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ABSTRACT Privacy concerns in the modern digital age have prompted researchers to develop techniques
that allow users to selectively suppress certain information in collected data while allowing for other
information to be extracted. In this regard, semi-adversarial networks (SANs) have recently emerged as
a method for imparting soft-biometric privacy to face images. SAN enables modifications of input face
images so that the resulting face images can still be reliably used by arbitrary conventional face matchers
for recognition purposes, while attribute classifiers, such as gender classifiers, are confounded. However,
the generalizability of SANs across arbitrary gender classifiers has remained an open concern. In this
paper, we propose a new method, FlowSAN, for allowing SANs to generalize to multiple gender classifiers.
We propose stacking a diverse set of SANmodels to compensate each other’s weaknesses, thereby forming a
robust model with improved generalization capability. Extensive experiments using different unseen gender
classifiers and face matchers demonstrate the efficacy of the proposed paradigm in imparting gender privacy
to face images.

INDEX TERMS Biometrics, face image, semi-adversarial networks, SAN, gender, privacy, adversarial, deep
learning.

I. INTRODUCTION

Face images of individuals contain valuable information
unique to themselves that facilitates biometric face recogni-
tion. Face recognition involves comparing features extracted
from a pair of face images, using a face matcher, to determine
their degree of similarity or dissimilarity [1], [2]. In addition,
other auxiliary information such as age, gender, and race,
which are called soft-biometrics, can also be extracted from
face images using machine learning techniques [1], [3], [4].
The increasing use of face recognition in various applications
has brought the issue of data privacy to the forefront [5]–[18].
While extracting soft-biometric information can be useful in
many applications [19], we should note that such informa-
tion can be abused in several ways, such as profiling users,
targeted advertisement, and increasing the risk of linkage
attacks [20]. Furthermore, extracting this informationwithout
the users’ consent may be viewed as a violation of their
privacy. One aspect of privacy involves granting users the
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right to determine which personal information to reveal and
which to conceal [21], [22]. In this regard, soft-biometric
privacywas introduced as a means for preserving the biomet-
ric utility of face images, while confounding soft-biometric
information, such as gender characteristics [23], [24].

Recently, European Union’s General Data Protection Reg-
ulation (GDPR) [25] has come to effect. One of its goals
is to protect the data collected from European users and
to regulate its usage. To this effect, it enforces any entity
(individual or group) collecting data from European users to
disclose the type-of-data collected, the intended usage, and
the data-processing techniques that will be used. Accordingly,
GDPR prohibits any processing of individuals’ information
beyond the stated purpose at the time of data collection.
For example, consider a scenario where users of a biomet-
ric application or service can optionally withhold their gen-
der information; however, such information could still be
extracted automatically from their biometric data [26]–[34].

In the context of GDPR, biometric data of individuals,
such as face photos or fingerprints, are collected solely for
the purpose of user recognition, without acquiring other
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demographic information such as age, gender, and ethnic-
ity. In such a scenario, applying data processing techniques
that allow extracting such sensitive information automatically
from a person’s biometric data [1], [3], [32], [35]–[40] with-
out their knowledge and consent can be a violation of the
users’ privacy.While GDPR prohibits unsolicited data extrac-
tion from European users, the possibility of unlawful data
collection still remains and can ultimately lead to negative
societal, economic, and political consequences [41]–[43].
Previously, we developed Semi-Adversarial Networks

(SAN) [44] for imparting soft-biometric privacy to face
images, where a face image is modified such that the match-
ing utility of the modified face image is retained while the
automatic extraction of gender information is confounded.
In our previous work [44], we empirically showed that the
ability to predict gender information, using an unseen gender
classifier from outputs of the SAN model, is successfully
diminished. In [45], we defined the generalizability of the
SAN model as its ability to confound arbitrary unseen1

gender classifiers. Generalizability is an important property
for real-world privacy applications since the lack thereof
implies that there exists at least one gender classifier that
can still reliably estimate the gender attribute from outputs
of the SAN model and, therefore, jeopardizes the privacy of
users. In order to address the generalizability issue of SAN
models, in this paper, we propose the FlowSAN model, that
progressively degrades the performance of unseen gender
classifiers. Extensive experiments on a variety of indepen-
dent gender classifiers and face image datasets show that
the proposed FlowSAN method (Fig. 1) results in a sub-
stantially improved generalization performance compared to
the original SAN method with regard to concealing gender
information while retaining face matching utility.

II. RELATED WORK

With regard to privacy concerns in recent years, a new line of
research has emerged that focuses on methods for imparting
soft-biometric privacy to biometric data and face images in
particular [8]–[10], [23], [24], [46]. Othman and Ross [23]
first proposed an approach for mixing input face images with
candidate images of the opposite gender using Active Shape
Model [47]. Subsequently, Mirjalili and Ross [24] developed
a scheme that modifies an input face image using adversarial
perturbations [48] where the performance of a given gen-
der classifier was confounded while the performance of a
face matcher was retained. Chhabra et al. [9] later extended
this research by including multiple attribute classifiers. They
applied additive perturbations to face images to either pre-
serve or suppress certain soft-biometric attributes [9]. While
these proposed schemes successfully confound a target
attribute classifier, they fail to generalize to unseen attribute

1The term ‘‘unseen’’ indicates that a certain classifier (or face matcher)
was not used during the training stage. On the contrary, the term ‘‘auxil-
iary’’ in this paper refers to the classifier (or face matcher) that is either
used or developed during the training phase.

FIGURE 1. Illustration of the FlowSAN model, which sequentially
combines individual SAN models in order to sequentially perturb a
previously unseen gender classifier, while the performance of an unseen
face matcher is preserved. A: An input gray-scale face image Iorig is
passed to the first SAN model (SAN1) in the ensemble. The output image
of SAN1, I ′

1
, is then passed to the second SAN model in the ensemble,

SAN2, and so forth. B: An unmodified face image from the CelebA [49]
dataset (Iorig) and the perturbed variants I ′

i
after passing it through the

different SAN models sequentially. The gender prediction results
measured as probability of being male (P(Male)) as well as the face
match score between the original (Iorig) and the perturbed

images (I ′
i
) are shown.

classifiers. Thus, soft-biometric attributes remain susceptible
to extraction by unseen classifiers.

In order to derive perturbations that are transferable to
unseen gender classifiers, Mirjalili et al. [44] designed a
convolutional autoencoder that modifies input face images
such that an auxiliary facematcher still retains goodmatching
performance on the modified output image while confound-
ing an auxiliary gender classifier. As a result, since the output
of their model is adversarial to one classifier and not to
the other, the architecture is referred to as Semi-Adversarial
Networks (SAN). The SAN model was shown to be able to
derive perturbations that are transferable to two unseen gen-
der classifiers. In [45], we investigated the generalizability
of SAN models across multiple arbitrary gender classifiers
and formulated an ensemble SAN model with a training
scheme based on different data augmentation techniques,
to enhance diversity in the ensemble of SANmodels. Further-
more, we explored the effectiveness of randomly selecting a
perturbed image from an ensemble of SANmodels, which we
refer to as Ens-Gibbs [45].

While these methods directly apply perturbations to
face images, recently, new techniques have emerged where
perturbations were applied to face representation vec-
tors computed by face matchers [8], [13]. In particular,
Morales et al. [8] proposed a neural-network-based model,
called SensitiveNet, that is able to remove soft-biometric
information from face representation vectors. Therefore, any
attribute classifier trained on face representation vectors may
not be able to extract such sensitive information. However,
these methods are based on the assumption that only face
representation vectors are stored in a biometric database.
This scheme is not desirable in many applications since
only storing face representations results in 1) the loss of
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TABLE 1. Overview of existing methods for imparting soft-biometric privacy and their comparison based on three criteria: Transferability, generalizability,
and retention of matching performance; transferability refers to the ability to generate perturbations that can successfully confound a different gender
classifier, whereas generalizability is a stronger criterion for the ability to confound any arbitrary unseen gender classifier.

human interpretability, and 2) the potential lack of compat-
ibility with newer face matchers in the future. Hence, it is
desirable to modify the gender information in the original
face images directly, which is also the goal of the method
presented in this paper, as opposed to modifying face rep-
resentation vectors. An overview of existing techniques and
their properties (transferability, generalization to arbitrary
attribute classifiers, and retaining matching utility) is shown
in Table 1.
In [45], we investigated how well the SAN model gen-

eralizes to multiple unseen gender classifiers and unseen
face matchers. To improve the generalizability of the SAN
model, we proposed an ensemble scheme based on multiple
SAN models trained on different training subsets. However,
we observed that even though the generalizability could be
improved, the SANmodel was still not able to generalize well
to all unseen face matchers and gender classifiers tested in
this study. In this work, we address the generalization issue
of the SAN method using a novel stacking paradigm that
will successively enhance the perturbations for confounding
an arbitrary unseen gender classifier as illustrated in Fig. 1.
We refer to this method as FlowSAN. The primary contribu-
tions of this work are as follows:

• Designing the FlowSAN model that can successively
degrade the performance of arbitrary unseen gender
classifiers;

• Generalizing the FlowSAN model to multiple arbitrary
gender classifiers;

• Demonstrating the practicality and efficacy of the pro-
posed approach in confounding the gender information
for real-world privacy applications via extensive experi-
ments involving broad and diverse sets of datasets.

III. PROPOSED METHOD

Original SAN Model [44]: The SAN model for imparting
gender privacy to face images was first proposed in [44],
and the overall architecture is shown in Fig. 2. The SAN
model leverages pre-computed face prototypes, which are
average face images for each gender. SAN consists of three
subnetworks: 1) a convolutional autoencoder that perturbs
an input face image via face prototypes, 2) an auxiliary face
matcher, which is a convolutional neural network (CNN),
and 3) a CNN-based auxiliary gender classifier. The input

FIGURE 2. Architecture of the original SAN model [44] composed of three
subnetworks: I: A convolutional autoencoder [50], II: An auxiliary face
matcher (M), and III: An auxiliary gender classifier (G). In addition,
the unit D computes the pixelwise dissimilarity between input and
perturbed images during model training.

to the convolutional autoencoder is a gray-scale2 face image
Iorig, of size 224×224×1, fused with a face prototype belong-
ing to the same gender (Psm). After the fused input image was
passed through the encoder and decoder networks, the face
prototypes (Psm prototype face image from the same gen-
der as input image, or Pop the prototype face image of the
opposite gender) are added as additional channels to the
resulting 128-channel feature-map representation. Finally,
a 1×1-convolutional operation is used to reduce the num-
ber of channels in the resulting feature-maps to a 224×
224×1-dimensional output image, which is denoted as
I ′sm or I ′op, depending on the type of prototype used by the
decoder:

I ′sm = SAN(Iorig;Psm), and

I ′op = SAN(Iorig;Pop). (1)

These output images, I ′sm and I ′op, are then passed to both the
auxiliary face matcher and the auxiliary gender classifier. The
auxiliary face matcher predicts whether the original and the
perturbed face images belong to the same individual via a
face match score. The gender classifier predicts the gender of
the input and output images via gender probabilities for male
and female.3 For the auxiliary face matcher, the pre-trained,

2Since most face matchers work with gray-scale face images, we used
gray-scale images in all experiments to allow for a fair comparison between
matchers based on the same input data.

3In this paper, we have assumed binary labels for gender; however, it must
be noted that societal and personal interpretation of genderwill result inmany
more classes.
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publicly available VGG-face model [51] is used, which com-
putes the face representation vectors for an input face image,
and the similarity between two face representation vectors
determines the associated match-score.
Three different loss functions are defined based on the

outputs from the autoencoder, the auxiliary gender classifier,
and the auxiliary facematcher. The first component of the loss
function, JD, measures the pixelwise dissimilarity between
the input and the output from the same-gender prototype I ′sm,
which is used to ensure that the autoencoder subnetwork is
able to construct realistic face images:

JD(Iorig, I
′
sm) =

1

h×w

h×w
∑

i=1

H(I (i)orig, I
′(i)
sm ), (2)

where H indicates the cross-entropy function for the binary
case, defined as

H(p, q) = − (p log(q) + (1 − p) log(1 − q)) . (3)

The second loss term, JM , is the squared L2 distance
between the face representation vectors obtained from the
auxiliary face matcher (VGG-face network [51]) for the input
image and the perturbed output, making the autoencoder learn
how to perturb face images such that the accuracy of the face
matcher is retained:

JM (Iorig, I
′
op) = ‖RM (Iorig) − RM (I ′op)‖

2
2, (4)

where RM (I ) and RM (I ′op) indicate the face representation
vectors for the input image and the perturbed output based on
the opposite-gender prototype.

Finally, the third loss term, JG, is the cross-entropy loss
function applied to the gender probabilities computed by the
auxiliary gender classifier, G, on the two perturbed output
images. Here, the ground-truth label y of the input image is
used for I ′sm, but the reverse (1 − y) is used for I ′op:

JG(y, I
′
sm, I ′op) = H(y,G(I ′(k)sm )) + H(1 − y,G(I ′(k)op )). (5)

The total loss,Jtot , is the weighted sum of the three individual
loss functions described in the previous paragraphs,

Jtot = λ1JD + λ2JM + λ3JG, (6)

where the parameters λi are the relative weighting terms
that can be chosen uniformly or adjusted via hyperparameter
optimization.

In the remaining part of the paper, we use notation I ′ for
the output of a SAN model on a face image Iorig when using
the opposite-gender prototype, i.e., I ′ = SAN(Iorig;Pop).

Based on our previous study [45], we employed a data
augmentation and resampling scheme for training the aux-
iliary gender classifiers as a means to diversify the SAN
models. In particular, by resampling the instances belonging
to the underrepresented race in the CelebA [49] dataset,
we aimed to balance the racial distribution in the training data.
In this regard, we generated five resampled training datasets,
where in each one a random disjoint subset of samples from
the underrepresented race was replicated 40 times. This is

FIGURE 3. Illustration of an ensemble SAN, where individual SAN models
are trained independent of each other using n diverse, pre-trained,
auxiliary gender classifiers (G = {G1, G2, . . . , Gn}), and a face matcher M
that computes face representation vectors for both input face image Iorig
and the output of the SAN model. D refers to a module that computes
pixelwise dissimilarity between an input and output face image.

an effort to enhance the diversity among the SAN models
in an ensemble. The resampling approaches that are used
to mitigate the imbalances in the different training datasets
employed in this study are described in [45].

A. TRAINING AND EVALUATION OF AN ENSEMBLE

SAN MODEL

In our previous work [45], we proposed an ensemble
approach for generalizing SAN models to unseen gender
classifiers. The objective of an ensemble SANwas to create n
SAN models such that their union can span a larger subset of
the hypothesis space compared to a single SANmodel. There-
fore, for a new test image and an arbitrary unseen gender clas-
sifier, G, it is likely that at least one of these SAN models in
the ensemble is able to confoundG. For training an ensemble
of SANs, we start with n auxiliary gender classifiers, G =

{G1,G2, . . . ,Gn}, which were trained using different data
augmentation schemes (to achieve higher diversity among
classifiers), and a pre-trained face matcherM . Then, we train
n SAN models, where SANi is associated with the auxiliary
gender classifier Gi, as shown in Fig. 3. According to the
original SAN model proposed in [44], the loss function for
training eachmodel is composed of three components: gender
loss, matching loss, and pixelwise dissimilarity loss (Eq. 6).
Note that the ensemble of SAN models described with this
setting can be trained in parallel since each SAN model is
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FIGURE 4. Two approaches for evaluating an ensemble of SAN models:
Combining a set of n SAN models trained in the ensemble by (A)
averaging n output images, and (B) randomly selecting an output (Gibbs).

independent of others, and each individual SAN model takes
unmodified images as input (Fig. 3).
Evaluation of an ensemble of models, that were trained

independently, can be performed in two ways:
1) Averaging: Evaluating the ensemble of SANs by com-

puting the average output image from the set of
n outputs as shown in Fig. 4-A.

2) Gibbs: Randomly selecting the output of one
SAN model (Fig. 4-B).

These two ensemble-based methods serve as a basis for the
comparison with the proposed FlowSAN method, which is
described in the following section.

B. FLOWSAN: CONNECTING MULTIPLE SAN MODELS

Assume there exists a large set of gender classifiers G =

{G1,G2, . . . ,Gg}, where each Gi(I ) predicts the probabil-
ity that a face image I belongs to a male individual. Fur-
thermore, suppose there exists a set of m face-matchers
denoted by M = {M1,M2, . . . ,Mm}, where each Mi(Ia, Ib)
computes the match score between a pair of face images,
Ia and Ib. Our goal is to design an ensemble of n

SAN models, E = 〈S1, S2, . . . , Sn〉, that, once they are
sequentially stacked together, can be shown to generalize to
confound unseen gender classifiers in G. We hypothesize that
stacking diverse SANs sequentially would have a cumula-
tive effect, where each SAN adds perturbations to an input
image that confound a particular gender classifier. Therefore,
stacking SANs would enhance their generalizability in terms
of decreasing the performance of multiple, diverse gender
classifiers.

We define a recursive function 9E (Iorig, t) for stacking
SAN models in E = {SAN1, . . . ,SANn}, as follows:

9E (Iorig, t) =

{

SAN1(Iorig) if t = 1,

SANt

(

9E (Iorig, t − 1)
)

otherwise.
(7)

By varying t from 1 to n, 9E (Iorig, t) produces a sequence
of n output images 〈I ′1, I

′
2, . . . , I

′
n〉:

• t = 1 → I ′1 = 9E (Iorig, 1) = SAN1(Iorig),
• t = 2 → I ′2 = 9E (Iorig, 2) = SAN2

(

SAN1(Iorig)
)

,
• . . .

• t = n → I ′n = 9E (Iorig, n) = SANn

(

. . . SAN1(Iorig)
)

.

In particular, we hypothesize that for each Gi ∈ G, the stack-
ing of SAN models will progressively confound Gi. Since
the individual SAN models were trained to have a minimal
impact on face matching performance, we further hypoth-
esize that the perturbations introduced in the output face
images 〈I ′1, . . . , I

′
n〉 from the stacked SAN models should not

substantially affect the face recognition performance of the
matchers in M.

1) TRAINING PROCEDURE FOR STACKING SAN MODELS

The goal of this work is to develop a model that leverages
the image perturbations induced by individual, diverse SAN
models to broaden the spectrum of diverse gender classifiers
that can successfully be confounded. To accomplish this
goal, we designed and evaluated the FlowSAN model, where
multiple individually-trained SAN models were sequentially
combined.

This section describes the training procedure for the
FlowSAN model, where SAN models i = 1, . . . , n are
trained in sequential order, each with their corresponding
auxiliary gender classifier and an auxiliary face matcher,
which is common among all SANs. The first SAN model,
SAN1 ∈ E = {SAN1, . . . ,SANn}, takes the original image
as input and generates a perturbed output, I ′1, while using the
auxiliary gender classifier G1 during its training. Then, once
SAN1 is trained, the entire training dataset is transformed
by SAN1, and the transformed data is then used for training
the next SAN model while using its corresponding auxiliary
gender classifier. This process is repeated for SAN models
i = 1, . . . , n, to obtain n SAN models that are trained in
sequential order. Note that the matching loss is computed
between face representation vectors (generated by a face
matcher) of the SAN output with that of the corresponding
original face image, as opposed to the input to the SANmodel
(which is already perturbed for i ≥ 2). This is to ensure that
the matching performance does not substantially decline as
the sequence is expanded. Furthermore, we considered three
different scenarios for the pixelwise dissimilarity loss:

1) Omitting the pixelwise dissimilarity loss term;
2) pixelwise dissimilarity with respect to the input,

i.e., I ′i−1 for SANi;
3) pixelwise dissimilarity loss with respect to the original

image Iorig for each of SAN models i = 1, . . . , n.
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FIGURE 5. An illustration of a FlowSAN model: n SAN models are trained sequentially using n auxiliary gender classifiers (G = {G1, G2, . . . , Gn}), and a
face matcher M that computes face representation vectors for both input image I and the output of SAN model. Both auxiliary face matcher and the
dissimilarity unit (D) use the original image along with the output of their corresponding SAN.

We evaluated all three different pixelwise loss function
schemes listed above. However, we were unable to observe
any noticeable differences except for some cases where the
third scheme slightly outperformed the other two. Therefore,
we only report the results of the third case in this paper. The
training procedure is illustrated in Fig. 5.

2) EVALUATING THE FLOWSAN MODEL

During the model evaluation, the auxiliary networks (the
auxiliary gender classifiers and auxiliary face matchers) from
the individual SANs are discarded, and the n SANmodels are
stacked in the same sequence they were trained, in order to
enhance their generalizability to arbitrary gender classifiers.
In the FlowSAN model, the first SAN model (SAN1) takes
an original image (Iorig) as input and generates a perturbed
output image I ′1. This output image is then passed into the
next SAN model in the sequence to obtain I ′2, and so forth.
In general, the ith SAN model (SANi for i = 2, . . . , n) takes
the output of the previous SAN model (I ′i−1) as input and
generates the perturbed output I ′i .

IV. EXPERIMENTS AND RESULTS

We designed two different protocols for training n SAN
models:

(a) Training an ensemble of SANs independent of each
other as described in [45] (see Section III-A);

(b) Training the FlowSAN model using the sequential
procedure described in Section III-B.

Protocol (a) was adapted from [45] and is further described
in Section III-A. For evaluating models trained in the ensem-
ble, we applied two techniques: 1) taking the average out-
put from SAN models which we denote as Ens-Avg, and
2) randomly selecting the output which we denote as Ens-
Gibbs. In addition, similar to [45], we also define the oracle
best-perturbed sample for a specific gender classifier, G:

best(I ; E,G) =











argmin
SANi∈E

G(SANi(I )) if y = 1,

argmax
SANi∈E

G(SANi(I )), otherwise.
(8)

TABLE 2. Overview of datasets used in this study. The letters in the
‘‘Usage’’ column indicate the tasks for which the datasets were used.
a: Training auxiliary gender classifiers, b: SAN training, c: SAN evaluation,
d: Constructing unseen gender classifiers used for evaluating SAN models.

The results of best-perturbed samples are denoted as Ens-
Best. This analysis indicates which output from the ensemble
model E has resulted in the highest prediction error for a
particular gender classifier G if the best output is selected.

The training of the FlowSANmodel was initiated from the
pre-trained individual SAN models in [45] and then trained
for 10 additional epochs on the CelebA-train subset [49]
(see Table 2) using the training procedure described in
Section III-B. Then, the models were stacked successively to
generate a sequence of perturbed output images, 〈I ′1, . . . , I

′
n〉.

As the FlowSANmodel conceals the gender information in
face images incrementally, it naturally produces a sequence
of perturbed face images, where the length of this sequence
is determined by its ensemble size. By varying the size of
the ensemble, we can have a fair comparison between the
ensemble approach vs. the FlowSAN model, such that the
number of SANs used to obtain an output from the ensemble
model is consistent with the number of SANs that are used to
generate the output from the FlowSAN model.

For model evaluation and comparison, we used four test
datasets: CelebA-test [49], MORPH-test [52], MUCT [53],
and RaFD [54]. The number of male and female individuals
in each dataset is listed in Table 2.

A. PERFORMANCE IN CONFOUNDING UNSEEN

GENDER CLASSIFIERS

In order to evaluate the generalization performance of the
three ensemble-based methods discussed in the previous
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FIGURE 6. Area under the ROC curve (AUC) measured for the six unseen gender classifiers (CNN-3, CNN-2, CNN-1, AFFACT, IntraFace, and G-COTS)
on the test partitions of the four different datasets (CelebA, MORPH, MUCT, and RaFD). The gender classification performance on the original
images (‘‘Orig.’’) is shown (blue dashed line) as well as the perturbed samples using the three ensemble-based models (Ens-Avg, Ens-Gibbs,
Ens-Best), the proposed FlowSAN model, and the face mixing approach [23] (gray dashed line). The index (1, 2, . . . , 5) on the x-axis indicates the
sequence of outputs 〈I ′

1
, I ′

2
, . . . , I ′

5
〉 obtained by varying the ensemble size, n. In almost all cases, stacking three SAN models results in an AUC of

approximately 0.5 (perfectly random gender prediction).

section (Ens-Avg, Ens-Gibbs, Ens-Best) as well as the pro-
posed FlowSAN model, we considered six independent gen-
der classifiers. The experiments designed in this section
assess how well the proposed models are able to con-
found gender classifiers that were unseen during training.
These six gender classifiers include three models that were

already trained: a commercial-of-the-shelf gender classifier
(G-COTS), IntraFace [55], AFFACT [56], and three CNN
models built in-house, which we refer to as CNN-1, CNN-2
(trained using MORPH-train and LFW, respectively), and
CNN-3 (trained on the union of MORPH-train and LFW).
Note that these three CNNmodels have shown a similar level
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FIGURE 7. A randomly selected set of examples showing input face images and their outputs from I ′
1

to I ′
5

using (A) the ensemble model, Ens-Avg,
and (F) using the FlowSAN model.

of performance on the original test-sets, compared to the other
three pre-trained gender predictors.
Fig. 6 shows the area under the ROC curve as a perfor-

mance metric for evaluating the generalization performance
of each unseen gender classifier on the four independent
test datasets. The performance of these gender classifiers
on the original images (before perturbations), as well as the
outputs from the mixing approach by [23], is also shown for
comparison.
In all cases, the FlowSAN approach results in lower AUC

values (lower is better) of predictions made by unseen gender
classifiers (Fig. 6) compared to the ensemble models Ens-
Avg and Ens-Gibbs. In fact, the results of the stacking SAN
models are almost on par with the oracle best-perturbed
samples (Ens-Best) for each gender classifier. In some cases,
the FlowSANmodel even outperforms Ens-Best. It is impor-

tant to note that selecting the best-perturbed sample

(from the individual SAN models) for each gender clas-

sifier without a priori knowledge of the classifier is infea-

sible in practice. Yet, we are able to outperform the best

result using the FlowSAN model in several cases.

Note that in a real privacy application, reaching a near
random gender prediction performance (AUC ≈ 0.5, and
Equal Error Rate (EER) ≈ 0.5) is desired for gender
anonymization. As it can be seen in Fig. 6, both Ens-Avg and

Ens-Gibbs methods produce samples that are mostly inca-
pable of lowering the AUC of the unseen gender classifiers
below 0.75 AUC. Based on the results shown in Fig. 6
(and the EER results shown in Fig. S1), it is evident that,
in the majority of cases, a sequential stacking of three SAN
models via FlowSAN produces the desired behavior in terms
of face gender-anonymization, i.e., AUC ≈ 0.5 (similarly,
EER ≈ 0.5). Although, in some cases, the 5th output from
Ens-Avg and Ens-Gibbs resulted in a low, desired AUC
of ≈ 0.5, it also has a substantially detrimental effect on the
face matching performance, as discussed in Section IV-B.

As a result, we conclude that stacking three SAN models
in FlowSAN is sufficient to achieve the best gender label
anonymization performance across a set of different, unseen
gender classifiers and face image datasets. Stacking fewer
than three models affects unseen gender classifiers substan-
tially less, and stacking more than three models induces such
strong perturbations that flipping the predicted labels could
again de-anonymize the perturbed face images with respect
to their gender labels.

We shall note that our study was not the first to confound
gender classifiers to produce random predictions. In [23],
researchers proposed a face mixing approach that also leads
to successful gender anonymization (approximately 0.5 AUC
gender prediction performance for a specific gender
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FIGURE 8. True Match Rate (TMR) values at False Match Rate (FMR) of 0.1% obtained using the four unseen face matchers, M-COTS, DR-GAN,
FaceNet, and OpenFace, on the original images as well as the perturbed outputs after stacking the SAN models, and using the ensemble models
(Ens-Avg and Ens-Gibbs). Note that the matchers’ performance obtained after applying the first three SANs in the FlowSAN model is close to the
original performance, but it further diminishes when the sequence is extended.

classifier); however, this approach was unable to retain the
face matching utility. In different studies, the researchers
were able to retain face matching utility but without gen-
eralizing to arbitrary gender classifiers [9], [24]. Thus,
the FlowSAN model we propose in this paper presents the
first successful approach for satisfying both objectives: con-
cealing gender information and retaining matching perfor-
mance to a satisfactory degree across a variety of independent
gender classifiers and face matchers.

B. RETAINING THE PERFORMANCE OF UNSEEN FACE

MATCHERS

To assess the effect of the gender perturbations on the
matching accuracy, we considered four different unseen
face matchers. This includes a commercial-of-the-shelf face
matcher (M-COTS), which has shown state-of-the-art perfor-
mance in face recognition, as well as three publicly avail-
able algorithms that provide face representation vectors: DR-
GAN [57], FaceNet [58], and OpenFace [59]. For the latter
three models, wemeasured the cosine similarity between face
representation vectors obtained from the original images and

face representation vectors obtained from the SAN-perturbed
output images.

Fig. 8 shows the True Match Rate (TMR) values at False
Match Rate (FMR) of 0.1% for different ensemble methods.
In most cases, the performance of the face matchers regarding
the first three outputs (I ′1, I

′
2, and I

′
3) is similar and relatively

close to the matching performance on original images. We
note that stacking three SANs in FlowSAN yields the desired
performance with regard to confounding unseen gender clas-
sifiers. Therefore, the evaluation of the face matching perfor-
mance for stacking more than three SANs I ′3 (i.e., I

′
4 and I

′
5)

is only included for completeness.
Comparing the performance of face matchers for equal

values of n, we observe that the face matchers appear to
perform slightly better on outputs produced by the ensemble
model compared to the FlowSANmodel. However, the extent
to which the gender classification performance is reduced
by the two models is not the same for equal values of n
(Table 3). The ensemble model requires at least n = 5
individual SANmodels to be able to confound unseen gender
classifiers to reach the same level of gender anonymization as
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TABLE 3. Comparing the overall average performance of six unseen
gender classifiers and four unseen face matchers over the four evaluation
datasets using n = 3 or n = 5 SAN models. This shows that stacking 3 SAN
models results in gender anonymization EER ≈ 0.5, while the the average
matching performance is still comparable to the unmodified images as
well as the matching performance on the outputs form other existing
methods.

the FlowSAN model with n = 3. Therefore, if we compare
the ensemble models with n = 5 to the FlowSAN model
with n = 3, the face matchers perform substantially better
on the face image outputs by the FlowSAN model (Fig. 8).
Further, note that the performance of M-COTS on CelebA
on the original images is already as low as 85.6%. In fact,
all matchers perform poorly on the CelebA dataset, which
may be due to different face orientations captured in the
wild.

1) PRESERVING PRIVACY

The overall average performance considering the two tar-
get objectives of this study, i.e., confounding gender clas-
sifiers and retaining the matching utility of face images,
is provided in Table 3. In this analysis, the average EER
results of all six gender classifiers over all four evaluation
datasets were computed for original images, outputs from
Ref. [23], as well as outputs from the stacking and the ensem-
ble models using n = 3 and n = 5. The results clearly
show that the FlowSAN model outperforms the ensemble-
based methods, including the oracle-best results. On the other
hand, the average true matching rate (TMR) values, at a
false matching rate (FMR) of 0.1%, are also computed simi-
larly, and the results indicate that the Ens-Gibbs method has
the highest performance for both ensemble sizes, while the
performance of the FlowSAN model at n = 3 is ranked
as second, but it is very close to that of Ens-Gibbs. The
detailed EER results for each gender classifier is provided
in Table S1.

2) COMPUTATIONAL EFFICIENCY

The overall computational cost for training the ensemble-
based approach and the FlowSAN model is similar, except
that FlowSAN requires an additional data transformation
step between each consecutive SAN training. However,
the ensemble approach comes with a bigger advantage that
the individual SAN models can be trained in parallel, while
the SAN models in the FlowSAN model have to be trained
sequentially.

V. CONCLUSION

In this work, we address one of the main limitations of
previous gender privacy methods, namely, their inability to
generalize across multiple previously unseen gender classi-
fiers. In this regard, we propose the FlowSAN method that
sequentially combines diverse perturbations for an input face
image to confound the gender information with respect to
an arbitrary gender classifier. We compared the performance
of the proposed FlowSAN model with two ensemble-based
approaches: 1) using the average output of SAN models
trained independently of each other (Ens-Avg); 2) randomly
selecting the output from the SAN models in the ensemble
(Ens-Gibbs).

Our experiments show that the FlowSAN method out-
performs the other ensemble-based approaches in terms of
confounding a range of gender classifiers. More importantly,
while gender classification is successfully confounded, face
matching accuracy is mostly retained for all perturbed output
face images, thereby preserving the biometric utility of the
gender-anonymous face images.

While this work only focused on confounding gender
labels to demonstrate this method’s efficacy in hiding soft-
biometric attributes, our method can be readily extended and
generalized to incorporate other soft-biometric attributes (for
example, age and ethnicity), which will be the subject of
future studies.
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