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A general investigation has been made and analytic solutions are provided corresponding to the 	ows of an Oldroyd-B 	uid, under
the consideration of slip condition at the boundary.�e 	uid motion is generated by the 	at plate which has a translational motion
in its plane with a time-dependent velocity.�e adequate integral transform approach is employed to 
nd analytic solutions for the
velocity 
eld. Solutions for the 	ows corresponding to Maxwell 	uid, second-grade 	uid, and Newtonian 	uid are also determined
in both cases, namely, 	ows with slip on the boundary and 	ows with no slip on the boundary, respectively. Some of our results
were compared with other results from the literature. �e e�ects of several emerging dimensionless and pertinent parameters on
the 	uid velocity have been studied theoretically as well as graphically in the paper.

1. Introduction

Many materials in industry, for instance, grease, polymer
melts, drillingmud, clay coating, suspensions, certain oil, and
di�erent emulsions, behave in such a way that we cannot
describe mathematically through Navier-Stokes equations.
For this reason, it is now generally accepted that non-New-
tonian 	uid models are more appropriate than Newtonian
ones and, in practical applications, the behavior of non-
Newtonian 	uids cannot be replaced with that of Newto-
nian 	uids. �erefore, the study of non-Newtonian 	uids
has become very important due to their large number of
applications in industry.

�e reader can see [1] for the latest and complete dis-
cussion onOldroyd-B 	uidmodels. To the best of the authors’
knowledge, the 
rst exact solutions corresponding to these
	uid models seem to be those obtained by Tanner [2]. Fur-
thermore, some other useful as well as simpler solutions can
be found in [3] regarding the study of Oldroyd-B 	uids.

In the above studies, the e�ect of 	uid slippage is not
considered.�e	owof 	uids induced by amotion of a plate is
called Stokes 	ow. Solution for some Stokes 	ows in di�erent

geometries and under the assumption of no-slip boundary
condition can be found in [4–7].

However, the no-slip condition is inadequate in several
situations, for instance, mechanics of thin 	uids, problems
havingmultiple interfaces,microchannel 	ows, 	ows inwavy
tubes, and 	ows of polymeric liquids with high molecular
weight [8].

It is vital to study the e�ect of 	uid slippage as it 
nds
many applications in industry. When a surface moves, the
slip is mainly produced by the roughness of surface and rar-
efaction of the 	uid and the velocity on the surface. Navier
[9] proposed slip boundary condition in which it was stated
that the velocity of the 	uid depends on the shear stress.
For describing the slip that occurs at solid boundaries, a
large number of models have been proposed [10]. Other
studies of slip at the boundary can be seen in [11–14]. Some
non-Newtonian 	uids, such as polymer melts, o�en exhibit
macroscopic wall slip, which is generally described by a
nonlinear relation between wall slip velocity and the friction
at the wall.

�e aim of the present communication is to study Stokes
	ows of an Oldroyd-B 	uid on a 	at plate under the slip
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boundary conditions assumption between the plate and the
	uid. �e motion of the plate is a rectilinear translation in its
plane. Exact expressions for the velocity are determined by
means of the Laplace transforms. Expressions for the relative
velocity are also determined and the solutions corresponding
to 	ows with no slip at the boundary are presented. �e
particular case, namely, sine oscillations of thewall, is studied.
Some relevant properties of the velocity and comparisons
between solutions with slip and no slip at the boundary are
presented by using graphical illustrations generated by the
so�ware Mathcad.

2. Mathematical Formulation of the Problem

We consider an incompressible Oldroyd-B 	uid occupying
the space over an in
nite plate which is situated in the (�, �)-
plane of the Cartesian coordinate system with the positive �-
axis in the upward direction. Initially, both the 	uid and the
plate are at rest. At � = 0+ the 	uid is set in motion by the
plate, which begins to move along the �-axis. �e velocity of
the plate is assumed to be of the form���(�), where�� > 0 is
a constant and �(�) is a piecewise continuous dimensionless
function de
ned on [0,∞) and �(0) = 0. Furthermore we
suppose that the Laplace transformof the function� exists. In
the case of parallel 	ow along the �-axis, the velocity vector is
^ = (	(�, �), 0, 0)whereas [15–17] lead us to the following gov-
erning equation:


�2	 (�, �)��2 + �	 (�, �)�� = ](1 + 
� ���) �2	 (�, �)��2 , (1)

where 
 is the relaxation time, 
� is the retardation time, ] =�/� is the kinematic viscosity, � is the dynamic viscosity, and� is the constant density of the 	uid. In this work we consider
the existence of slip at the wall and assume that the relative
velocity between the velocity of the 	uid at the wall 	(0, �)
and the speed of the wall is proportional to the shear rate at
thewall [18, 19].�e adequate initial and boundary conditions
are given by

	 (0, �) − ��	 (0, �)�� = ��� (�) , � ≥ 0, � > 0,
	 (�, 0) = �	 (�, 0)�� = 0, � ≥ 0,
	 (�, �) �→ 0 for � �→ ∞,

(2)

where � is the slip coe�cient.
By using the characteristic time�, introducing the follow-

ing nondimensional quantities to (1) and (2),

�∗ = �� ; � > 0,
�∗ = ����,

	∗ = 	�� ,

∗ = 
�,

�∗ = 
�� ,
�∗ = ����,

� (�∗) = � (��∗) ,
(3)

and dropping out the ∗ notation we get the following non-
dimensional problem:


�2	 (�, �)��2 + �	 (�, �)�� = 1
Re

(1 + 
� ���) �2	 (�, �)��2 . (4)

�e nondimensional initial and boundary conditions are

	 (0, �) − ��	 (0, �)�� = � (�) , for � > 0, (5a)

	 (�, 0) = �	 (�, 0)�� = 0, for � > 0, (5b)

	 (�, �) �→ 0, for � �→ ∞, (5c)

with Re = ��2�/], the Reynolds number.

3. Calculations for Velocity Field

3.1. Oldroyd-B Fluid with Slip at the Wall. Applying Laplace
transform to (4), (5a), and (5c) and using (5b), we obtain the
transformed problem:

�2	 (�, �)��2 − Re (
�2 + �)
(1 + 
��) 	 (�, �) = 0, (6)

	 (0, �) − ��	 (0, �)�� = � (�) , (7)

	 (�, �) �→ 0, � �→ ∞. (8)

�e solution of the set of (6)–(8) is given by

	 (�, �) = � (�, �) ⋅ � (�) , (9)

where

� (�, �) = � exp (−!√(
�2 + �) / (
�� + 1))
� + √(
�2 + �) / (
�� + 1) ,

! = �√Re, � = 1�√Re
(10)

and �(�) = %{�(�)}.



Advances in Mathematical Physics 3

In order to obtain the inverse Laplace transform of func-
tion 	(�, �), we consider the auxiliary functions

�1 (�, �) = � exp (−!√�)� + √� ,
& (�) = 
�2 + �
�� + 1 .

(11)

Seeing that �(�, �) = �1[�, &(�)], we have
� (�, �) = %−1 {� (�, �)} = ∫∞

0
�1 (�, �) ℎ (�, �) 3�, (12)

where

�1 (�, �) = %−1 {�1 (�, �)}
= 4−�2Re/4��√Re5�
− 1�2Re4�/�+�/�2ReErfc(�√Re2√� + 1�√ �

Re
) ,

(13)

and ℎ(�, �) = %−1{exp(−�&(�))} is given by

ℎ (�, �) = exp (:�) < (� − 
�
� ) − √ :�
�� − 
�
⋅ @1 ( 2
�√:� (
�� − 
�))
⋅ exp((2
 − 
�) � − 
��
�2 ) ,

(14)

with : = (
 − 
�)/
�2.
Now, introducing �1(�, �) and ℎ(�, �) into (12), we obtain
� (�, �) = �√
�√
5�exp(−
Re�

2

4
�� + :
�
 �) − 
��2

⋅ exp(��√Re + �2 + :
 
��)Erfc(�√
Re2√
��
+ �√
��
 ) + ∫∞

0
[ �√5�

⋅ exp(−�2Re4� + (2
 − 
�) � − 
��
�2 )
− �2exp(��√Re + �2� + (2
 − 
�) � − 
��
�2 )
⋅ Erfc(�√Re2√� + �√�)] × √ :�
�� − 
� ⋅ @1 ( 2
�
⋅ √:� (
�� − 
�)) 3�,

(15)

and the velocity 
eld corresponding to the 	ow, with slip at
the wall of an Oldroyd-B 	uid, is given by

		 (�, �) = (� ∗ �) (�) = ∫�
0
� (�, G) � (� − G) 3G, (16)

where �(�, �) is given by (15).

3.2. Oldroyd-B Fluid with No Slip at the Wall. In this particu-
lar case, function �(�, �) given by (10) becomes

�ns (�, �) = exp(−�√Re√
�2 + �
�� + 1) . (17)

By using the auxiliary functions,

�1ns (�, �) = exp (−�√Re �) ,
�1ns (�, �) = �√Re2�√5� exp(−�

2Re4� ) , (18)

together with the relation

�ns (�, �) = %−1 {�ns (�, �)} = ∫∞
0

�1ns (�, �)
⋅ ℎ (�, �) 3� = �√Re 
2√5
� �−3/2exp(

:
�
 �
− �2Re 
4
�� ) − �√Re :2√5
⋅ ∫∞
0

4−�2Re/4
+((2�−��)
−���)/��2

⋅ 1�√
�� − 
�@1 (
2
�√:� (
�� − 
�)) 3�.

(19)

�e velocity 
eld corresponding to the 	ow with no-slip
conditions of the Oldroyd-B 	uid is given by

	ns (�, �) = ∫�
0
�ns (�, G) � (� − G) 3G = 2√5

⋅ ∫∞
�√Re�/2√���

4−�2+�Re�2/4�2�(� − 
Re�24
��2 )3�
− �√Re :2√5
⋅ ∫∞
0

∫�
0
� (� − G) 4−�2Re/4
+((2�−��)
−��	)/��2�√
�G − 
�

× @1 ( 2
�√:� (
�G − 
�)) 3G 3�.

(20)
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It is important to point out that the solution given by (20)
is similar to that obtained recently by Fetecau et al. [20, Eq.
(4.28)].

3.3. Maxwell Fluid with Slip Condition. For the 	ows of Max-
well 	uids with slip condition at the wall, (10) becomes

�sM (�, �)
= (�/√2) exp(−�√
Re√(� + 1/2
)2 − (1/2
)2)

�/√2 + √(� + 1/2
)2 − (1/2
)2

= �1 exp (−�√
Re
√(� + !1)2 − !21)
�1

+ √(� + !1)2 − !21 = �1 (�,√&1 (�)) ,

(21)

where �1(⋅, ⋅) is given by (11) and &1(�) = (� + !1)2 − !21 , �1 =�/√
, and !1 = 1/2
.
�e inverse Laplace transform of function (21) is

�sm (�, �) = [�1 (�, �)
+ !1 ∫�

0
�1 (�1√�2 − 	2) K1 (!, 	) 3	] 4−�1�

⋅ �14−�2Re�/4�−�1�√5�
− �21 4��1√Re�+�21 �−�1�Erfc(�√Re 
2√� + �√�)
+ !14−�1� ∫�

0
[�14−�2Re�/4�−�1�√5�

− �21 4��1√Re�+�21−�1�Erfc(�√Re 
2√� + �1√�)]
⋅ �√�2 − �2 K1 (!1√�2 − �2) 3�

(22)

and the velocity 
eld is given by

	sM (�, �) = (� ∗ �) (�) = ∫�
0
�SM (�, G) � (� − G) 3G. (23)

3.4. Maxwell Fluid with No Slip at the Wall. Making � → 0
and therefore � → 0 into (21) or 
� → 0 into (17), we have

�nsM (�, �) = exp (−�√Re√
�2 + �)
= exp (−�√Re 
√(� + !1)2 − !21) .

(24)

Using the formula

%−1 {4−�√Re�√�} = ℎ1 (�, �) = �√Re 
4−�2Re�/4�2�√5� (25)

we obtain

�nsM (�, �) = [ℎ1 (�, �)
+ !1 ∫�

0
ℎ1 (�, �) �√�2 − �2 K1 (!1√�2 − �2) 3�]

⋅ 4−�1� = �√Re 
2�√5� 4−�
2
Re�/4�−�1�

+ !14−�1� ∫�
0

�√Re 
2�√5� 4−�2Re�/4�
⋅ �√�2 − �2 K1 (!1√�2 − �2) 3�

(26)

and the velocity 
eld

	nsM (�, �) = (� ∗ �) (�) = ∫�
0
�nsM (�, G) � (� − G) 3G

= 2√5 ∫∞
�√Re�/2√�

4−�2−�1�Re�2/4�2�(�
− 
Re�24�2 )3� + !1 ∫�

0
∫	
0
� (� − G)

⋅ �√Re 
2�√5� 4−�2Re�/4�−�1	
⋅ �√G2 − �2 K1 (!1√G2 − �2) 3G 3�.

(27)

3.5. Second-Grade Fluid with Slip at the Wall. Making 
 → 0
into (10) and (14) and using the results

Q1 = �√5 ∫∞
0

4−�2Re/4
−
/�� 3�√�
= �√5 ∫∞

0
4(−�2Re/��)/4�2−�22√
�3�

= �√
� 2√5 ∫∞
0

4−�2−(�√Re/��)2/4�23�
= �√
� 2√5 ⋅ √52 4−1⋅�√Re/√�� = �√
�4−�√Re/√��

(28)



Advances in Mathematical Physics 5

we obtain the velocity 
eld of the second-grade 	uid with slip
at the wall in the equivalent forms

	sSG (�, �) = �√
�4−�√Re/√��� (�) − �24��√Re� (�)
⋅ ∫∞
0

4�2
−
/��Erfc(�√Re2√� + �√�)3� + 1
�
⋅ ∫∞
0

[�4−�2Re/4
√5�
− �24��√Re+�2
Erfc(�√Re2√� + �√�)]
⋅ 4(−
+�)/��√�� K1 ( 2
�√��)3�

(29)

or

	sSG (�, �) = � (�2√
� − � + √
�) 4−�√Re/√��� (�)
+ 4−�/��√
�� � (�) × ∫

∞

0
[�4−�2Re/4
−
/��√5�

− �24��√Re+�2
−
/��Erfc(�√Re2√� + �√�)]
⋅ √�K1 ( 2√
�√��)3�.

(30)

3.6. Second-Grade FluidwithNo-SlipCondition. Making
 →0 into (17) and using (18) and (28) we have

	nsSG (�, �) = 4−�√Re/��� (�) + �√Re2
�√5
⋅ ∫∞
0

∫�
0

� (� − G)�√G 4−�2Re/4
−
/��−	/��K1 ( 2
�
⋅ √�G) 3G 3�.

(31)

3.7. Newtonian Fluid with/without Slip Condition. �ese
cases are obtained easily from (6) and (10) by making 
 =
� = 0. We obtain the following expressions for the velocity

eld:

	sN (�, �) = ∫�
0
� (� − R) VsN (�, R) 3R,

	nsN (�, �) = ∫�
0
� (� − R) VnsN (�, R) 3R,

(32)

where

VsN (�, �) = 1�√Re 1√5� exp(−�
2Re4� ) − ( 1�√Re)

2

⋅ exp(�� + ��2Re)
⋅ erfc(�√Re2√� + √��√Re) ,

(33)

for 	ows with slip on the boundary, and

VnsN (�, �) = �√Re2�√5� exp(−�
2Re4� ) , (34)

for 	ows with no slip on the boundary, respectively.

Wemention that the results given by (33) and (34) are the
same as those obtained by Fetecau et al. (see [21], Eq. (29), forQ = 0, : replaced by �√Re and � replaced by �√Re).

Also, if in our results we consider �(�) = sin(S�) or �(�) =
cos(S�), (32)–(34) become equivalent to the results of Khaled
and Vafai (see [22], Eqs. (8), (9), (10), (16)) and to the results
obtained by Hayat et al. (see [23], Eqs. (13), (14), withQ = 0
andT →∞).

In the case of no slip on the boundary, our solution (32)
together with (34) is identical with the result obtained by
Fetecau et al. (see [24], Eq. (31) withTe� = 0).
4. Numerical Results and Conclusions

In this paper we have studied the 	ow of Oldroyd-B 	uids
generated by a moving 	at plate. Using Laplace transform
method, we obtained analytical expressions of the velocity
for both cases of 	ows with slip at the boundary and without
slip on the boundary. �e plate velocity was considered in a
general form�0�(�); therefore, solutions for several practical
problems can be obtained by choosing suitable forms of the
function �(�). From the dimensionless form of the studied
problem it can be seen that only Reynolds number and
nondimensional relaxation and retardation time in	uence
the 	uid 	ows. From this reason, the numerical studies are
made for several values of Reynolds number and of the time�. Graphs of velocity were plotted versus spatial coordinate �
for the case of translation of the plate with constant velocity,
namely, for�(�) = 1. Velocity 
elds corresponding to 	ows of
Maxwell 	uid, second-grade 	uid, and Newtonian 	uid were
also determined, in both cases, namely, 	ows with slip on the
boundary and 	ows with no slip on the boundary. In order
to study the physical behavior of the 	uid, some numerical
simulations were made using the Mathcad so�ware. In Fig-
ures 1 and 2, curves corresponding to velocity of the Oldroyd-
B 	uid for 
 = 0.25 and 
� = 0.15 and the dimensionless
friction coe�cient � = 0.75 are sketched. In Figures 1 and
2, the velocity curves for three values of time � and for three
values of Reynolds number Re in the case of 	ow with slip at
the plate and in the case of no slip at the plate are plotted.
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Figure 1: Velocity pro
les of Oldroyd-B 	uid for slip condition (16) with � = 0.75 and no-slip condition (20) for 
 = 0.25, 
� = 0.15, and
di�erent Reynolds number.

For a 
xed value of the time � or for a 
xed value of the
Reynolds number the issues whichmust be highlighted are as
follows.

�e 	uid 	ows more slowly if slippage occurs on the
boundary. Increasing of the Reynolds number values leads

to slowing of the 	ows in both cases, with or without slip. If
the values of the time � are increasing, then it increases the
thickness of the velocity boundary layer.

Figure 3 was drawn in order to compare the velocity
	ows for Oldroyd-B, Maxwell, and Newtonian 	uids. It is
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Figure 2: Velocity pro
les of Oldroyd-B 	uid for slip condition (16) with � = 0.75 and no-slip condition (20) for 
 = 0.25, 
� = 0.15, and
di�erent values of the time �.

important to note that, for the 	ow with no slip on the
boundary, the velocity of Maxwell 	uid has signi
cant varia-
tions in the area near plate.�is no longer occurs if the 	ow is
with slip at the boundary. Also, the thickness of the boundary

layer of the Maxwell 	uid is the smallest and the speed of this
type of 	uid becomes zero more quickly than other 	uids. If
the values of the time � are increasing, then the di�erences
between velocities of the three 	uids become insigni
cant.
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Advances in Mathematical Physics 9

Competing Interests

�e authors declare that they have no competing interests.

References

[1] K. R. Rajagopal and A. R. Srinivasa, “A thermodynamic frame
work for rate type 	uid models,” Journal of Non-Newtonian
Fluid Mechanics, vol. 88, no. 3, pp. 207–227, 2000.

[2] R. I. Tanner, “Note on the Rayleigh problem for a visco-elastic
	uid,” Zeitschri
 für Angewandte Mathematik und Physik, vol.
13, no. 6, pp. 573–580, 1962.

[3] K. R. Rajagopal and R. K. Bhatnagar, “Exact solutions for some
simple 	ows of an Oldroyd-B 	uid,” Acta Mechanica, vol. 113,
no. 1, pp. 233–239, 1995.

[4] N. D. Waters and M. J. King, “Unsteady 	ow of an elastico-
viscous liquid,” Rheologica Acta, vol. 9, no. 3, pp. 345–355, 1970.

[5] P. Puri and P. K. Kythe, “Stokes 
rst and second problems for
Rivlin-Ericksen 	uids with neoclassical heat condition,” ASME
Journal of Heat Transfer, vol. 120, pp. 44–50, 1996.

[6] P. M. Jordan and A. Puri, “Revisiting Stokes’ 
rst problem for
Maxwell 	uids,”�eQuarterly Journal ofMechanics and Applied
Mathematics, vol. 58, no. 2, pp. 213–227, 2005.

[7] C. Fetecau, D. Vieru, and C. Fetecau, “A note on the second
problem of Stokes for Newtonian 	uids,” International Journal
of Non-Linear Mechanics, vol. 43, no. 5, pp. 451–457, 2008.

[8] R. I. Tanner, “Partial wall slip in polymer 	ow,” Industrial and
Engineering Chemistry Research, vol. 33, no. 10, pp. 2434–2436,
1994.
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