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Abstract We prove that for the Friedmann–Lemaitre–
Robertson–Walker metric, the field equations of any generic
gravity theory in arbitrary dimensions are of the perfect fluid
type. The cases of general Lovelock and F(R,G) theories
are given as examples.

1 Introduction

The Friedmann–Lemaitre–Robertson–Walker (FLRW) met-
ric is the most known and most studied metric in General
Relativity (GR). FLRW metric is mainly used to describe the
universe as a homogeneous isotropic fluid distribution [1–5].
For inhomogeneous cosmological solutions, see for exam-
ple [6–8]. On the other hand, current cosmological observa-
tions indicate that our universe is undergoing an accelerat-
ing expansion phase. The origin of this accelerating expan-
sion still remains an open question in cosmology. Several
approaches for explaining the current accelerated expanding
phase have been proposed in the literature such as introduc-
ing cosmological constant [9], dynamical dark energy mod-
els and modified theories of gravity [10–13]. Amongst the
latter, higher order curvature corrections to Einstein’s field
equations have been considered by several authors [14–17].
In the context of modified theories, some attempts for a geo-
metric interpretation of the dark side of the universe as a
perfect fluid have been done [18–23] but the picture is not
complete yet. In this work, we put one step forward to prove
that the perfect fluid from of the dark component of the Uni-
verse is true for any generic modified theory of gravity. A
generic gravity theory derivable from a variational principle
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can be given by the action

I =
∫

dD x
√−g

(
1

κ
(R − 2�)

+F(g, Riem, ∇Riem, ∇∇Riem, · · · ) + LM

)
, (1)

where g, Riem, ∇Riem, ∇∇Riem, etc in F denote the space-
time metric, Riemann tensor and its covariant derivatives at
any order, respectively, and LM is the Lagrangian of the mat-
ter fields. The function F(g, Riem, ∇Riem, ∇∇Riem, · · · )
is the part of the Lagrange function corresponding to higher
order couplings, constructed from the metric, the Riemann
tensor and its covariant derivatives. The corresponding field
equations are

1

κ

(
Gμν + �gμν

) + Eμν = Tμν. (2)

Here Eμν is a symmetric divergent free tensor obtained from
the variation of F(g, Riem, ∇Riem, ∇∇Riem, · · · ) with
respect to the spacetime metric gμν . Our treatment, in this
work, is to consider this tensor,Eμν , as any second rank tensor
obtained from the Riemann tensor and its covariant deriva-
tives at any order. Since the Ricci tensor Rμν and Ricci scalar
R are obtainable from the Riemann tensor we did not consider
the function F depending on explicitly on the Ricci tensor
and Ricci scalar. There are some works showed recently that
the tensor Eμν takes the perfect fluid form for the FLRW
spacetimes when the function F depends only the Ricci and
the Gauss–Bonnet scalars R and G respectively [18,19], as
well as the Ricci scalar R and �R of any order [20]. In the
present work, we prove that the tensor Eμν takes the per-
fect fluid form for any generic modified gravity theory in the
FLRW spacetimes in arbitrary dimensions. We then apply
our result to two special cases F(R,G) and Lovelock theory
in any dimension D.

The organization of the paper is as follows. In Sect. 2, we
give the covariant description of D-dimensional FLRW met-
ric and derive all the corresponding geometrical quantities.
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In Sect. 3, we introduce the closed FLRW-tensor algebra by
proving that all the geometrical quantities for FLRW space-
times, the curvature tensor and it’s covariant derivatives at
any order, are expressed in terms of the metric tensor gμν

and the product uμuν where uμ is the unit timelike tangent
vector of the timelike geodesic. By using this property, i.e.,
the existence of a closed tensor algebra, we prove a theorem
on the field equations of generic gravity theories. In Sects. 4
and 5, we use the proved theorem to write the field equations
of Lovelock and F(R,G) theories, respectively. Section 6 is
devoted to our concluding remarks.

2 Covariant description of the FLRW spacetimes in
D-dimensions

We begin with the definition of the D-dimensional FLRW
spacetimes.

Definition 1 The D-dimensional FLRW spacetime is defined
with the following metric

gμν = −uμ uν + a2 hμν, (3)

where xμ = (t, xi ), μ, ν = 0, . . . , D − 1, a = a(t), uμ =
δ0
μ, and hμν reads as

hμν =

⎛
⎜⎜⎜⎝

0 0 . . . 0
0
... hi j
0

⎞
⎟⎟⎟⎠ , (4)

where hi j = hi j (xa) with i, j = 1, . . . , D − 1 is the metric
of a space of constant curvature k.

One can verify

uμ hμν = uμ hμν = 0,

hμ
α = hμα hαν = δμ

ν + uμ uν . (5)

The corresponding Christoffel symbols to the metric (3) can
be obtained as

�
μ
αβ = γ

μ
αβ − a ȧ uμ hαβ + H

(
2uα u

μ uβ + uβ δμ
α + uα δ

μ
β

)
,

(6)

where the dot sign represents the derivative with respect to
time t , H = ȧ/a is the Hubble parameter and γ

μ
αβ is defined

as

γ
μ
αβ = 1

2
a2 hμγ

(
hγα,β + hγβ,α − hαβ,γ

)
. (7)

One can also prove the following properties for uα and hαβ

uμ hμ
αγ,β = 0 = uμ γ

μ
αβ,

∇αuβ = −a ȧ hαβ = −H
(
gαβ + uα uβ

)
,

∇γ hαβ = −H
(
2uγ hαβ + uβ hγα + uα hγβ

)

= − ȧ

a3

(
2uγ gαβ + uβ gγα + uα gγβ + 4uα uβ uγ

)
.

(8)

Using the Christoffel symbols (6), one can find the compo-
nents of the Riemann curvature tensor as

Rμ
αβγ = ∂β�μ

αγ − ∂γ �
μ
βα + �

μ
βρ�ρ

αγ − �μ
γρ�

ρ
βα

= rμ
αβγ − Ḣ uα

(
uγ δ

μ
β − uβ δμ

γ

)

+
(
ȧ2 + aä

)
uμ

(
uγ hαβ − uβ hαγ

)

+H2
(
uβ uα δμ

γ − uγ uα δ
μ
β

)

− ȧ2
(
δ
μ
β hαγ + δμ

γ hαβ

−2uμ uβ hαγ + 2uμ uγ hαβ

)
, (9)

where the curvature tensor rμ
αβγ is defined as

rμ
αβγ = γ

μ
αγ,β − γ

μ
αβ,γ + γ

μ
βρ γ ρ

αγ − γ μ
γρ γ

ρ
αβ . (10)

On the other hand, the curvature tensor rμ
αβγ for a Riemannian

space with the constant curvature k can be written as

rμ
αβγ = k

(
hμ

β hαγ − hμ
γ hαβ

)
, (11)

where it vanishes if one of μ, ν, α or γ is zero.
Using (3) and (11), the components of the Riemann curvature
tensor (9) can be written in the following linear form in terms
of the metric gμν and the four vector uμ

Rμαβγ = (
gμβ gαγ − gμγ gαβ

)
ρ1

+ (
uμ

(
gαγ uβ − gαβuγ

) − uα

(
gμγ uβ − gμβuγ

))
ρ2,

(12)

where ρ1 and ρ2 are defined as

ρ1 = H2 + k

a2 , (13)

ρ2 = H2 + k

a2 − ä

a
= −Ḣ + k

a2 . (14)

The contractions of the Riemann tensor (12) gives the Ricci
tensor and Ricci scalar, respectively, as

Rαγ = gαγ ((D − 1)ρ1 − ρ2) + uαuγ (D − 2)ρ2,

R = (D − 1) (Dρ1 − 2ρ2) . (15)

One can also verify that the Weyl tensor defined as

Cμ
αβγ = Rμ

αβγ + 1

D − 2

(
δμ
γ Rαβ − δ

μ
β Rαγ + gαβ R

μ
γ − gαγ R

μ
β

)

+ 1

(D − 1)(D − 2)

(
δ
μ
β gαγ − δμ

γ gαβ

)
R, (16)
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vanishes for the metric (3). Hence we have the following
theorem [24–27]:

Theorem 2 FLRW spacetimes are conformally flat for all
values of spatial curvature k in any dimensions.

3 FLRW-tensor algebra

For some spacetimes, such as spherically symmetric and
Kerr–Schild–Kundt spacetimes, it is possible to simplify the
field equations of any generic gravity theories. To achieve
such a simplification we need a closed tensorial algebra. By
the of use this tensorial algebra, the goal is to find the most
general symmetric and second rank tensor in this tensor alge-
bra . This is the way of finding universal metrics in general
relativity [28–30]. In this section, we construct such a closed
tensor algebra for the D-dimensional FLRW spacetimes and
with the use of this tensor algebra we show that the field
equations of any generic gravity theory, in D-dimensional
FLRW spacetimes, have the perfect fluid form.

The geometrical tensors, Riemann and Ricci, are expressed
solely by the metric tensor gμν and the timelike vector uμ as

Rμαβγ = (
gμβgαγ − gμγ gαβ

)
ρ1

+ (
uμ

(
gαγ uβ − gαβuγ

) − uα

(
gμγ uβ − gμβuγ

))
ρ2,

Rαγ = gαγ ((D − 1)ρ1 − ρ2) + uαuγ (D − 2)ρ2,

R = (D − 1) (Dρ1 − 2ρ2) , (17)

where ρ1 and ρ2 are defined in (13) and (14), respectively.
Not only these tensors but also tensors produced by taking
the covariant derivatives of them are also represented by the
metric tensor gαβ and the vector uα . As examples, the covari-
ant derivatives of the four vector uα and the Ricci tensor Rαβ

are given as follows

∇αuβ = −H
(
gαβ + uα uβ

)
,

∇γ Rαβ = [(D − 2)ρ̇1 − ρ̇2] gαβ uγ

−(D − 2)ρ2 Ḣ(gαγ uβ + gβγ uα)

−2(D − 2)ρ2 Ḣuαuβuγ , (18)

and consequently one can obtain

�Rαβ = −[P̈ + (D − 1)H Ṗ − 2QH2] gαβ

+[2DQH2 − Q̈ + 2(D − 1)H Q̇]uαuβ,

�R = −DP̈ − D(D − 1)H Ṗ + Q̇ − 2(D − 1)H Q̇,

(19)

where P and Q are defined as

P = (D − 1)ρ1 − ρ2,

Q = (D − 2)ρ2. (20)

The covariant derivative of the Riemann tensor has the similar
structure. We have the similar structure for the higher order

covariant derivatives of the Riemann and Ricci tensors. They
are all expressed as the sum of monomials of the same rank
which are products of the metric tensor gμν and the vector
uμ.

Definition 3 A tensor M of rank k denoting the monomials
of the product of metric and the vector uμ is given by

Mμ1μ2μ3μ4···μk = gμ1μ2gμ3μ4 · · · uμk−1uμk (21)

There are r number of metric tensor and k − r number of
vector uμ in a monomial of rank k. Here r is any nonnegative
integer.

Proposition 4 In D-dimensional FLRW spacetimes any ten-
sor generated by the curvature tensor and its covariant
derivatives at any order is the sum of the different mono-
mials of the same rank.

All scalars and functions depend only on the time variable t .
Hence, the derivative of the Ricci scalar is given by

∇γ R = Ṙ uγ . (22)

This is valid also for any scalars obtained from the Riemann
and Ricci tensors and their covariant derivatives at any order.
Let � be any of such a scalar then

∇γ � = �̇ uγ . (23)

Now we are ready to obtain the most general symmetric
and second rank tensor from the contractions of higher order
tensors. For illustration, let us consider the following exam-
ple. If Eα1α2···αm is a tensor of rankm obtained from the Ricci
and Riemann tensors and their covariant derivatives at any
order, then, by Proposition 4, it takes the following form for
m = even integer

Eα1α2···αm = A1 gα1α2 · · · gαm−1αm + A2 gα1α2 · · · um−1uαm

+ · · · + Am−1 gα1α2 uα3 · · · um + Am uα1 uα2 · · · uαm ,

(24)

and for m = odd integer as

Eα1α2···αm = B1 gα1α2 · · · gαm−2αm−1 uαm

+B2 gα1α2 · · · uαm−2 uαm−1uαm + · · ·
+Bm−1 gα1α2 uα3 · · · um + Bm uα1 uα2 · · · uαm ,

(25)

where Ak, Bk (k = 1, 2, · · · ,m) are functions of the time
parameter t . All the tensors of rank two obtained by the con-
traction of such tensors are of our interests. To see the result
of such a contraction, let us consider the contraction of the
monomials of the metric tensor gμν and the vector uμ. As an
example

gα1α2 gα3α4 uα5 uα6 uα7 , (26)
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is a monomial of rank seven. Since uα uα = −1 and gμν is the
metric tensor then any second rank tensor obtained from the
contraction of such two different monomials is either gμν

or uμuν . Therefore, if Eμα1α2···αm and Fν
α1α2···αm are two

tensors obtained from the Riemann, Ricci tensors and their
covariant derivatives at any order, then we have

Eμα1α2···αm Fν
α1α2···αm = C1 gμν + C2uμuν, (27)

where C1 and C2 are some scalars. In the general case the
idea of obtaining a symmetric and second rank tensor from
the above tensor algebra is similar. The main points are: (1)
all tensors are the sum of monomials of the metric tensor and
the vector uμ, (2) any symmetric tensor of the second rank
obtained from the products of monomials is either the metric
tensor gμν or uμ uν , and (3) due to the first two facts any
symmetric second rank tensor obtained from the curvature
tensor and its covariant derivatives at any order will be similar
to (27). Then, we have the following theorem:

Theorem 5 Any second rank tensor obtained from the met-
ric tensor, Riemann tensor, Ricci tensor, scalar ψ and their
covariant derivatives at any order is a combination of the
metric tensor gμν and uμuν that is

Eμν = Agμν + Buμuν, (28)

where A and B are functions of a(t) and ψ(t) and their time
derivatives at any order.

Some special cases of this theorem are given in [18–20]. In
these references, this theorem was proved for the field equa-
tions of special cases F(R,G) and F(R, �R, ��R, · · · ).
In [20], the considered geometry is the generalized FLRW
spacetime. We have the following corollary of this theorem:

Corollary 6 The field equations of any generic gravity the-
ory takes the form

Gμν + �gμν + Eμν = Tμν, (29)

where Gμν is the Einstein tensor, � is the cosmological con-
stant, Tμν is the energy momentum tensor of perfect fluid
distribution and Eμν comes from the higher order curvature
terms. Hence the general field equations take the form

ρ = 1

2
(D − 1)(D − 2)ρ1 − � + B − A,

p = (D − 2)

[
−1

2
(D − 1)ρ1 + ρ2

]
+ � + A. (30)

Thus, regarding (30), the interpretation of A and B in
Eμν tensor (28) is as follows. A is the effective pressure,
and the combination B − A is the sum of effective pres-
sure and effective energy density of an effective perfect fluid
of the geometric origin. As the applications of the theorem
in the following sections, we prove that the field equations
of the Einstein-Lovelock theory and a generalized version

of Einstein–Gauss–Bonnet theory F(R,G), as two exam-
ples for general higher order curvature theories, reduce to
the perfect fluid form with the energy density ρ and pressure
p given in (30).

4 Einstein–Lovelock theory

The action of the Lovelock theory in D-dimensions is given
by [15]

I =
∫

dD x
√−g

(
1

κ
(R − 2�) +

N∑
n=2

αn Ln

)
, (31)

where αn’s are constants and

Ln = 2−n δμ1μ2···μ2n
ν1ν2···ν2n R

ν1ν2

μ1μ2 R
ν3ν4

μ3μ4 · · · Rν2n−1ν2n
μ2n−1μ2n . (32)

The corresponding field equations take the form [15]

1

κ

(
Gμν + �gμν

) +
N∑

n=2

αn (Hμν)n = Tμν, (33)

where the tensor (Hμν)n is given by [16]

(Hμ
ν)n = 1

2n+1 δμαβα1β1···αnβn
νγ σγ1σ1···γnσn Rαβ

γσ Rα1β1
γ1σ1 · · · Rαnβn

γnσn .

(34)

In the case of the FLRW metric, (Hμν)n reduces to the fol-
lowing form

(Hμν)n = n (D − 2)!
(D − 2n − 1)! (ρ1)

n−1

×
[
(ρ2 − D − 1

2 n
ρ1)gμν + ρ2uμuν

]
, (35)

representing a linear combination of metric gμν and uμuν .
Then, we have the following proposition.

Proposition 7 The pressure p and the energy densityρ in the
context of Einstein-Lovelock theory for any n can be obtained
as

p = 1

κ

[
(D − 2)

(
ρ2 − 1

2
(D − 1)ρ1

)
+ �

]

+
N∑

n=2

αn
n (D − 2)!

(D − 2n − 1)! (ρ1)
n−1

(
ρ2 − D − 1

2 n
ρ1

)
,

ρ = 1

κ

[
(D − 1) (D − 2)

2
ρ1 − �

]

+
N∑

n=2

αn
(D − 1)!

2(D − 2n − 1)! (ρ1)
n . (36)

123
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When k = 0 and a barotropic equation of state p = wρ is
considered, the Hubble parameter H satisfies the following
first order nonlinear ordinary differential equation
[

(D − 2)

2κ
+

N∑
n=2

n ᾱn H2n−2

]
Ḣ

= −(w + 1)

(
1

κ

[
(D − 1) (D − 2)

2
H2 − �

]

+1

2

N∑
n=2

(D − 1) ᾱn H
2n

)
, (37)

where

ᾱn = (D − 2)!
(D − 2n − 1)!αn, (38)

are the re-scaled coupling constants of the theory. The case
H = constant solves the Eq. (37) for all D and n but the
energy density ρ vanishes for this kind of solutions with a
linear equation of state. For any D and n it is possible to
integrate the above Eq. (37) and the solution is given in the
following proposition.

Proposition 8 Let the polynomial

PN (H2) = 1

κ

[
(D − 1) (D − 2)

2
H2 − �

]

+1

2

N∑
n=2

(D − 1) ᾱn H
2n, (39)

of H2 and of the degree N has the N roots k2
i (i −

1, 2, · · · , N ), then the solution of the Eq. (37) is given by

N∑
n=1

pn tanh−1
(
qn

H

kn

)
= t − t0, (40)

where pi and qi are some constants depending on the con-
stants of the theory.

The exact solutions corresponding to n = 2 and as N → ∞
will be discussed in [32].

5 Generalized Einstein–Gauss–Bonnet theory

The generalization of the action of the Einstein–Gauss–
Bonnet theory is given by

I =
∫

dDx
√−g

(
1

κ
(R − 2�) + αF(R,G)

)

+
∫

dDx
√−gLM , (41)

where G represents the Gauss–Bonnet topological invariant,
i.e G = Rαβρσ Rαβρσ − 4Rαβ Rαβ + R2. The corresponding

field equations read as

1

κ

(
Gαβ + �gαβ

) + αEαβ = Tαβ, (42)

where the modified Einstein–Gauss–Bonnet tensor Eαβ is
given by

Eαβ = −1

2
F(R,G) gαβ + FR(R,G) Rαβ

−∇α∇βFR(R,G) + gαβ∇2FR(R,G)

+2
(
R Rαβ − 2Rρ

α Rβρ + 2Rαρσβ Rρσ

+Rβμνγ Rα
μνγ

)FG(R,G)

−2R
(∇α∇β − gαβ∇2)FG(R,G) + 4

(
Rμ

β∇μ∇α

+Rμ
α∇μ∇β

)FG(R,G)

−4
(
Rαβ∇2 + gαβ R

μν∇μ∇ν + Rαρσβ∇ρ∇σ
)FG(R,G),

(43)

where FR = ∂F
∂R and FG = ∂F

∂G .
One can define a second rank tensor Hαβ as

Hαβ = 2

[
R Rαβ − 2Rρ

α Rβρ + 2Rαρσβ Rρσ

+Rβμνγ Rα
μνγ − 1

4
G gαβ

]
, (44)

which vanishes in four dimensions [31]. Then, Eαβ can be
written in terms of the Hαβ as

Eαβ = −1

2
F(R,G) gαβ + FR(R,G) Rαβ

−∇α∇βFR(R,G) + gαβ∇2FR(R,G)

+
(
Hαβ + 1

2
Ggαβ

)
FG(R,G)

−2R
(∇α∇β − gαβ∇2)FG(R,G) + 4

(
Rμ

β∇μ∇α

+Rμ
α∇μ∇β

)FG(R,G)

−4
(
Rαβ∇2 + gαβ R

μν∇μ∇ν + Rαρσβ∇ρ∇σ
)FG(R,G).

(45)

Hence, in four dimensions, Eαβ (43) reduces to the fol-
lowing form

Eαβ = −1

2
F(R,G) gαβ + FR(R,G) Rαβ

−∇α∇βFR(R,G) + gαβ∇2FR(R,G)

+1

2
GFG(R,G) − 2R

(
∇α∇β − gαβ∇2

)
FG(R,G)

+4
(
Rμ

β∇μ∇α + Rμ
α∇μ∇β

)FG(R,G)

−4
(
Rαβ∇2 + gαβ R

μν∇μ∇ν

+Rαρσβ∇ρ∇σ
)FG(R,G). (46)

The geometric tensor Eαβ (46) corresponds to the tensor
�αβ − (

Rαβ − 1
2 Rgαβ

)
in equation (4) in [18]. Here one

notes that for an arbitrary number of dimensions D, the cor-
rect form of the geometric fluid is given by (43), and the form

123



1061 Page 6 of 7 Eur. Phys. J. C (2020) 80 :1061

(46) is true only in the specific case: D = 4. This implies
that the results in [18] based on the obtained �αβ tensor in
equation (4) is correct only in four dimensions.

Defining φ = FG(R,G) and ψ = FR(R,G), we have

∇α∇βFG(R,G) = −H φ̇gαβ + (
φ̈ − H φ̇

)
uαuβ,

∇α∇βFR(R,G) = −H ψ̇gαβ + (
ψ̈ − H ψ̇

)
uαuβ, (47)

where the dot sign represents the derivative with respect to
the time coordinate t . Then, we can show that Eαβ tensor in
(43) takes the perfect fluid form (28) in which A and B read
as

A = −1

2
F(R,G) + ((D − 1)ρ1 − ρ2) ψ − (D − 2)H ψ̇ − ψ̈

+
[

1

2
G + 2ρ1(D − 2)(D − 3)(D − 4)

(
ρ2 − D − 1

4
ρ1

)]
φ

−2(D − 2)(D − 3) [ρ1(D − 2) − 2ρ2] H φ̇

−2(D − 2)(D − 3)ρ1φ̈,

B = (D − 2)ρ2ψ + H ψ̇ − ψ̈

−2(D − 2)(D − 3)(D − 4)ρ1ρ2φ

+2(D − 2)(D − 3) (ρ1 + 2ρ2) H φ̇

−2 [(D − 2)(D − 3)ρ1 − 4(D − 1)ρ2] φ̈.

(48)

Then for any genericF(R,G)gravity theory in D-dimensions
we have the following Proposition.

Proposition 9 The field equations of the general F(R,G)

gravity theory are of the perfect fluid type with the energy
density ρ and pressure p given by

ρ = 1

κ

[
(D − 1) (D − 2)

2
ρ1 − �

]

+1

2
αF(R,G) + (D − 1) (ρ2 − ρ1) αψ + (D − 1)αH ψ̇

−
[

1

2
G + 2ρ1(D − 2)(D − 3)(D − 4)

(
2ρ2 − D − 1

4
ρ1

)]
αφ

+2ρ1(D − 1)(D − 2)(D − 3)αH φ̇ + 8ρ2(D − 1)αφ̈, (49)

p = 1

κ

[
(D − 2)

(
ρ2 − 1

2
(D − 1)ρ1

)
+ �

]

−1

2
αF(R,G) + ((D − 1)ρ1 − ρ2) αψ − (D − 2)αH ψ̇ − αψ̈

+
[

1

2
G + 2ρ1(D − 2)(D − 3)(D − 4)

(
ρ2 − D − 1

4
ρ1

)]
αφ

−2(D − 2)(D − 3) [ρ1(D − 2) − 2ρ2] αH φ̇

−2(D − 2)(D − 3)ρ1αφ̈. (50)

For D = 4 this proposition is proved in [18]. However, as
mentioned before, one notes that the proof in [18] is correct
only for D = 4 due to the identically vanishing property of
Hαβ in four dimensions. For cosmological applications of
F(R,G) theory, see for example [33].

6 Conclusion

In this work considering the FLRW spacetimes we have
shown that the contribution of any generic modified grav-
ity theories to the field equations is of the perfect fluid type.
As examples, we have studied the field equations of general
F(R,G) and Lovelock theories. In a forthcoming publication
we investigate exact solutions of these equations by assuming
certain equations of state.
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