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In this paper, an analytical method for deriving the relationships between the pressure drop and the 
volumetric flow rate in laminar flow regimes of DeHaven type fluids through symmetrically corrugated capillary 
fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be 
used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration 
when analytical expressions are hard to obtain due to mathematical complexities. 

 Five converging-diverging or diverging-converging geometrics, viz. variable cross-section, parabolic, 
hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. 
Each example is concluded with a presentation of the formulae for the velocity flow on the outer surface of a thin 
porous layer. Upon introduction of hindrance factors, these formulae may be presented in the most general forms.  
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1. Introduction 
 
 Fluid flows and transport phenomena through the classical “ground” or “soil” are encountered 
literally everywhere in everyday life, in nature (ground water), industries (composite materials, building 
materials, etc.) as well as in biosystems (aquifer ecosystems, human organs, etc.) and other domains such as 
e.g., membranes used in biofuel cell applications. 
 The reason is that except metals, some plastics and dense rocks, almost all solid and semisolid 
materials can be considered as “porous” in varying degrees. Hence, there exist many types of different 
technologies that depend on theories used to describe transport phenomena in porous media. 
 There are many practical applications that can be modelled or approximated as transport through 
porous media. These applications have been discussed by Bear [1], Greenkorn [2], Nield and Bejan [3], 
Vafai [4-7], Hadim and Vafai [8], Vafai and Hadim [9]. 
 In the works cited above, the porous medium is viewed as a continuum with solid and fluid phases in 
thermal equilibrium, isotropic, homogeneous and saturated with an incompressible Newtonian fluid. Vafai and 
Tien [10] presented a comprehensive analysis of the generalized transport through porous media and developed 
a set of governing equations utilizing the local VAT (volume averaging theory/technique) or/and the REV 
(representative elementary volume) technique. The final forms of these equations can be found in the works by 
Amiri and Vafai [11], Alazmi and Vafai [12], Khanafer et al. [13]. Peng and Wu [14] describe a series of 
different experimental observations and associated theoretical investigations conducted to understand the 
transport phenomena with or without phase change and chemical reaction and concerning a wide range of 
practical applications. Fault and fracture zones are often highly-complex heterogeneities that can have a 
significant effect on the fluid flow within petroleum reservoirs on length scales of less than 1 μm to more than 
10 km. It is therefore important to incorporate their properties in developing simulation models. Harris et al. 
[15] describe some of the numerical techniques being used to model the effects of faults and fractures on fluid 
flow. Other theoretical models are groundwater models (Karamouz et al. [16], Yeh [17]) which have been used 
extensively for groundwater flow analysis, pollution transport and groundwater management. 
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 Another way to study the flows in porous media is to use conceptual models; a great example of such 
models are PNMs (pore network models). These models have gained a lot of popularity among researchers since 
they are much more systematic than the real pore space of a soil and have been used in a variety of fields such as 
petroleum engineering, hydrology and soil physics. In these models, the soil pore space is modelled by a discrete 
network of pores that are connected by throats (Jivkov et al. [18]). Throats in PNMs may be prismatic or non-
prismatic, mainly converging-diverging types (Xiong et al. [19]). The studies of the Newtonian flow in circular 
prismatic tubes (otherwise speaking: circular tubes of constant cross-sections) were performed by Mazaheri et al. 
[20], Joekar-Niaser et al. [21] and Nsir and Schafer [22]. The flow in non-prismatic tubes, namely in conical tubes 
was studied by Held and Celia [23], Hilpert et al. [24] and by Acharya et al. [25].  
 The studies of non-Newtonian flows in circular tubes of variable cross-sections, conical or similar 
geometry were made by Walicki et al. [26], Walicki and Walicka [27-29], Walicka and Walicki [30], Sochi 
[31-34], Walicka [35, 36]. 
 It has been found that at the bottom of rivers, lakes, seas and oceans an enhanced transport of solutes 
and particulate matter can be encountered in a thin layer, which comprises a tiny portion of the seawater layer 
from top and a tiny portion of the porewater layer from below, called a benthic layer. In this layer there may 
exist an interaction between the fluid flow and living media as in bioreactors. The physicochemical and 
biological processes ongoing in the benthic layer cause that the fluid flowing through this layer behaves as a 
non-Newtonian fluid. 
 Flows of non-Newtonian fluids through porous media are frequently encountered in the petroleum 
industry (Vossoughi [37], Pearson and Tardy [38], Perrin et al. [39]). In exploitation of oil beds, an injection of 
polymer solutions into oil reservoirs is frequently applied to enhance oil recovery. Sometimes to achieve this 
aim, suspensions (frequently called slurries) of oil, coal and water are used (Vossoughi and Al-Husaini [40]). 
 The aim of this paper is to present an analytical method for deriving mathematical relations between 
the volumetric flow rate and pressure drop or pressure gradient in tapered-expanded or corrugated capillary 
fissures and tubes, such as those shown schematically in Fig.1. Employing the results of the recent papers by 
Walicka [35, 36], we present five examples of flows both in capillary fissures and tubes for non-Newtonian 
fluids of DeHaven type [41, 42]. Each of the examples under consideration finishes with formulae describing 
the velocities in a thin porous layer consisting of variable cross-section capillaries. The real layer is replaced 
with an equivalent matrix composed of homogeneous capillaries of constant cross-section for which the 
velocities are given. To take into account the real values of the velocities correction coefficients called 
"hindrance factors" were introduced. These flows may be used to model the classic flows through porous 
media [43] or to study PNMs [36]. 
 
2. Fluids and capillaries description 
 
 DeHaven fluids are pseudoplastic fluids which are characterized by a non-linear relationship 
between the shear stress and the shear strain rate; to be more precise it can be stated that the shear strain rate 
is a non-linear function of the shear stress [41, 42].  
 

 
 

Fig.1. Capillary fissures or tubes: having convergent-divergent or divergent-convergent profiles. 
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There are many models of fluids which, for suitably selected material coefficients, reduce to the model of the 
DeHaven fluid. Some of these models are presented in Table 1.1. 
 
Table 1.1. Models of fluids similar to the DeHaven fluid model 
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In what follows we will use the DeHaven fluid model to describe the flows through capillary fissures or 
tubes. The presence of capillary fissures in porous media seems to be extraordinary. Note that in exploitation 
of the oil beds one  runs frequently into rocks rendered porous by solution or by fracturing. These interstices 
have a form of capillary fissures [43]. 
 The capillaries being the subject of our considerations are presented schematically in Fig.1. Each of 
these capillaries will be described exactly in subsequent sections of this paper.  
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3. Flows through rectilinear capillary fissures or tubes with variable cross-section 
 
 Frequently, rectilinear fissures or tubes of constant cross-sections are used to model the flow through 
porous media (Fig.2). 
 

a) 

 

b) 

 

 

 
 

Fig.2. Geometry of a rectilinear capillary fissure (a) and a capillary tube (b) of constant cross-section. 
 
The flow velocities of the DeHaven fluid in capillaries are given by the following expressions [43]: 
in the capillary fissure 
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in the capillary tube 
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The flow rates are, respectively, equal to: 
 for the capillary fissure,  
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here fQ  is counted on the unit of a fissure width; 
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Assuming the principle of superposition we may write 
 

  c N DHQ Q Q    (3.5) 
 

where cQ  is either fQ  or tQ , NQ  is a Newtonian flow rate, DHQ  denotes an additional flow rate connected 

with the DeHaven fluid. 
Thus, we have, respectively 
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To find the pressure drop in the flow through capillaries of variable cross-section (Fig.3) we have the 
following expressions: 
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Fig.3. Scheme of convergent-divergent and divergent-convergent capillaries with rectilinear generatrices. 
 
The current thickness of the capillary fissure or the radius of the capillary tube are given, respectively, by 
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Introducing formulae (3.16) and (3.17) into Eqs (3.12),(3.13) or (3.14),(3.15) we will obtain – after 
integration – the following expressions (see Eqs (A.3)-(A.4) in the Appendix): 
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taking into account that 
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taking into account that 
 
  tN tDHp p p      (3.28) 
 
and reusing the principle of superposition (3.9), we may write: 
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The flow velocities through a thin porous layer, composed of variable cross-section capillaries and modelled 
as an equivalent matrix of constant cross-section capillaries, will be given, respectively, as 
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and p  is the porosity of the porous layer, ,1 fv 1tv   are the first hindrance factors, ,2 fv 2tv   are the 

second hindrance factors for the capillaries of variable cross-sections. Here, the index M indicates maximum 
values ,i of f  or ,i or r  which correspond to the capillary thickness or capillary radius for the equivalent 
capillaries of constant cross-section. 
 
4. Flows through parabolic capillaries 
 
 Parabolic capillaries, depicted in Fig.4, are described by the formulae 
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Fig.4. Schematic representation of convergent-divergent and divergent-convergent capillaries with parabolic 
profiles. 

 
Introducing formulae (4.1) and (4.2) into Eqs (3.12),(3.13) or (3.14),(3.15) we will obtain – after integration 
– the following expressions (see Eqs (A.7), (A.9), (A.11) and (A.13) in the Appendix): 
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The functions  ...F  are so called “hypergeometric functions” and they are defined in the Appendix. 

Taking into account Eqs (3.22) and (3.28) and reusing the principle of superposition (3.6) or (3.9), we may 
write 
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The flow velocities through the thin porous layer composed of parabolic capillaries, modelled as the 
equivalent matrix of constant cross-section capillaries, will be given, respectively, as 
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and ,1 fp 1tp   are the first hindrance factors, ,2 fp 2tp   are the second hindrance factors for the parabolic 

capillaries; the sense of the index M is the same as in the previous section. 
 
5. Flows through hyperbolic capillaries 
 
 For capillaries of hyperbolic profiles, similar to the profiles shown in Fig.4, the geometric 
description is as follows 
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Introducing formulae (5.1) and (5.2) into Eqs (3.12), (3.13) or (3.14), (3.15) we will obtain – the expressions 
(see Eqs (A.15), (A.17) and (A.19) in the Appendix): 
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 for the capillary fissure 
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where now 
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Taking into account Eqs (3.22) and (3.28) and reusing the principle of superposition (3.6) or (3.9), we may 
write the following expressions 
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The flow velocities through the thin porous layer composed of hyperbolic capillaries and modelled as the 
equivalent matrix of constant cross-section capillaries, will be given, respectively, as 
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and ,1 fh 1th   are the first hindrance factors, ,2 fh 2th   are the second hindrance factors for the hyperbolic 

capillaries. 
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6. Flows through hyperbolic cosine capillaries 
 
 For capillaries of hyperbolic cosine profiles, similar to the profiles shown in Fig.4, the geometric 
description is given as follows 
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Note that the exponent value equal to 1  is adequate to the convergent-divergent capillary in Fig.4, whereas 
the exponent value 1  is adequate to divergent-convergent capillary. Hence, Eqs (3.12), (3.13) or (3.14), 
(3.15) for the exponent value equal to 1  (see Eqs (A.20)-(A.25) in the Appendix) will become: 
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 for the capillary tube 
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Here,  Im F  is the imaginary part of the hypergeometric function. 

Taking into account Eqs (3.22) and (3.28) and reusing the principle of superposition (3.6) or (3.9), we can 
obtain 
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The flow velocities through the thin porous layer (for the exponent value equal to 1 ) modelled as the matrix 
of constant cross-section capillaries, will be given, respectively, as 
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and ,
c c1 fh 1th   are the first hindrance factors, ,

c c2 fh 2th   are the second hindrance factors for the 

hyperbolic cosine capillaries. 
 Equations (3.12), (3.13) or (3.14), (3.15), for the exponent value equal to 1  (see formulae (A.26)-
(A.31) in the Appendix) will become: 

 for the capillary fissure 
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where now 
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 for the capillary tube 
 

  

arccosh

t
tN tN

4 o
o

i

Q h
p F

r
r

r


 

 
  

 

, (6.27) 

 

  
   

 
 Im

arccosh

i

i

i

1

n 1i tDH i o
tDH thDH2n 5

i
n 1 i

i i
o

n 4 Q 2 n 1 hr
p F

k r
2n 5 r

r






   
      

  
 

, (6.28) 

and 

  

arccos4 o
o

i tN
tN

tN

r
r

r p1
Q

F h

  
   

       
, (6.29) 

 

  

 

     

arccosh

Im

i
i i

i

ii i

n 1
n 1 2n 5 o

i i i n 1
i tDH

tDH n 1n 1 n 1
i i o thDH

r
2n 5 k r

r p
Q

hn 1 n 4 r F


 



 

  
    

     
      

  (6.30) 

 

where now 
 

  arccosh sinh arccosh sinh arccosho o o
tN

i i i

r r r1
F 3 2 2 4

r r 4 r

        
          

           
. (6.31) 

 

   Im Im , ; ;
2

i i o
thDH

i i i

2n 5 4n 7 r1
F F

2 2n 2 2n 2 r

               
. (6.32) 

 

Taking into account Eqs (3.22) and (3.28) and reusing the principle of superposition (3.6) or (3.9), we can 
write 
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The flow velocities through the thin porous layer (for the exponent value equal to 1 ) modelled as the 
matrix of constant cross-section capillaries, will be given, respectively, as 
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and ,

c c1 fh 1th   are the first hindrance factors, ,
c c2 fh 2th   are the second hindrance factors for the 

hyperbolic cosine capillaries. 
 
7. Flows through cosine curve capillaries 
 
 For capillaries of cosine curve profile, shown in Fig.5, where the capillary length h  spans one 
complete wavelength, the current capillary thickness or radius are given by 
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Fig.5. Schematic representation of convergent-divergent and divergent-convergent capillaries with a cosine 
curve profile. 

 
 Introducing formulae (7.1) and (7.2) into Eqs (3.12), (3.13) or (3.14), (3.15)-(3.6) we will obtain (see 
Eqs (A.32)÷(A.40) in the Appendix): 
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 for the capillary tube 
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Here,  ...1F  is the Appell  hypergeometric function and  Im 1F  is the imaginary part of this function.  

Taking into account Eqs (3.22) and (3.28) and reusing the principle of superposition (3.6) or (3.9), we may write 
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The flow velocities through the thin porous layer composed of cosine curve capillaries, modelled as the 
equivalent matrix of constant cross-section capillaries, will be given, respectively, as 
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and ,1 fc 1tc   are the first hindrance factors, ,2 fc 2tc   are the second hindrance factors for the cosine 

curve capillaries. 
 
8. Conclusions 
 
 In this paper an approximate mathematical method for obtaining the analytical relations between 
pressure drops and volumetric flow rates in symmetrically corrugated capillary fissures and tubes is 
presented and applied to study the flow of DeHaven fluids. 
 Taking into account the considerations on the flows through rectilinear capillaries of constant cross-
sections, a simple method to describe the flows through convergent-divergent (in general) capillaries with 
variable cross-sections (rectilinear and curvilinear) was presented. 
 The presented method is an approximate method because it does not take into account the cross 
flows which may appear in capillaries of variable cross-sections; these flows can have an essential effect on 
the pressure drops in the cases of great changes of the cross-sections for very short capillaries. 
 The method is illustrated by five examples of capillary fissures or tubes with convergent-divergent 
and divergent-convergent shape, namely: wedge and cone geometries, the parabolic, hyperbolic, hyperbolic 
cosine and cosine curve. 
 Each case of the capillary geometry finishes with formulae for the flow velocity through a thin 
porous layer. To compare the obtained velocities with the flow velocities through porous layer composed by 
a uniform matrix of rectilinear capillaries hindrance factors have been  introduced; the form of these factors 
indicates that the pressure drops are the same independently of order of convergence and divergence in the 
capillary. 
 These factors are always less than one what indicates that the flow velocity through the matrix of 
corrugated capillaries is also less than the flow velocity through the matrix of rectilinear capillaries. 
 
Appendix 
 
 In this Appendix we present analytical expressions for the integrals appearing in the previous 
sections of the this paper. 
 The first of them, for rectilinear capillaries of variable cross-sections, are: 

 for the convergent-divergent capillary 
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 for the divergent-convergent capillary 
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The next integrals, for parabolic capillaries, are as follows 
 
for the Newtonian flows we have, respectively 
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for the additional flows we have 
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where  ...F  is a hypergeometric function [44,45] defined by the Gauss series [46] 
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here, for convenience, we used the Pochhammer symbol notation for the shifted factorial 
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which is used as a definition for the shifted factorial in the case when s  is not necessarily a nonnegative 
integer. Introducing in (A.11) the limits of integration we will obtain 
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 The third integrals, for hyperbolic capillaries, are given by the following expressions: 
 
for the Newtonian flows we have 
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 The fourth and fifth integrals, for hyperbolic cosine capillaries, are as follows: 

 the forth ones: 
 

for the Newtonian flows we have 
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for the additional flows there are 
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here   Im ...F  is the real value of the imaginary part of the hypergeometric function  ...F ; 
 

 the fifth ones: 
 
for the Newtonian flows there are 
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 The last integrals, for cosine curve capillaries, are given by the following expressions: 
for the Newtonian flows we have 
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and 

  

   

   

sin sin

cos cos

sin tan
arctan

cos

h 2
4 h 2 3 22 2 2 2

2 2
2 2 3 2

2 2 2 22 2 2 2

kh kh
b b

2 5a2 2
J

3k a b a bkh kh
a b a b

2 2

kh kh
b a b

11a 4b 6a 9ab 12 4

kh a b2 a b a ba b
2




               
        

             

            
        

 


;

a b









 (A.35) 

 
for the additional flows we have [44, 45] 
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where  ...1F  is the Appell hypergeometric function described here by the formula 
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Generally, the Appell hypergeometric function  ,1F x y  is defined by the following double hypergeometric 

series [46] 
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It is easy to see that it is a bivariate generalization of the Gauss hypergeometric series defined by formula 
(A.7). Introducing in (A.20) the limits of integration we will obtain 
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where 

    
cos cos

Im ... Im ; , ; ; , ;1 1

kh kh
a b a b

1 1 2 2
F F 1 n 2 n

2 2 a b a b

     
            
  
    

 


  (A.40) 

 

here,   Im ...1F  is the imaginary part of the Appell hypergeometric function  ...1F . 

 
Nomenclature 
 
 ,a b  – auxiliary constants in the formula describing a converging-diverging capillary  
 F  – hypergeometric function  
 1F  – Appell hypergeometric function  

 cf  – half thickness of a capillary fissure  

 if  – inlet half thickness of a capillary fissure  

 of  – middle half thickness of a capillary fissure  

 h  – capillary length 
 i 1     
 ik  – material coefficients for DeHaven fluids 

 M  – index indicating maximum values of ,i of f or ,i or r  

 n  – auxiliary exponent in integrals and hypergeometric functions 
 in  – flow behaviour indices for DeHaven fluids 

 p  – pressure 
 p  – pressure drop 
 Q  – volumetric flow rate 

 fQ  – volumetric flow rate through the unit width of a capillary fissure  

 tQ  – volumetric flow rate through a capillary tube 

 cr  – radius of a capillary tube  
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 ir  – inlet radius of a capillary tube  

 or  – middle radius of a capillary tube  

 f  – flow velocity through a thin porous layer modelled by capillary fissures  

 t  – flow velocity through a thin porous layer modelled by capillary tubes  

   – fluid viscosity  
 p  – porosity of a porous layer  

 ,1 f 1t   – first hindrance factor for a capillary fissure or tube, respectively  

 ,2 f 2t   – second hindrance factor for a capillary fissure or tube, respectively  
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