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Abstract - In this paper an analytical solution to the flow of a 

second order fluid is presented expressing the pressure 

gradient in the form of Fourier series. The effect of the 

amplitude coefficient of the mean-velocity for different values 

of frequency of excitation is shown in different graphs. 
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I. INTRODUCTION 

 In everyday life, we encounter many different 

kinds of fluids. The study of flows of Newtonian and non-

Newtonian fluids through pipes and tubes has became 

important not only because of their technological 

importance‟s but also in view of the interesting 

mathematical features presented by the equations 

governing the flow. Such studies have a considerable 

practical relevance because of their applications in petro-

chemical industries, manufacturing of foods and paper and 

many other similar activities. Uchida (1) studied the 

pulsating flow Newtonian fluid due to the pressure gradient 

in the direction of the flow. Rajgopal etal.(2) Pontrelli (3) 

made important theoretical studies on these fluids, Rath 

and Jena (4) studied the flow of a viscous fluid generated in 

response to fluctuations in the axial velocity of the outer 

cylinder Biswal etal.(5) studied the above problem incase 

of visco-elastic liquid. Lui Ciqun and Huang Jungi (6) 

studied the axial flow of second order fluid and analyzed 

the flow characters of these fluids. Hayat etal.(7) studied 

the Fluctuating flow of a third grade fluid on porous plate 

in a rotating medium.Kaloni(8) analyzed the Fluctuating 

flow of an elastic viscous fluid past a porous flat  

 

plate.Hayat etal(9),Fetecau(10) studied the above problem 

on a porous plate.Ozer etal(11) studied the flow of a second 

grade fluid through a cylindrical permeable tube.Hayat 

etal(12) considered the MHD flow of the above fluid in a 

porous channel.Similar type of flows were investigated by 

Wang etal.(13),Tadhg etal.(14), Tiwary etal.(15), Hayat 

etal.(16) made analytical studies on transient rotating flow 

of a second grade fluid . Hayat etal. (17) studied the 

peristaltic flow of a second order fluid in the presence of an 

induced magnetic field.Jamil etal. (18), Hayat et al.(19) 

studied the flow of a second grade fluid in different 

mediums and got very interesting results.In this paper, we 

will study the fluctuating flow of a second order fluid in the 

annular region between two coaxial circular pipes and got 

the solution using Fourier series.

  

 

II.

 

BASIC EQUATIONS

 

 

We work through the cylindrical polar coordinates

 zr ,, . z-axis coincides with the common axis of the 

circular pipes. The radius of the outer pipe is „a‟ and inner 

pipe is „b‟. Let  w,0,0 be the unsteady rectilinear flow 

between the pipes. All physical quantities are independent 

of 

 

because of axial symmetry. The equation of the 

continuity reduces to 
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Thus w

 

is independent of z and we can write w = w (r, t).

 

The stress components for the problem under discussion 

are given below 
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The equations of motion becomes 
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Where,  = is the density 

 = coefficient of visco-elasticity = 


 2
 

  = coefficient of cross-viscocity = 


3
 

And 

  = coefficient of kinematic-viscocity = 


1
 

On the basis of the equation (1), (3) & (5) we may assume 
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Equation (5) becomes 
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Boundary conditions are 

   0,,  trwar  

   0,,  trwbr  -- (8) 

 

 

 

III. SOLUTION OF THE PROBLEM 

 The pressure-gradient (7) can be expressed in the 

form of a Fourier series as 
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Where, 0a = steady pressure gradient 

sncnn iaaa  , 
PR  = real part of the expression 

and cna  & sna are constants which represents the 

amplitudes of the elemental vibrations of a pulsating 

pressure gradient superposed on 0a ,where 0a is steady 

pressure-gradient.  

We assume the period of excitation as


2
. 

 In view of the periodic pressure distribution, we 

can assume the solution for the velocity field as, 
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And,      riwrwrw sncnn   --------------- (11) 

  

 the function (11) satisfies the differential equation 
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The boundary conditions (8) reduced to 
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The solution of (12) subject to the boundary conditions 

(13) is 
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In the above 0J and 0K are Bessel functions of zeroth 

order of first and second kind respectively where 
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(14) reduces to  
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 To simplify the above equation, we introduce the 

following non-dimensional parameters, 

 


ak Frequency parameter 
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1tan Non-dimensional viscoelastic 

parameter 

  nkkn Frequency parameter in the nth 

mode of excitation. 
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      210 iffrimJ n   

      11 210 iffaimJ n   

       210 iffbimJ n   

       210 ittrmk n   

      11 210 ittamk n   

       210 ittbmk n   

 where 
a

r
  and 

a

b
  

 In the above expressions the suffix „n‟ denote the 

quantity in the nth mode of excitation, which is dropped 

out in the case of the flow under a signal pulse. With the 

help of the above non-dimensional quantities, the velocity 

field can be written as  
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where  
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The mean velocity over one period across the cross-section 

is denoted by w  and is defined by 

 

 
   










 2

0 22
2,

1

2

b

a
rdrtrw

ba
dtw  

 

 
    























ba

ba
baba

ba

a

loglog8

222
2222

22

0


 

    














ba

ba
ba

a

loglog8

22
220



 
s

aa

8

2

0    --------------- (25) 

where  
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The mean pressure gradient „G‟ over one period is given 

by, 
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The mean velocity in the pulsating motion under the 

influence of a periodic pressure gradient (9) is identified 

with that in the steady-state flow under the same value of 

pressure gradient as that in the pulsating flow and is not 

affected by the presence of the visco-elastic parameter  . 

The non-dimensional expression for the velocity now 

reduces to  
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The expression for the non-dimensional pressure gradient 

is as follows 
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the starred quantities denote the corresponding non-

dimensional expressions. 

 

IV. SECTIONAL MEAN –VELOCITY 

 The expression for the instantaneous mass flow 

across a section of tubes is derived from the sectional 

mean-velocitie. But the sectional-mean velocity "" Mvw is 

given as 
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The sectional mean velocity in dimensionless form is given 

by 
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We define the amplitude coefficient and phase lag in the 

nth mode of the sectional mean-velocity from the wave of 

the pressure-gradient by the following expressions 

respectively. 
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with help of the equations (31) and (32) we get the non-

dimensional form of sectional mean-velocity as follows 
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V. RESISTANCE COEFFICIENTS 

 The shearing stress on the wall is given by, 
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where 1 is the coefficient of viscosity. We denote the 

non-dimensional frictional force at the outer wall by nFaS
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S and get their 
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We define the amplitude coefficient and phase lag in the 

nth mode of the resistance coefficient behind the wave of 

the imposed pressure gradient by the expressions 
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 Here the suffixes „a‟ and „b‟ denote the 

corresponding values on the outer and inner wall 

respectively. 

 With these substitutions the equations (35) and 

(36) respectively reduce to 
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Mean rate of work done is given by  
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The total mean-rate of work done is 
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and the pressure gradient is given by 
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On simplification, we get  
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The total mean rate of change of kinetic energy across the 

cross section is  
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where kW is the rate of increase of kinetic energy of the 

fluid in a unit length pipe which is given by  
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The total rate of change of dissipation of energy due to 

internal friction is given by  
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Where iW stands for the total rate of change of dissipation 

of energy. The total mean-rate of change of dissipation of 

energy due to internal friction is given by 
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Work done = The total mean rate r 

Thus we get the mean-rate of work done = The 

total mean rate of change of dissipation of energy and this 

fact leads to the same conclusions as in Uchida(1) that the 

pressure gradient does work equal to the energy loss due to 

dissipation of energy after a full cycle of the motion. Also 

the kinetic energy changes instantaneously but there is not 

loss in it after a complete cycle. Thus we see the energy 

loss is caused by the dissipation and is increased by the 

existence of the components in the fluctuating motion. 

 We define the coefficient of excess work as the 

extra energy dissipated due to the pulsation of amplitude 

which is equal to 
22

0 sncn aaa  .  

 Then we have in the n-th mode of vibration, the 

coefficient of excess work is given by  
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VI. DISCUSSION OF THE RESULTS 

 In this paper we have studied the flow of a second 

order fluid in the annual region between two coaxial 

circular pipes. The pressure gradient expressed in the form 

of Fourier series, The following conclusions are made. 
Fig-1 and Fig-2 shows the effect of the amplitude 

coefficient of the mean- velocity MVA for different values 

of K which is the frequency of excitation for 2.0 and 

0.4. we see that MVA  does not rise above the value zero 

until K=1.6.

 For small values of  i.e. 2.0 and 0.4, MVA

-records larger values in the case of a Newtonian fluid 

 0. ei , the maximum value occurring for values of K 

between 3 and 4, with 
060 the mean velocity 

amplitude coefficient has negligible values whatever be the 

values of  . This is also seen in Table-1 and Table- 2. 

In the Fig.3 and Fig. 4 we see that for low 

frequency there is not much difference in the amplitude 

coefficient MVA when there is change in the values of   

though as a rule the Newtonian value  00 are smaller 

than the corresponding values of the non-Newtonian case 

 00 . It is to be noted that unlike the for going 

intermediate frequency case, MVA have their largest-values 

with extremely slow pulsation and drop to almost to zero 

value when K has a value slightly greater than 1. It records 

a slight rise for larger value of K. the value of MVA for 

slow pulsation in the case of low frequency is higher, the 

larger the radii ratio. 

The effect of k on SFbSFaMV AA ,, and C.E.W is 

shown in Table 1 &Table 2 for 2.0 and 0.4. 
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