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Abstract
Recent work has used a U(1) gauge theory to describe the physics of Fermi pockets in the presence

of fluctuating spin density wave order. We generalize this theory to an arbitrary band structure

and ordering wavevector. The transition to the large Fermi surface state, without pockets induced

by local spin density wave order, is described by embedding the U(1) gauge theory in a SU(2)

gauge theory. The phase diagram of the SU(2) gauge theory shows that the onset of spin density

wave order in the Fermi liquid occurs either directly, in the framework discussed by Hertz, or via

intermediate non-Fermi liquid phases with Fermi surfaces of fractionalized excitations. We discuss

application of our results to the phase diagram of the cuprates.
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I. INTRODUCTION

Recent experimental advances1,2,3,4,5,6,7 have focused much theoretical attention on the

evolution of the Fermi surfaces of the cuprate superconductors as a function of carrier con-

centration. In materials with hole density x, the overdoped regime has a “large” hole-like

Fermi surface enclosing area proportional to 1 + x, while the underdoped regime has dis-

played evidence for “small” Fermi pockets with an area of order x. We refer the reader

to other recent discussions8,9 for an overview of the experimental and theoretical situation

suited for the ideas presented below. We show here in Fig. 1 the global phase diagram from

Ref. 9 as a function of x, temperature T , and applied magnetic field H .

We will be interested in the physics of the non-superconducting metallic phases in Fig. 1,

when the superconductivity is suppressed by increasing either T or H . As is implied by

Fig. 1, we will assume15,16,17 that the “small” Fermi surfaces are a consequence of local spin

density wave (SDW) order: this is supported by a number of recent experiments12,13,14,18,19,20.

It is then natural to develop a theory of the electronic spectrum in presence of (thermal or

quantum) fluctuating SDW order. We would like the electronic spectrum to be sensitive

to the presence of SDW order at short scales, even though long-range SDW order can be

absent.

A U(1) gauge-theoretic approach to describing such a fluctuating SDW state has been

presented by some of us and our collaborators in a series of papers8,21,22,23,24. While this

theory has a number of attractive features9, it also has some weaknesses:

1. The theory addresses the physics of the small Fermi pocket states only, and is not

connected to the large Fermi surface state of the overdoped regime.

2. The pockets are described in a piecemeal fashion, with separate fermion degrees of

freedom introduced at the band minimum of each pocket. A unified formalism which

treats all pockets together, for an arbitrary underlying band structure would clearly

be preferred.

3. The theory has so far focused on commensurate SDW order with ordering wavevector

K = (π, π). It should be generalized to arbitrary commensurate K.

The purpose of the present paper is to present an improved formalism which addresses the

above issues. We will begin in Section II by a reformulation of the existing U(1) gauge

theory which addresses points 2 and 3 above. Section III will address point 1 by showing

that the transition to the large Fermi surface state is achieved by generalizing to a SU(2)

gauge theory. We note that our SU(2) gauge theory is quite distinct from that appearing

in the discussion of spin liquid Mott insulators with fermionic spinons25 in which the SU(2)

gauge transformation mixes and particle and hole operators. Our theory applies to bosonic

spinons in metals, and the SU(2) gauge transformations apply on states with fixed particle

number.
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FIG. 1: From Refs. 8,9: Proposed phase diagram as a function of dopant density x, temperature, T ,

and magnetic field H. The onset of long-range spin density wave (SDW) order at T = 0 and high

fields in the metallic state is at x = xm, while SDW order appears at x = xs in the superconducting

(SC) state at H = 0. A key feature of this phase diagram, and of our theory8, is that xs < xm.

This implies the phase transition line connecting xs and xm, predicted in Ref. 10, where there is a

field-induced onset of SDW order in the SC state, which has been experimentally detected11,12,13,14.

Although our primary motivation has been provided by cuprate physics, our approach is

very general, and should also be applicable to a wide variety of spin density wave transitions

in other correlated electron materials26.

II. U(1) GAUGE THEORY

We begin with the popular spin-fermion model27, for a system where the spins have

collinear ordering at an arbitrary commensurate wavevector K. The imaginary time (τ)
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fermion Lagrangian is (α, β =↑, ↓)

LF =
∑

i

c†iα

[
(∂τ − µ)δαβ − ϕai fiσ

a
αβ

]
ciβ −

∑

i<j

tij

(
c†iαcjα + c†jαciα

)
(2.1)

Here tij are arbitrary hopping matrix elements describing the “large” Fermi surface, µ is

the chemical potential, ϕai is a fluctuating unit vector field (a = x, y, z) representing the

local orientation of the collinear spin order, σa are the Pauli matrices, and fi is a fixed

form-factor determined by the particular local nature of the SDW order; thus for Néel order

with K = (π, π) we have fi ∼ (−1)xi+yi, while for arbirary commensurate K we have an

expression of the form

fi =
∑

m

fme
imK·ri + c.c. (2.2)

where m are integer, and the fm are the co-efficients determining the form-factor. The

fluctuations of the ϕa are controlled by the continuum O(3) non-linear sigma model with

Lagrangian

Ln =
1

2g

[
(∂τϕ

a)2 + v2(∇ϕa)2
]

(2.3)

with the local constraint (ϕa)2 = 1; here g is a coupling which tunes the strength of the

quantum spin fluctuations and v is a spin wave velocity. The spin-fermion model27 is defined

by the Lagrangian LF + Ln for the electrons ciα and the SDW order parameter field ϕa.

We have assumed above that ϕa is a real three-component vector. Strictly speaking, for

K 6= (π, π), the order parameter is a complex vector, with the overall phase representing a

‘sliding’ degree of freedom associated with the charge density wave at 2K. Indeed, there will

be 2 complex vectors representing the spin density waves along two orthogonal directions

on the square lattice. For simplicity, we have ignored these complications here. Accounting

for them would require two additional complex fields, as in e.g. Ref. 28, and we leave this

generalization to future work.

A key feature of our analysis above, and of all the analyses below, is that we assume

that it is only the SDW order parameter ϕa which varies slowly on the lattice scale. We do

not make the same assumption for the fermion field ciα, which is allowed to have a general

dispersion, with arbitrary Fermi surfaces. Thus our expansions in spatial gradients will only

be carried out for ϕa and related bosonic fields. Keeping the full spatial dependence of

the fermion fields is also required to keep proper track of the constraints imposed by the

Luttinger theorem.

We will now transform the spin-fermion model into new degrees of freedom which in-

corporate the change in the fermion band structure due to local SDW order in a more

fundamental way. The key to doing this is to transform the electron spin polarization to

a rotating reference frame set by the local orientation of the SDW order. In the context

of the cuprates, the use of such a frame of reference goes back to the work of Shraiman
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and Siggia29 on the t-J model, and by Schulz30 on the Hubbard model. Previous work by

us and others8,21,22,23,24,31,32,33,34 was motivated using the Schwinger boson formalism, which

also effectively performs the transformation to the rotating reference frame. A few years

ago, Schrieffer35 also focused attention on the advantages of studying the spin dynamics in

the rotating reference frame defined by the SDW order. Here we shall apply this idea to the

spin-fermion model, which is generally regarded as a weak-coupling theory. We shall show

that it allows for a very efficient and complete derivation of the Lagrangian of a low energy

effective gauge theory, which has the same structure as that obtained earlier8,21,22,23,24 by

more cumbersome methods starting from the strong-coupling t-J model.

To this end, we introduce a new set of fermions, ψip with p = ±1, with their spin

components p polarized along the direction of the local SDW order. These are related to

the physical fermions ciα by spacetime dependent SU(2) matrix Ri
αp (R†R = RR† = 1) so

that30

ciα = Ri
αpψip. (2.4)

We choose Rαp so that spin-fermion coupling is only along σz, and so

ϕaiR
i†
pασ

a
αβR

i
βp′ = σzpp′ = pδpp′. (2.5)

This relationship is equivalent to

ϕai =
1

2
Tr
(
σaRiσzRi†

)
, (2.6)

which shows that the SDW order parameter ϕi can be fully expressed in terms of the SU(2)

matrix R. Therefore, we will now treat R as our independent degree of freedom which

determines ϕ via Eq. (2.6). Now, we parameterize

Ri =

(
zi↑ −z∗i↓
zi↓ z∗i↑

)
(2.7)

with
∑

α |ziα|
2 = 1, and we can verify that Eq. (2.6) yields the familiar relation

ϕai = z∗iασ
a
αβziβ (2.8)

between the fields of the O(3) non-linear sigma model and the CP1 model.

We have now reformulated our theory of the spin-fermion by replacing the electrons cα
and SDW order parameter ϕa by the spinless fermions ψp and the complex bosonic spinors

zα. A crucial feature of the resulting effective Lagrangian for the ψp and zα is that it is

invariant under a local U(1) gauge transformation. This follows from the invariance of
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Eqs. (2.4) and (2.8) under

ziα → ziαe
iφi

ψip → ψipe
−ipφi (2.9)

where φi has an arbitrary dependence on space and time. Note that the ψip have opposite

charges p = ±1. Associated with this U(1) gauge invariance, we will introduce an internal

dynamical gauge field Aµ = (Aτ ,A) in constructing the effective theory.

We can now insert Eqs. (2.4) and (2.8) into Eqs. (2.1) and (2.3) and obtain the desired

effective theory of fluctuating Fermi pockets. As noted earlier, we will assume that the

ziα are slowly varying, but allow the fermion fields ψip to have an arbitrary dependence on

spacetime. First, from Eq. (2.3), we obtain, by a familiar method36, the CP1 model for the

zα:

Lz =
1

g

[
|(∂τ − iAτ )zα|

2 + v2|(∇ − iA)zα|
2
]

(2.10)

The fermion Lagrangian LF in Eq. (2.1) yields some interesting structure. The hopping

term can be written as

−
∑

i<j

tij

[
(
z∗iαzjα

) (
ψ†
i+ψj+ + ψ†

j−ψi−

)

+
(
z∗jαziα

) (
ψ†
i−ψj− + ψ†

j+ψi+

)

+
(
εαβz∗jαz

∗
iβ

) (
ψ†
i+ψj− − ψ†

j+ψi−

)

+
(
εαβziαzjβ

) (
ψ†
i−ψj+ − ψ†

j−ψi+

)]
(2.11)

Now, from the derivation of the CP1 model36 we know that

z∗iαzjα ≈ eiAij (2.12)

and this is easily incorporated into the first two terms in Eq. (2.11), yielding terms which

are gauge invariant. Then for the fermion sector, we have the Lagrangian

Lψ =
∑

p=±1

∑

i

ψ†
ip

(
∂τ − µ+ ipAτ − pfi

)
ψip

−
∑

p=±1

∑

i<j

tij

(
eipAijψ†

ipψjp + e−ipAijψ†
jpψip

)
(2.13)

For Aµ = 0, Lψ describes the band structure in terms of the Fermi pockets; and the inter-

actions arise from the minimal coupling to the Aµ gauge field. Finally, we need to consider

the last two terms in Eq. (2.11). These are the analog of the ‘Shraiman-Siggia’ couplings29;
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this evident from their form expanded to leading order in the derivative of the zα:

Lss =

∫

k,p,q

[
p ·

∂ε(k)

∂k

]
z↓(q − p/2)z↑(q + p/2)ψ†

−(k + q)ψ+(k − q) + c.c. (2.14)

where ε(k) is the single particle dispersion of the large Fermi surface state:

ε(k) = −
∑

j

tije
ik·(rj−ri). (2.15)

The Lagrangian Lz + Lψ + Lss in Eqs. (2.10), (2.13), and (2.14) is our final and general

form of the U(1) gauge theory of the fluctuating spin density wave state. Note that it is

applicable for an arbitrary band structure ε(k) and for an arbitrary SDW wavevector K:

thus we have satisfied points 2 and 3 in Section I. After diagonalizing the band structure

of Lψ in Eq. (2.13), and projecting to the resulting lowest energy electron and hole pocket

states, the present model reduces to those considered in our previous work8,21,22,23,24. Note

also that this model is specialized to the fluctuating pocket state, and there is no natural

way of restoring the large Fermi surface: the coupling to the local SDW order in Eq. (2.13)

has a fixed magnitude set by the fi.

The phase diagram of the theory Lz+Lψ contains phases (A) and (B) in Fig. 2 appearing

in Section III. These are the Fermi liquid SDW (with 〈zα〉 6= 0) and ‘algebraic charge liquid’

(with 〈zα〉 = 0) phases respectively, and will be discussed further in Section III.

III. SU(2) GAUGE THEORY

The structure of the Shraiman-Siggia term, Lss, exposes a shortcoming of the U(1) theory.

In the gradient expansion, this term is of the same order as the U(1) gauge field term in

Lψ in Eq. (2.13). It is only the collinear nature of the local spin order which imposes the

U(1) gauge structure, while Lss is associated with spiral spin correlations29. However, once

we are in the large Fermi surface state, the memory of the collinear spin correlations should

disappear. Thus, if we are to recover the large Fermi surface state, we will have to treat all

the terms in Eq. (2.11) at an equal footing.

To fix this problem, we note that the parameterization in Eq. (2.4) actually introduces a

SU(2) gauge invariance under which

R → RU † ; ψ → Uψ. (3.1)

Thus the SU(2) gauge transformation acts on the second index of R (denoted by p), while

the ordinary SU(2) spin rotation symmetry acts on the left index of R (denoted by α). We

will distinguish the SU(2) gauge and SU(2) spin rotation invariances by using the symbols

p, p′ and α, β for their respective spinor indices. Using the parameterization in Eq. (2.4) on

7



the coupling between the SDW order and the fermions in Eq. (2.1), we find that it can be

written as ∑

i

N ℓ
i fiψ

†
ipσ

ℓ
pp′ψip′ (3.2)

where we have introduced a field N ℓ
i , which transforms as a adjoint under the SU(2) gauge

transformation. Again, we will distinguish the SU(2) gauge and SU(2) spin rotation in-

variances by using the symbols ℓ = x, y, z and a for their respective adjoint indices. From

Eq. (2.1) we find that

N ℓ
i =

1

2
ϕai Tr

(
σaRiσℓRi†

)
. (3.3)

This relationship is equivalent to

ϕai =
1

2
N ℓ
i Tr

(
σaRiσℓRi†

)
. (3.4)

Only for N ℓ = (0, 0, 1) does Eq. (3.4) yield the relation Eq. (2.8).

Let us now summarize the structure of our effective gauge theory. The theory has

SU(2)gauge⊗SU(2)spin⊗U(1)em charge invariance, along with additional constraints from the

lattice space group symmetry. Its matter content is:

• A fermion ψ transforming as (2, 1, 1), and with dispersion ε(k) from the underlying

lattice band structure.

• A relativistic SU(2) matrix field R (with R†R = 1) transforming as (2̄, 2, 0), repre-

senting the local orientational fluctuations of the SDW order. The notation indicates

that R transforms under SU(2)gauge under right multiplication, and under SU(2)spin

under left multiplication.

• A relativistic real scalar N transforming as (3, 1, 0), measuring the local SDW ampli-

tude.

The symmetries allow a Yukawa coupling between N and ψ, which is just the coupling in

Eq. (3.2). Note that this coupling has a space dependence ∼ eiK·r, which can understood to

be a consequence of the non-trivial transformation of the SDW order parameter, and hence

of N ℓ, under the square lattice space group.

Now, we can introduce a SU(2) gauge field Aℓµ = (Aℓτ ,A
ℓ), and use the above constraints

to write down our low energy effective action for the SDW fluctuations. The fields R and

N ℓ will have conventional kinetic energy terms familiar from relativistic non-Abelian gauge

theory, similar to those in Lz:

LR =
1

g

[
|∂τRαp − iAℓτRαp′σ

ℓ
p′p|

2 + v2|∇Rαp − iAℓRαp′σ
ℓ
p′p|

2
]
; (3.5)

LN =
(
∂τN

ℓ − 2iǫℓmnA
m
τ N

n
)2

+ ṽ2
(
∇N ℓ − 2iǫℓmnA

mNn
)2

+ s(N ℓ)2 + u((N ℓ)2)2,

8



where g, r and u are couplings which tune the strength of the SDW fluctuations. For the

fermions, ψip, we now have a lattice Lagrangian which is similar to Eq. (2.13), but invariant

SU(2) gauge transformations

L̃ψ =
∑

i

ψ†
ip

[
(∂τ − µ)δpp′ + iAℓτσ

ℓ
pp′ − fiN

ℓ
i σ

ℓ
pp′

]
ψip′

−
∑

i,j

tijψ
†
ip

(
eiσ

ℓAℓ·(ri−rj)
)
pp′
ψjp′. (3.6)

Apart from the generalization of the U(1) gauge field to SU(2), the main difference from

Eq. (2.13) is that the coupling of the fermions to the SDW order has a magnitude determined

by the field N ℓ. Thus a phase in which N ℓ fluctuates near zero can have a large Fermi surface

given by the underlying band structure.

We are now in a position to discuss the mean-field phase diagram of the SU(2) gauge

theory LR + LN + L̃ψ. Initially, we take a simple-minded approach by allowing Higgs

condensates of one or both of the bosonic fields R and N . This allows 4 possible phases

which are sketched in Fig. 2. As will become clear below, there are no other phases that can

generically be expected.

Note that a phase which breaks SU(2) spin rotation invariance requires condensation of

bothR andN : this is clear from Eq. (3.4) which shows that both condensates are required for

a non-zero SDW order parameter ϕ. The other three phases preserve SU(2) spin symmetry,

and we now discuss the various possibilities.

(A) The Higgs phase, noted above, with 〈R〉 6= 0 and 〈N〉 6= 0. In this case both spin

rotation symmetry and SU(2) gauge symmetry is broken, and there are no gapless

gauge bosons. So this phase is a Fermi liquid, and is the conventional SDW state with

Fermi pockets. It appears in Fig. 1 as the ground state at large H and x < xm.

(B) Higgs phase with 〈N〉 6= 0, but spin SU(2) symmetry preserved because 〈R〉 = 0. We

can always choose N ℓ ∼ (0, 0, 1) by a gauge transformation, and we then find that

a U(1) subgroup of the SU(2) gauge group remains unbroken because the Azµ photon

remains gapless. Thus at low energies we have a U(1) gauge theory, and the fermion

Lagrangian L̃ψ in Eq. (3.6) becomes equivalent to Lψ in Eq. (2.13). Thus this phase

reduces to the non-Fermi liquid phase of the U(1) gauge theory, which is the ‘algebraic

charge liquid’ of Refs. 8,22,23,24. The fermions have a Fermi pocket dispersion, and

the gapless U(1) photon produces non-Fermi liquid behavior at the Fermi surface. This

phase is not shown in Fig. 1, but it is a possible ground state for large H near x = xm.

This phase has also played a key role in our previous studies8,22,24 of the physics at

H = 0, x < xm, and T & Tc.

(C) SU(2) confining phase: this is the Fermi liquid with the large Fermi surface. We can

also think of this phase as the Higgs phase of a condensate which transforms as a

9



(A)

(B)

(C)

(D)

FIG. 2: Mean field phase diagram of SU(2) gauge theory. The phases (A) and (B) are also obtained

within the U(1) gauge theory of Section II, as is the transition between them. The phases (C) and

(D), and all other transitions, require the SU(2) gauge theory. The Fermi liquid phases (A) and

(C) also appear as the non-superconducting ground states in Fig. 1 at large H. The non-Fermi

liquid phases (B) and (D) could appear as intermediate phases at T = 0 and large H (they are

not shown in Fig. 1). We have argued previously8,22,24 that phase (B) describes the crossovers

at T > 0, H = 0 for x < xm in Fig. 1. We suggest here that phase (D) may be useful in the

description of the strange metal in Fig. 1; alternatively, as is indicated in Fig. 1, the strange metal

may simply be a reflection of the quantum criticality of the transition between the Fermi liquid

phases (A) and (C).

SU(2) fundamental i.e. 〈R〉 6= 0. Also this phase should have 〈N〉 = 0 to preserve

spin rotation invariance. Note that the condensate of R alone does not break SU(2)

spin invariance, because the condensate can be rotated into an arbitrary direction by a

SU(2) gauge transformation. This phase appears in Fig. 1 as the ground state at large

H and x > xm.

(D) A novel phase with no fields condensed. This is also an algebraic charge liquid, but

there are a triplet of gapless SU(2) photons. The fermions have a large Fermi surface

dispersion, with non-Fermi liquid behavior along the Fermi surface; this is in contrast

to the small Fermi pockets in phase (B). This phase is not shown in Fig. 1, but like

phase (B), it is a possible ground state for large H near x = xm. The existence of

critical behavior across the entire large Fermi surface, with no pocket-like structures,

also makes this state a possible starting point for describing the strange metal phase of

Fig. 1.
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Going beyond these mean-field considerations, it is clear that all these phases are unstable

to pairing and a superconducting instability8,22,23,24. However, it is still meaningful to ask

whether the metallic states and critical points remain stable, after superconductivity has

been suppressed e.g. by an applied magnetic field.

Note that the discussion for phases (A) and (B) reduces to that in the U(1) theory.

The stability of these phases was established in Ref. 23, and it was noted that the (A)-(B)

transition was in the O(4) universality class.

It is clear that the Fermi liquid state (C) is stable. Let us then consider the transition

from state (C) to the SDW state (A). Note that neither of these states have gapless gauge

bosons, and both are conventional Fermi liquids. Indeed, the order parameter for the (A)-

(C) transition is the vector N ℓ; we can always choose the gauge R = 1, and then this

order parameter is seen from Eq. (3.4) to be the conventional SDW order parameter ϕa. It

should now be clear that the effective theory for the (A)-(C) transition reduces to the well-

known Hertz theory37. It is quite remarkable that after the detour to fractionalized degrees

of freedom, our theory has produced the same answer as that expected from “Landau-

Ginzburg” reasoning. We should note that key open question remain for the Hertz SDW

transition in two spatial dimensions: Abanov and Chubukov38 have shown that the theory

has an infinite number of marginal operators, and the nature of the quantum critical point

remains open.

Finally, we turn to the issue of the stability of the non-Fermi liquid phase (D) with gap-

less SU(2) photons. Corresponding issues have been discussed in the literature40 for the

non-Abelian gauge theory of quark matter in three spatial dimensions, and we discuss the

two dimensional case here. We recall that in the presence of the Fermi surface, the longi-

tudinal component of the SU(2) gauge-boson is Debye screened, leaving only the transverse

component at low energies. This transverse component is, in turn, Landau damped, so

that the gauge sector of the Lagrangian has a dynamical critical exponent z = 3, rendering

the bare self-interactions of the gauge bosons irrelevant. Moreover, a gauge-boson can only

interact efficiently with the patch of the Fermi surface that is tangent to its momentum.

This interaction is singular enough to destroy the Fermi liquid: at one loop the fermion

acquires a self-energy that scales as ω2/3. The form of the one loop effective action leads one

to hypothesize an anisotropic z = 3 scaling39 under which ω ∼ k3
‖, k⊥ ∼ k2

‖, where k‖ and

k⊥ are the components of the fermion momentum parallel and perpendicular to the Fermi

surface. The self-interactions of the gauge bosons are irrelevant under this scaling as well.

We would like to caution the reader that the above discussion is based on a one-loop

analysis. Higher loop diagrams can still cause nonperturbative effects at low energy. In

Ref. 41, in order to introduce a small parameter for expansion, the author studied a simplified

situation with N copies of identical Fermi patches coupled with a U(1) gauge boson. In the

large-N limit the gauge coupling is not flowing under RG and the system has a deconfined

phase, which obeys the same scaling as the one loop result. This conclusion carries over

directly to the SU(2) case. However, when there is a full Fermi surface even the large-N
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limit becomes much more complicated. We will leave a more detailed investigation of the

stability of the phase (D) to future study.

IV. CONCLUSIONS

The physics of doped antiferromagnets has been a subject of intense study since the

discovery of the cuprate superconductors. At low doping in the ordered antiferromag-

net, we obtain metallic Fermi liquid states with Fermi pockets. Much theoretical work

has focused on the fate of these pockets when the quantum and thermal fluctuations of

the antiferromagnetic (or SDW) order start to increase. These issues have usually been

addressed21,22,23,24,29,30,31,32,33,34 using the strong-coupling perspective of the t-J model, ap-

propriate to a doped Mott insulator. The claimed discovery of electron pockets in the hole-

doped cuprates6, suggested8,9 that a weak-coupling perspective may also be useful. Here

we used the “spin-fermion” model27 to provide an efficient derivation of the same effective

U(1) gauge theory that appears in the strong-coupling approach. Our new approach had the

added advantages of being applicable to arbitrary band structures and ordering wavevectors.

The main idea8,24,29,30,35 behind our analysis was to transform the electron spin polarization

to a rotating frame of reference determined by the local orientation of the SDW order.

In the second part of the paper we addressed the transition from the Fermi pocket SDW

state to the large doping Fermi liquid with a large Fermi surface. We showed that such

a transition required embedding the U(1) gauge theory into a SU(2) gauge theory. Unex-

pectedly, the SU(2) gauge theory displayed a direct transition between Fermi liquid states

with and without SDW order, which was described by the same effective low energy theory

as that obtained by Hertz37 and Abanov and Chubukov38. Thus our formalism, expressed

in terms of fractionalized degrees of freedom, can also efficiently describe the transition be-

tween confining states. The SU(2) theory also allowed for intermediate fractionalized phases

between the Fermi liquid states with and without SDW order, as is shown in Fig. 2.

In the cuprates, the possibility remains open that the fractionalized phases of Fig. 2 are

present as stable T = 0 phases in high magnetic fields between the under- and over-doped

regimes in Fig. 1 (they are not shown in Fig. 1). Irrespective of whether they are present

at T = 0, the fractionalized phases provide a useful description of the finite temperature

crossovers. We have previously described8,9,22,24 the use of the U(1) fractionalized phase

(B) in the underdoped regime: we showed that it reproduces all qualitative features of

the phase diagram in Fig. 1 for x < xm, including the crucial shift between xs and xm.

With the improved formalism presented here for arbitrary band structure and ordering

wavevector, we hope that more quantitative tests of this theory will be possible, especially

for the fermion spectral functions in the underdoped regime22. Finally, the novel SU(2)

fractionalized phase (D) offers a possible framework for developing a theory of the strange

metal; such a description would be an alternative to the possibility9 indicated in Fig 1: the

12



strange metal reflects the quantum criticality between the Fermi liquid phases (A) and (C).
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19 R. Daou, O. Cyr-Choinière, F. Laliberté, D. LeBoeuf, N. Doiron-Leyraud, J.-Q. Yan, J.-S. Zhou,

J. B. Goodenough, and L. Taillefer, Phys. Rev. B 79, 180505(R) (2009).
20 L. Taillefer, J. Phys: Condens. Matter 21, 164212 (2009).
21 R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Phys. Rev. B 75 , 235122

(2007).
22 R. K. Kaul, Y. B. Kim, S. Sachdev, and T. Senthil, Nature Physics 4, 28 (2008).
23 R. K. Kaul, M. A. Metlitski, S. Sachdev and C. Xu, Phys. Rev. B 78, 045110 (2008).
24 V. Galitski and S. Sachdev, Phys. Rev. B 79, 134512 (2009).
25 P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006).
26 P. Gegenwart, Q. Si, and F. Steglich, Nature Physics 4, 186 (2008).
27 Ar. Abanov, A. V. Chubukov and J. Schmalian, Adv. Phys. 52, 119 (2003) and references

therein.
28 S. Sachdev and T. Morinari, 66, 235117 (2002).
29 B. I. Shraiman and E. D. Siggia, Phys. Rev. Lett. 61, 467 (1988).
30 H. J. Schulz, Phys. Rev. Lett. 65, 2462 (1990); C. Zhou and H. J. Schulz, Phys. Rev. B 52,

R11557 (1995).
31 X.-G. Wen, Phys. Rev. B 39, 7223 (1989).
32 P. A. Lee, Phys. Rev. Lett. 63, 680 (1989).
33 R. Shankar, Phys. Rev. Lett. 63, 203 (1989).
34 L. B. Ioffe and P. B. Wiegmann, Phys. Rev. Lett. 65, 653 (1990).
35 J. R. Schrieffer, Journal of Superconductivity 17, 539 (2004); arXiv:cond-mat/0406200.
36 S. Sachdev in Quantum magnetism, U. Schollwock, J. Richter, D. J. J. Farnell and R. A. Bishop

eds, Lecture Notes in Physics 645, Springer, Berlin (2004), arXiv:cond-mat/0401041
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