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Flows Through Real Porous
Media: X-Ray Computed
Tomography, Experiments,
and Numerical Simulations
Two different direct-forcing immersed boundary methods (IBMs) were applied for the
purpose of simulating slow flow through a real porous medium: the volume penalization
IBM and the stress IBM. The porous medium was a random close packing of about 9000
glass beads in a round tube. The packing geometry was determined from an X-ray com-
puted tomography (CT) scan in terms of the distribution of the truncated solid volume
fraction (either 0 or 1) on a three-dimensional Cartesian grid. The scan resolution corre-
sponded to 19.3 grid cells over the mean bead diameter. A facility was built to experimen-
tally determine the permeability of the packing. Numerical simulations were performed
for the same packing based on the CT scan data. For both IBMs the numerically deter-
mined permeability based on the Richardson extrapolation was just 10% lower than the
experimentally found value. As expected, at finite grid resolution the stress IBM appeared
to be the most accurate IBM. [DOI: 10.1115/1.4025311]

1 Introduction

Porous media are characterized by an open solid structure with
interconnected pores through which a fluid may flow. Examples
of porous media are pebble bed nuclear reactors, packed beds in
the chemical industry, river beds composed of granular material,
and gas/oil reservoirs of porous rock such as sandstone. Until
recently, it was neither possible to measure nor to simulate the
flow within the pores of such beds because of their complex
geometry. It is partly for this reason that in the past many studies
were devoted to flows in idealized porous media composed of cyl-
inders, spheres, or cubes in a typically ordered (spatially periodic)
configuration [1–3]. With the ever-increasing computer power,
the development of efficient numerical methods, and imaging
methods such as X-ray computed tomography (CT), it has now
become possible to study flows in real porous media with the help
of numerical simulations.

Narsilio et al. [4] used high-resolution X-ray CT to obtain
three-dimensional images of a packing of glass beads. They simu-
lated the flow through the reconstructed pore geometry with a
commercial finite-element package and validated their numerical
results for the hydraulic conductivity with experiments. A similar
study was performed by Kaczmarczyk et al. [5,6] to numerically
determine the permeability of carbonate rock samples and by
Zeretskiy et al. [7] to study flow and solute transport through
sandstone. Ovaysi and Piri [8] used a moving particle semi-
implicit (mesh-free) method to simulate flow through sandstone.
Gerbaux et al. [9] used both a finite-volume and a lattice-
Boltzmann method for studying flows through metallic foams.

In this paper, we explore the use of a finite-volume method
combined with a computationally efficient immersed boundary
method (IBM) [10] for simulating flows through real porous
media. The essence of IBMs is that the flow geometry is immersed
in a three-dimensional computational grid. Instead of imposing
the no-slip/no-penetration conditions at fluid-solid interfaces,
forces are imposed on the fluid in order to enforce these

conditions by good approximation. The main advantage of IBMs
is the possibility of using simple (often regular) grids, which ena-
bles the use of simple discretization stencils and computationally
efficient solvers. Continuous-forcing IBMs were recently
employed by Smolarkiewicz and Winter [11] to study flow
through numerically generated random porous media and by
Lopez Penha et al. [12] for flow through an array of square rods.
For the present study, we employed two different direct-forcing
IBMs for studying flow through a packing of glass beads: the vol-
ume penalization IBM of Kajishima et al. [13] and the stress IBM
of Breugem and Boersma [3] and Pourquie et al. [14]. The geome-
try of the packing was obtained from an X-ray CT scan. In order
to validate the simulations, a facility was built to experimentally
determine the permeability of the packing.

Pore-scale simulations of real porous media provide a detailed
insight in the flow dynamics. From such simulations the perme-
ability K of a porous medium can be numerically determined. The
permeability is a measure of the ability of a porous medium to
transmit fluid through its pores. Once the permeability is known,
the pressure drop over a porous medium can be computed from
Darcy’s law [15]

0 ¼ �
@hpi

@z
�
lhwis

K
(1)

where hpi is the so-called intrinsic macroscopic pressure, hwis

is the superficial macroscopic velocity, and l is the dynamic
viscosity of the fluid. The brackets denote that the quantities
are locally averaged over a small spatial volume [16]: here,
hwis �

Ð

V
mcwdV, where m is a weighting function and c is the

phase-indicator function (equal to 1 in the fluid phase and 0 in the
solid phase). The size of the averaging volume V has to be suffi-
ciently large to average out pore-scale inhomogeneities in the
flow field, but should be small enough to maintain variations in
the flow field on a macroscopic scale [3]. When the superficial
volume average is divided by the porosity e �

Ð

V
mcdV, the intrin-

sic volume average is obtained.
For packed beds many different semi-empirical relations exist

in which the permeability is expressed as a function of the so-
called mean particle diameter dp and the porosity e. (The mean
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particle diameter is defined as six times the volume of the particles
of the packing divided by their total surface area; for perfectly
monodisperse spheres it is exactly equal to the sphere diameter.)
One of the most often used expressions for the permeability is
given by the (modified) Ergun equation [17,18]

K ¼
d2pe

3

CME 1� eð Þ2
(2)

where CME is a constant. MacDonald et al. [18] proposed a value
of CME¼ 180, although the experimental scatter in CME is large.
In this study we consider a packing of glass beads. Experimental
data from Gupte [19] actually suggest that a value of CME� 160
is more appropriate for such a packing.

Darcy’s law is valid for sufficiently slow flow through a porous
medium such that the flow within the pores is in the Stokes re-
gime. For packed beds this appears to hold when the packed bed
Reynolds number is smaller than O(10) [17]. This Reynolds num-
ber is defined as Rep � qdphwi

s=ðl½1� e�Þ, where q is the fluid
mass density. The values of Rep in the experiments and simula-
tions in this study are of O(1) and thus in the regime where
Darcy’s law is expected to be valid.

The structure of this paper is as follows: First the experiments
are detailed. Next, the procedure used to obtain the geometry of
the packing of glass beads from an X-ray CT scan is described.
Then, the details of the computational method and the two IBMs
used are given. Subsequently, results from the numerical simula-
tions are shown. Finally, the last section contains the main
conclusions.

2 Experimental Setup and Measurement Results

2.1 Experimental Setup. A facility has been built to
experimentally determine the permeability of the packing of glass
beads. It was designed such that the packing could be easily
removed from the setup to place it into a CT scanner. The packing
was tightly fixed in a cylindrical permeability cell of PVC by two
fairly coarse but thin-wired steel grids. Because they are spanned
over the glass beads, their shape is slightly convex (as is visible in
Fig. 5(a)). The permeability cell was placed in a holder, as
sketched in Fig. 1. An O-seal was placed in between the perme-
ability cell and the top part of the holder to prevent by-pass leak-
age. The top and bottom part of the holder were mounted together
by six plastic plugs.

The glass beads are nearly spherical with a fairly narrow size
distribution; the beads were sieved between a diameter of 1.66
and 2mm. A pycnometer and a lab balance were used to deter-
mine the volume taken up by the glass beads and their total mass.
The total volume taken up by the packing, including the volume
of the pores, was estimated from the average streamwise length of
the packing Lc¼ 426 1mm and the inner radius of the cylindrical
permeability cell Rc¼ 20.16 0.1mm. Next, the global porosity1

of the packing could be estimated as e¼ 0.3676 0.009 [20]. The
packing can thus be classified as a random close packing [21].
The mass of a few samples of each 100 glass beads was measured
with a lab balance. From this and the measured total mass of the
glass beads, the total number of glass beads could be estimated as
Np¼ 8.926 0.16� 103. Finally, from the total volume and the
total number of particles, the mean particle diameter was deter-
mined to be dp¼ 1.936 0.01mm.

The experiments were designed such that the packed bed
Reynolds number in the experiments is O(1), i.e., within the range
where Darcy’s law is valid. Furthermore, the size of the perme-
ability cell had to be small enough to fit inside the CT scanner.

The resolution restrictions of the CT scanner and the numerical
simulations required that the particles were not too small com-
pared to the size of the permeability cell.

The experimental setup is a closed system in which the flow
direction through the permeability cell is opposite to the direction
of gravity (i.e., upward) for the sake of easy removal of air bub-
bles and in order to reduce the deposition of dirt within the cell.
The working fluid is an aqueous solution of glycerol with about
70% by weight of glycerin. The dynamic viscosity was measured
within 1% accuracy with a Contraves low shear 40 viscometer at
T¼ 206 0.1 �C, from which the real percentage of glycerin could
be inferred. The temperature of the fluid is measured downstream
of the permeability cell with a PT100 temperature sensor with
0.1 �C accuracy. Then the dynamic viscosity at that temperature is
determined from an empirical formula proposed by Cheng [22].
The flow is driven by a constant-flow gear pump that is controlled
by a variable-frequency drive. The mass flow rate is measured by
collecting the outflow in a measuring cup placed on a lab balance
and measuring the discharge time with a stopwatch. The pressure
drop over the permeability cell is measured with a differential
pressure transducer (Validyne DP15 with Dash-28 membrane;
range 5.5� 103Pa). The pressure tubes are connected through
bleed screws with the pressure chambers of the transducer and,
hence, the hydrostatic contribution disappears from this differen-
tial pressure measurement. The transducer was calibrated with a
Betz water column manometer with an accuracy of of 1 Pa. A
simple USB data acquisition device (National Instruments USB-
6009) and a LabVIEW program are used to read the electronic
output of the instruments, after which the data is further
processed.

2.2 Measurement Results. The experiments were performed
at five different pump frequencies in one day and repeated the
next day. At every pump frequency several measurements were
performed in order to estimate the experimental uncertainty. To
determine the permeability of the packing from the experiments,
Darcy’s law [1] is rewritten in the following form

Fig. 1 Close-up of the experimental setup showing the perme-
ability cell, the cell holder, and the locations of the pressure
taps and temperature sensor. Dimensions are given in mm.

1The global should be distinguished from the local porosity, which could be

calculated from e �
Ð

V
mcdV with an appropriate choice of the weighting function m.

The local porosity is expected to vary with the radial distance to the wall of the

permeability cell. This causes radial variations in the flow near the wall and is

known as the wall-channeling effect [19].
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K ¼ l
Lc

p2 � p1

� �

_m

qpR2
c

� �

(3)

where p2� p1 is the measured pressure difference over the perme-
ability cell and _m is the measured mass flow rate. Figure 2 depicts
the permeability as a function of the packed bed Reynolds num-
ber. The average permeability and its 95% confidence interval are
determined to be K¼ 2.276 0.03� 10�9 m2. This value is in
fairly good agreement with the predicted value of K¼ 2.55� 10�9

m2 from the modified Ergun equation (2) with CME¼ 180,
especially when considering the uncertainty in the value of CME.
Compared to the predicted value, the measured value is about
11% smaller. It would match the prediction when CME� 215
would be taken. Compared to the value of CME� 160 suggested
from the data of Gupte [19], our estimate of CME is roughly 30%
higher; it is difficult to assess the origin of this difference since
Gupte’s Ph.D. thesis, with the details of his experiments, is not
easily accessible.

It is noted that the permeability is quite sensitive to the
values of the porosity and the mean particle diameter. As previ-
ously mentioned, for CME¼ 180, dp¼ 1.93mm, and e¼ 0.367,
the modified Ergun equation (2) predicts a permeability of
K¼ 2.55� 10�9 m2. A variation of the porosity by 63% with the
values of CME and dp fixed, would result in a variation in the per-
meability from �12% to þ13%. Similarly, a variation of dp by
63% would yield a variation in the permeability from �6% to
þ6%. This emphasizes the importance for an accurate determina-
tion of the porosity and the mean particle diameter in order to
accurately determine the value of CME.

3 X-Ray Computed Tomography

The geometry of the packing of glass beads has been obtained
from a high-resolution X-ray computed tomography (CT) scanner
at the Delft University of Technology (Phoenix Nanotom s from
GE). Prior to the experiments, the permeability cell with the pack-
ing of glass beads was placed on an object table inside the scan-
ner, located in between the X-ray tube and the detector. The
permeability cell was dry, i.e., the pores of the packing were air-
filled. The object table was rotated over small angular steps and
shifted in the vertical direction in order to measure the attenuation
of the X-ray by the permeability cell for a large number of lines.

From this a three-dimensional image of the permeability cell was
reconstructed.

The output data of the scanner is a three-dimensional Cartesian
grid of cells with ‘gray values’ representing the attenuation of the
X-ray in every cell. The scan used in the present study contains
412� 412� 486 grid cells in the two spanwise and the stream-
wise directions, respectively, with the dimension of the cubical
cells equal to 0.1 mm. As shown in Fig. 3, the distribution of gray
values contains two clear peaks associated with the air in the pores
and the glass beads, respectively. A threshold gray value was cho-
sen in between the two peaks. All cells with a gray value above
this threshold value were associated with glass beads and aijk¼ 1,
while cells with a gray value below this threshold were associated
with pores and aijk¼ 0. This resulted in a staircase representation
of the packing of the glass beads. In addition, in all grid cells at a
radial distance from the centerline greater than the tube radius Rc,
aijk¼ 1 was imposed. Next, the porosity of the packing was
numerically determined based on the distribution of a. By varying
the threshold value the numerical value for the porosity was
matched with the experimentally determined value of the porosity
(e¼ 0.367). The threshold value was established at 21,050, which
is indicated by the dashed line in Fig. 3. Cross sections of the solid
volume fraction distribution are shown in Figs. 5 and 6.

The porosity varies nearly linearly as a function of the threshold
gray value near the currently chosen value of 21,050 (not shown).
When the threshold gray value is varied from 20,650 to 21,450,
the porosity increases from 0.348 to 0.387, corresponding to a
change of approximately 11.5%. This emphasizes the importance
of carefully determining the threshold gray value, since the per-
meability is sensitive to the value of the porosity (see the discus-
sion at the end of Sec. 2.2).

As an alternative to the present approach in which we truncate
a, one could also choose to smoothly vary a between 0 and 1 by
using a narrow S-shaped function centered around a threshold
gray value. The width of the S-shaped function can be chosen
such that it matches the X-ray CT scan resolution. The threshold
gray value can be adapted in a similar vein, as previously
described, in order to match the numerical value of the porosity
with the experimentally determined value. This option is left for
future research.

4 Computational Method

4.1 Governing Equations. The governing equations for the
flow field in the pores of the porous medium are the incompressi-
ble Navier–Stokes equations, which read

Fig. 2 Measured permeability as a function of the packed bed
Reynolds number. The horizontal and vertical error bars denote
the estimated standard deviation in both quantities. The dashed
line is the average value for the permeability. The dotted lines
show the standard deviation in the average value based on the
spreading in the data points.

Fig. 3 Histogram of the cell gray values as computed from the
X-ray CT scan with a bin size of 24 in the gray value. The dashed
line marks the threshold gray value used for determining the
value of the cell solid volume fraction (aijk5 0 for air and 1 for
glass).
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r � u ¼ 0 (4a)

@u

@t
þr � uu ¼ �

1

q
rpþ �r2u (4b)

where u is the velocity, p is the modified pressure (i.e., the actual
pressure minus the contribution from the hydrostatic pressure),
and � � l=q is the kinematic viscosity. For flows through rigid
porous media these equations have to be solved with the no-slip/
no-penetration (ns/np) conditions for the velocity at the fluid-solid
interfaces.

4.2 Numerical Scheme and Flow Geometry. As mentioned
in the Introduction section, in an IBM the ns/np conditions are not
directly imposed, but a force f is added to the right-hand side of
Eq. (4b) in order to enforce these conditions by a good approxima-
tion. The IBMs considered in this study are the volume penaliza-
tion IBM of Kajishima et al. [13] and the stress IBM of Breugem
and Boersma [3] and Pourquie et al. [14]. Both IBMs fall in the
class of direct (or discrete) forcing methods, since the additional
forcing from the IBM is not parameterized prior to discretization
as in continuous forcing methods, but directly embedded in the
discretization scheme used [10]. The two IBMs differ from each
other in the way in which the force f is computed, as detailed in
the next section.

The direct-forcing IBMs used for this study are embedded in a
standard finite-volume/pressure-correction scheme. The integra-
tion in time is based on the Crank–Nicolson scheme for the
pressure-gradient term and the Adams–Bashforth scheme for all
other terms; both schemes are second-order accurate in time. In
semidiscrete notation, the scheme reads as follows

u	 ¼ un þ
Dt

q
�rpn�1=2 þ

3

2
rhsn �

1

2
rhsn�1

� �

(5a)

u		 ¼ u	 þ Dtfnþ1=2 (5b)

r2
~p ¼

q

Dt
r � u		 (5c)

unþ1 ¼ u		 �
Dt

q
r~p (5d)

pnþ1=2 ¼ pn�1=2 þ ~p (5e)

where rhs � �qr � uuþ lr2u, u* is the first prediction velocity,
u** is the second prediction velocity that includes the additional
forcing from the IBM, ~p is the correction pressure, and Dt is the
computational time step.

The computational grid used in the simulations is a spatially
uniform fully staggered Cartesian grid [23]. Spatial gradients are
computed with the second-order central-differencing scheme. The
spatially continuous grid, without any holes in the interior of
the flow domain, enables the use of an efficient, FFT-based
direct solver to compute the correction pressure from Eq. (5c).
The computational time step is based on the von Neumann stabil-
ity conditions for the second-order Adams–Bashforth scheme
derived by Wesseling [24] (see p. 188). It is set to 0.75 times
the maximum allowed value to ensure stability. For the creeping
flow simulations in the present study and cubical grid cells
Dt ¼ 0:75Dx2=ð12�Þ.

The computational domain is a square channel with the
geometry of the permeability cell centered in the middle; see
Figs. 5(a) and 6(a). The dimensions of the channel are
41.4� 41.4� 48.6mm in the x-, y-, and z-directions, respectively.
The spanwise dimensions of the channel were chosen slightly
larger (0.2mm) than the spanwise dimensions of the X-ray CT
scan to ensure that the permeability cell fits well within the
channel. In the simulations of the ‘standard case,’ the grid
resolution is exactly the same as the CT scan resolution, i.e.,
Dx¼Dy¼Dz¼ 0.1mm. The boundary conditions at the solid side

walls of the square channel are the ns/np conditions for the veloc-
ities and the homogeneous Neumann condition for the pressure.
The boundary conditions at the inlet of the channel are the free-
slip conditions for the boundary-parallel velocity components (u
and v), a uniform streamwise velocity ðw ¼ hwisÞ over the circular
inlet of the permeability cell, a zero streamwise velocity outside
the circular inlet, and the homogeneous Neumann condition for
the pressure. The boundary conditions at the outlet of the channel
are the free-slip conditions for the boundary-parallel velocity
components and zero pressure. The streamwise velocity at the out-
let of the channel is determined from the continuity equation (4a).

The discretized Navier–Stokes equations are made dimension-
less with a reference velocity of 1mm/s and a reference length of
1mm. The kinematic viscosity is set equal to 12.8 mm2/s, based
on a typical value for the viscosity in the experiments. The
superficial bulk velocity at the inlet of the permeability cell is
determined from the requirement that the packed bed Reynolds
number is equal to 1 in order to guarantee the validity of
Darcy’s law. From the definition of Rep it then follows that
hwis ¼ Rep�ð1� eÞ=dp ¼ 4:20 mm/s by assuming that e¼ 0.367
and dp¼ 1.93mm (see Sec. 2.1).

The simulations are initiated by prescribing a streamwise veloc-
ity w ¼ hwis at all grid cells within the cylindrical permeability
cell (i.e., for r<Rc with r being the radial distance from the cen-
terline of the channel). This includes the grid cells located inside
the glass beads. After initialization the flow inside the glass beads
is quickly decelerated and comes to rest by the forcing from the
IBM. From Darcy’s law (Eq. (1)), a typical time scale can be esti-
mated for the flow in the pores to reach a steady state tD ¼ K=�.
From the semi-empirical Ergun relation (2) with CME¼ 180, the
following a priori estimate for the permeability of the packing of
glass beads can be given as K¼ 2.55� 10�3 mm2. On this basis,
the flow time scale is estimated to be tD¼ 2� 10�4 s. This is on
the order of the computational time step in the simulations
Dt¼ 0.4875� 10�4 s, thus a quick convergence of the simulations
can be expected within a few tens of time steps. This is, indeed,
confirmed by the simulations.

The computational algorithm detailed in this section is coded
in Fortran with the MPI extension for parallel execution on
multiprocessor machines with distributed memory. For the paral-
lelization of the Navier–Stokes equations a standard domain
decomposition method is used.

4.3 Immersed Boundary Methods

4.3.1 Volume Penalization IBM. In the volume penalization
IBM of Kajishima et al. [13], the IBM force is computed as
follows

f
nþ1=2
ijk ¼ aijk

ufs � u	ð Þijk
Dt

(6)

where aijk is the solid volume fraction in the grid cell with index
(i,j,k) and ufs is the velocity at the fluid-solid interface within this
grid cell. In rigid porous media the interface is not moving and
hence ufs¼ 0. Substituting Eq. (6) into Eq. (5b) then yields the
following equation for the second prediction velocity

u		ijk ¼ 1� aijk

� �

u	ijk (7)

If a grid cell is located fully inside the fluid phase where aijk¼ 0,
then u		ijk ¼ u	ijk and, thus, the first prediction velocity is left
unchanged. On the contrary, inside the solid phase aijk¼ 1 and
u		ijk ¼ 0.

As mentioned in Sec. 4.2, in the present study the computa-
tional grid is fully staggered. This means that the solid volume
fraction is defined at the cell centers, while the velocities are
defined at the cell faces. Since the IBM force needs to be com-
puted at the cell faces where the velocities are defined, linear
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interpolation is used to interpolate the solid volume fraction from
the two nearest cell centers towards a cell face. At the cell centers
the solid volume fraction is either 0 or 1 (see Sec. 3), thus, at the
cell faces the interpolated solid volume fraction is either 0, 0.5, or
1. This implies that the fluid-solid interfaces are actually
smoothed over a distance of one grid cell.

Note that the IBM forcing is applied to the second prediction
rather than the actual velocity itself; see Eq. (5b). The difference
between the two velocities follows from Eq. (5d) and is equal to
�Dtr~p=q. This difference is kept small by updating the pressure
at every time step by the correction pressure; see Eq. (5e). For
creeping flows in porous media, fluid inertia can be neglected and
the flow can be considered as stationary. In this case, the correc-
tion pressure will eventually approach zero in the simulations,
eliminating the error associated with the difference between the
second prediction and the actual velocity. Furthermore, near the
fluid-solid interfaces the normal component of Eq. (5a) then
reduces to 0 ¼ ½�rpþ lr2u� � n, with n being the unit normal to
the interface. This is the correct behavior of the flow field near the
fluid-solid interfaces. Note that this holds only when we split the
pressure according to Eq. (5e); if pnþ 1/2 would be used to correct
the second prediction velocity, then ½rp� � n ¼ 0 would hold at
the fluid-solid interfaces, which would be inconsistent with the
Navier–Stokes equations.

The volume penalization IBM is computationally efficient since
it consists simply of one additional multiplication of the first pre-
diction velocity by a ‘penalization’ factor (1� aijk), representing
the fluid volume fraction in a grid cell with index (i, j, k).

Apart from its efficiency, another advantage of this IBM is that
the penalization is based on the local fluid volume fraction, which,
for real porous media, can be obtained from several methods such
as magnetic resonance imaging and X-ray computed tomography
(see Sec. 3). It is, therefore, a suitable method for detailed simula-
tions of real porous-media flows.

In the literature, other methods can be found which are similar
to the volume penalization IBM of Kajishima et al. [13]. For
instance, essentially the same approach was used later by Scotti
[25] to simulate turbulent open-channel flow over a wall rough-
ened with ellipsoidal grains. Finally, it is noted that this IBM is
different from the penalized direct forcing method of Belliard and
Fournier [26], which is actually better referred to as a penalized
continuous forcing method, according to the classification of
Mittal and Iaccarino [10].

4.3.2 Stress IBM. As explained in Sec. 3, the truncation of
the solid volume fraction to either 0 or 1 resulted in a staircase
representation of the packing of glass beads. The stress IBM of
Breugem and Boersma [3] and Pourquie et al. [14] has been spe-
cifically developed for rectangular-shaped obstacles and can,
therefore, be applied to this geometry.

In the stress IBM the solid geometry is immersed in a fully
staggered rectangular grid such that the fluid-solid interfaces
coincide exactly with the faces of the grid cells. As a result, the
velocity nodes on the fluid-solid interfaces correspond to veloc-
ities directed normal to the interfaces. The velocity nodes which
are half a grid cell spacing away from the interfaces correspond
to velocities directed parallel to the interfaces. This is illustrated
in Fig. 4. The dots, open circles, and crosses indicate the loca-
tions at which in the stress IBM additional forcing is applied to
the flow.

At the velocity nodes on the fluid-solid interfaces and inside the
solid phase (i.e., the dots and open circles in Fig. 4) the second
prediction velocity is put to u		 ¼ ufs ¼ 0. This corresponds to a
force fn directed normal to the interface and is given by

f
nþ1=2
n;ijk ¼ �

u	ijk
Dt

(8)

With the help of Eqs. (5b), (5d), and (5e) and a Taylor expansion,
it then follows for the velocities on the fluid-solid interfaces

unþ1
ijk ¼ O �

Dt2

q
�
@rp

@t

�

�

�

�

nþ1=2
 !

(9)

From this it follows that for stationary flows unþ1
ijk ¼ 0 holds (as

desired), while for instationary flows unþ1
ijk ¼ OðDt2Þ holds and

thus the error in the no-penetration condition can still be neglected
provided that the time step is sufficiently small.

At the velocity nodes which are half a grid cell spacing away from
the fluid-solid interfaces and located inside the fluid phase (i.e., the
crosses in Fig. 4), the discretization stencils for the interface-normal
advection and diffusion terms are adjusted such that the no-slip con-
dition at the interfaces is satisfied exactly. As a 2D example, in the
absence of a solid boundary the vertical diffusion term of streamwise
momentum at node (i,j) in Fig. 4 would read

�
@2u

@y2

�

�

�

�

ði;jÞ

¼ �
uði; jþ 1Þ � 2uði; jÞ þ uði; j� 1Þ

Dy2

� �

(10a)

In the presence of a solid boundary, however, the desired discreti-
zation that accounts for the no-slip condition would read

�
@2u

@y2

�

�

�

�

ði;jÞ

¼
�

Dy

uði; jþ 1Þ � uði; jÞ

Dy
�
uði; jÞ � 0

Dy=2

� �

(10b)

The corresponding force ft at velocity node (i, j) required for enforc-
ing the no-slip condition at the solid-fluid interface thus becomes

ftjði;jÞ¼ ��
uði; jÞ � uði; j� 1Þ

Dy2

� �

(10c)

The locations of the crosses where this force is applied is deter-
mined from the spatial distribution of the solid volume fraction in
the surrounding grid cells. For example, the force ft at velocity
node (i, j) in Fig. 4 is applied when the sum aði; j� 1Þ
þ aðiþ 1; j� 1Þ 
 1.

The stress IBM thus prescribes the correct shear stress on a
fluid-solid interface (hence, its name) and puts the velocity on the
interface and within the solid phase to zero. It is a computationally
efficient method with negligible overhead for computing the IBM
forcing. As discussed by Pourquie et al. [14], the stress IBM usu-
ally has no or a negligible effect on the stability of the overall

Fig. 4 Illustration of the stress IBM of Breugem and Boersma
[3] and Pourquie et al. [14] for rectangular-shaped obstacles.
The crosses, dots, and open circles indicate the locations
where additional forcing is imposed on the flow.
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numerical scheme. Furthermore, while the fluid-solid interfaces
are smoothed in the volume penenalization IBM, the interfaces
remain sharp in the stress IBM and, hence, higher spatial accuracy
may be expected for this IBM.

Finally, we would like to mention that the stress IBM can be
applied to both laminar and turbulent flows. Breugem and
Boersma [3] applied the stress IBM to study turbulent channel
flow over a porous medium composed of a three-dimensional
array of cubes. They reported that the maximum penetration
velocities through the top layer of cubes (where the flow in
between the cubes was turbulent) was on the order of 10� 5 times
the channel bulk velocity and thus negligible.

5 Numerical Results

Simulations have been performed with both IBMs for the
‘standard case’ in which the spatial grid resolution is chosen
exactly equal to the resolution of the X-ray CT scan, i.e., a grid
spacing of 0.1mm. Figure 5 shows an xz cross section of the flow
and pressure field as obtained from the stress IBM. Figure 5(b) is
an enlargement of the white rectangle in Fig. 5(a). Similarly,
Fig. 6 shows an xy cross section of the flow and pressure field.

From the figures, it can be observed that the fluid has a prefer-
ence to flow through large pores, as expected. The streamwise
velocity appears to vary over a large range; from zero at the fluid-
solid interfaces to values as high as 85mm/s. These extreme
values are more than seven times as high than the averaged bulk
velocity through the pores, which is equal to huis=e ¼ 11:5 mm/s.
Inside the large pores the flow seems to be well resolved, while
this may be questionable for small pores with a size of O(Dx). For
determining the permeability this may, however, not be very seri-
ous since the fluid prefers to flow through large pores and they are
better resolved. Note from Fig. 5 that the contours of the pressure
inside the pores are meandering, i.e., they are not straight. This is
the result of the spatial heterogeneity of the packing at the pore-
scale and it is consistent with a preference of the fluid to flow
through the larger pores.

In order to assess the accuracy of the numerical results, for each
IBM three simulations have been performed based on the same
CT scan. In every next simulation the resolution was doubled
compared to the previous one, so that the grid resolution varied
from dp/Dx¼ 19.3 (‘standard case’) to 77.2. (Note that for dp/
Dx¼ 77.2, the number of grid cells was approximately equal to
5.3� 109.) Since we had only one CT scan at a resolution of
dp/Dx¼ 19.3, a doubling in the resolution was achieved by
subdividing every grid cell in eight daughter cells, with all having

Fig. 5 (a) An xz cross section of the flow and pressure field
inside the permeability cell, as obtained from a simulation with
the stress IBM at 0.1mm resolution (the same resolution as was
used for the X-ray CT scan). The color denotes the pressure in
Pa (assuming a fluid mass density of 1170kg/m3) with a contour
interval of 50Pa. (b) Enlargement of the white box in (a). The ref-
erence vector represents a velocity of 50mm/s.

Fig. 6 The same as in Fig. 5, but for an xy cross section of the
permeability cell. The color denotes the streamwise velocity in
mm/s.
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the same solid volume fraction as the mother cell (either 0 or 1).
In fact, this implies that we effectively increased the resolution
at which the flow inside the pores is resolved, while the
resolution with which the geometry is captured remained fixed at
dp/Dx¼ 19.3.

From the simulations, the area-averaged intrinsic pressure hpi
was computed as function of the streamwise distance z. The
area-averaged intrinsic pressure was calculated by averaging the
pressure at every streamwise position over the pore area of
the entire xy cross section of the permeability cell. The area-
averaged intrinsic pressure distribution is plotted in Fig. 7 for both
IBMs at the three different grid resolutions. Based on Darcy’s law
and the assumption of macroscopic uniformity of the packing, the
intrinsic pressure is expected to drop linearly with the streamwise
distance. Indeed, this appears to be the case, substantiating that
the packing can be considered as spatially homogeneous in z on a
macroscopic scale. Note that the intrinsic pressure is approxi-
mately constant at the entrance and exit of the computational do-
main corresponding to regions outside the glass bead packing. In
these regions the flow experiences only a little friction from the
wall of the permeability cell, but this is negligible compared to
the friction experienced inside the packing of glass beads.

The permeability of the packing has been estimated from the
simulations with the help of Eq. (3). The pressure difference over
the packing is computed from the drop in the area-averaged intrin-
sic pressure over the length of the computational domain. For con-
sistency with the analysis of the experimental data, the average
streamwise length of the sample is taken to be 42mm, though
Fig. 7 suggests an effective length closer to 41mm, based on
extrapolation of the linear pressure profile in the core of the pack-
ing towards the front and the back of the packing. For both IBMs,
we obtained the permeability at three different grid resolutions.
Next, assuming that the numerical error in the permeability is a
power law in the grid resolution, the Richardson extrapolation
[27] was applied in order to obtain an estimate of the permeability
(Kr) at infinite resolution. As can be deduced from the straight
lines in Fig. 8, the results indeed confirm this power-law depend-
ency. The estimate of the permeability at infinite resolution for
both the volume penalization IBM and the stress IBM is almost
exactly the same at Kr¼ 2.05� 10�9 m2 and Kr¼ 2.06� 10�9 m2,
respectively. This is just about 10% less than the experimentally
found value of Kr¼ 2.27� 10�9 m2.

At finite resolution the stress IBM appears to be much more
accurate than the volume penalization IBM: at dp/Dx¼ 19.3 the

error in K (as compared to Kr) is as large as 88% for the volume
penalization IBM, while it is 20% for the stress IBM. The order-
of-convergence is also higher for the stress IBM (1.15) than for
the volume penalization IBM (0.99). The nearly first-order con-
vergence for the volume penalization IBM can be explained from
the smooth interface representation, for which the thickness scales
with Dx. The order of the stress IBM may be surprising since, in
the Stokes limit, the stress IBM should produce the same results
as a body-fitted method and second-order convergence would be
expected. This behavior is presumably related to the sharp straight
corners in the staircase representation of the solid-fluid interfaces
near which the solution of the Stokes equations becomes singular
[28]. If this is correct, then the order-of-convergence will most
likely change if the forcing would not be applied to the corner
points themselves anymore; the straight corners are then effec-
tively replaced by oblique corners. We have, however, not yet
explored this condition.

The fact that Kr is about 10% smaller than the experimen-
tally found value suggests that this difference is related to the
apparent resolution with which the solid phase geometry is
resolved. If this is true, then the agreement with the experi-
ment can be improved by increasing the resolution of the X-
ray CT scan. Interestingly, at dp/Dx¼ 38.6 the numerical error
of the stress IBM is about 9% compared to Kr, which is close
to the 10% error in Kr compared to the experiment. This sug-
gests that an X-ray CT scan resolution of dp/Dx or (50 lm)
and an identical resolution in the numerical simulations, would
be close to optimal for improving the accuracy.

6 Conclusions

The two direct-forcing IBMs used in this study for computing
slow flow through a real porous medium are computationally effi-
cient and capable of reproducing the experimentally determined
value of the permeability within an error of 10%. Both IBMs
appear to be sensitive to the resolution of the fluid phase in the
pores. At finite resolution the stress IBM appears to be much more
accurate, as expected. A convergence study suggested that agree-
ment with the experiment could be significantly improved by
increasing the resolution of the X-ray CT scan from dp/Dx¼ 19.3
to 38.6.

The numerical simulations yield detailed data on the pore-scale
flow field. In a future paper we will present a detailed analysis of
the wall-channeling effect near the interface of the packing with
the tube wall [20].

Fig. 7 The area-averaged intrinsic pressure hpi as a function of
the streamwise distance z. Blue lines/dots: volume penalization
IBM. Red line/squares: stress IBM. The lines represent different
grid resolutions: —, dp/Dx519.3; - - -, dp/Dx538.6; . . .,
dp/Dx5 77.2. The arrows point in the direction of increasing
grid resolution.

Fig. 8 Percentage of error in the permeability (K) as a function
of the grid resolution (dp/Dx). The error is relative to the esti-
mated value of the permeability at infinite grid resolution (Kr),
as obtained from the Richardson extrapolation based on the
three data points. Blue line/dots: volume penalization IBM. Red
line/squares: stress IBM.
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Nomenclature

CME ¼ constant in modified Ergun equation
dp ¼ mean particle diameter
f ¼ additional force from the IBM
K ¼ permeability
Lc ¼ length of glass beads packing
m ¼ weighting function
_m ¼ mass flow rate

Np ¼ number of glass beads
p ¼ modified pressure
~p ¼ correction pressure

hpi ¼ intrinsic volume-averaged pressure
r ¼ radial distance

rhs ¼ right-hand side of momentum equation
Rc ¼ radius of cylinder

Rep ¼ packed bed Reynolds number
T ¼ temperature
u ¼ velocity

ufs ¼ velocity at fluid-solid interface
u* ¼ first prediction velocity
u** ¼ second prediction velocity
V ¼ averaging volume
a ¼ cell solid volume fraction
c ¼ phase-indicator function
Dt ¼ computational time step

Dx, Dy, Dz ¼ grid cell dimensions
e ¼ porosity
l ¼ dynamic viscosity
� ¼ kinematic viscosity
q ¼ fluid mass density
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