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ABSTRACT

We examine the problem of scheduling 2-machine flowshops in order to

minimize makespan, using a limited amount of intermediate storage buffers.

Although there are efficient algorithms for the extreme cases of zero and

infinite buffer capacities, we show that all the intermediate (finite

capacity) cases are NP-complete. We prove exact bounds for the relative

improvement of execution times when a given buffer capacity is used. We

also analyze an efficient heuristic for solving the 1-buffer problem,

showing that it has a 3/2 worst-case performance. Furthermore, we show

that the "no-wait" (i.e., zero buffer) flowshop scheduling problem with

4 machines is NP-complete. This partly settles a well-known open question,

although the 3-machine case is left open here.
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1. Introduction

In the last few years we have witnessed a spectacular progress towards

understanding deterministic multiprocessor scheduling problems of various

types. Many interesting problems can be solved by efficient algorithms

([4], [7], [15]), whereas for others it is now understood that such

algorithms may very well not exist ([18], [25], [12]). In contrast,

single processor scheduling is an area that was considered long ago under

control ([5]). For an overview of results in scheduling we recommend [3];

[19], [8] and [14] also stress certain aspects of the area.

Flowshop scheduling is a problem that is considered somehow inter-

mediate between single- and multi-processor scheduling. In the version

concerning us here, we are given n jobs that have to be executed on a

number of machines. Each job has to stay on the first machine for a

prespecified amount of time, and then on the second for another fixed

amount of time, and so on. For the cases that the (j+l)st machine is

busy executing another job when a job is done with the j-th machine, the

system is equipped with first-in, first-out (FIFO) buffers, that cannot be

bypassed by a job, and that can hold up to b. jobs at a time (see

Figure 1). We seek to minimize the makespan of the job system, in other

words, the time between the starting of the first job in the first

machine and the end of the last job in the last machine.

Some information had been available concerning the complexity of

such problems. In the two-machine case, for example, if we assume that

there is no bound on the capacity of the buffer (b = A) we can find the

optimum schedule of n jobs in O(n log n) steps using the algorithm of

[16]. Notice that, for m > 2, the m-machine, unlimited buffer problem
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is known to be NP-complete [9]. Also for two machines, when no buffer

space is available (b= 0, the "no-wait" case) the problem can be

considered as a single-state machine problem in the fashion of [7]. As

noted by [8], the case of the 2-machine flowshop problem in which b is

given positive, finite integer was not as well understood. In fact, in

[6] this practical problem is examined, and solutions based on dynamic

programming are proposed and tested.

In Section 2 of the present paper we show that all these problems

with 0 < b < - are NP-complete ([18], [1], [12]), and hence, most

probably, not susceptible to efficient algorithms. This is somewhat

surprising, considering that efficient algorithms do exist for both

limiting cases.

Many hard problems are now known to be NP-complete. These include

the traveling salesman problem, the satisfiability problem for propositional

calculus, and integer programming. The confidence of researchers that

these problems cannot be solved by anylefficient (polynomial-time)

algorithm is due to the facts that (a) no such problem is solvable by

any known efficient algorithm, and (b) if one NP-complete problem is

solvable by an efficient algorithm, then all NP-complete problems are.

Thus, whenever a new problem is added to this elite class, prospective

solvers usually turn to less ambitious goals.

One such possible alternative is that of approximation algorithms

([11], [2]); efficient algorithms, that is, producing a solution which is

guaranteed to be at most a fixed fraction away from the optimum. We do

approach the 1-buffer flowshop problem in this way. With this goal in

mind, we prove in Section 3 that using 1 buffer can save up to 1/3 of the
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makespan without buffer, and that 1/3 is the best possible such fraction.

Finally, in Section 4 we use this idea to show that a simple heuristic

(namely scheduling without buffer, and then taking full advantage of the

buffer by "squeezing out" as much idle time as possible) produces solutions

that are always within 50% of the optimum. We then show that this bound

can also be achieved. However, we present simulation results suggesting

that the typical performance of our algorithm is of relative error around

4-5%. Our approach can also be extended to b buffer spaces,although the

proof is more complicated.

In Section 5 we present results that extend our understanding of the

complexity of flowshop scheduling under buffer constraints in another

direction: we show that the m-machine zero-buffer problem is NP-complete

for m > 4. As mentioned earlier, the m= 2 case can be solved

efficiently by using ideas due to Gilmore and Gomory [71 and such "no-wait"

problems in general can be viewed as specially structured Traveling

Salesman problems [23], [26]. Furthermore, it was known that the problem

is hard when m is allowed to vary as a parameter [19]. For fixed m

and particularly m= 3 the complexity of the problem was an open question

[19], [14]. Although our proof for m > 4 is already very complicated,

it appears that settling the m= 3 case requires a departure from our

methodology.

Finally, in Section 6 we discuss our results, their implications,

sb, sbm-l

=Machine 1 1e 1 1 qvl I 1Machine Machine
1 2 M

Buffer

Figure 1
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2. The Complexity of Flowshop Scheduling with Buffers

We start by introducing our problem for two machines. Each job is

*

represented by two positive integers, denoting its execution time re-

quirements on the first and second machine respectively. Now, a feasible

schedule with b buffers is an allocation of starting times to all jobs

on both machines, such that the following conditions are satisfied:

a) No machine ever executes two jobs at the same time. Naturally,

if a job begins on a machine, it continues until it finishes.

b) No job starts on any machine before the previous one ends; no

job starts at the second machine unless it is done with the first.

c) No job finishes at the first machine, unless there is buffer

space available--in other words there are less than b other jobs that

**

await execution on the second machine.

d) All jobs execute on both machines in the same order; this

restriction comes from the FIFO nature of the buffer.

More formally,

DEFINITION. A job J is a pair (a,c) of positive integers. A

feasible schedule with b buffezs for a (multi)-set X = {Jl ,... JJn

of jobs (called a job system) is a mapping S:{l,...,n} X {1,2} + ;

For the purpose of clarity in the proofs that follow, we also allow 0

execution times. If a job has 0 execution time for the second mach.ne

it is not considered to leave the system after its completion in the

first machine. One may disallow 0 execution times, if they seem unnatural

by multiplying all execution times by a sEultably large integer--say n--

and then replacing 0 execution times by 1.

**

One may allow the use of the first machine as temporary storage, if no

other buffer is available; this does not modify the analysis that follows.

r -e 2 it is demonstrated that this ½s different from having an extra

f gfer.



S(i,j) is the starting time of the i-th job on the j-th machine. (The

finishing time is defined as F(i,l) = S(i,l) + i't F(i,2) = S(i,2) + i..)

S is subject to the following restrictions

a) i ~ j * S(i,k) f S(j,k).

b) Let r1,7r2 be permutations defined by i < j * S(rk(i),k) <

S(7k(j) ,k). Then I1 = 2 = (this is the FIFO rule).

c) i ~ n F(T(i),k) < S(T(i+l),k).

d) F(7T(i),l) < S(T(i),2).

e) i < b + 2 X F(fr(i-b-1),2) < F(7T(i),l).

The makespan of S is p(S) = F(T(n),2). It should be obvious how the

definition above generalizes to m machines.

A feasible schedule is usually represented in terms of a double

Ghannt chart as in Figure 2. Here 5 jobs are scheduled on two machines

for different values of b, T is the identity permutation. In 2a and

2c a job leaves the first machine when it finishes, whereas in 2b and 2d

it might wait. The buffers are used for temporary storage of jobs (e.g.,

job (3) in 2c spends time T in the buffer). A schedule without super-

fluous idle time is fully determined by the pairs (ai, i), and b;

hence finding an optimum schedule amounts to selecting an optimum

permutation.

As customary for the purpose of proving NP-completeness we shall

first define a corresponding decision problem.

2-machine b-buffer flowshop scheduling ((2,b)-FS)

Given n jobs and integers b and L, is there a feasible schedule

S with b buffers such that P(S) < L?



7

Mach I 2 3 4 5
1 2

Mach 2 | g 2 3 4 FEW
3 1 I2

4 ! I 0 2 3 4 5 6 71 8 9 to 1 time
(a)

5 2 I (o)

1 2 3 4 5

t ~1 - 2 ~ 1 3 4Z t/ 5

o (b) 11

Iii 1: 2 5 3| 4 5
Figure 2

a) b=o 0 s c p- -d r- tn10

b) b=O 1. . 2 
c) b=l

d) b=l idbl 2 3 4 5

0 (d) O10

Figure 2

Proving that a problem is NP-complete entails to first showing that

it can be solved by a polynomial-time non-deterministic algorithrn,and then

that a known NP-complete probiem is efficiently reducible to it. As usual

the first task is routine, since a non-deterministic algorithm could guess
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the optimal permutation I, construct the corresponding schedule S, and

check that p(S) < L. In our case, the known NP-complete problem that

can be reduced to (2,b)-FS is the following.

Three-way matching of integers (3MI)

Given a set A of n integers A = {al,...,an} and a set B of

2n integers B = {bl,..,b2n} is there a partition of B into n

pairs Pi = {Pil'Pi2} such that for all i ai + Pil + Pi2 = c where

c = l/n(Eai + Eb.) (an integer)?

This problem is known tobe NP-complete [12].

THEOREM 1. For all b, 0 < b < a, the (2,b)-FS problem is NP-

complete.

Proof. Let us first show that the three-way matching of integers

problem reduces in polynomial time to (2,1)-FS. Suppose that we are

given an instance {al,...,an , {bl,. ,b2n of the 3MI problem. It is

immediately obvious that we can assume that c/4 < ai, bj < c/2, and

that the ai, b.'s are multiples of 4n; since we can always add to the

a. and b.'s a sufficiently large integer, and then multiply all

integers by 4n. Obviously, this transformation will not affect in any

way the existence of a solution for the instance of the 3MI problem.

Consequently, given any such instance of the 3MI problem, we shall

construct an instance I of the (2,1)-FS problem such that I has a

schedule with makespan bounded by L iff the instance of 3MI problem

were solvable. The instance of the (2,1)-FS problem will have a set 9

of 4n+l jobs, with execution times (ai', i
)

as follows:
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a) We have n-l jobs K K1,..,Kn_1 with Ki = (c/2,2). Also we

have the jobs K0 = (0,2), and K = (c/2,0).
n

b) For each 1 < i < 2n we have a job B = (l,bi) and for each

1 < i < n we have a job Ai = (c/2,ai).

L is taken to be n(c+2); this completes the construction of the

instance I of the (2,1)-FS.

We shall show that I has a schedule S with p(S) < L iff the

original instance of the 3MI problem had a solution. First notice that

L equals the sum of all ai's and also of all .i's; hence p(S) < L

iff V(S) = L and there is no idle time for either machine in S. It

follows that Ko must be scheduled first and Kn last.

We shall need the following lemma:

LEMMA. If for some j < n, S(Kj,2) = k, then there are integers

ii, i2 < 2n such that S(Bi ,1) = k, S(B i2,1) = k+l.

11 12

Proof of Lemma. The lemma says that in any schedule S with no

idle times the first two executions on the first machine of jobs {B.}

are always as shown in Figure 3a. Obviously, the case shown in

Figure 3b--the execution of B. on the first machine starts and ends in

the middle of another job--is impossible, because the buffer constraint

is violated in the heavily drawn region. So, assume that we have the

situation in 3c. However, since all times are multiples of 4n except

for the a's of the B.'s and the 3's of the K.'s, and since no idle
1 3

time is allowed in either machine, we conclude that this is impossible.

Similarly, the configuration of Figure 3d is also shown impossible.

Furthermore, identical arguments hold for subsequent executions of Bi

jobs; the lemma follows. o
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By the lemma, any schedule S of I having no idle times must have

a special structure. It has to start with KO and then two jobs Bil.

B. are chosen. The next job must have an a greater than bi but

'12

not greater than bi + b. ; furthermore it cannot be a 
K. job since

these jobs must, according to the lemma, exactly precede 
two Bi jobs

and then the buffer constraint would 
be violated. So we must next

execute an A. job and then a K job, because of the inequalities

c/4 < a., bi < c/2. Furthermore, we must finish with the Kk job in

the first machine exactly when we finish the A. job on the second,

so that we can schedule two more B jobs (see Figure 4). It follows

that any feasible schedule of I will correspond to a decomposition of

the set B into n pairs {Pil Pi } such that ai + p + P = C.

, i2 i1 12
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Figure 4

Conversely if such a partition of B is achievable then we can construct

a feasible--and without idle times--schedule S by the pattern shown in

Figure 4. Hence we have shown that the 3MI problem reduces to (2,1)-FS,

and hence the (2,1)-FS problem is NP-complete.

To complete the proof let us now notice that our argument above

generalizes to show that the (b+2)MI problem reduces to the (2,b)-FS.

(In the (b+2)MI problem we are given a set A of n integers and a

set B of (b+l)n integers; the question is whether B can be

partitioned into (b+l) tuples Pi = (Pi such that

ai + = 1 Pi = C. This problem is easily seen to be NP-complete.)

Hence we have the Theorem. 0

The same technique can be applied to show that minimizing makespan

is NP-complete for some other flowshop systems, such as 3-machine flow-

shops with 0 buffer between machines 1 and 2, and - buffer between

machines 2 and 3.

Given a 3MI instance we assume 1 < c/4 < ai, bj < c/2 << m and we

construct a set of jobs J with execution times (eai f3i' Yi) as follows:

a) We have n-l jobs K2,...,K with K. = (m,l,c+l+m). Also we
have = ,1= ln 1

have K0 = (0,0,1), K = (0,l,c+m+l), Kn+ 1 = (m,1,0), Kn+ 2 = (1,0,0).
hav Kg= (,0,), 1 n+l n+2
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b) For each 1 < i < 2n we have a job B. = (l,bi,O) and for

each 1 < i < n a job Ai = (O,ai+m,O). L is taken to be

n(c+m+l) + 1.

It should be noted that P(S) < L iff there is no idle time on the

second and third machines, yet there can be idle time on the first.

Decision questions about a job system ' related to whether a number

of machines are saturated,(i.e., there is a schedule with no idle time

on them) or not will be examined more closely in Section 5.
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3. An Upper Bound

Let pb(f) be the shortest possible makespan of a job system X

using b buffers. In this section we show that

'Po(_
)

2b+l
sup b+l

In other words, the use of b buffers can save up to b/2b+l of the

time needed to execute any job system. As in the previous section, we

show this first for the b = 1 case.

THEOREM 2.

sup 1() 2

Proof. We shall first show that

_ _0 
( )

3
< 2

1(y) <- 2¥

For this purpose, we consider a job system X and an optimal 1-buffer

schedule S of length 1(f). We first notice that we can assume that

S is a saturated schedule--that is

n n

(S) = ai =E fj
i=l j=1

To see this one just needs to observe that for any c and S one can

create a job system f' such that l1(c
'
) = 1 ( ), ' 10(9') > ~0(~)
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and S is a saturated schedule for J', by "filling in" all idle times

of S as shown in Figures 5a, 5b. Given such a saturated schedule S,

'I~i ='';/'J" 4 ~I I i 

JI 1 32 J3 1 J4 J5 J6

J, J2J J3 J4I 5 J, J7

(o)(b)

Figure 5'

we create a corresponding schedule S' using no buffers and having the

same permutation f (Figure 5c). Let us call a maximal set of

consecutive--in S'--jobs with no idle time in machine 2 between them a

run--in Figure 5c {J0OJ 1,J 21J3} and {J5} are examples of runs. We

shall construct a 0 buffer schedule for f' with makespan < 3/2 p1(.~ '

this will then mean that pO(V) < P0 (f') < 3/2 pl(f') = 3/2'p1().

Our construction will examine each run R separately and will consider

two cases.



a) The total idle time s in the first machine during run R is

less than or equal to 1/2 $(R), where 6(R) is the total execution time

on the second machine of jobs in the run R. In this case our construction

leaves R intact.

b) s > 1/2 $(R) (see Figure 6a), and hence R consists of

k+l > 2 jobs. We first note that

k 1

= (i - i+l >2 (R) ,
i=l

hence

k+1

ai +
Bk+l 

< 2 (R) (1)
i=2

We also observe that, in S, the end of co+2 could not have been to

the left of the beginning of ,k+l' because of the 1-buffer requirement.

We conclude that

k+2 k

kE I - - k (2)
i=2 j=l

e2 V///// a 3' k+ t ek+ 2

2 ; k -kBk+ k

(a)

a· ·· e . - ak.+9

B, 82' /3I k Sk+, / Sk+

(b)

Figure 6



-16-

Subtracting (1) from (2) we obtain

>1 -(R) . 3)

We thus change Tr--the optimum permutation of 9' for 1 buffer--by

putting Jk+l in the end. The corresponding O-buffer schedule is shown

in Figure 6b. The total idle time on the first machine due to the jobs

in R is now (see Figure 6b).

k-l

SI= (Sj-Oj+i) + Ok min(Ok,'k+2) + 0k+i < 6(R) -min(kk+ )

j=1l

Two cases:

1. S > k+2 Then s' < 2 $(R) by (3).
k- k+2 -2

2. Sk < k+2' In this case we observe that,

k-l k+l

S' < i + k+1 < E i k+l <- 1 (R) by (1).
- k+l- 2

-4 i=l i=2

Hence in both cases (a) and (b) our construction succeeds in

producing a O-buffer schedule in which each run R is accountable for

machine-1 idle time bounded by 1/2 6(R). Hence the total machine-1

idle time is bounded by

1 1

2 E 2 1of b
j=1

thus completing the proof of the bound.
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It remains to show that this bound is achievable. To do this we

consider the job system (for small E > 0) ~J= {(E,2),(1,s),(1,) }. The

optimal 1-buffer and O-buffer schedules are shown in Figure 7a and b. The

3/2 ratio is approached as C + 0. 0

(a) (b)

b+1 II

(C)

Figure 7

A generalization to any b > 1 is possible:

THEOREM 3.

11O() 2b+l

9 Pb(+ , b+l

Proof. Although the argument is similar to the one used for the

b = 1 case examined above, this time it has to be more complicated. As

before we first consider the optimum and--without loss of generality--

saturated schedule S, with b buffers, for the job system d. We next



construct the O-buffer schedule S' corresponding to the same permutation,

which, for simplicity, we take to be the identity. We partition the set

of jobs into runs, i.e., maximal sets of jobs without intermediate idle

time in the second machine in S'. A run with only one job is a

singleton; all other runs are proper.

For each run R, let f(R) and Z(R) be the indices of the first

and last jobs of this run, respectively. Also

(R) = .E 

f(R)

(slightly different from when b=l), y(R) = max(O,F(Z(R),l) - S(f(R),2));

in other words, y(R) is the total time during which both machines

execute jobs in R. (See Figure 8)

For a run R, let C(R) be the set of indices of jobs subsequent

to R that execute concurrently with R. Thus C(R) = {j > Q(R):

S(j,l) < S(Z(R),2)}; also aR is the,portion of Jj that is executed

R
concurrently with R. Thius if j g C(R) acj 0; if j = max C(R) then

R R
Caj = S((R),2) - S(j,1) otherwise aj = 

jobs in- C(R)

- ... . _ * . .......... _ * -* . -,,(._I

()(R) . .(R(R)I P,....R)

/ (R)
1 ,(R) I 

Figure 8

A run as part of schedule S.
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LEMMA. For each proper run R there exists an index i(R) E R, and

j(R) E C(R) such that i( R (R)-y(R)/b, i(R) p Q(R).
i(R)' j(R)

Proof of Lemma. During the time from F(Z(R),1) to S(.(R),2)--an

interval of length (R)-y(R)--at most b jobs execute on both machines,

because of the buffer constraint. So, at least one of the jobs in R

other than the last must satisfy $i(R) > a(R)-y(R)/b. Similarly, one of

iCR)R

the portions of the jobs in C(R) must satisfy aj (R) > S(R)-y(R)/b. o

In the sequel we shall assume that j(R), i(R) are chosen such

that:

R ain B(R)-Y(R+ ~(R) + 6j

1) fi(R)' ( > min b r b+l

where j = j-1 if j = f(R') for some run R', and 0 otherwise.

2) j(R) is as small as possible with respect to (1) above.

The existence of such i(R), j(R) is guaranteed by the lemma. Using

this lemma, we shall describe a modification of the schedule S'--rather,

of the permutation I, currently the identity--and an "accounting scheme"

associating to each run R a set of intervals of concurrent execution

in the modified schedule of total length at least ~(R)/b+l. We examine

all proper runs one-by-one starting from the last. Singletons can be

treated in a trivial manner because O(R)-y(R)/b = 0. Suppose we currently

examine R.

Case 1. j(R) p j(R') for R 4 R'. We may choose to change 1r

from Tr = li(R)r 2j(R) 3 to I' = li(R)j(R) 3T2; we will then say that

R is modified.
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Subcase 1.1.

6(R) - Y(R) > (R) j(R)

b b+l

If j(R) = f(R') we modify R. The accounting scheme assigns in

this case to the jobs in R U {j(R)-l} the interval of concurrent

execution resulting from bringing i(R) and j (R) together; it has

length at least 6(R) + aj(R)- /b+l. Also notice that j(R)-l is the

last job of a run.

If f(R') Z j(R) E.R' weexamine R'. If R' was modified we

modify R. The accounting scheme assigns to R the interval run

(aR a > a(R)
(aj(R)' ii(R) - b+l

If R' was not modified we cannot modify R because of the accounting

scheme of Subcase 1.2. Thus we do not modify R; the scheme associates

R
with R the execution interval aj (R) > a(R)/b+l--which has not been

assigned to any run yet.

Subcase 1.2.

~(R) + 6j(R) +> (R)-y(R)

b+l - b

hence

y(~R) + 6R + j(R)() j (R) > b+l
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We do not modify R; our accounting scheme assigns to R (and to j (R)-1

if j (R) = f(R')) the set of concurrent execution intervals of length

y(R) + 6j(R)'

Case 2. j(R-k+l) = ... = j(R-1) = j(R) for k > 1 consecutive

runs. In this case we consider all these runs as a unique run R, and

we find a single i(R) and j (R) = j(R). Now suppose that there is a

R-k+l
run R', R-k+2 < R' < R, such that af(R') > V/b+l, where

Q (R) -1 

j=f (R-k+l)

But according to our convention that j (R) is as small as possible, it

should be that j(R-k+l) = f(R') f j(R) since

(R-k+l) + 6
j (R-k+l)

b+l - b+l

Thus, we conclude that

R-k+l
R-k+l < - for R' = R-k+2, .. ,R

ef(R,) - b+l

and hence

R

R-k+l < (k-l)a

ef (R') - b+l
R' =R-k+2

Also let

R-1

x = r=R-k+l 
r=R-k+l
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and

Y = max(O,F(L(R),l) - S(f(R-k+l),2)).

It can be easily seen that, precisely as in the lemma shown above, we can

find a job i(R), where f(R-k+l) < i(R) < k(R), and i(R) y k(R') for

all R', such that:

R B > -x-

j (R) i(R) b-k+l

(We have a-x-Y time to allocate to b-k+l jobs between F(Q(R),l) and

S(Z(R),2), where all k(R') are in this interval.) Thus we distinguish

among two subcases.

Subcase 2.1. x+y-y < O-x-y/b-k+l; we use the scheme of subcase 1.1.

Subcase 2.2. x+y-y > 8-x-Y/b-k+l; we do not modify R.

In either subcase our accounting scheme assigns to R concurrent execution

of length at least.

L = max (x+u y -x-y) > 8-y= a x+Y-' b-k+l - b-k+2

Now, since y < (k-1) /b+l, as pointed out above, L > ~/b+l. Thus, our

accounting scheme assigns to the total length of the modified schedule a

set of disjoint concurrent execution intervals of total length at least
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L. :C f. + 2 . >

b+l j- b+l

where

F = {j:j = 9(R) for some run RI - {j;j = j(R)-l for some run RI

Thus the modified schedule has total length at most

2b+l I I
b+l E J'

j=l

and therefore

100 (f) 2b+l

Pb ( ) - b+l

In order to conclude the proof, we notice that the job system shown in

Figure 7c achieves this bound. o
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4. An Approximation Algorithm

Consider the following algorithm for obtaining (possibly suboptimal)

solutions of the (2,1)-FS problem, for a set 'of n jobs Xf.

Algorithm A.

1. Solve the O-buffer problem for X using the Gilmore-Gomory

algorithm [GG] to obtain a permutation E of Jf.

2. Schedule f with 1 buffer using r.

It follows from Theorem 2 that, if pA(f) is the resulting makespan,

,A(f)/pl(f) < 3/2, since pA(,c) < p0( ). However, it does not

follow directly that the 3/2 ratio is achievable, because, for the job

system f shown in Figure 7--which was the worst-case job system with

respect to Theorem 2--we have 1 A( ) = P1(f)' The worst-case job

system for algorithm A is shown in Figure 9. In Figure 9a we show the

optimum 1-buffer schedule with i 1
( ) = 2 + C + 6. It can be checked

that the application of A yields the schedule in Figure 9b, with

PA( ) = 3 + 6. When C < 6 + 0 we have an asymptotic ratio of 3/2.

8L ~ 1 _ 2 ++26

o(a)

(b)
Figure 9
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We tested our algorithm on a number of problem instances. For each

number of jobs from 4 to 23 we generated 10 job systems among those which

have a saturated 1 buffer schedule. The resulting statistics of the

relative error are shown in Table 1.

The name heuristic could be used for the (2,b)-FS problem and a

similar worst case example, yet the usefulness of the approach decreases

as b grows because by basing our schedule on a random permutation we

cannot have more than 100% worst case error.

We must remark that the Gilmore Gomory algorithm can be implemented

in O(n log n) as opposed to 0(n ) [7] since the operations in it

involve only sorting, calculating n distances and finding a minimum

spanning tree in an O(n)-edge graph.

TABLE 1

# of jobs Mean error Standard deviation worst case error

% % %

4 1.5 5.1 15

5 2.4 8.1 24

6 6.3 9.7 20

7 3.7 5.7 15

8 1.8 2.9 6

9 2.7 4.1 10

10 3.1 4.0 6

11 1.5 3.1 8

12 4.5 5.6 12

13 3.1 4.2 7

14 3.1 4.0 8

15 3.2 3.7 7

16 2.8 3.3 6

17 3.0 4.6 9

18 2.1 3.0 5

19 3.1 4.5 10

20 1.5 2.2 5

21 2.7 3.4 6

22 1.8 2.0 4

23 3.4 3.8 7
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5. The Complexity of the "No-Wait" Problem

In certain applications we must schedule flowshops without using any

intermediate storage; this is known as the no-wait problem. (For a

discussion of this class of problems, see Section 1.) By extending the

notation introduced in Section 2 we can define the m-machine no-wait

problem as (m,O)-FS. In this section we will prove the following

THEOREM 4. The (4,0)-FS problem is NP-complete.

For the purposes of this proof, we introduce next certain special

kinds of directed graphs. Let. ' be an m-machine job system, and let K

be a subset of {1,2,...,m}. The digraph assoCiated with ' with respect

to K D( ;K) is a directed graph (f,A(f ;K)), such that

(Ji'Jj) E A(f;K) iff job J can follow job J. in a schedule S

which introduces no idle time in the processors in K (e.g.,

k E K * F(i,k) = S(j,k)).

The definition of the set of arcs A( ,K) given above could be

made more formal by listing an explicit set of inequalities and equalities

that must hold among the processing times of the two jobs. To illustrate

this point, we notice that if m=4 and K = {2,3} (Figure 10) the arc

(J1'J2) is included in A(f,K) iff we have

(1) 2 < a,1' 2 > 61 and a2 = l

Machine ,

2 To l 2
red--2

, Ia /1
4 - .82i

Figure 10
I~~(-·PID(~I11 I3 __
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We define C(m;K) to be the class of digraphs D such that there

exists a job system X with D = D(9;K). We also define the following

class of computational problems, for fixed m > 1 and K E 2m:

(m,K)-HAMILTON CIRCUIT PROBLEM

Given an m-machine job system I, does D(9;K) have a Hamilton circuit?

We shall prove Theorem 4 by using the following result:

THEOREM 5. The (4;{2,3})-Hamilton circuit problem is NP-complete.

We shall prove Theorem 5 by employing a general technique for

proving Hamilton path problems to be NP-complete first used by Garey,

Johnson and Tarjan [13]. (See also [21], [22].) The intuition behind

this technique is that the satisfiability problem is reduced to the

different Hamilton path problems by creating subgraphs for clauses on

one side of the graph and for variables on the other and relating these

subgraphs through "exclusive-or gates" and "or gates" (see Figure 11).

We shall introduce the reader to this methodology by the following

problem and lemma.

RESTRICTED HAMILTON CIRCUIT PROBLEM

Given a digraph D = (V,A) (with multiple arcs), a set of pairs P of

arcs in A and a set of triples T of arcs in A is there a Hamilton

circuit C of D such that

a. C traverses exactly one arc from each pair P.

b. C traverses at least one arc from each tdple T.
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LEMMA 1. The restricted Hamilton circuit problem is NP-complete.

Proof. We shall reduce 3-satisfiability to it. Given a formula F

involving n variables Xl,...,xn and having m clauses C1,...,C

with 3 literals each, we shall construct a digraph D (witih possibly

multiple arcs), a set of pairs P (two arcs in a pair are denoted as in

Figure 12a) and a set of triples T (Figure 12b), such that D has a

feasible--with respect to P and T--Hamilton circuit iff the formula

is satisfiable.

The construction is a rather straight-forward "compilation." For

each variable x. we have five nodes aj, bj, cj, d and e., two

copies of each of the arcs (aj,bj) and (d.,e.) and one copy of each

of the arcs (b.,cj) and (cj,dj) (see Figure 11). The "left" copies

of (aj,bj) and (d.,e.) form a pair P. We also connect these sub-

digraphs in series via the new nodes f.. For each clause C. we have

the four nodes u.i, vi, wi and z.i and two copies of each of the arcs

(ui.,v), (viw.) and (wi,zi). Again the "left" copies of these three

arcs form a triple in T. These components are again linked in series via

some other nodes called Yi (see Figure 11). Also we have the arcs

(Ym+lfl) and (f m+l,Yl). To take into account the structure of the

formula, we connect in a pair P the right copy of (ui,vi) with the

left copy of (aj,bj) if the first literal of Ci is x., and to the

left copy of (dj,ej) if it is xj; we repeat this with all clauses

and literals. An illustration is shown in Figure 11.

It is not hard to show that D has a feasible Hamilton circuit if

and only if F is satisfiable. Any Hamilton circuit C of D must have

a special structure: it must traverse the arc (Ym+l,fl), and then the
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arcs of the components corresponding to variables. Because of the

pairs P, if C traverses the left copy of (ai,bi), it has to traverse

the right copy of (di,ei); we take this to mean that xi is true

otherwise if the right copy of (ai,bi) and the left of (di,ei) are

traversed, x. is false. Then C traverses the arc (f +liYl) and the

components corresponding to the clauses, one by one. However, the left

copies of arcs corresponding to literals are traversed only in the case

that the corresponding literal is true; thus, the restrictions due to the

triples T are satisfied only if all the clauses are satisfied by the

truth assignment mentioned above. (In Figure 11, xl = false, x2 = false,

x3 = true.)

Conversely using any truth assignment that satisfies F, we can

construct, as above, a feasible Hamilton circuit for D. This proves

the lemma. 0

What this lemma (in fact, its proof) essentially says is that for

a Hamilton circuit problem to be NP-complete for some class of digraphs,

it suffices to show that one can construct special purpose digraphs in

this class, which can be used to enforce implicitly the constraints

imposed by P (an exclusive-or constraint) and T (an or constraint).

For example, in order to show that the unrestricted Hamilton circuit

problem is NP-complete, we just have to persuade ourselves that the

digraphs shown in Figure 12a and b can be used in the proof of Lemma 1

instead of the P and T connectives, respectively [22]. Garey,

Johnson and Tarjan applied this technique to planar, cubic, triconnected

graphs [13], and another application appears in [211].
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Our proof of Theorem 5 follows the same lines. There are however,

several complications due to the restricted nature of the digraphs that

concern us here. First, we have to start with a special case of the

satisfiability problem.

LEMMA 2. The 3-satisfiability problem remains NP-complete even if

each variable is restricted to appear in the formula once or twice

unnegated and once negated.

Proof. Given any formula we first modify it so that each variable

appears at most three times. Let x be a variable appearing k > 3

times in the formula. We replace the first occurrence of x by (the

new variable) xl, the second with- x2, etc. We then add the clauses

(X1 Vx 2) A (x2 v X3)...(xk vxl)--which are, of course xl x 2 3 - ... xk

in conjunctive normal form. We then omit any clause that contains a

literal, which appears in the formula either uniformly negated or

uniformly unnegated. Finally if x is a variable appearing twice

negated, we substitute y for x in the formula, where y is a new

variable. The resulting formula is the equivalent of the original under

the restrictions of Lemma 2. 0

Secondly, realizing special-purpose digraphs in terms of job systems

presents us with certain problems. Although our special-purpose digraphs

will be similar to those in Figure 12, certain modifications cannot be

avoided. A digraph in !(4;{2,3}) must be realizable in terms of some

job system, so that the inequalities and equations in (1) are satisfied.

Care must be taken so that no extra arcs--dangerous to the validity of

our argument--are implied in our construction. We shall address this

question first.
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Consider a digraph D = (V,A), and a node b E V such that

a) b has indegree and outdegree one.

b) (u,b), (b,v) E A, where u has outdegree one and v has

indegree one.

Then b is called a bond. Removal of all bonds from D divides

D into several (weakly connected) components. For example bl, b2, b3, b4

are bonds in Figure 12a, the y nodes, the f nodes and the c nodes

are bonds in Figure 11.

LEMMA 3. If all components of D = (V,A) are in 5)(4;{2,3}), then

D E 9 (4;{2,3}).

Proof. Assuming that each component F. (i=l,...,k) of D can be
1

realized by a job system Xi, we shall show that D itself can be

realized by a job system f. For each X. we modify the execution times

as follows: we multiply all execution times by JVJ-k and then add

(i-l) lVi to each; this obviously preserves the structure of each Fi,

but has the effect that there are no cross-component arcs, because all

components have now different residues of execution times modulo k-lVI

and hence the yi = Yj equality cannot hold between nodes from different

components.

Next we have to show how all bonds can be realized. Let b. be a

bond of D such that (u,bj), (bj,v) E A. Suppose that the jobs

realizing u and v have execution times ( ,u,y ,6 )u) and

(av,4v,Yv,'v), respectively. Since u has outdegree one and v has

indegree one we can arrange it so that v and y are unique. Thus

b. can be realized by the job (O,y u,b O). Repeating this for all
v
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bonds we end up with a realization of D in terms of 4-machine jobs with

saturated second and third machine. The' Lemma follows. o

We shall now proceed with the construction of the job system d,

corresponding to a digraph D, starting from any Boolean-formula F, as

required for the proof of Theorem 5. As mentioned earlier, the construction

is essentially that pictured in Figure 11 and our P- and T-digraphs are

similar--although not identical--to the'ones shown in Figures 12a and 12b.

Lemma 3 enables us to perform the construction for each component

separately. The components of D do not exactly correspond to the' P-

and T-digraphs: They correspond to portions of the digraph in Figure 11

such as the ones shown within the boxes 1, 2 and 3. They are, indeed,

components of D, since the c, f, y nodes are bonds as are the

bl, b2, b3, b4 nodes of the P-digraph in Figure 12a.

In Figure 13a we show the component corresponding to each clause of

F, as well as its realization by a job system t shown in Figure 13b.

We omit here the straight-forward but tedious verification that, indeed,

the component shown is D(f;{2,3}). We only give the necessary

inequalities between the processing times of tasks corresponding to

nodes {1,2,3,...,10}. Each of the quadruples of nodes (2,3,4,5),

(12,13,14,15) and (22,23,24,25) is the one side of a P-digraph,'and

they are to be connected, via appropriate bonds, to the quadruples

associated with the literals of the clause.

In Figure 14a we show the component that corresponds to an unnegated

variable occurring twice in F. Again the quadruples (2,3,4,5),

(6,8,7,9), (10,11,12,13) are parts of P-digraphs. The first two are
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to be connected via bonds to the components of the clauses in which this

variable occurs. The third quadruple is to be connected by bonds with.

the component of the negation of the same variable. Notice, that this

component is in ~2(4;{2,3}) as demonstrated in Figure 14b.

The lower part of 14a shows the component that corresponds to

negations of variables and is realizable in a similar manner as in 14b.

The remaining argument is to the effect that copies of these three

components, when properly connected via bonds as shown in Figure 11,

function within their specifications. Although certain arcs that we

had to add in order to make D realizable by 4-machine jobs (such. as

the lines (9,6) and (13,4) in Figure 14a) may render
'it slightly less

obvious, the argument of Lemma 1 is valid. First, it is well to observe

that lines such as (9,6) in Figure 14a and (5,2) in Figure 13a can

never participate in a Hamilton circuit and are therefore irrelevant.

Secondly with a little more attention the same can be concluded for arcs

like (13,8) and (13,4) of Figure 14a. It is then straight-forward

to check that the remaining digraph behaves as desired. In other words,

for each Hamilton circuit c and each variable x, either the arc (1,14)

(Figure 14a), corresponding to x, or the arc (15,16) (Figure 14a),

corresponding to x, is traversed. The former means that x is false,

the latter that it is true, then only clauses having at least one literal

true shall have the corresponding nodes 9, 10, 11 (Figure 13a)

traversed. Thus, a Hamilton circuit exists in D if and only if F is

satisfiable and the sketch of our proof is completed
'. o

Now we can prove Theorem 4.
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Proof of Theorem 4. We shall reduce the (4;{2,3})-Hamilton

circuit problem to it. Let f be a job system constituting an instance

of this problem. It is evident from the proof of Theorem 5 that we can

assume that D(g;{2,3}) has at least onebond, Jb' having execution

times unlike any other execution times of jobs in i. Let (J1,Jb),

(JbJ2) E D(f;{2,31), where J= (ac1' 1'Yl',1) and J 2 2 '2)'

We create the job system X' = -. {Jb} U S, where

S = {(O,a 2,'2,ry 2) (o, a2 ) (0,0, 2) , (2) ( Y,61,0),

(Y1,61,0,O), (61,0,0,0) 

It should be obvious that D(Q,K) has a Hamilton circuit if and only if

,X' has a no-wait schedule with makespan jE j '~j or less. a

Since the m-machine no-wait problem can be reduced to the

(m+l)-machine no wait problem we conclude.

COROLLARY. The m-machine no-wait problem is NP-complete for m > 4. 0
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5. Discussion

We saw that the complexity of scheduling two-machine flowshops varies

considerably with the size of the available intermediate storage. Two

classical results imply that when either no intermediate storage or

unlimited intermediate storage is available there are efficient algorithms

to perform this task. When we have a buffer of any fixed finite size

however, we showed that the problem becomes NP-complete.

We showed that using 1 buffer can save up to 1/3 of the makespan

required without buffer and this generalized to b buffers. We have

used this fact to develop a heuristic, which has a 50% worst case

behavior for the (2,1)-FS problem but appears to perform much better

(4-5% error) on typical problem instances. We notice that our simulation

results suggest that our algorithm performs better than the heuristic

reported in [6] for small b.

The formalism in [11], suggests that the 1-buffer 2 machine flowshop

problem is, like the TSP and 3MI, strongly NP-complete; that is,unless

9= -A' there can be no uniform way of producing E-approximate solutions

by algorithms polynomial in n and 1/s. The same implications hold for

the problems in Section 5, since, as the reader can check, the size of

the execution times used in the construction remains bounded by a poly-

nomial in n, the number of jobs.

Since the results in Section 5 indicate that fixed size no-wait

flowshop problems are NP-complete and because these problems are actually

Asymmetric Traveling Salesman (ATSP) problems, which have distances

obeying the triangle-inequality, they provide a strong motivation for

good heuristics for the ATSP. The most successful known heuristic [20]
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works for the symmetric case. Notice also that no general approximation

algorithm of any fixed ratio is known for the triangle inequality TSP

in contrast with the symmetric [2]. In [17] we develop a methodology for

asymmetric TSP's paralleling that of (201, so as to cope with the

intricate pecularities of the asymmetric case.

Our results of Section 5 leave only one open question, as far as

no-wait problems are concerned: the 3-machine case. Admittedly this

problem--and the generous prize that comes with its solution [19] --was

the original goal of our efforts. We conjecture that this problem is NP-

complete, although we cannot see how to prove this without a drastic

departure from the methodology used here. One may wish to show that the

Hamilton circuit problem is NP-complete for 9(3;K) for some K y ~.

Now, if )KI = 2 the corresponding problem is polynomial. The (KI = 3

case and, in general, the Hamilton problems for (m;{1,2,...m}) are

equivalent to searching for Euler paths in graphs in which the jobs are

represented by arcs and the nodes are the "profiles" of jobs in the

Ghannt chart [24]. Consequently, this class of problems can be solved

in linear time. This leaves us with the IKI = 1 case; the authors have

different opinions regarding the tractability of this problem.

We conclude by examining how much our assumption that the buffer is

FIFO affects the resulting scheduling problem. Removing this assumption

would correspond to removing line (b) from the definition of the

(2,b)-FS problem. In Figure 15 we show a job system that fares slightly

better when the FIFO assumption is removed. We conjecture that removing

the FIFO assumption results, at best, in negligible gains for the b = 1

case.
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1 0 100

2 , 80 40

3 10 :1

4 50 9

5 5 0

6 5 0

a 2= 80 a 4 = 50 =a3=10 ca=5 a6=5

P,=100 2=4o Pq 9

Figure 15

b=l 1i 2

For every f =ft = , we would be forced to introduce idle time.
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