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In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric 
flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary 
fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be 
used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration 
when analytical expressions are hard to obtain due to mathematical complexities. 

Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, 
hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge 
and cone geometry the present results for the power-law fluid were compared with the results obtained by another 
method; this comparison indicates a good compatibility between both the results.  
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1. Introduction 
 
 Modelling the flow in tapered or corrugated channels and tubes is required for a number of scientific 
technological, medical and industrial applications [1]. In the literature on fluid dynamics, there are numerous 
studies on the flow through channels or tubes of tapered-expanded or corrugated nature. Many of these 
studies use numerical techniques; cf. the papers by Lahbabi and Chang [2], Burdette et al. [3], James et al. 
[4], Momemi- Masuleh and Phillips [5], Wang et al. [6], Hayat et al. [7, 8], Mekheimer and Kot [9], Nadeem 
et al. [10]. Some others adopt analytical approaches based on simplified assumptions and normally deal with 
very special cases (Williams and Javadpour [11], Walicki et al. [12], Walicki and Walicka [13÷15], Walicka 
and Walicki [16], Sochi [17÷20]. Note that most of these studies concern the flows in conical (or similar) 
geometry, namely in the converging-diverging tubes. 
 This paper presents an analytical method for deriving mathematical relations between the volumetric 
flow rate and pressure drop or pressure gradient in tapered-expanded or corrugated capillary fissures or 
tubes, such as those shown schematically in Fig.1. 
 

 
 

Fig.1. Profiles of converging-diverging capillary fissures or tubes. 
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 Developing some results obtained by Sochi [17], concerning the flows in capillary tubes, we also 
present five examples of flows both in capillary fissures and tubes for Newtonian and power-law fluids. Both 
these flows may be used to model the flows through porous media [21]. 
 
2. Flows through rectilinear converging-diverging capillary fissures or tubes 
 
 Frequently, to model the flow through porous media, rectilinear fissures or tubes of constant cross-
sections are used (Fig.2). 
 
a) b) 

 
 

Fig.2. Geometry of a rectilinear capillary fissure (a) and a capillary tube (b) of a constant cross-section. 
 

The velocity of the power-law fluid is, respectively [21]:  
 for a capillary fissure 
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whereas the volumetric flow rate Q  is equal: 

 for a capillary fissure 
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here fQ  is counted on the unit of a fissure width; 

 for a capillary tube 
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For capillaries of variable cross-sections we have, respectively (see Fig.3): 
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Fig.3. Scheme of half of converging-diverging and diverging-converging capillaries with rectilinear 
generatrices. 

 
The current thickness of the capillary fissure or the radius of the capillary tube are given, respectively, by 
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Introducing formulae (2.7) and (2.8) into Eq.(2.5) or Eq.(2.6) we will obtain – after integration – the 
following expressions (see formulae (A.3)÷(A.4) in the Appendix): 

 for the capillary fissure 
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 for the capillary tube 
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The flow velocities through a thin porous layer, composed of convergent-divergent capillaries, will be given, 
respectively, as 
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where p  is the porosity of the porous layer. Note that it will be similar for a thin porous layer composed of 

divergent-convergent capillaries. 
 Let us refer to the papers [12-16]. The formulae for the pressure losses in a divergent wedge flow 
and in a divergent conical flow presented there are as follows: 

 for the wedge flow 
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Taking into account that 
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and that cot tan    for small values of   , then the second terms in braces of Eqs (2.15) and (2.16) can 
be neglected. Assuming that the pressure loss in a double wedge or double cone should been taken doubly, it 
is easy to see that the present results are consistent with the results obtained in the earlier papers [12-16] by 
another method. Note that the first terms in braces of Eqs (2.15) and (2.16) are connected with the pressure 
drop due to simple shear deformation of the fluid while the second terms are connected with the pressure 
drop due to simple tension of the fluid in the wedge or conical die. 
 It easy to see that in the case when m 1 , all the above formulae describe the flows of Newtonian 
fluids. 
Let us introduce the following notation 
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Introducing these expressions into Eqs (2.13) and (2.14) we have 
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here corF  and corT  are the correction factors which fulfill the condition: , .cor corF T 1  This result indicates 
that the flow velocity in porous media with corrugated capillaries is always less than the flow velocity in 
porous media with rectilinear capillaries of constant cross-sections. 
 
3. Flows through parabolic capillaries 
 
 Parabolic capillaries, depicted in Fig.4, are described by the formulae 
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Fig.4.  Schematic representation of half of converging-diverging and diverging-converging capillaries with 
parabolic profiles. 

 
Introducing formulae (3.1) and (3.2) into Eqs (2.5) or (2.6) we will obtain – after integration – the following 
expressions (see formula (A.8) in the Appendix): 
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The minimal flow velocities through the thin porous layer will be, respectively, 
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The functions  ...F  are so called “hypergeometric functions” and they are defined in the Appendix. 

For the flows of Newtonian fluids  m 1  we will have, respectively (see formulae (A.9)-(A.13) in the 

Appendix): 
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The flow velocities of the Newtonian fluid through a thin porous layer will be given, respectively 
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4. Flows through hyperbolic capillaries 
 
 For capillaries of hyperbolic profiles, similar to the profiles shown in Fig.4, the geometric 
description is as follows 
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Introducing formulae (4.1) and (4.2) into Eqs (2.5) or (2.6) we will obtain – the expressions (see formula 
(A.15) in the Appendix): 

 for the capillary fissure 
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The flow velocities through the thin porous layer will be as follows 
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For the Newtonian flows  m 1  we will have, respectively (see formulae (A.16)-(A.19) in the Appendix): 

 for the capillary fissure 
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5. Flows through hyperbolic cosine capillaries 
 
 For capillaries of hyperbolic cosine profiles, similar to the profiles shown in Fig.4, the geometric 
description is given as follows 
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Note that the exponent value equal 1  is adequate to the lower profile curve on Fig.4, whereas the exponent 
value 1  is adequate to the upper profile curve. 
Hence, Eqs (2.5) or (2.6) become, respectively (see formulae (A.20) and (A.21) in the Appendix) for the 
exponent value equal 1 : 

 for the capillary fissure 
 

  
   Im ,

arccosh

1

mf
fh

2 m i
o i

o

m 2 Q ml
p F

2 f
2 f f

f

   
   

     
 

  (5.3) 

 



198  A.Walicka 

 

or 

  
   

arccosh

Im

m
m

m 1 2 i
o i m

o
f m m

fh

f
2 f f

f 1 p
Q

lm m 2 F

   
  

     
    

 

  (5.4) 

 

where 
 

   Im Im , ; ;
2

i
fh 2

o

f1 1 1
F F 1

2 m m f

       
    

; (5.5) 

 
 for the capillary tube 

 

  
   Im ,

arccosh

1

mt
th

3 m i
o i

o

m 3 Q 2ml
p F

r
3r r

r

   
      

 
 

  (5.6) 

 

or 
 

  
   

arccosh

Im

m
m m 3 i

o i m
o

t m m m
th

r
3 r r

r 1 p
Q

l2 m m 3 F

  
   

     
     

  (5.7) 

 

where 
 

   Im Im , ; ;
2

i
th 2

o

r1 3 3
F F 1

2 2m 2m r

       
    

. (5.8) 

 

Here,  Im F  is the imaginary part of the hypergeometric function. 

The flow velocities through the thin porous layer will be 
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For the flows of Newtonian fluids  m 1  we have (see formulae (A.22)÷(A.25) in the Appendix): 

 for the capillary fissure 
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 for the capillary tube 
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Equations (2.5) and (2.6), for the exponent value equal 1  will become (see formulae (A.26) and (A.27) in 
the Appendix): 

 for the capillary fissure 
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The flow velocity through the thin porous layer will be: 
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For the flow of Newtonian fluids  m 1  we have (se formulae (A.28)÷(A.31) in the Appendix: 

 for the capillary fissure 
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6. Flows through cosine curve capillaries 
 
 For capillaries of cosine curve profile, shown in Fig.5, where the capillary length l  spans one 
complete wavelength, the current capillary thickness or radius are given by 
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Fig.5.  Schematic representation of the thickness or radius of converging-diverging and diverging-
converging capillaries with a cosine curve profile. 

 
 Introducing formulae (6.1) and (6.2) into Eqs (2.5) or (2.6) we will obtain (see formulae 
(A.32)÷(A.36) in the Appendix): 

 for the capillary fissure 
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Here ,  ...1F  is the Appell hypergeometric function and  Im 1F  is the imaginary part of this function.  

The minimal flow velocities through the thin porous layer will be 
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For the flows of Newtonian fluids  m 1  we have (see formulae (A.37)÷(A.40) in the Appendix): 

 for the capillary fissure 
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 for the capillary tube 
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7. Conclusions 
 
 In this paper, an approximate mathematical method for obtaining analytical relations between the 
pressure drop and the volumetric flow rate in symmetrically corrugated fissures and tubes is presented and 
applied to the flow of Newtonian and power-law fluids. 
 The method is illustrated by five examples of capillary fissures or tubes with converging-diverging 
or diverging-converging shape. The results presented for the flows in the wedge or cone geometries were 
compared with the results of an earlier study yielded by another method; this comparison indicates a good 
agreement between both the results for the geometry of small convergence or divergence. 
 For the flow velocities (in the thin layers) it may be concluded that any corrugation or complexity of 
the capillary geometry leads to the diminution of these velocities with respect to the flow velocities in the 
simple capillaries of constant cross-section. 
 
Appendix 
 
 In this Appendix we will derive analytical expressions for the integrals appearing in the previous 
sections of the present paper. 
 The first of them, for rectilinear capillaries of variable cross-sections, is: 

 for the convergent-divergent capillary 
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and 



Flows of Newtonian and power-law fluids in symmetrically ... 205 

 

  
 

;
1 n

l 2 1 n
n l 2

2 bl
J a a

n 1 b 2


 


          
  (A.3) 

 
 for the divergent-convergent capillary 
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here 
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The second one, for parabolic capillaries, is as follows 
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where  ...F  is a hypergeometric function [22,23] defined by the Gauss series [24] 
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here, for convenience, we used the Pochhammer symbol notation for the shifted factorial 
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which is used as a definition for the shifted factorial in the case when s  is not necessarily a nonnegative 
integer. 
Introducing in (A.6) the limits of integration we will obtain 
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For the Newtonian flows we have, respectively 
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 The third integral, for hyperbolic capillaries, is given by the following expression 
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For the Newtonian flows we have  
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 The fourth and fifth integrals, for hyperbolic cosine capillaries, are as follows: 

 the forth one 
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where: i 1  , and the real value of the definite integral 
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here   Im ...F  is the real value of the imaginary part of the hypergeometric function  ...F ; 

for the Newtonian flows we have 
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 the fifth one 
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For the Newtonian flows we have 
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 The last integral, for cosine curve capillaries, is given by the following expression  [22, 23] 
 

  
     

 ...
cos cos

n 1n n 12 2

dx i
J F

a b kx n 1 k a b a b kx



 

        
  

  (A.32) 

 
where  ...1F  is the Appell hypergeometric function described here by the formula 
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Generally, the Appell hypergeometric function  ,1F x y  is defined by the following double hypergeometric 

series [24] 
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It is easy to see that it is a bivariate generalization of the Gauss hypergeometric series defined by formula 
(A.7). Introducing in (A.20) the limits of integration we will obtain 
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Here,   Im ...1F  is the imaginary part of the Appell hypergeometric function  ...1F . 

For the Newtonian flows we have 
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and 
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Nomenclature 
 
 ,a b  – auxiliary constants in the formula describing a converging-diverging capillary  
 F  – hypergeometric function  
 1F  – Appell hypergeometric function  

 corF  – correction factor for a capillary fissure  

 cf  – half thickness of a capillary fissure  

 if  – inlet half thickness of a capillary fissure  

 of  – middle half thickness of a capillary fissure  

 i 1     
 l  – capillary length 
 m  – flow behaviour index for power-law fluid 
 n  – auxiliary in integrals and hypergeometric functions 
 p  – pressure 
 p  – pressure drop 
 Q  – volumetric flow rate 
 fQ  – volumetric flow rate through the unity width of a capillary fissure  

 tQ  – volumetric flow rate through a capillary tube 

 cr  – radius of a capillary tube  

 ir  – inlet radius of a capillary tube  

 or  – middle radius of a capillary tube  

 corT  – correction factor for capillary tube  

 f  – flow velocity through a thin porous layer modelled by capillary fissures  

 t  – flow velocity through a thin porous layer modelled by capillary tubes  

 p   – porosity of a porous layer  

   – fluid viscosity  
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