Recently, Rainwater et al. (1985) used another approach to model flows 

that are more complex than planar Couette flow. Their approach is to take 

planar-flow simulation data and to use these as inputs to strictly 

macroscopic hydrodynamical calculations of flow properties in more 

complex geometries. One of the interesting results of their work is the 

realization that conventional rheological hydrodynamics fails to take any 

account of shear dilatancy-the isothermal/isobaric expansion of fluids 

under shear. Conventional rheological theory is cognizant of normal-stress 

differences in non-Newtonian fluids but fails to recognize that the trace of 

the pressure tensor is also dependent upon strain rate. 

Even for planar Couette flow, a complete explanation of the nonlinear 
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effects revealed in the computer simulations is still lacking. Simulation 

results suggest that the effective nonlinear viscosity of atomic fluids varies 

as the square root of the strain rate. Although this functional dependence is 

predicted by mode-coupling theory, the observed amplitudes are orders of 

magnitude larger than conventional theory predicts. These "enhanced 

long-time tail effects" have been observed in a wide variety of related 

phenomena (Hanley 1983). They seem to be related to the divergence of 

shear viscosity at the glass transition. Kirkpatrick (1984), Das et aI. (1985), 

Leutheuser (1984), Keyes (1984), and Tokuyama (1984) have each suggested 

different mode-coupling approaches to the shear-thinning phenomena seen 

in computer simulations, but these various suggestions have not yet been 

elaborated in a generally accessible or accepted form. 

Shear-flow simulations have been carried out on solids as well as fluids 

(Evans 1982a, Hoover et aL 1982, Tanaka 1983). The results so far available 

are consistent with the power-law variation of stress with strain rate used by 

metallurgists. The dependence becomes stronger at high temperature. 

Work on granular materials, in which the "particles" are extended bodies 

rather than mass points, is underway (Walton 1982), but little quantitative 

information is available. The particles' interactions include elastic, inelastic, 

and frictional components. 

6.3 Steady Heat Flow 

The flow of heat between reservoirs was treated by Ashurst (1973). Related 

smaller-scale studies have also been carried out recently (Tenenbaum et aL 

1982, Ciccotti et aL 1979). This work demonstrates that the thermal 

conductivity 

K ~ Q/VT (18) 

can either increase or decrease with IVTI, depending upon the thermo­

dynamic state. 

Evans and Gillan discovered a way to simulate heat flow in a homo­

geneous periodic system, which thus makes the reservoirs at physical 

boundaries unnecessary (Evans 1982b, Gillan & Dixon 1983). In this 

method an external driving force coupled to the particle energies and the 

potential part of the pressure-tensor contributions, 

Fd = ,.1,(AE + AP~ V, AP~y V, AP~z V), (19) 

produces a heat current Qx fully consistent with the Green-Kubo linear­

response theory. It is interesting to note that the Evans-Gillan method 

succeeds in calculating the thermal conductivity in the absence of a 

temperature gradient. We should point out here that there are slight 

differences between the Evans and the Gillan schemes. Gillan measures the 
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energy and pressure differences (19) relative to the ensemble average. This 

means that the Gillan equations are not momentum preserving. 

Momentum in the Gillan scheme is only conserved on a time-average basis. 

This in turn leads to further difficulties, in that the so-called "adiabatic 

incompressibility of phase space" (Evans & Morriss 1984a,b) is not 

satisfied. These errors are not present in the Evans method, which is 

rigorously momentum preserving and which satisfies the "adiabatic 

incompressibility" condition (Evans 1982b, Evans and Morriss 1984a). 

The same method can be applied to solids (Hoover et al. 1984). In such an 

application, the driving force can be simplified slightly to include only 

pressure-tensor contributions. 

The conductivities obtained with the new homogeneous and periodic 

simulations are consistent with the earlier direct-simulation results. All the 

conductivities can be correlated through a corresponding-states relation 

linking conductivity to entropy (Grover et al. 1985). This connection can be 

understood by noting that both properties depend upon the frequency at 

which particles collide-a frequency of the order ofthe solid-phase Einstein 

frequency. The correlation provides conductivity predictions correct to 

within about 10% over a wide range of fluid densities and represents 

an improvement over D. Enskog's model. Rosenfeld's (1977) correlation 

of viscosity with entropy can be motivated in exactly the same way: 

Neighboring particles exchange momentum at the Einstein frequency. This 

correlation provides viscosities accurate to within about 30%. It is most 

interesting that nonlinear-response theory (Evans & Holian 1985, Morriss 

& Evans 1985) predicts a simple form for the nonequilibrium steady-state 

distribution function obtained with Nose's constraint force (thermostat) 

Fc = ,p, d'idt oc K - Ko (20) 

and the Evans-Gillan driving force 

Fd = .ti(6.E + 6.P~x V, 6.P~y V, 6.P~z V). (21) 

The resulting distribution function, 

In UI/canonical] (JVlkT)I Qi -s) ds, (22) 

and the analogous result for shear flow, 

In UI/canonical] = (yVlkT)I Pxi -s) ds, (23) 

are equally simple (Evans & Holian 1985, Evans & Morriss 1984b, Morriss 

& Evans 1985). Although both of these expressions are fully consistent 
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with linear-response theory and also with Kubo's original power-series 

representation of the nonlinear response (Kubo 1957), they are relatively 

difficult to evaluate, test, and understand far from equilibrium. 

6.4 Rotating Flows and Tests ofM alerial Frame 

Indifference 

An often-invoked approximation (Lumley 1970, Soderholm 1976, Ryskin 

& Rallison 1980) in continuum mechanics is that the constitutive properties 

of a material are unchanged by rotation (after taking into account, of 

course, the density increase resulting from centrifugal forces). Both the 

centrifugal and the Coriolis forces are responsible for the breakdown of this 

"principle." This has been clearly illustrated in one dynamical simulation, 

and it can be clearly seen by considering a thought experiment. 

Consider the rotation of a cylinder of material about its axis. Assume that 

appropriate heat reservoirs are applied, ensuring a purely radial tem­

perature distribution. If the system is at rest, or is undergoing uniform 

translation, then the heat-flux vector will also be in the radial direction. The 

principle of material frame indifference asserts that the direction and the 

magnitude ofthe heat-flux vector remain unaltered if the system is rotating, 

say, about its.own axis. Because such a rotating system is a noninertial 

coordinate frame, Newtonian mechanics is in conflict with this "principle." 

Einstein showed that the equations of motion satisfied locally, in an 

accelerating frame of reference, are identical to the equations one would 

derive in an inertial frame subject to an equivalent gravitational field. There 

is no way of distinguishing inertial forces, such as the Coriolis force, from 

gravitational forces. Such forces inevitably give rise to an angular heat-flux 

vector component in the problem described above. In a straightforward 

simulation (Hoover et al. 1981) of this problem, an angular heat current that 

was close to the predictions of kinetic theory was found. 

Centrifugal forces also frustrate the usefulness of the "principle of 

material frame indifference." In our rotating cylinder, the centrifugal 

potential's nonlinear character [ (mr2w 2)/2] causes, for instance, homo­

nuclear diatomic molecules to orient preferentially in a radial direction. 

This means that such a fluid would be birefringent, requiring a generaliza­

tion of the usual Navier-Stokes constitutive relations for fluids. The 

rotation rate required to achieve a 1% alignment is of order 1 THz. For 

macromolecules, the effect is much larger and should be observable at 

modest rotation rates. 

The Reynolds number for neutrally buoyant particles of radius r, 

rotating at frequency w in a medium of kinematic viscosity 11/p, is pwr2 /11. 
Thus, the viscous and Coriolis forces for millimeter particles in water are 
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comparable at frequencies of order 1 Hz. Small molecules, on the other 

hand, would again require terahertz frequencies. 

The fact that the "principle of material frame indifference" has survived 

so long indicates that nonlinear transport coefficients are small and that 

their measurement from experiment is often highly model dependent and 

therefore ambiguous. 

7. THE FUTURE 

Atomistic simulations have gradually been applied to larger systems, bigger 

molecules, and more complicated boundary conditions, in keeping with 

the growing capabilities of computers. This work involves difficulties in 

the formulation of thermodynamic quantities (Ladd 1984, Marechal & 

Ryckaert 1983, Evans 1981b), in the integration of the equations of motion 

(Evans 1977, Evans & Murad 1977), with both fast and slow time scales, 

and in the enhanced dependence of the results on boundary conditions 

(Ryckaert et al. 1977) as the size of the molecule approaches the size of the 

computational cell. The challenging nature ofthese problems, coupled with 

the rewarding nature of medicine and drug design, is contributing to the 

extensive developmental effort in this field. Protein dynamics has been 

reviewed by McCammon (1984). The protein models, liquid fragmentation 

simulations (Blink & Hoover 1985), and simulations of aerodynamic flows 

all show that molecular dynamics can play a role in fluid mechanics 

complementary to the finite-difference and finite-element methods. The free 

competition among the proponents of various techniques can be relied 

upon to lead to the best use of available computing capacity. 

The new methods make it possible to design more flexible fluid-flow 

models. So far, little has been tried along the lines of local definitions of 

thermodynamic and hydrodynamic variables. But this is necessary for the 

treatment of flows containing vortices and other localized inhomogeneous 

fluid features. 

The discovery ofqualitatively new rheological effects, producing ordered 

phases at high strain rates, is reminiscent of the equilibrium nematic and 

smectic phases (Erpenbeck 1984, Heyes et al. 1985). These new observa­

tions should stimulate interaction between rheologists and computational 

physicists. Theoretical advances will be required in order to understand the 

dimensionless flow parameters at which these new dynamic phase trans­

itions occur (see Figure 3). 

Two-dimensional fluids exhibit an apparent instability at low strain 

rates, where the mode-coupling approaches predict an obviously unstable 

negative shear dilatancy and diverging viscosity (Evans & Morriss 1983). 

Hydrodynamic analyses of these instabilities, coupled with computer 
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simulations designed to measure the macroscopic currents and vortices 

generated in two dimensions, may prove useful in stimulating an experi­

mental search for these phenomena. 

The mechanical simulations, which preceded molecular dynamics, are 

advancing too. This work began with J. Hildebrand's gelatin-ball study of 

the pair-distribution function of hard spheres and with the bubble-raft 

studies of crystals carried out by L. Bragg and J. F. Nye (Feynman et al. 

1964). Pieranski's recent, highly evolved study of melting, dislocations, and 

vacancy motion (Pieranski et al. 1978) sets a high standard. This latter work 

makes possible quantitative comparisons with (computer) experiments. 

The resemblance of the data collected to those reported by Alder & 

Wainwright (1962) is striking. The density interval found for ball-bearing 

melting agrees well with the computer-experiment hard-disk analog. For 

some problems, these simulations, as well as analogous nonequilibrium 

simulations using plastic spheres (Clark & Ackerson 1980, Ackerson & 

Clark 1983) may well prove cheaper than computer simulations. Their main 

drawback at present is the lack of a quantitative stress measurement. 

Figure 3 Instantaneous picture of the two-dimensional soft-disk fluid under high shear 

10]. The fluid particles order parallel to the streamlines. There is essentially no 

lateral diffusion perpendicular to the streamlines. The undulating vertical strings of highly 

overlapping particles are not understood (Reyes et al. 1985). 
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