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The adaptive immune system relies on the diversity of receptors

expressed on the surface of B- and T cells to protect the organism

from a vast amount of pathogenic threats. The proliferation and

degradation dynamics of different cell types (B cells, T cells, naive,

memory) is governed by a variety of antigenic and environmental

signals, yet the observed clone sizes follow a universal power-law

distribution. Guided by this reproducibility we propose effective

models of somatic evolution where cell fate depends on an effective

fitness. This fitness is determined by growth factors acting either on

clones of cells with the same receptor responding to specific antigens,

or directly on single cells with no regard for clones. We identify

fluctuations in the fitness acting specifically on clones as the essential

ingredient leading to the observed distributions. Combining our

models with experiments, we characterize the scale of fluctuations

in antigenic environments and we provide tools to identify the

relevant growth signals in different tissues and organisms. Our results

generalize to any evolving population in a fluctuating environment.

immune repertoire | population dynamics | fluctuating fitness | lymphocyte

receptor | repertoire sequencing

Antigen-specific receptors expressed on the membrane of
B- and T cells (B-cell receptors, BCRs and T-cell receptors,

TCRs) recognize pathogens and initiate an adaptive immune
response (1). An efficient response relies on the large diversity of
receptors that is maintained from a source of newly generated
cells, each expressing a unique receptor. These progenitor cells
later divide or die, and their offspring make up clones of cells
that share a common receptor. The sizes of clones vary, as they
depend on the particular history of cell divisions and deaths in
the clone. The clone-size distribution thus bears signatures of the
challenges faced by the adaptive system. Understanding the form
of the clone-size distribution in healthy individuals is an impor-
tant step in characterizing the antigenic recognition process and
the functioning of the adaptive immune system. It also presents
an important starting point for describing statistical deviations
seen in individuals with compromised immune responses.
High-throughput sequencing experiments in different cell types

and species (2–9) have allowed for the quantification of clone sizes
and their distributions (2, 9–11). Previous population dynamics ap-
proaches to repertoire evolution have taken great care in precisely
modeling these processes for each compartment of the population,
through the various mechanisms by which cells grow, die, commu-
nicate, and change phenotype (12–17). However, one of the most
striking properties of repertoire statistics revealed by high-through-
put sequencing is the observation of power laws in clone-size dis-
tributions (Fig. 1 A and B), which holds true for various species
(human, mice, zebrafish), cell type (B- and T cells), and subsets
(naive and memory, CD4 and CD8), and seems to be insensitive to
these context-dependent details. It remains unclear, however, what
universal features of these dynamics lead to the observed power-law
distributions. Here we identify the key biological parameters of the
repertoire dynamics that govern its behavior.
The wide range and types of interactions that influence a B- or

T-cell fate happen in a complex, dynamical environment with
inhomogeneous spatial distributions. They are difficult to mea-
sure in vivo, making their quantitative characterization elusive.

Motivated by the universality of the observed clone-size distribu-
tion, we describe the effective interaction between the immune
cells and their environment as a stochastic process governed by
only a few relevant parameters. All cells proliferate and die
depending on the strength of antigenic and cytokine signals they
receive from the environment, which together determine their net
growth rate (Fig. 1C). This effective fitness that fluctuates in time is
central to our description. We find that its general properties de-
termine the form of the clone-size distribution. We distinguish two
broad classes of models, according to whether these fitness fluc-
tuations are clone-specific (mediated by their specific BCR or
TCR) or cell-specific (mediated by phenotypic fluctuations such as
the number of cytokine receptors). We identify the models that are
compatible with the experimentally observed distributions of clone
sizes. These distributions do not depend on the detailed mecha-
nisms of cell signaling and growth, but rather emerge as a result of
self-organization, with no need for fine-tuned interactions. Per-
forming a series of validated approximations, we find a simple al-
gebraic relationship constraining the different timescales of the
problem by the experimentally observed exponent of the clone-size
distribution. This result allows for testable predictions and esti-
mates of the rates that govern the diversity of a clonal distribution.

Results

Clone Dynamics in a Fluctuating Antigenic Landscape. The fate of the
cells of the adaptive immune system depends on a variety of clone-
specific stimulations. The recognition of pathogens triggers large
events of fast clone proliferation followed by a relative decay, with
some cells being stored as memory cells to fend off future infec-
tions. Naive cells, which have not yet recognized an antigen, do
not usually undergo such extreme events of proliferation and
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death, but their survival relies on short binding events (called
“tickling”) to antigens that are natural to the organism (self-
proteins) (18, 19). Because receptors are conserved throughout
the whole clone (with the exception of B-cell hypermutations),
clones that are better at recognizing self-antigens and pathogens
will on average grow to larger populations than bad binders. By
analogy to Darwinian evolution, they are “fitter” in their local,
time-varying environment.
We first present a general model for clonal dynamics that ac-

counts for the characteristics common to all cell types, following
previous work by de Boer, Perelson, and collaborators (14, 20, 21).
We later explore the effect of specific features such as hyper-
mutations, memory/naive compartmentalization, and thymic out-
put decay on the clone-size distribution.
We denote by ajðtÞ the overall concentration of an antigen j as

a function of time. We assume that after its introduction at a
random time tj, this concentration decays exponentially with a
characteristic lifetime of antigens λ−1, ajðtÞ= aj,0e

−λðt−tjÞ as patho-
gens are cleared out of the organism, either passively or through
the action of the immune response. Lymphocyte receptors are

specific to certain antigens, but this specificity is degenerate, a
phenomenon referred to as cross-reactivity or polyspecificity. The
extent to which a lymphocyte expressing receptor i interacts with
antigen j (foreign or self) is encoded in the cross-reactivity function
Kij, which is zero if i and j do not interact, or a positive number
drawn from a distribution to be specified, if they do. In general,
interactions between lymphocytes and antigens effectively promote
growth and suppress cell death, but for simplicity we can assume that
the effect is restricted to the division rate. In a linear approximation,
this influence is proportional to

P

jKijajðtÞ, i.e., the combined effect
of all antigens j for which clone i is specific. This leads to the fol-
lowing dynamics for the evolution of the size Ci of clone i (Fig. 1C):

dCi

dt
=

�

ν+
X

j

KijajðtÞ− μ

�

Ci +BξiðtÞ, [1]

where ν and μ are the basal division and death rates, respectively,
and where BξiðtÞ is a birth–death noise of intensity B2

=

ðν+P

jKijajðtÞ+ μÞCi, with ξiðtÞ a unit Gaussian white noise
(see SI Appendix, section A for details about birth–death noise).
New clones, with a small typical initial size C0, are constantly

produced and released into the periphery with rate sC (Fig. 1C).
For example, a number on the order of sC = 108 new T cells is
output by the thymus daily in humans (22). Because the total
number of T cells is on the order of 1011, this means that the net
effect of cell death and proliferation results in a negative average
growth rate of 10−3 days−1 in homeostatic conditions (22). Be-
cause the probability of rearranging the exact same receptor
independently is very low (<10−10) (23), we assume that each
new clone is unique and comes with its own set of cross-reactivity
coefficients Kij. Assuming a rate sA of new antigens, the aver-
age net growth rate in Eq. 1 is f0 = ν+ haj,0ihKisAλ−1 − μ< 0, and
the stationary number of clones should fluctuate around NC ≈

sCjf0j−1 clones. This is just an average, and treating each clone
independently may lead to large variations in the total number of
cells (i.e., the sum of sizes of all clones). To maintain a constant
population size, clones compete with each other for specific re-
sources (pathogens or self-antigens) and homeostatic control can
be maintained by a global resource such as Interleukin 7 or In-
terleukin 2. Here we do not model this homeostatic control ex-
plicitly, but instead assume that the division and death rates ν, μ
are tuned to achieve a given repertoire size. We verified that
adding an explicit homeostatic control did not affect our results
(SI Appendix, Fig. S2 and SI Appendix, section B).
We simulated the dynamics of a population of clones inter-

acting with a large population of antigens. Each antigen interacts
with each present clone with probability p= 10−7, and with
strength Kij drawn from a Gaussian distribution of mean 1 and
variance 1 (truncated to positive values). Although it has been
argued that the breadth of cross-reactivity and affinity to self-
antigens are correlated (24, 25), here for simplicity we draw them
independently, as we do not expect this correlation to qualitatively
affect the results. A typical trajectory of the antigenic stimulation
undergone by a given clone,

P

jKijaj, is shown in Fig. 1E (green
curve), and shows how clone growth tracks the variations of the
antigenic environment. When the stimulation is particularly
strong, the model recapitulates the typical behavior experimentally
observed at the population level following a pathogenic invasion
(26, 27), as illustrated in Fig. 1D: The population of a clone ex-
plodes (red curve), driving the growth of the total population (blue
curve), while taking over a large fraction of the carrying capacity of
the system, and then decays back as the infection is cleared.
On average, the effects of division and death almost balance

each other, with a slight bias toward death because of the turn-
over imposed by thymic or bone marrow output. However, at a
given time, a clone that has high affinity for several present an-
tigens will undergo a transient but rapid growth, whereas most
other clones will decay slowly toward extinction. In other words,
locally in time, the antigenic environment creates a unique “fit-
ness” for each clone. Because growth is exponential in time,
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Fig. 1. Experimental clone-size distributions have heavy tails. (A) B-cell zebrafish
experimental cumulative clone-size distribution for 14 fish as a function of the
fraction of the population occupied by that clone from data in Weinstein et al. (2).
(B) Clone-size distribution for murine T cells from Zarnitsyna et al. (11) (data plotted
as presented in original paper). (C) The dynamics of adaptive immune cells include
specific interactions with antigens that promote division and prevent cell death.
New cells are introduced from the thymus or bone marrow with novel, unique
receptors. Division, death, and thymic or bone marrow output on average balance
each other to create a steady-state population. (D and E) Example trajectories from
simulations of the immune cell population dynamics in Eq. 1. The total number of
cells (D) shows large variations after an exceptional event of a large pathogenic
invasion. One or a few cells that react to that specific antigen grow up to a mac-
roscopic portion of the total population, and then decrease back to normal sizes
after the invasion. A typical clone-size trajectory along with its pathogenic stimu-
lation

P

jKijajðtÞ shows the coupling between clone growth and variations of the
antigenic environment (E). Parameters used: sC = 2,000 day−1, C0 = 2, sA =1.96 ·107

day−1, aj,0 = a0 = 1, λ= 2 day−1, p= 10−7, ν= 0.98 day−1, and μ= 1.18 day−1.
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these differential fitnesses can lead to very large differences in
clone sizes, even if variability in antigen concentrations or af-
finities is nominally small. We thus expect to observe large tails
in the distribution of clone size. Fig. 2A shows the cumulative
probability distribution function (CDF) of clone sizes obtained at
steady state (blue curve) showing a clear power-law behavior for
large clones, spanning several decades.
The exponent of the power law is independent of the in-

troduction size of clones (Fig. 2A, Inset) and the specifics of the
randomness in the environment (exponential decay, random
number of partners, random interaction strength) as long as its
first and second moment are kept fixed (SI Appendix, Fig. S3 and
SI Appendix, section C).

Simplified Models and the Origin of the Power Law. To understand
the power-law behavior observed in the simulations, and its ro-
bustness to various parameters and sources of stochasticity, we
decompose the overall fitness of a clone at a given time (its in-
stantaneous growth rate) into a constant, clone-independent part
equal to its average f0 < 0, and a clone-specific fluctuating part of
zero mean, denoted by fiðtÞ. This leads to rewriting Eq. 1 as

dCi

dt
= ½f0 + fiðtÞ�CiðtÞ+BξiðtÞ, [2]

with B2 ≈ ðjf0j+ 2μÞCi.
The function fiðtÞ encodes the fluctuations of the environment

as experienced by clone i. Because antigens can be recognized by
several receptors, these fluctuations may be correlated between
clones. Assuming that these correlations are weak, hfiðtÞfjðt′Þi≈ 0,
amounts to treating each clone independently of each other, and
thus to reducing the problem to the single clone level. The sto-
chastic process giving rise to fiðtÞ is a sum of Poisson-distributed
exponentially decaying spikes. This process is not easily amenable to
analytical treatment, but we can replace it with a simpler stochastic
process with the same temporal autocorrelation function. This au-
tocorrelation is given by hfiðtÞfiðt′Þi=A2e−λjt−t′j, with the antigenic
noise strength A2

= sApa
2
0hK2iλ−1, and where we recall that λ−1 is

the characteristic lifetime of antigens. The simplest process with the
same autocorrelation function is given by an overdamped spring in a
thermal bath, or Ornstein–Uhlenbeck process,

dfi

dt
=−λfi +

ffiffiffi

2
p

γηiðtÞ, [3]

with ηiðtÞ a Gaussian white noise of intensity 1 and γ =A
ffiffiffi

λ
p

quantifies the strength of variability of the antigenic environment
(SI Appendix, section D). This is also the process of maximum
entropy or caliber (28) with that autocorrelation function (SI
Appendix, section E and ref. 29).
The effect of the birth–death noise BξiðtÞ is negligible compared

with the fitness variations for large clones and it has no effect on
the tail (SI Appendix, Fig. S5 and SI Appendix, section F). It can
thus be ignored when looking at the tail of the distribution and its
power-law exponent, but it will play an important role for defining
the range over which the power law is satisfied.
The population dynamics described by Eqs. 2 and 3 can be refor-

mulated in terms of a Fokker–Planck equation for the joint abun-
dance ρ of clones of a given log size x= logC and a given fitness f:

∂ρðx, f , tÞ
∂t

=−ðf0 + f Þ ∂ρ
∂x

+ λ
∂ðfρÞ
∂f

+ γ2
∂
2ρ

∂f 2
+ sðx, f Þ, [4]

where the source term sðx, f Þ describes new clones arriving at rate
sC with size C0 and normally distributed fitnesses of variance
hf 2i= γ2=λ. This Fokker–Planck equation can be solved numeri-
cally with finite element methods with an absorbing boundary
condition at x= 0 to account for clone extinction. The solution,
represented by the black curve in Fig. 2A, matches closely that of
the full simulated population dynamics (in blue). The power-law
behavior is apparent above a transition point that depends on the

distribution of introduction sizes of new clones and the param-
eters of the model (see below). Intuitively, the microscopic de-
tails of the noise are not expected to matter when considering
long timescales, as a consequence of the central limit theorem.
However, the long tails of the distribution of clone sizes involve
rare events and belong to the regime of large deviations, for
which these microscopic details may be important. Therefore,
the agreement between the process described by the overdamped
spring and the exponentially decaying, Poisson-distributed anti-
gens is not guaranteed, and in fact does not hold in all parameter
regimes (SI Appendix, Fig. S8).
We can further simplify the properties of the noise by as-

suming that its autocorrelation time is small compared with
other timescales. This leads to taking the limit γ, λ→∞ while
keeping their ratio σ = γ=λ constant, so that fiðtÞ is just a Gaussian
white noise with hfiðtÞfiðt′Þi= 2σ2δðt− t′Þ (SI Appendix, section F
and SI Appendix, Fig. S4). The corresponding Fokker–Planck
equation now reads

∂tρðx, tÞ=−f0∂xρðx, tÞ+ σ2∂2xρðx, tÞ+ sðxÞ, [5]

with sðxÞ= sCδðx− logðC0ÞÞ. This equation can be solved analytically
at steady state, and the resulting clone-size distribution is, for C>C0,

ρðCÞ= sC

ασ2
1

Cα+1
, [6]

with α= jf0j=σ2 = λjf0j=A2 (details in SI Appendix, section F). The
full solution, represented in Fig. 2A in red, captures well the long-
tail behavior of the clone-size distribution despite ignoring the tem-
poral correlations of the noise, and approaches the solution of the
colored-noise model (Eq. 3) as λ, γ→∞, as expected (Fig. 2A).
The power-law behavior and its exponent depend on the noise

intensity, but are otherwise insensitive to the precise details of
the microscopic noise, including its temporal properties. Fat tails
(small α) are expected when the average cell lifetime is long
(small jf0j) and when the antigenic noise is high (large σ or A).
The explicit expression for the exponent of the power law 1+ α as
a function of the biological parameters can be used to infer the
antigenic noise strength A2 directly from data. The typical net
clone decay rate jf0j≈ 10−3 can be estimated from thymic output
and repertoire size, as discussed earlier. The characteristic life-
time of antigens λ−1 is harder to estimate, as it corresponds to the
turnover time of the antigens that the body is exposed to, but is
probably on the order of days or a few weeks, λ≈ 0.1 day−1. We
estimated α= 1± 0.2 from the zebrafish data of Fig. 1A (2, 10)
using canonical methods of power-law exponent extraction (30)
(see SI Appendix, section G for details), and also found a similar
value in human T cells (31). The resulting estimate, A= 10−2

day−1, is rather striking, as it implies that fluctuations in the net
clone growth rate, A, are much larger than its average f0.
Whereas the distribution always exhibits a power law for large

clones, this behavior does not extend to clones of arbitrarily
small sizes, where the details of the noise and how new clones are
introduced matter. We define a power-law cutoff C* as the smallest
clone size for which the cumulative distribution function differs
from its best power-law fit by less than 10%. Using numerical
solutions to the Fokker–Planck equation associated with the
colored-noise model, we can draw a map of C* as a function
of the parameters of the system. In Fig. 2 B and C we show how
C* varies as a function of the introduction size for different
values of the dimensionless parameter related to the effective
strength of antigen fluctuations relative to their characteristic
lifetime at fixed power-law exponents. In principle, one can use
this dependency to infer effective parameters from data. In
practice, when dealing with data it is more convenient to con-
sider the value of the cumulative distribution at C*, rather than
C* itself. For example, fixing C0 = 4 and fitting the curve of Fig.
1A with our simplified model using λ as an adjustable pa-
rameter, we obtain λ≈ 0.14 day−1 (SI Appendix, section G),
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which corresponds to a characteristic lifetime of antigens of
around a week. Although this estimate must be taken with care,
because of possible PCR amplification biases plaguing the small
clone size end of the distribution, the procedure described here
can be applied generally to any future repertoire sequencing
dataset for which reliable sequence counts are available.

A Model of Fluctuating Phenotypic Fitness. So far, we have assumed
that fitness fluctuations are identical for all members of a same
clone. However, the division and death of lymphocytes do not
only depend on signaling through their TCR or BCR. For ex-
ample, cytokines are also growth inducers and homeostatic
agents (32, 33), and the ability to bind to cytokines depends on
single-cell properties such as the number of cytokine receptors
on the membrane of a given cell, independent of their BCR or
TCR. Other stochastic single-cell factors may affect cell division
and death. These signals and factors are cell-specific, as opposed
to the clone-specific properties related to BCR or TCR binding.
Together, they define a global phenotypic state of the cell that

determines its time-varying fitness, independent of the clone and
its TCR or BCR. This does not mean that these phenotypic fitness
fluctuations are independent across the cells belonging to the
same clone. Cells within a clone share a common ancestry, and
may have inherited some phenotypic properties of their common
ancestors, making their fitnesses effectively correlated with each
other. However, this phenotypic memory gets lost over time, un-
like fitness effects mediated by antigen-specific receptors.
We account for these phenotypic fitness fluctuations by a

function fcðtÞ quantifying how much the fitness of an individual
cell c differs from the average fitness f0. This fitness difference is
assumed to be partially heritable, which we model by

dfc

dt
=−λcfcðtÞ+

ffiffiffi

2
p

γcηcðtÞ, [7]

where λ−1c is the heritability, or the typical time over which the
fitness-determining trait is inherited, γc quantifies the variability of
the fitness trait, and ηcðtÞ is a cell-specific Gaussian white noise of
power 1. Despite its formal equivalence with Eq. 3, it is important to
note that here the fitness dynamics occurs at the level of the single
cell (and its offspring) instead of the entire clone. The dynamics of
the fitness fiðtÞ of a given clone i can be approximated from Eq. 7 by
averaging the fitnesses fcðtÞ of cells in that clone, yielding

dCi

dt
= ½f0 + fiðtÞ�CiðtÞ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðν+ μÞCiðtÞ
p

ξiðtÞ, [8]

dfi

dt
=−λcfiðtÞ+

1
ffiffiffiffiffiffiffiffiffiffi

CiðtÞ
p

ffiffiffi

2
p

γcηiðtÞ, [9]

where ηiðtÞ and ξiðtÞ are clone-specific white noise of intensity 1,
and ν and μ are the average birth and death rates, respectively, so
that f0 = ν− μ (details in SI Appendix, section I). The difference
with Eq. 3 is the 1=

ffiffiffiffiffiffiffiffiffiffi

CiðtÞ
p

prefactor in the fitness noise ηiðtÞ,
which stems from the averaging of that noise over all cells in the
clone, by virtue of the law of large numbers. Because of this
prefactor, the fitness noise is now of the same order of magni-
tude as the birth–death noise, which must now be fully taken into
account. Taking Eqs. 8 and 9 at the population level gives a
Fokker–Planck equation with a source term accounting for the
import of new clones. We verify the numerical steady-state
Fokker–Planck solution against Gillespie simulations (SI Ap-
pendix, Fig. S6; see SI Appendix, section H for details).
Fig. 3 A and B shows the distribution of clone sizes for dif-

ferent values of the phenotypic relaxation rate λc and environ-
ment amplitude γc. These distributions vary from a sharp expo-
nential drop in the case of low heritability (large λc) to heavier
tails in the case of long conserved cell states (small λc). To quantify
the extent to which these distributions can be described as heavy-
tailed, we fit them to a power law with exponential cutoff,
ρðCÞ∝C−1−αe−C=Cm, where Cm is the value below which the dis-
tribution could be interpreted as an (imperfect) power law. Fig. 3C
shows a strong dependency of this cutoff with the phenotypic
memory λ−1c . The longer the phenotypic memory λ−1c , the more
clone-specific the fitness looks, and the more the distribution can
be mistaken for a power law in a finite-size experimental distri-
bution. Larger birth–death noise also extends the range of validity
of the power law. As a result, and despite the absence of a true
power-law behavior, these models of fluctuating phenotypic fit-
nesses cannot be discarded based on current experimental data.
The model can be solved exactly at the two extremes of the

heritability parameter λc. In the limit of infinite heritability (λc→ 0)
the system is governed by selective sweeps. The clone with the
largest fitness completely dominates the population, until it is
replaced by a better one, giving rise to a trivial clone-size distribu-
tion. In the opposite limit, when heritability goes to 0 (λc→ +∞),
the Fokker–Planck equation can be solved analytically (SI Appendix,
sections I and J), yielding an exact power law with exponential
cutoff, ρðCÞ∝C−1−αe−C=Cm, with α= −½1+ ðμ+ νÞλ2c=2γ2c �

−1 and

A

B C

Fig. 2. Clone-size distributions for populations with fluctuating antigenic, clone-
specific fitness. (A) Comparison of simulations and simplified models of clone
dynamics. Blue curve: cumulative distribution of clone sizes obtained from the
simulation of Eq. 1. Black curve: a simplified, numerically solvable model of ran-
dom clone-specific growth, also predicts a power-law behavior. Red curve: ana-
lytical solution for the Gaussian white-noise model, Eq. 4. Parameters used:
ν= 0.98 day−1, μ= 1.18 day−1, λ=2 day−1, sC = 2,000 day−1, C0 = 2, and
sA = 1.96 · 107 day−1. (Inset) The exponent is independent of the initial clone size.
Results from simulation with different values of the introduction clone size. The
cutoff value of the power-law behavior, represented here as a dot, is strongly
dependent on the value of C0. Parameters are ν= 0.2 day−1, μ= 0.4 day−1, λ= 2
day−1, γ = 1 day−3/2, and sC = 5,000. (B) Value of the CDF at the point of the power-
law cutoff as a function of the introduction clone size C0 for different values of a
dimensionless parameter related to the effective strength of antigen fluctuations
relative to their characteristic lifetime λ3=γ2 for a fixed power-law exponent α. We
use the CDF because it is robust, invariant under multiplicative rescaling of the
clone sizes. This way we do not need to correct directly for PCR multiplication or
sampling. Parameters for B and C are ν= 4.491 days−1, μ= 5.489 days−1, and
α=−0.998. (C) Power-law cutoff as a function of the introduction clone size.
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Cm = ðμ− νÞ−1½ðμ+ dνÞ=2+ γ2c=λ
2
c �. The numerical solution of Fig.

3B is close to this limit. Note that even with a negligible exponential
cutoff, the predicted α< 0 contradicts experimental observations.

Discussion

The model introduced in this paper describes the stochastic
nature of the immune dynamics with a minimal number of pa-
rameters, helping interpret the different regimes. These param-
eters are effective in the sense that they integrate different levels
of signaling, pathways, and mechanisms, focusing on the long
timescales of clone dynamics. We assumed that they are general
enough that different cell types (B- and T cells) or subsets (naive
or memory) can be described by the same dynamical equations
despite their differences. How do refined models including these
differences affect our results?
Naive and memory cells differ in their turnover rate, i.e., their

death rate, memory cells being renewed at a pace 10 times faster
than naive ones (34). In our model, this difference is reflected in
a higher birth–death noise for memory cells. We have shown that
this noise had no effect on the tail of the clone-size distribution for
clone-specific fitness (SI Appendix, Fig. S5), whereas it was im-
portant for the case of a cell-specific fitness, where birth–death
noise contributed to the distribution to the same extent as fitness
fluctuations. However, some repertoire datasets mix both naive
and memory sets, and one could wonder whether our results hold
for such mixtures. To examine this question, we simulated a simple
two-compartment model where naive cells get irreversibly con-
verted into memory cells when their stimulation is above a certain
threshold (see SI Appendix, section K for details). We found that
when fitness was clone-specific, the clone-size distribution of the
mixture and that of memory cells alone still follow a power law,
whereas that of naive cells only does so when conversion to
memory upon stimulation is partial (SI Appendix, Fig. S12). Re-
peating the same analysis for the cell-specific fitness model, we
found that clone-size distributions for each phenotype differed
according to their respective birth–death noises, with a longer tail
for memory cells as expected from their higher turnover rate.
The main difference between B- and T cells ignored by our

model is that BCRs accumulate hypermutations upon pro-
liferation. We studied this effect by allowing proliferating clones
to spawn new clones with slightly modified affinities to antigens
(SI Appendix, section L). The resulting clone-size distribution

still follows a power law (SI Appendix, Fig. S13), although with a
slightly smaller exponent due to increased stochasticity.
Another simplifying assumption of our model is that the dy-

namics reaches a steady state. This may be challenged by the
decay of the thymic output sC with age. To estimate the impor-
tance of this effect, we simulated the model of a clone-specific
fitness with an exponentially decaying source term, combined
with a decreasing jf0j chosen to keep the population constant on
average (SI Appendix, section M). The clone-size distributions at
different points in time, shown in SI Appendix, Fig. S14, still
follow a power law. Interestingly, the exponent α is predicted to
decrease with age, consistent with α∝ jf0j.
We showed that the relevant sources of stochasticity for the

shape of the clone-size distributions fall into two main cate-
gories, depending on how cell fate is affected by the environ-
ment. Either the stochastic elements of clone growth act in a
clone-specific way, through their receptor (BCR or TCR),
leading to power-law distributions with exponent ≥1, or in a cell-
specific way, e.g., through their variable level of sensitivity to
cytokines (and more generally through any phenotypic trait af-
fecting cell fitness), leading to exponentially decaying distribu-
tions with a power-law prefactor. These two types of signals
(clone-specific and cell-specific) are important for the somatic
evolution of the immune system (21, 32, 33, 35–37) and our
analysis shows that the shape of the clone-size distribution is
informative of their relative importance to the repertoire dy-
namics. It provides a first theoretical setting and an initial sys-
tematic classification for modeling immune repertoire dynamics.
Our method applied to high-throughput sequencing data can be
used to quantify how much each type of signal contributes to the
overall dynamics, and what is the driving force for the different
cell subsets. For example, although it is reasonable to speculate
that clone-specific signals should dominate for memory cells
(through antigen recognition), and cell-specific selection for
naive cells (through cytokine-mediated homeostatic division),
the relative importance of these signals for both cell types is yet
to be precisely quantified, and may vary across species. A clear
power law over several decades would strongly hint at dynamics
dominated by interactions with antigens, whereas a faster
decaying distribution would favor a scenario where individual
cell fitness fluctuations dominate. Applying these methods to
data from memory cells can give orders of magnitude for the

A

B C

Fig. 3. Clone-size distributions for populations with
a cell-specific fluctuating phenotypic fitness. (A) Cu-
mulative distribution of clone sizes for moderate
phenotypic heritability (λ−1c ). The distribution is
power-law–like for small clone values and drops
above a cutoff around 0.01 of clone-size probability.
An experiment that does not sequence the reper-
toire deeply enough could report a power-law be-
havior (see zoom). Parameters are ν= 0.17 days−1,
μ= 0.3 day−1, λc = 0.4 days−1, and γc = 0.5 days−3/2.
C0 =2 for all three graphs. (B) An example of a dis-
tribution of clone sizes from a cell-specific model
with very low environmental noise, close to the pure
birth–death limit. The distribution is flat (α= 0) and
then drops exponentially. It does not resemble ex-
perimental data. Parameters are ν= 0.1 days−1,
μ= 0.3 days−1, λc =2 days−1, and γc = 5 days−3/2.
(C) Value of the cumulative distribution at the ex-
ponential cutoff as a function of the speed of envi-
ronment variations λc, for different birth–death noise
levels. Parameters are f0 =−0.998 days−1 and
f0λ

2
c =γ

2
c = 0.998.
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division and half-life of memory lymphocytes, as well as the
typical number of cells C0 from a clone that are stored as
memory following an infection.
The application of our method to data from the first immune

repertoire survey [BCRs in zebrafish (2)] suggests that clone-
specific noise dominates in that case, allowing us to infer a re-
lation between the dynamical parameters of the model from the
observed power-law exponent ≈ 2. However, there are a few is-
sues with applying our method directly to data in the current
state of the experiments. First, the counts (i.e., how many cells
have the same receptor sequence and belong to the same clone)
from many high-throughput repertoire sequencing experiments
are imperfect because of PCR bias and sampling problems. New
methods using single-molecule barcoding have been developed for
RNA sequencing (8, 38, 39), but they do not solve the problem
entirely, as the number of expressed mRNA molecules may not
faithfully represent the cell numbers because of possible expres-
sion bias. In addition, most studies (with the exception of ref. 40)
have been sequencing only one of the two chains of lymphocyte
receptors, which is insufficient to determine clone identity un-
ambiguously. As methods improve, however, our model can be
applied to future data to distinguish different sources of fitness
stochasticity and to put reliable constraints on biological param-
eters. Studying clone-size distributions in healthy individuals al-
lows us to characterize signatures of normally functioning immune
systems. By comparing them to the same properties in individuals

suffering from immune diseases or cancer, our approach could be
used to identify sources of anomalies.
Thanks to its generality, our model is also relevant beyond its

immunological context, and follows previous attempts to explain
power laws in other fields (41–43). The dynamics described here
corresponds to a generalization of the neutral model of pop-
ulation genetics (44) where thymic or bone marrow outputs are
now reinterpreted as new mutations or speciations, and where
we have added a genotypic or phenotypic fitness noise (receptor
or cell-specific noise, respectively). It was recently shown that
such genotypic fitness noise strongly affects the fixation proba-
bility and time in a population of two alleles (45, 46). Note that,
because new thymic or bone marrow clones are unrelated to
existing clones, there are no lineage histories, in contrast with
previous theoretical work on evolving populations in fluctuating
fitness landscapes (47–49). Our main result (Eq. 6) shows how
fitness noise can cause the clone-size distribution (called “fre-
quency spectrum” in the context of population genetics) to fol-
low a power law with an arbitrary exponent >1 in a population of
fixed size, whereas the classical neutral model gives a power law
of exponent 1 with an exponential cutoff (as shown in our exact
solution with γc = 0). Our results can be used to explain complex
allele frequency spectra using fluctuating fitness landscapes.
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Appendix A: Simple birth-death process with no

fitness fluctuations, and its continuous limit

In this Appendix we derive the steady-state clone size
distribution for a system that does not experience any
environmental stimulation or noise, but is governed by a
birth death process. We will show that the small number
fluctuations arising from the discrete nature of birth and
death are not sufficient to explain the observed distribu-
tions. We also show that our choice of a continuous birth
death process is equivalent to its discrete version.

The multiplicative birth–death process corresponds to
the following discrete dynamics:

{

P (n→ n+ 1) = µndt

P (n→ n− 1) = νndt,
(A1)

where µ is the division rate, ν the death rate. We assume
that the population of cells of size n is maintained out
of equilibrium by a source of new cells. The steady state
solution for cell numbers above the value of the source
satisfies detailed balance

P (n)µn = P (n+ 1)ν(n+ 1) (A2)
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FIG. S1: We compare results from a full Gillespie simulation
(blue crosses) of a system with only birth-death dynamics
with analytical prediction for a discrete system (black crosses,
Eq. A3) and a continuous system (red curve, Eq. A12). The
prediction with discrete variables is more accurate for small
clones but the behaviour of all systems is the same for large
populations. The parameters are ν = 1.45 day−1, µ = 1.5
day−1, C0 = 2 and we introduce 2000 new clones per day.

and, assuming the death rate is larger than the birth rate,
takes the form

P (n) ∼ K

n
e−n log ν/µ. (A3)

The continuous counterpart of this discrete stochastic
process corresponds to the following linear-noise approx-
imation:

∂tCi = f0Ci +
√

(µ+ ν)Ciξ, (A4)

where 〈ξi(t)ξi(t′)〉 = δ(t − t′) and f0 = µ − ν < 0 (and
we use the Îto convention ). In terms of x = logC the
Langevin equation is

∂tx = f0 +
√
µ+ νe−x/2ξ − e−x (µ+ ν)

2
, (A5)

and the corresponding Fokker-Planck equation reads

∂tρ = ∂x(−f0ρ)+∂2x
(

µ+ ν

2
e−xρ

)

+∂x

(

e−xρ
µ+ ν

2

)

+s(x),

(A6)
where s(x) is the distribution of sizes of newly arriving
clones. At steady state, we find

K − sCθ(x− x0) = −f0ρ+
µ+ ν

2
e−xρ′, (A7)

where K is an integration constant. Defining

Cm = (µ+ ν)/(2|f0|) (A8)

for x < x0 we obtain

ρ(x) = e−ex/CmK

∫ x

0

exee
x/Cm = KCm(1−e−(ex−1)/Cm)

(A9)
and for x > x0

ρ(x) = e−ex/CmCm

[

Kee
x/Cm −Ke1/Cm (A10)

− sC
|f0|Cm

ee
x/Cm +

sC
|f0|Cm

ee
x0/Cm

]

To ensure convergence we set K = sC/(|f0|Cm) and the
steady solution of the Fokker-Planck equation is

ρ(x) =

{

sC
|f0|

(1− e−(ex−1)/Cm) , if x < x0
sC
|f0|

(ee
x0/Cm − eC

−1
m )e−ex/Cm , if x > x0

(A11)
or in terms of the clone size

ρ(C) =

{

1
C (1− e−(C−1)/Cm), if C < C0

(eC0/Cm − eC
−1
m ) e

−C/Cm

C , if C > C0

(A12)



2

This result is exactly equivalent to that of Eq. A3 when
ν−µ = |f0| ≪ µ, ν. The accuracy of the approximation is
verified in Fig. S1. Even for very large exponential cutoff
values, Cm, the apparent exponent is α = 0, correspond-
ing to a flat cumulative distribution. This distribution is
inconsistent with experiments, regardless of sequencing
depth and we conclude that pure birth-death noise is not
sufficient to explain the observed distributions.

Appendix B: Effects of explicit global homeostasis

In the simulations of clone dynamics in a fluctuating
environment presented in the “Clone dynamics in a fluc-
tuating antigenic landscape” Results section of the main
text, we did not explicitly include a homeostatic control
term, but tuned the division and death rates to achieve
a given repertoire size. Here we add an explicit homeo-
static term to the growth and degradation terms in the
Langevin simulations described by Eq. 1 of the main text

−h
[∑

i Ci

N

]r

, (B1)

where N is a carrying capacity, h is the homeostatic con-
stant multiplicator and r is the exponent of homeostatic
response that described the sharpness of the response
when approaching then carrying capacity limit. Com-
paring in Fig. S2 the resulting clone size distribution
obtained with the explicit homeostatic term to the dis-
tribution from the simulations in the main text, we see
that the explicit homeostatic term does not have an effect
on the form of the distribution. It does have an effect on
the trajectory of certain clones, and in particular on the
response of the system to a very large invasion, making
it an important feature of the dynamics of the immune
system. However, as shown by the results in Fig. S2 its
net effect on the clone size distribution can be taken into
account by tuning division and death. When consider-
ing specific trajectories in the mean field approximation
homeostatic control will add a systematic negative drift
to the clonal population and can be accounted for by an
additional contribution to f0.

Appendix C: Details of noise partition do not

influence the clone size distribution function

In the simulation of the dynamics of receptors expe-
riencing a clone-specific fitness presented in the “Clone
dynamics in a fluctuating antigenic landscape” Results
section of the main text we distributed the noise be-
tween the different random distributions: the poisson
distributed number of new antigens (sA), the variance of
the initial concentrations (aj,0) and the variance of the
binding probability (the values of Kij). We made specific
choices for this reparation by picking specific parameters
of the random processes. Here we show that these specific
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FIG. S2: Adding an explicit homeostatic control term does
not affect the clone size distribution compared to tuning the
degradation and death rates to obtain a given repertoire size
as is done in the main text. Comparison of the clone size
distribution with an explicit homeostatic control term given
by Eq. B1 (black line) to the distribution presented in the
main text (red line). We simulate the Langevin equation for
a division rate ν = 0.2 days−1, death rate µ = 0.4 days−1,
introduction size C0 = 2, environmental correlation time of
λ−1 = 0.5 days and an amplitude of variations of the environ-
ment A = 1.41 days−1 without any homeostatic control for
the red curve and with carrying capacity N = 4 · 1010 (h = 1)
and a homeostatic exponent r = 3 for the black curve.

choices of repartitioning the contributions to the noise do
not influence the clone size distributions. Fig. S3 com-
pares clone size distributions obtained with different val-
ues of the poisson distributed number of newly arriving
antigen Na and the variance of the Gaussian distributed
binding probabilities Kij , reproducing the same distribu-
tions in both cases.

Appendix D: Model of temporally correlated

clone-specific fitness fluctuations

In the “Simplified models and the origin of the power
law” Results section of the main text we make a series
of approximations to effectively describe the dynamics of
immune cells: we first approximate the antigenic environ-
ment by a random process with time correlated (colored)
noise and we later neglect these temporal correlations.
In this section and Appendix F we give the details that
lead to the specific forms of the effective equations. In
this Appendix we derive the Fokker-Planck equations for
the time correlated noise model. In Appendix F we will
consider the limit of an infinitely quickly changing envi-
ronment.

The Langevin equations describing the dynamics of
cells experiencing clone specific fitness fluctuations with
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FIG. S3: Repartitioning the sources of stochasticity between
the number of new antigens per time unit or the variability of
binding probabilities does not influence the clone size distri-
butions. We compare simulations of the full system dynamics
defined by Eq. 1 of the main text with two sets of values
sA of the poisson distributed number of newly arriving anti-
gen Na and the variance of the Gaussian distributed binding
probabilities Kij that give the same total environmental noise
A2 = sApa

2
0〈K

2〉λ−1. The parameters were taken to be (as
in Fig. 1) sC = 2000 day−1 , C0 = 2, day−1, aj,0 = a0 = 1,
λ = 2 day−1, p = 10−7, ν = 0.98 day−1, µ = 1.18 day−1.
For the red curve the variance of the entries of Kij is 1, so
that 〈K2〉 = 2 and sA = 1.96 · 107 while for the black curve
the variance of the entries of Kij is 3, so that 〈K2〉 = 4, and
sA = 0.98 · 107.

a finite correlation time are

dCi

dt
= [f0 + fi(t)]Ci(t) +

√

(ν + µ)Ci(t)ξi(t), (D1)

dfi
dt

= −λfi(t) +
√
2γηi(t), (D2)

where 〈ξi(t)ξi(t′)〉 = δ(t− t′) represents birth death noise
in the linear-noise approximation (with the Îto conven-
tion) and 〈ηi(t)ηi(t′)〉 = δ(t − t′) is the noise of anti-
genic environment. The autocorrelation function of this
Ornstein-Uhlenbeck process is

〈fi(t)fi(t′)〉 = e−λ(t+t′)

(

〈fi(0)2〉 −
γ2

λ

)

+
γ2

λ
e−λ|t−t′|.

(D3)
We pick the steady-state value of the initial fitness dis-
tribution to cancel the first in Eq. D3, 〈fi(0)2〉 = γ2/λ
and obtain

〈fi(t)fi(t′)〉 =
γ2

λ
e−λ|t−t′|, (D4)

(conditioned on the integral of the net growth rate f+f0
being positive so that the clone does not go extinct). Set-

ting x = logC, we obtain a new set of Langevin equations

∂txi = f0 + fi +
√
µ+ νe−xi/2ξi − e−xi

(µ+ ν)

2
, (D5)

dfi
dt

= −λfi +
√
2γηi, (D6)

where the birth-death noise is now treated in the Îto
convention. The corresponding Fokker-Planck equation
for the distribution of fitness and clone size at time t,
ρ(x, f, t), verifies

∂tρ = ∂x(−f0ρ) + ∂f (λfρ) + ∂2f (γ
2ρ) + (D7)

∂2x

(

µ+ ν

2
e−xρ

)

+ ∂x

(

e−xρ
µ+ ν

2

)

+s(x, f),

where s(x, f) is the source of new clones. We solve this
equation numerically using finite element methods to ob-
tain clone size distributions for the clone-specific fitness
model.

Appendix E: The Ornstein Uhlenbeck process and

maximum entropy

In this Appendix we show that the maximum en-
tropy or maximum caliber process with autocorrelation
function 〈x(t)x(t + s)〉 = A2e−λ|s| corresponds to the
Ornstein-Uhlenbeck process. We consider this continu-
ous maximum entropy process as the continuous limit
of a simpler maximum entropy system in discrete time.
Burg’s maximum entropy theorem [1] states that the
maximum entropy process in discrete time that con-
strains 〈Xn(t)

2〉 = A2 and 〈Xn(t)Xn+1(t)〉 = A2e−λτ

corresponds to the following Markovian dynamics:

Xn+1 = e−λτXn +
√

1− e−2λτAη, (E1)

where η is Gaussian white noise. In the limit of τ → 0
we recover the constrained autocorrelation function in
the vicinity of s = 0+: 〈x(t)2〉 = A2, (d/ds)〈x(t)x(t +
s)〉|s=0+ = −λA2, and Eq. E1 converges to an Ornstein-
Uhlenbeck process.

Appendix F: Model solution for white-noise

clone-specific fitness fluctuations

In the limit of infinitely quickly fluctuating environ-
ments, γ → +∞ and λ → +∞ while keeping their ra-
tio σ = γ/λ constant, the autocorrelation of the fitness
noise approaches a Dirac delta function, and the fluctu-
ating part of the growth rate fi(t) converges to Gaussian
white noise, 〈fi(t)fi(t′)〉 = 2σ2δ(t − t′). Effectively the
immune cell dynamics are now described by a one dimen-
sional Langevin equation for the clone size

∂tCi = f0Ci +
√
2σCiηi +

√

(ν + µ)Ci(t)ξi, (F1)
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FIG. S4: Comparison between clone size distribution obtained
as solutions of the time-correlated and time-uncorrelated
noise models (without birth death noise). As the values of
the dimensionless parameter related to the effective strength
of antigen fluctuations relative to their characteristic lifetime
λ3/γ2 grow the time correlated noise prediction converges to
the exact power-law solution of the white-noise model. The
cut-off value of the power law decreases with λ3/γ2. All sim-
ulations performed at a constant value of α = |f0|λ

2/γ2 set
to 0.5. The value of f0 is kept fixed to −0.5 days−1 for all
solutions.

where 〈ηi(t)ηi(t′)〉 = δ(t − t′) follows the Stratanovich
convention and ξi is as before. The equation for the log-
arithm of the clone size x = logC is

∂txi = f0+
√
2σηi+

√
µ+ νe−xi/2ξi−e−xi

(µ+ ν)

2
. (F2)

We explicitly checked that the numerical solution to
the clone specific fitness model in Eqs. D1 and D2 con-
verged to the dynamics described by Eq. F1, as demon-
strated in Fig. S4.

We now solve this equation analytically, starting with
the case of no birth-death noise: Eq. F1 simplifies to

∂tCi = f0Ci +
√
2σCiηi (F3)

The equation for x = logC (using the Stratanovich con-
vention) is

∂txi = f0 +
√
2σηi, (F4)

with the corresponding Fokker Planck equation

∂tρ(x, t) = ∂x(−f0ρ) +
1

2
∂x[2σ

2∂xρ] + s(x), (F5)

where s(x) is the source term describing the size of newly
introduced clones. Assuming a constant initial clone size,
s(x) = sCδ(x− x0), the steady state solution is

ρ(x) = e−αx 1

α

[

Keαx −K − sCσ
2eαx + sCσ

2ex0
]

,

(F6)
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FIG. S5: We compare simulations of the Langevin dynamics
with time correlated antigenic noise with birth-death noise
(black line) to the same dynamics without the birth-death
noise (red line). All other parameters are kept fixed.We find
similar values of the power law exponents but different small
clone behaviours. The parameters are ν = 0.2 day−1, µ = 0.4
day−1 (for red curve simply f0 = −0.2 day−1) , C0 = 2, λ = 2

day−1 and γ = 1 day−3/2

where we have defined

α = |f0|/σ2, (F7)

and K is an integration constant. Imposing that ρ van-
ishes at infinity sets K = sCσ

2 and the final form of the
steady state clone size distribution is

ρ(x) =

{

sC
|f0|

(1− e−αx) if x < x0
sC
|f0|

e−αx (ex0 − 1) if x > x0,
(F8)

or in terms of clone size C = ex,

ρ(C) =

{

sC
|f0|C

(

1− 1
Cα

)

if C < C0

sC
|f0|

1
Cα+1

(

1
Cx0

− 1
)

if C > C0.
(F9)

In all simulations and solutions we find that for large
clones, the model of temporally correlated fitness fluctua-
tions behaves as the its white noise limit. This behaviour
can be explained by the fact that large clones need a long
time to become large. At these long timescales, the char-
acteristic time of noise correlation is negligible and the
noise may be approximated as white. For this reason,
the exponent α of the power law computed assuming a
white noise for the fitness fluctuations is still valid even
when that noise is actually correlated in time.

Next, we re-introduce the birth-death noise and solve
the general equation. The Langevin equation for x =
logC,

∂tx = f0 +
√
2ση +

√
µ+ νe−x/2ξ − e−x (µ+ ν)

2
(F10)
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results in the Fokker-Planck equation for the distribution
of clone sizes

∂tρ = ∂x(−f0ρ) +
1

2
∂x[2σ

2∂xρ] + ∂2x

(

µ+ ν

2
e−xρ

)

+∂x

(

e−xρ
µ+ ν

2

)

+ s(x).

(F11)

Assuming that the initial size is constant, the steady state
solution is given by the solution of the inhomogeneous
linear equation:

K − sCθ(x− x0) = −f0ρ+ σ2ρ′ + e−xµ+ ν

2
ρ′. (F12)

The full solution is the sum ρ = ρ0 + ρ1 of the particular
solution,

ρ0(x) =

{

K
|f0|

for x < x0,
K−sC
|f0|

for x > x0,
(F13)

and the solution ρ1 to the homogeneous equation

f0ρ1 = σ2ρ′1 + e−xµ+ ν

2
ρ′1 (F14)

of solution:

ρ1(x) = K ′

[

ex + (µ+ν)
2σ2

1 + (µ+ν)
2σ2

]−α

, (F15)

with α = |f0|/σ2. Therefore, for x > x0

ρ(x) = K ′

[

ex + (µ+ν)
2σ2

1 + (µ+ν)
2σ2

]−α

+
K − s

|f0|
(F16)

we set K = s for convergence and obtain the steady state
clone size distribution for large x

ρ(x) =

[

ex +
µ+ ν

2σ2

]−α

, (F17)

or in terms of the clone size

ρ(C) =
1

C
(

C + µ+ν
2σ2

)α . (F18)

We see that the white noise solution with birth–death
noise has the same large clone power law behaviour as
without birth–death noise. Fig. S5 illustrates how birth
death noise in the clone-specific fitness models with time
correlated noise also does not affect the power law expo-
nent but only the cut off of the power law.

Appendix G: Data analysis

In the main text we report values of the power law
exponents and power law cut off values obtained from

the high throughput sequencing repertoire study of clone
size distributions of zebrafish B-cell heavy chain receptors
of Weinstein et al. [2]. We extracted the power law
exponent and the best fit for the starting point of the
power law, defined as its lower bound cutoff, from the
discrete clone size distributions plotted in Fig. 1 of the
main text using the methods discussed by Clauset and
Newman [3]. Specifically, for each point of the cumulative
clone size distribution we compute an estimate of the
power law exponent with that point as cutoff (i.e the
best fit of the power law including only the values of the
distribution above that point) using

α(Cmin) = 1 + n

[

n
∑

i=1

log

(

Ci

Cmin

)

]

, (G1)

where Cmin is the cut off and n is the number of points
with y-axis values above Cmin. For each of these cut-off
values we compute the Kolmogorov-Smirnov distance be-
tween the data and the estimated power law distribution:

d(Cmin) = maxC>Cmin
|Fd(C)− Fe(C;Cmin)| (G2)

where the maximum is taken over all values above the
cut off Cmin, Fd is the cumulative distribution function
(CDF) of the data and Fe(C;Cmin) is the CDF of the
estimated power law distribution with Cmin as a cutoff,
using Eq. G1. The the cut off is taken to be the minimum
of this distance over all possible cut off values and the
exponent is the exponent found for this value.

The obtained power law parameters are presented in
Table I. The power law exponent gives reproducible val-
ues for different individuals and agrees with values of the
same exponent obtained from human data [4]. We note
that the power law exponent of the cumulative distri-
bution function is α for a power law distribution with
exponent 1 + α. As discussed in detail in the main text,
the reliability of the cutoff estimate C∗ is sensitive to ex-
perimental precision of capturing the rare clones. In the
presented dataset the reads were not barcoded and the
counts had to be renormalized by a known PCR amplifi-
cation factor. Therefore, these normalized counts could
not to used as normal counts, making the definition of
a cut-off clone size problematic. To overcome this prob-
lem, we estimate the power law cut-off from the value of
the cumulative distribution function at the cut-off clone
size (instead of the cut-off clone size itself). That value
is invariant under rescaling of absolute clone size values,
unlike C∗.

We notice that the steady state solution is invariant
under a full rescaling of time in the equations of the dy-
namics. This means that the system can be described by
two dimensionless parameters, α = f0λ

2/γ2 and λ3/γ2,
and the introduction size C0. Fitting α to data and as-
suming value for C0, we can compare the value of the
power law cut-off in data and in simulations to fit the
remaining dimensionless parameter, λ3/γ2. Estimating
f0 based on thymic output we can predict the order of
magnitude of λ and γ.
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Fish 1 + α C∗ log(1− CDF(C∗))

A 2.0591 32.6445 - 3.1389

B 2.0214 10.7231 -1.8644

C 2.0708 16.7386 -2.4655

D 2.0670 14.9313 -2.1492

E 2.0529 8.2685 -1.8332

F 2.0006 5.8972 -1.6161

G 1.9867 52.2909 -2.7329

H 2.2242 32.1719 -2.6877

I 2.0835 18.4385 -2.2757

J 1.6907 44.4885 -2.2877

K 1.7641 3.6030 -0.9907

L 1.9417 18.5298 -2.2730

M 1.9901 18.5531 -2.2031

N 1.8877 108.4732 -2.7984

TABLE I: Fit of the power law exponent of the clone size
distribution 1+α and power law cut-off value C∗ for zebrafish
B-cell heavy chain D segment data from Weinstein et al [2]
presented in Fig. 1. The fit for 14 fish (named A to N) shows
a similar fit of the power law exponent.

Appendix H: Cell specific simulations

In the “A model of fluctuating phenotypic fitness” Re-
sults section of the main text, we present results of
Fokker-Planck simulations for the cells dynamics. Here
we verify that the stochastic dynamics of cells subject to
a fluctuating cell-specific fitness are well approximated at
the population level by a Fokker-Planck equation with a
source term accounting for the import of new clones by
comparing its numerical steady-state solution obtained
by a finite elements method to explicit Gillespie simu-
lations. We simulated the dynamics of clones using a
Gillespie algorithm where cell division and death are ac-
counted for explicitly and depend linearly on a fitness
fc(t) fluctuating according to Eq. 7. The death rate is
kept constant (above the average birth rate) and the fluc-
tuations of the fitness only affect the birth rate (with the
constraint that the birth rate is always positive). The
agreement between the results of this detailed simulation
and the Fokker-Planck solution, shown in Fig. S6, vali-
dates the linear-noise approximation for the birth-death
noise as well as the averaging argument leading to Eq. 8
and 9. This allows us to rely on the Fokker-Planck solu-
tion to explore parameter space.

Appendix I: Model of cell-specific fitness

fluctuations, and its limit of no heritability

The cell specific fitness model described in the “A
model of fluctuating phenotypic fitness” Results section
of the main text arises as a description of a population
where each cell experiences its own growth fluctuations
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Simulation of cell by cell dynamics
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FIG. S6: Comparison of the Fokker-Planck solution (red line)
and explicit Gillespie simulations of the dynamics (blue line)
for the cell specific fitness model discussed in the “A model
of fluctuating phenotypic fitness” Results section of the main
text, show good agreement allowing us to use the population
level Fokker-Planck solution to explore parameter space. Pa-
rameters were taken to be ν = 0.5 day−1, µ = 0.8 day−1,
C0 = 2, λc = 4 days−1 and γc = 4 day−3/2.

but cells deriving from the same lineage remain corre-
lated. In this Appendix we derive the equations that
describe the dynamics of clones in this system.

Each cell c experiences a time-correlated multiplicative
noise from environmental growth factors. For cells j in a
given cell lineage (or clone) i, each individual cell’s fitness
follows the stochastic dynamics:

∂tfc(t) = −λcfc +
√
2γcηc (I1)

where 〈ηc(t)ηc(t′)〉 = δ(t− t′). Averaging over all cells in
the clone, we obtain







∂tCi = f0Ci + fiCi +
√

(µ+ ν)Ciξi

∂tfi = −λcfi +
√

2

Ci
γcηi,

(I2)

where fi is the average fitness in clone i

fi(t) =
1

Ci

∑

c∈i

fc(t), (I3)

and where we have added a birth-death noise term
√

(µ+ ν)Ciξi. We use the Îto convention for the birth-
death noise, 〈ξi(t)ξi(t′)〉 = δ(t− t′) and the Stratanovich
one for the environmental noise 〈ηi(t)ηi(t′)〉 = δ(t − t′).
The equivalent equations for x = logC are

∂txi = f0 + fi +
√
µ+ νe−xi/2ξ − e−xi

µ+ ν

2
(I4)

∂tfi = −λcfi +
√
2e−xi/2γcηi (I5)
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FIG. S7: Varying the dimensionless parameter related to the
effective strength of antigen fluctuations relative to their char-
acteristic lifetime λ3/γ2 does not affect the exponent of the
power law if the ratio between exponential decay λ and stan-
dard deviation of the variation γ is kept constant. For all
three curves the exponent is α = 0.8 and ν = 0.5 days−1,
µ = 0.8 days−1, C0 = 2 while λ and γ vary.

and the Fokker-Planck equation is

∂tρ(t, x, f) =− (f0 + f)∂xρ+ λc∂f (fρ) + e−xγc∂
2
fρ

+
µ+ ν

2
∂x(e

−xρ) +
µ+ ν

2
∂2x(e

−xρ)

+ s(x, f),

(I6)

where s(x, f) is the joint distribution of size and fitness
or newly arriving clones (from thymic or bone marrow
output). This is the full Fokker-Planck equation that
is solved numerically in the main text using the finite
elements method.

Because of the 1/
√
Ci prefactor in front of the noise

term, we could expect fitness fluctuations to behave like
a birth-death noise in the limit of low heritability (λc →
∞). In the remainder of this Appendix we show that this
is not the case, and we show how to take the limit of no
heritability properly.

Consider the limit of λc → ∞ and γc → ∞, keeping the
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Poisson noise simulation

Gaussian noise simulation

FIG. S8: Large deviations can influence the effect of Poisson
noise on the simulated clone size distributions and create a
discrepancy between Poisson noise (red line) and the Gaussian
approximations (black line) we assume in the main text. The
discrepancy is most apparent for small clones. We simulated
the Langevin dynamics of the Gaussian model with ν = 0.5
day−1, µ = 1 day−1, C0 = 2, λ = 3 day−1 and γ = 1 day−3/2

and the same dynamics with Poisson noise and ν = 0.5 day−1,
µ = 1 day−1, C0 = 2, λ = 3 day−1 and sA = 107 day−1. In
both cases we introduce sC = 2000 new clones per day.

ratio γc/λc constant, so that f does not become infinites-
imally small. The equation for the environmental stimu-
lation f in x = logC space is given by (in Stratanovich
convention)

∂tf = −λcf +
√
2γce

−x/2η. (I7)

Direct integration gives

f(t) =
√
2γc

∫ t

0

e−λcue−x(t−u)/2η(t− u)du (I8)

and we divide the integral into two sub-integrals for k > 0

f(t) =
√
2γc

∫ t

k/λc

e−λcue−x(t−u)/2η(t− u)du

+
√
2γc

∫ k/λc

0

e−λcue−x(t−u)/2η(t− u)du.

(I9)
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With infinite precision, for any value of t, we set the
integral of η to be bounded and obtain the first integral
is with probability 1− ǫ smaller in norm than

√
2γc

√
tK(ǫ)e−k, (I10)

where K(ǫ) is a constant to control the variations of the
integral of ξ with probability ǫ (the time factor for the
control of the integral is in the

√
t).

The second sub-integral is

√
2γc

∫ k/λc

0

e−λcue−x(t−u)/2η(t− u)du

≈ e−x(t−)/2η(t)
√
2
γc
λc

(1− e−k).

(I11)

We choose k =
√
λc and in the limit of λc → ∞ and

γc → ∞ keeping γc/λc = const we obtain the final form
of environmental fluctuations

f(t) −→
√

2
γc
λc
e−x(t−)η(t), (I12)

where t− means the left-hand limit. f(t) depends only
on the past, which means that in x = logC space the
noise is similar to a birth-death noise in the Îto conven-
tion. Yet in terms of clone sizes C additional Îto terms
make the effect of environmental fluctuations different
from classical birth-death dynamics.

Appendix J: Model solutions for cell-specific fitness

fluctuations in the limit of no heritability

In this Appendix we solve the model of cell-specific fit-
ness fluctuations in the limit where trait heritability is
low. In this limit, the dynamics is described by a model
with an instantaneous random fitness that is uncorre-
lated for cells in the same clone. The resulting Langevin
equation reads:

dCi

dt
= f0Ci +

√

2Ci
γc
λc
ηi +

γ2c
λ2c

+
√

(µ+ ν)Ciξi (J1)

where all noise is treated in the Îto convention, and
where the extra term γ2c/λ

2
c comes the converting back

the low-heritability limit of the fitness fluctuations, given
by Eq. I12, into C = ex space. We note that although the
fitness and birth-death noise have very similar forms, the
birth-death noise is self-generated and intrinsic, while the
fitness noise is environmental and extrinsic. This small
difference greatly affects the steady-state clone size dis-
tribution.

To see this, we first consider the case of no birth-death
noise. In the cell-specific fitness model consider the fol-
lowing equations with the Stratanovich rule:

{

∂tCi = f0Ci + fCi,

∂tfi = −λcfi +
√

2
Ci
γcηi,

(J2)

and its equivalent for x = log(C)

{

∂txi = f0 + fi,

∂tfi = −λcfi + e−xi/2γcηi
(J3)

In Appendix I we have shown that in the limit of λc → ∞
and γc → ∞, the system reduces to the one dimensional
equation

∂txi = f0 + e−xi/2
√
2
γc
λc
ηi (J4)

with the Îto rule for the white noise ηi. The correspond-
ing Fokker-Planck equation is

∂tρ = ∂x(−f0ρ) +
1

2
∂2x

[

2γ2c
λ2c

e−xρ

]

+ s(x). (J5)

Assuming a deterministic introduction size s(x) =
sCδ(x− x0), at steady-sate we get

K − sCθ(x− x0) = −f0ρ+ e−x γ
2
c

λ2c
ρ′ − γ2c

λ2c
ρe−x, (J6)

which for x > x0 is solved by

ρ(x) = e−ex/Cm+x
[

KEi(ex/Cm)−KEi(C−1
m ) (J7)

−sCλ
2
c

γ2c
Ei(

ex

Cm
) +

sCλ
2
c

γ2c
Ei(

ex0

Cm
)
]

, (J8)

where K is an integration constant, Ei is the exponential
integral function and

Cm =
γ2c

|f0|λ2c
. (J9)

The divergence of Ei at infinity sets K = sCλ
2
c/(γ

2
c ) and

the clone size distribution is

ρ(x) =

{

(

Ei(ex/Cm)− Ei(C−1
m )

)

e−ex/Cm+x for x < x0
(

Ei(ex0/Cm)− Ei(C−1
m )

)

e−exCm+x for x > x0
(J10)

or in terms of x = logC

ρ(C) =

{

e−C/Cm
(

Ei(C/Cm)− Ei(C−1
m )

)

for C < C0

e−C/Cm
(

Ei(ex0/Cm)− Ei(C−1
m )

)

for C > C0

(J11)
The validity of this solution is checked in Fig. S9 and the
convergence of the full solution of Eq. I6 (with no birth-
death noise) to the analytical solution in the limit of no
heritability (λc → ∞) is show in Fig. S10.

For comparison, in a pure birth-death process (no
fitness fluctuations) the clone-size distribution is, for
C large enough, ρ(C) ∼ e−C/Cm/C where Cm =
(µ+ ν)/(2(µ− ν)), as shown in Appendix A. These two
solutions both have an exponential cutoff, but have very
different power-law exponents, corresponding to α = 0
and α = −1, respectively.
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FIG. S9: The result of a simulation of the Langevin equation
of the white noise cell-specific fitness model (blue line) com-
pared to the analytical prediction of Eq. J11 (red line) show
very good agreement. The parameters are ν = 0.2 day−1,
µ = 0.4 day−1, C0 = 2, λc = 4 day−1 and γc = 8 day−3/2.
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FIG. S10: Convergence of the cell-specific fitness models
(Eq. I6) without birth-death noise to Eq. J11 in the limit
of no heritability (λc → ∞). For all four curves α = 0.2.
Parameters used: ν = 0.2 day−1, µ = 0.25 day−1, C0 = 2 and
1000 new clones introduced each day.

We now add the birth-death noise, i.e. consider both
types of noise, still in the limit of no heritability. The
corresponding Langevin equation reads:

∂txi = f0 +
√
µ+ νe−xi/2ξ − e−xi

µ+ ν

2
+ e−xi/2

√
2γc
λc

η

(J12)
where all noise is in the Îto convention. Integrating the
Fokker Planck associated to this equation gives at steady
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FIG. S11: Convergence of the cell-specific models (Eq. I6)
with birth-death noise to the analytical result of Eq. J15 (red
line). Keeping constant α while λc → ∞ and γc → ∞ we
recover the solution of Eq. J15. Parameters are the same as
in Fig. S10

state condition

K−sCθ(x−x0) = −f0ρ+
[

µ+ ν

2
+
γ2c
λ2c

]

e−xρ′− γ2c
λ2c
e−xρ.

(J13)
In order for ρ to be well defined we set K = sC . For x >
x0 the equation is homogeneous and solved by separation
of variables:

dρ

ρ
e−x

[

µ+ ν

2
+
γ2c
λ2c

]

=

(

f0 +
γ2c
λ2c
e−x

)

ρ, (J14)

and gives the solution:

ρ(C) =
Ke−C/Cm

C1+α
, (J15)

with

α = −
(

1 +
(µ+ ν)λ2c

2γ2c

)−1

, (J16)

which is a power-law with an exponent 0 ≤ 1 + α ≤ 1
and an exponential cutoff

Cm = (µ− ν)−1

(

µ+ ν

2
+
γ2c
λ2c

)

. (J17)

The convergence of the solution of the full system, Eq. I6,
to this solution is checked in Fig. S11.

Appendix K: Dynamics of naive and memory cells

In this section we present our results on the division of
the population between naive and memory cells and its
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FIG. S12: Simulation results for clone and cell specific model with two cell compartments for naive and memory. Panels A to
D are results from clone-specific fitness model with a switching rate θ from naive to memory taken to be infinite (the whole
clone switches instantly to memory when above a fitness threshold) and fitness threshold fmem = 1 day−1. Panels E to H
are results for a model with clone-specific fitness with a finite switching rate θ = 0.05 days−1 and fitness threshold fmem = 1
day−1. For both clone-specific simulations the parameters are: sC = 200 day−1 , C0 = 2, sA = 1.96 · 107 day−1, 〈aj,0〉 = 1,
Var(aj,0) = 1, λ = 2 day−1, p = 10−7, ν = 0.98 day−1, µ = 1.18 day−1. Panels I to L are results from simulations of a model
with cell-specific fitness with a switching rate θ = 0.25 and threshold fmem = 0.5. The other parameters are: sC = 104 day−1,
C0 = 2, λc = 2 day−1, γc = 4 day−3/2, ν = 0.5 day−1, µ = 0.7 day−1. Panels A, E and I show the clone size distribution of
the whole population adding memory and naive contributions to each clone and the power law prediction from the white noise
model for clone-specific fitness. Panels B, F and J show the clone size distributions of the naive pool of cells compared to the
white noise prediction for the clone-specific fitness (B, F) and the full population distribution for the cell-specific dynamics (J).
Panels C, G and K show the clone size distributions of the memory pools (same comparisons as for naive). Panels D, H and
L show the fraction of memory cells in clones as a function of their rank (biggest clones have smallest ranks) as a histogram
for an infinite switching rate (because clones are either all naive or all memory) and as scatter plots for the two other types of
dynamics.

impact on the distribution of clone sizes. In our simula-
tions and analysis so far we have always considered the
system to be uniform, because most of the data available
at this time is not sorted into naive and memory/effector
cells and because the main difference between naive and
memory cells (higher stimulation of memory cells by
binding events) is already included in our models.

In principle, memory and naive cells could have a com-
pletely different set of parameters. None of the values
of these parameters are known with high, accuracy al-
though it emerges from all studies that memory cells have
a higher turnover rate (or death rate µ) than naive cells.

However, our estimate of f0 (which is the average division
rate minus the death rate) cannot be performed for sepa-
rate groups of naive and memory cells without knowledge
of their total population and the rate of conversion from
naive to memory cells. For these reasons we keep the
same effective f0 for the whole population.

We model the immune system with two pools of cells:
naive and memory/effector for both the clone-specific and
cell-specific fitness models. Clones from the naive pool
with fitness over a given threshold fmem turn irreversibly
into memory cells at a certain rate θ per day. In both
cases the two pools have the same dynamics but mem-
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ory cells have a higher turnover: the death rate µ and
the basal birth rate ν are higher in the memory pool
but their difference f0 is unchanged. This means the
birth-death noise is higher in the memory pool. We find
that in the clone-specific fitness model it does not affect
the power-law exponent of the clone-size distribution,
but it does affect strongly the distribution (and more
specifically the cutoff value Cm) in the cell-specific fit-
ness model, as birth-death noise is of the same order of
magnitude as the environmental noise (Fig. S12).

In the clone-specific fitness model, we find that the dis-
tribution still displays power-law behavior with the ex-
pected exponent (Fig. S12A and E). For very high rates
of conversion from naive to memory we see that naive
cell distributions drop exponentially above a threshold,
as all high fitness clones are completely converted into
memory (Fig. S12B). For lower rates of conversion both
memory and naive pools have heavy tails and the mem-
ory pool has a higher power law cutoff for small values
(Fig. S12F and G). For the cell-specific fitness model we
find that the memory pool can have significantly heavier
tails (as its dynamics is much faster) and a higher cutoff
Cm (a power-law like behavior in a wider range) than the
naive pool (Fig. S12A-B-C). In all cases we recover that
naive clones are smaller than memory clones, or in other
words large clones are mostly made up of memory cells
(Fig. S12D-H-L).

Appendix L: Effects of hypermutations

In this section we show that including the effect of
somatic hypermutations in the clone-specific fitness dy-
namics does not change the power law behavior of the
distribution. We model the somatic hypermutations by
replacing a small fraction of the offspring of the fastest
expanding clones by new clones with binding affinities
close to the ones of their parents. For each clone such
that fi > fhyp, offspring with hypermutated receptors
are being produced with rate rhyp. A large fraction rdel
of those are assumed to have acquired deleterious muta-
tions and are removed from the pool. The rest (fraction
1−rdel) form new clones of size 1 (in our definition, which
differs from the usual convention for B cells, a clone is
a subset of cells with the exact same receptor sequence).
The interaction matrix Ki′,j of each new, hypermutated
clone i′ is formed from the interaction matrix Ki,j of its
progenitor i by changing each non-zero entry of Ki,j to:

Ki′,j =

{

0 with probability 1− phyp

ψKi,j + (1− ψ) + σhypζ otherwise,
(L1)

where ψ is a parameter controling the heritability of the
values of the K entries, and phyp the probability that
the specificity to a given antigen is passed on to the hy-
permutated offspring; ζ is a Gaussian variable of mean
0 and variance 1. To compensate the loss of specificity,
zero entries of Ki,j are assigned new, non-zero values of
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FIG. S13: We show the clone size distribution that results
from simulating a model of clone-specific fitness with somatic
hypermuations as described in Appendix L and Eq. L1. The
distribution exhibits clear power law behavior. Hypermuta-
tion parameters are: fhyp = 4 days−1, rhyp = 0.01 days−1,
rdel = 0.01, phyp = 0.5, ψ = 0.7 and σhyp = 0.05. Other pa-
rameters are: sC = 200 day−1 , C0 = 2, sA = 1.5 · 107 day−1,
〈aj,0〉 = 1, Var(aj,0) = 1, λ = 2 day−1, p = 10−3, ν = 0.75
day−1, µ = 1.15 day−1. Non zero Ki,j entries from thymic
output have mean 1 and standard deviation 0.3.

binding affinities with probability (1− phyp)p (where we
recall that p is the probability for a given clone to be
specific to a given antigen), so that the number of non-
zero values of K remains the same on average. The value
of these new binding affinities are drawn completely at
random, as before (no inheritance).

A small part of the hypermutated clones branch out
and undergo affinity maturation, meaning that they are
selected generation after generation. Their fitness in-
creases until the environment varies enough for their
branch to be obsolete and decay back to low fitnesses.
The effect of hypermutations on the distribution depends
on the ratio between the speed at which hypermutated
lineages drift in fitness space and the time scale for vari-
ations of the environment (λ−1).

Somatic hypermutations add a source of stochasticity
in fitness and increase the number of large clones. Ac-
cordingly, simulations of the model with hypermutations
(see Fig. S13) show that the clone size distribution still
exhibits power law behavior, but with a lower exponent
(heavier tails) due to the extra stochasticity induced by
hypermutations.

Appendix M: Time dependent source terms and

aging

In this section we investigate the effect of a decaying
thymic output on the distribution of clones for the anti-
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FIG. S14: Results of a simulation of a model of clone-specific
fitness with a decaying source term and balancing decrease
of |f0| to keep the population size constant. A. The clone
size distributions at different time points maintains a power
law behavior with an exponent α that decreases with time.
B. Decay of the thymic output with time. C. Total number
of clones is decreasing with time. D. Total number of cells
is maintained by tuning the rate f0. Parameters used are:
source decay timescale tau = 8.3 yr, sC,0 = 200 day−1 , C0 =
2, sA = 1.5 · 107 day−1, 〈aj,0〉 = 1, Var(aj,0) = 1, λc = 2
day−1, p = 10−7, ν+µ = 1.9 day−1, f0 = −0.4 day−1 at time
t = 0.

gen recognition based model. In all our simulations we
assume that the source of new clones (thymic output)
produces a number of clones that is on average constant
with time. It is an approximation since in humans or in
mice thymic output is high at birth and during growth
and slowly decreases during adult life. This decrease is
very slow compared to the time scales involved in this
analysis [5] and so within the time frames considered it

can be considered constant. In this section we look at
the effect of this decrease over long time scales.

We model the decrease of thymic output with an expo-
nentially decaying (with time) source term. In real organ-
isms, homeostatic control ensures that the total number
of cells in the body is conserved during this reduction
of thymic output. We do not model this homeostatic
control explicitly, but rather tune the difference between
birth and death rates f0 to keep the total population con-
stant on average, which we showed was equivalent (see
Fig. S2). Simple averaging of the dynamics shows that

d〈N〉
dt

= f0N + nC〈fiCi〉+ sC (M1)

where nC is the number of clones in the system and N
is the total number of cells. Since our source term is
a function of time, to have on average a constant total
population size we need to define :

f0(t) = −nC(t)〈fiCi〉+ sC(t)

N
. (M2)

We show the results of a simulation in Fig. S14 with
sC = sC,0e

−t/τ , τ = 8.3 yr. We recover results known in
humans and get predictions for the behavior of the ex-
ponent of the power law at different ages. We find that,
with the decrease of thymic output, the number of clones
is decreasing (Fig. S14C), meaning that clones become on
average fitter (i.e. better at recognizing antigens), but at
the expense of repertoire diversity. Keeping the popula-
tion constant (Fig. S14D) slowly decreases the decaying
rate of clones |f0| and so is expected to decrease the expo-
nent, which behaves as α = λ|f0|/A2. Accordingly, simu-
lations show a clear power-law behavior in the clone-size
distribution (Fig. S14A), with the tail of the distribution
becoming heavier with age. We thus expect older organ-
isms with lower thymic output to have a larger tail in
their clone-size distribution. We predict thymectomy to
lead to distributions with very fat tails.
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