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We describe a fluctuating-surface current formulation of radiative heat transfer between bodies of arbitrary

shape that exploits efficient and sophisticated techniques from the surface-integral-equation formulation of

classical electromagnetic scattering. Unlike previous approaches to nonequilibrium fluctuations that involve

scattering matrices—relating “incoming” and “outgoing” waves from each body—our approach is formulated in

terms of “unknown” surface currents, laying at the surfaces of the bodies, that need not satisfy any wave equation.

We show that our formulation can be applied as a spectral method to obtain fast-converging semianalytical

formulas in high-symmetry geometries using specialized spectral bases that conform to the surfaces of the bodies

(e.g., Fourier series for planar bodies or spherical harmonics for spherical bodies), and can also be employed as

a numerical method by exploiting the generality of surface meshes/grids to obtain results in more complicated

geometries (e.g., interleaved bodies as well as bodies with sharp corners). In particular, our formalism allows

direct application of the boundary-element method, a robust and powerful numerical implementation of the

surface-integral formulation of classical electromagnetism, which we use to obtain results in new geometries,

such as the heat transfer between finite slabs, cylinders, and cones.
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I. INTRODUCTION

Quantum and thermal fluctuations of charges in otherwise
neutral bodies lead to stochastic electromagnetic (EM) fields
everywhere in space. In systems at equilibrium, these fluc-
tuations give rise to Casimir forces (generalizations of van
der Waals interactions between macroscopic bodies), which
have recently become the subject of intense theoretical and
experimental work.1–3 In nonequilibrium situations involving
bodies at different temperatures, these fields also mediate
energy exchange from the hotter to the colder bodies, a
process known as radiative heat transfer. Although the basic
theoretical formalism for studying heat transfer was laid out
decades ago,4–7 only recently have experiments reached the
precision required to measure them at the microscale,8–15

sparking renewed interest in the study of these interactions in
complex geometries that deviate from the simple parallel-plate
structures of the past.16–23 In this manuscript, we present
a novel formulation of radiative heat transfer for arbitrary
geometries based on the well-known surface-integral-equation
(SIE) formulation of classical electromagnetism,24–27 which
extends our recently developed fluctuating surface-current
(FSC) approach to equilibrium Casimir forces28 to the
nonequilibrium problem of energy transfer between bodies
of unequal temperatures. Unlike the scattering formulations
based on basis expansions of the field unknowns best suited
to special29–35 or noninterleaved periodic30,36–38 geometries,
or formulations based on expensive, brute-force time-domain
simulations39 and Green’s functions calculations,40,41 this
approach allows direct application of the boundary element
method (BEM): a mature and sophisticated SIE formulation of
the scattering problem in which the EM fields are determined
by the solution of an algebraic equation involving a smaller set
of surface unknowns (fictitious surface currents in the surfaces
of the objects24,26,27).

A terse derivation of our FSC formulation for heat transfer

was previously published in Ref. 42. The primary goals of this

paper are to provide a more detailed presentation of this deriva-

tion and to generalize our previous formula for the heat transfer

between two bodies to other situations of interest, including

geometries consisting of multiple and/or nested bodies. We

also demonstrate that the FSC framework can be applied as a

spectral method to obtain semianalytical formulas in special

geometries with high symmetry, as well as for purely numerical

evaluation using BEM, which we exploit to obtain new results

in a number of complicated geometries that prove challenging

for semianalytical calculations. Although our formulation here

employs similar guiding principles as our previous work on

equilibrium Casimir phenomena28,43—both are based on the

SIE framework of classical EM scattering—the heat-transfer

case is by no means a straightforward extension of force

calculations, because generalizing the equilibrium framework

to nonequilibrium situations requires very different theoretical

techniques. For example, the fact that in Ref. 28, we considered

only equilibrium fluctuations made it possible for us to directly

exploit the fluctuation-dissipation theorem for EM fields,44

which relates the field-field correlation function at two points

to a single Green’s function between those two points. In

contrast, although a fluctuation-dissipation theorem exists in

the nonequilibrium problem, the field-field correlation func-

tions are in this case determined by a product of two Green’s

functions integrated over the volumes of the bodies.21,44 A

key step in our derivation below is a correspondence between

this volume integral (involving products of fields) and an

equivalent surface integral involving the fictitious surface

currents and fields of the SIE framework, that was not required

in the equilibrium case.

The heat radiation and heat transfer of bodies with sizes

and/or separations comparable to the thermal wavelength can

deviate strongly from the predictions of the Stefan-Boltzmann

law.4,45 For instance, in the far field (object separations d

much greater than the thermal wavelength λT = h̄c/kBT ),

radiative heat transfer is dominated by the exchange of

propagating waves and is thus nearly insensitive to changes

in separations (oscillations from interference effects typically
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being small5,46). In the less-studied near-field regime (d � λT ),

not only are interference effects important, but otherwise-

negligible evanescent waves also contribute flux through

tunneling.22,23 Such near-field effects have been most com-

monly studied in planar geometries, where the monotonically

increasing contribution of evanescent waves with decreasing

d results in orders-of-magnitude enhancement of the net

radiative heat transfer rate (exceeding the far-field black-body

limit at submicrometer separations23). This enhancement was

predicted theoretically5,22,23 and observed experimentally47–49

decades ago in various planar structures, and has recently

become the subject of increased attention due to its po-

tential application in nanotechnology, with ramifications

for thermal photovoltaics50,51 and thermal rectification,52–55

nanolithography,56 thermally assisted magnetic recording,57

and high-resolution surface imaging.14,58,59 Thus far, there

have been numerous works focused on the effects of material

choice in planar bodies,20,60 including studies of graphene

sheets,61 hyperbolic62 and anisotropic materials,36 and even

materials exhibiting phase transitions,63 to name a few. Along

the same lines, many authors have explored transfer mediated

by surface polaritons in thin films64–67 and 1D-periodic planar

bodies.68 Despite decades of research, little is known about

the near-field heat-transfer characteristics of bodies whose

shapes differ significantly from these planar, unpatterned struc-

tures. Theoretical calculations were only recently extended to

handle more complicated geometries, including spheres,29,33

cylinders,32 and cones69 suspended above slabs, dipoles

interacting with other dipoles40,70–74 or with surfaces,46,75–77

and also patterned/periodic surfaces.30,31,39,42,78–80

General-purpose methods for modeling heat transfer be-

tween bodies of arbitrary shapes can be distinguished in at

least two ways, in the abstract formulation of the heat-transfer

problem and in the basis used to “discretize” the formulation

into a finite number of unknowns for solution on a computer

(or by hand).81 Theoretical work on heat transfer has mainly

centered on “scattering-matrix’ formulations, which express

the heat transfer in terms of the matrices relating incoming

and outgoing wave solutions from each body.30–32,37,38,78

These formulations tend to be closely associated with “spec-

tral’ discretization techniques in which a Fourier-like basis

(Fourier series, spectral harmonics, etc.) is used to expand

the unknowns, because the incoming/outgoing waves must be

expressed in terms of known solutions of Maxwell’s equations,

which are typically a spectral basis of plane waves, spherical

waves, and so on. Such a spectral basis has the advantage that

it can be extremely efficient (exponentially convergent) if the

basis is specially designed for the geometry at hand (e.g.,

spherical waves for spherical bodies29). Scattering-matrix

methods can also be used for arbitrary geometries, e.g., by

expanding arbitrary periodic structures in Fourier series30,37,78

or by coupling to a generic grid/mesh discretization to solve

the scattering problems,39,42,80 but exponential convergence no

longer generally obtains. Furthermore, Fourier or spherical-

harmonic bases of incoming/outgoing waves correspond to

uniform angular/spatial resolution and require a separating

plane/sphere between bodies, which can be a disadvantage

for interleaved bodies or bodies with corners or other features

favoring nonuniform resolution. In contrast to the geometric

specificity encoded in a particular scattering basis, one

extremely generic approach is a brute-force discretization of

space and time, allowing one to solve for heat transfer by

a Langevin approach39 that handles all geometries equally,

including geometries with continuously varying material

properties. The FSC approach lies midway between these

two extremes. Like the scattering-matrix approach, the FSC

approach exploits the fact that one knows the EM solutions

(Green’s functions) analytically in homogeneous regions, so

for piecewise-homogeneous geometries the only remaining

task is to match boundary conditions at interfaces. Unlike

the scattering-matrix approach, however, the FSC approach is

formulated in terms of unknown surface currents rather than

incoming/outgoing waves—the surface currents are arbitrary

vector fields and need not satisfy any wave equation, which

leads to great flexibility in the choice of basis. As described in

this paper, the FSC formulation can use either a spectral basis

or a generic grid/mesh and, as demonstrated in Refs. 42 and 80,

works equally well for interleaved bodies (lacking a separating

plane or even a well-defined notion of “incoming/outgoing’

wave solutions). Moreover, the FSC formulation reduces the

heat-transfer problem to a simple trace formula in terms of

well-studied matrices that arise in SIE formulations of classical

EM, which allows mature BEM solvers to be exploited with

minimal additional computational effort.

The radiative heat transfer between two bodies 1 and 2 at

local temperatures T 1 and T 2 can be written as22,23

H =
ˆ ∞

0

dω [�(ω,T 1) − �(ω,T 2)]�(ω), (1)

where �(ω,T ) = h̄ω/[exp(h̄ω/kBT ) − 1] is the Planck en-

ergy per oscillator at temperature T , and � is an ensemble-

averaged flux spectrum into body 2 due to random currents

in body 1 (defined more precisely below via the fluctuation-

dissipation theorem4,45,82). (Physically, there are currents in

both bodies, but EM reciprocity83 means that one obtains the

same � for flux into body 1 from sources in body 2; this also

ensures that H obeys the second law of thermodynamics.) The

only question is how to compute �, which naively involves a

cumbersome number of scattering calculations.

The main result of this manuscript is the compact trace-

formula for � derived in Sec. II, which involves standard

matrices that arise in BEM calculations and forgoes any need

for evaluation of fields or sources in the volumes of the bodies,

separation of incoming and outgoing waves, integration of

Poynting fluxes, or many scattering calculations. As explained

below in Secs. III D and III C, by a slight modification

of the two-body formula, one can also straightforwardly

compute the spatially resolved pattern of Poynting flux on

the surfaces of the bodies, as well as the emissivity of

an isolated body. Section III A illustrates how important

physical properties such as reciprocity and positivity of heat

transfer manifest in the algebraic structure of the formulas.

In Sec. III E, we generalize the two-body formula to also

describe situations involving multiple and/or nested bodies.

The remaining sections of the paper are devoted to validating

the FSC formalism by checking it against known results in

special geometries consisting of spheres and semi-infinite

plates, as well as applying it to obtain new results in more

complicated geometries consisting of finite slabs, cylinders,

and cones. Specifically, Sec. IV B considers application of
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the FSC formulation in high-symmetry geometries where

the use of special-bases expansions involving Fourier and

spherical-wave eigenfunctions (provided in Appendix A) leads

to fast-converging semianalytical formulas of heat radiation

and heat transfer for spheres and semi-infinite plates. In

Secs. IV C and V, we exploit a sophisticated numerical

implementation of the FSC formulation based on BEM to

check the predictions of the semianalytical formulas in the

case of spheres and to obtain new results in more complex

geometries. Finally, the appendices at the end of the paper

provide additional discussions that supplement and aid our

derivations in Secs. II and III. Specifically, Appendix B

provides a concise derivation of the principle of equivalence

and its application to SIEs, and Appendices C 1 and C 2

provide succinct proofs of reciprocity and positivity of Green’s

functions and SIE matrices, respectively.

II. FSC FORMULATION

In this section, we review the SIE method of EM scattering

and apply it to derive an FSC formulation of radiative heat

transfer between two bodies. The result of this derivation is

a compact trace expression for � involving SIE matrices. We

further elaborate on these results in Sec. III, where we extend

the formulation to handle other situations of interest, including

the emissivity of isolated bodies, distribution of Poynting

flux on the surfaces of the bodies, and heat transfer between

multiple and/or nested bodies.

A. Notation

Let φ = (
E
H ) and σ = (

J
K ) denote six-component volume

electric and magnetic fields and currents, respectively, and

ξ denote six-component surface currents (which technically

have only four degrees of freedom since they are constrained to

flow tangentially to the surfaces). In a homogeneous medium,

fields are related to currents via convolutions (⋆) with a 6 × 6

homogeneous Green’s tensor Ŵ(x,y) = Ŵ(x − y,0), such that

φ = Ŵ ⋆ (σ + ξ ), or more explicitly

φ(x) =
ˆ

d3y Ŵ(x,y)[σ (y) + ξ (y)], (2)

where

Ŵ =

(

ŴEE ŴEH

ŴHE ŴHH

)

= ik

(

Z G C

−C
1
Z

G

)

is the Green’s tensor composed of 3 × 3 electric and magnetic

Dyadic Green’s functions (DGFs), determined by the “photon’

DGFs G and C. In the specific case of isotropic media (scalar

ε and μ), G and C satisfy

[∇ × ∇ × −k2]G(k; x,x′) = δ(x − x′)I, (3)

and C = i
k
∇ × G, with wave number k = ω

√
εμ and

impedance Z =
√

μ/ε. Our derivation below applies to

arbitrary linear anisotropic permittivity ε and permeability μ,

so long as they are complex-symmetric matrices in order to

satisfy reciprocity84 (see Appendix C 1). The mathematical

consequence of reciprocity, as described in the Appendix, is

that Ŵ is complex-symmetric up to sign flips. In particular,

Ŵ(x,x′)T = SŴ(x,x′)S, where the 6 × 6 matrix S = S−1 flips

T
2

ξ2

V
2

φ2−

T
1

V
1

φ1− ξ1

φ0−

FIG. 1. (Color online) Schematic depicting two disconnected

bodies described by surfaces ∂V 1 and ∂V 2 and held at temperature T 1

and T 2, respectively. Surface currents ξ 1 and ξ 2 laying on the surfaces

of the bodies give rise to scattered fields φ1− and φ2−, respectively,

in the interior of the bodies, and scattered field φ0− in the intervening

medium 0.

the sign of the magnetic components. This reciprocity property

is a key element of our derivation below.

B. Surface integral equations

Consider the system depicted in Fig. 1, consisting of two

homogeneous bodies, 1 and 2 (volumes V 1 and V 2 and

temperatures T 1 and T 2), separated by a lossless medium

0 (volume V 0) by two interfaces ∂V 1 and ∂V 2, respectively.

Consider also sources σ r located in the interior of V r and

denote the total fields in each region by φr . The homogeneous-

medium Green’s functions for the infinite media in region r

are denoted by Ŵr . Consider also the decomposition of the

total fields φr in each region r into “incident’ fields φr+

(due to sources within r) and “scattered’ fields φr− (from

interactions with the other regions, including both scattering

off the interface and sources in the other regions). That is, we

can write φr = φr+ + φr−, with φr+ = Ŵr ⋆ σ r .

The core idea in the SIE formulation is the principle of
equivalence,24,85–89 whose derivation is briefly reprized in

Appendix B, which states that the scattered field φr− can be

expressed as the field of some fictitious electric and magnetic

surface currents ξ r located on the boundary of region r , acting

within an infinite homogeneous medium r . In particular, one

can write

φ0 = φ0+ + Ŵ0 ⋆ (ξ 1 + ξ 2), (4)

φr = φr+ − Ŵr ⋆ ξ r , (5)

for r = 1,2, with fictitious currents ξ r completely determined

by the boundary condition of continuous tangential fields

at the body interfaces. Specifically, equating the tangential

components of the total fields at the surfaces of the bodies, we

find the integral equations:

(Ŵ0 + Ŵr ) ⋆ ξ r + Ŵ0 ⋆ ξ 3−r |∂V r = φr+ − φ0+|∂V r , (6)

which can be solved to obtain ξ r from the incident fields.

This is the “PMCHW” surface-integral formulation of EM

scattering.24,90,91

Let {βr
n} be a basis of six-component tangential vector

fields on the surface of body r , so that any surface current

ξ r can be written in the form ξ r (x) =
∑

n xr
nβ

r
n(x) for N coef-

ficients {xr
n}. (In BEM, βn is typically a piecewise-polynomial
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“element” function defined within discretized patches of each

surface, most commonly the “RWG” basis functions.92,93

However, one could just as easily choose βn to be a spherical

harmonic or some other “spectral” Fourier-like basis, as shown

in Sec. IV B. The key point is that βn is an arbitrary basis of

surface vector fields; unlike scattering-matrix formulations, it

need not consist of “incoming” or “outgoing” waves nor satisfy

any wave equation.) Taking the inner product of both sides of

Eq. (6) with βr
m (a Galerkin discretization94), one obtains a

matrix “BEM” equation of the form:

W−1x = s, (7)

where x = (
x1

x2 ) represents the expansion of the surface

currents, ξ r =
∑

n xr
nβ

r
n, s = (

s1

s2 ) describes the effect of the

incident fields sr
m = 〈βr

m,φr+ − φ0+〉, and

(
W 11 W 12

W 21 W 22

)−1

︸ ︷︷ ︸

W−1

=
(

G0,11 G0,12

G0,21 G0,22

)

︸ ︷︷ ︸

Ĝ0

+
(

G1

0

)

︸ ︷︷ ︸

Ĝ1

+
(

0

G2

)

︸ ︷︷ ︸

Ĝ2

(8)

describes interactions with matrix elements G
r,ij
mn = 〈β i

m,Ŵr ⋆

β
j
n 〉 among the basis functions. Ĝ0 represents multibody

interactions between basis functions on both bodies, via waves

propagating through the intervening medium 0. Gr represent

self-interactions via waves propagating within a body, given by

Gr
mn ≡ Gr,rr

mn =
〈

βr
m,Ŵr ⋆ βr

n

〉

. (9)

Here, 〈·,·〉 denotes the standard inner product 〈ϕ,ψ〉 =
´

ϕ∗ψ ,

with the ∗ superscripts denoting the conjugate-transpose

(adjoint) operation.

A key property of the Green’s function is reciprocity, as

summarized and derived in Appendix C 2, and this property

is reflected in symmetries of the matrices Ĝ and W . For

simplicity, let us begin by considering the case of real-valued

basis functions βn. Let S be the matrix such that Sx flips

the signs of the magnetic components (assuming that we

either have separate basis functions for electric and magnetic

components, as in the RWG basis, or more generally that the

basis functions come in βn and Sβn pairs). Note that S−1 =
S = ST = S∗. In this case, as reviewed in Appendix C 2,

it follows that WT = SWS and ĜT = SĜS. Once we have

derived our heat-transfer formula for such real-valued basis

functions, it is straightforward to generalize to complex-valued

bases as described in Sec. III B.

C. Flux spectrum

Our goal is to compute the flux spectrum � into V 2 (the

absorbed power in body 2) due to dipole current sources σ 1

in V 1 (integrated over all possible positions and orientations).

We begin by considering �σ 1 , or the flux into body 2 due

to a single dipole source σ 1 within body 1, corresponding

to φ1+ = Ŵ1 ⋆ σ 1, with φ0+ = φ2+ = 0. In the SIE (7), this

results in a source term s with s1
m = 〈β1

m,Ŵ1 ⋆ σ 1〉 and s2 = 0.

As derived in Appendix B, the Poynting flux can be computed

using the fact that ξ is actually equal to the surface-tangential

fields,25 ξ = (
n × H

−n × E ), where n is the outward unit-normal

vector. It follows that the integrated flux − 1
2
Re
‚

2
(E × H) ·

n = 1
4
Re〈ξ 2,φ0〉. (This can also be derived as the power

exerted on the surface currents by the total field, with an

additional 1/2 factor from a subtlety of evaluating the fields

exactly on the surface.89) Hence

�σ 1 = 1
4
Re〈ξ 2,φ0〉 = 1

4
Re〈ξ 2,φ2〉 = 1

4
Re〈ξ 2,−Ŵ2 ⋆ ξ 2〉,

where we used the continuity of φ0 and φ2 and the fact

that φ2+ = 0. Substituting ξ 2 =
∑

n x2
nβ

2
n and recalling the

definition of G2 in Eq. (8), we obtain

�σ 1 = − 1
4
Re(x2∗G2x2) = − 1

4
Re(x∗Ĝ2x)

= − 1
4
[x∗(symĜ2)x] = − 1

4
s∗W ∗(symĜ2)Ws

= − 1
4
Tr[ss∗W ∗(symĜ2)W ],

where sym G = 1
2
(G + G∗) denotes the Hermitian part of G.

Computing �σ 1 is therefore straightforward for a single

source σ 1. However, the total spectrum

� = 〈�1〉 = − 1
4
Tr[〈ss∗〉W ∗(symĜ2)W ] (10)

involves an ensemble-average 〈· · · 〉 over all sources σ 1 and

polarizations in V 1. While this integration can be performed

explicitly, we instead seek to simplify matters so that the

final expression for � involves only surface integrals. The key

point is that ss∗ is an N × N matrix describing interactions

among the N surface-current basis functions. The ensemble

average 〈ss∗〉 is also an N × N matrix, which we would like

to express in terms of a simple scattering problem involving the

SIE Green’s function matrices, hence eliminating any explicit

computations over the interior volume V 1.

Defining the Hermitian matrix Ĉ = 〈ss∗〉, it follows that its

only nonzero entries lie in the upper-left N1 × N1 block C1 =
〈s1s1∗〉 and are given by C1

mn = 〈s1
ms1

n〉 = 〈〈β1
m,Ŵ1 ⋆ σ 1〉〈Ŵ1 ⋆

σ 1,β1
n〉〉, or

C1
mn =

〈
‹

d2x

˚

d3yβ1
m(x)TŴ1(x,y)σ 1(y)

‹

d2x′
˚

d3y′σ 1(y′)∗Ŵ1(x′,y′)∗β1
n(x′)

〉

=
‹

d2x

˚

d3yβ1
m(x)TŴ1(x,y)

‹

d2x′
˚

d3y′〈σ 1(y)σ 1(y′)∗〉Ŵ1(x′,y′)∗β1
n(x′)

=
4

π

‹

d2x

˚

d3y

‹

d2x′β1
m(x)TŴ1(x,y)[ωImχ (y)]Ŵ1(x′,y)∗β1

n(x′), (11)
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where in the third line we have performed an integration over

all dipole positions by employing the fluctuation-dissipation

theorem82 for the current-current correlation function,

〈σ 1(y)σ 1(y′)∗〉 =
4

π
ωImχ (y,ω)δ(y − y′), (12)

and where we omitted the dependence on the Planck energy

distribution �(ω,T ), which has been factored out into Eq. (1),

and where Imχ denotes the imaginary part of the 6 × 6

material susceptibility tensor, so that Imχ = (
Imε 0

0 Imμ ), which

is related to material absorption.

Equation (11) closely resembles an absorbed power in the

volume of body 1, since absorbed power for a field φ is
1
2

´

φ∗(ωImχ )φ.83 To make this analogy precise, some careful

algebraic manipulation is required, and the abovementioned

reciprocity relations [Ŵ(x,x′)T = SŴ(x,x′)S, WT = SWS,

etc.] play a key role. In particular, the fact that C1 is Hermitian

implies that the matrix is completely determined by the values

of x1∗S(C1)TSx1 for all x1, where we have inserted the

sign-flip matrices S and the transposition for later convenience.

Interpreting x1 as the basis coefficients of a surface current

ξ 1 =
∑

n x1
nβ

1
n on ∂V 1, we find

x1∗S(C1)TSx1 = 〈|x1∗Ss1|2〉 = 〈|ξ 1,SŴ1 ⋆ σ 1|2〉

=
‹

d2x

˚

d3y

‹

d2x′
˚

d3y′ξ 1(x)∗SŴ1(x,y)〈σ 1(y)σ 1(y′)T〉Ŵ1(x′,y)TSξ 1(x′)

=
4

π

‹

d2x

˚

d3y

‹

d2x′ξ 1(x)∗SŴ1(x,y)[ωImχ (y)]SŴ1(x′,y)ξ 1(x′)

=
4

π

‹

d2x

˚

d3y

‹

d2x′ξ 1(x)∗SŴ1(x,y)S[ωImχ (y)]Ŵ1(x′,y)ξ 1(x′)

=
4

π

‹

d2x

˚

d3y

‹

d2x′[Ŵ1(y,x)ξ 1(x)]∗[ωImχ (y)][Ŵ1(x′,y)ξ 1(x′)]

=
4

π
〈Ŵ1 ⋆ ξ 1,(ωImχ )Ŵ1 ⋆ ξ 1〉, (13)

where in the first and fourth lines, we invoked reciprocity (from

above) and in the third line, we assumed that S commutes

with Imχ , which is true for reciprocal media. (The only way

that S would not commute with Imχ would be if there were

a chiral susceptibility coupling electric and magnetic fields

directly, also called a bianisotropic susceptibility, which breaks

reciprocity.95) Letting φ1 = Ŵ1 ⋆ ξ 1 be the field due to the

surface current ξ 1, it follows that

x1∗S(C1)TSx1 =
4

π
〈φ1,(ωImχ )φ1〉. (14)

But, as noted above, 1
2
〈φ1,ω(Imχ )φ1〉 (where the inner product

〈·,·〉 is now over the volume V 1) has a simple meaning: it is the

absorbed power in V 1 from the currents ξ 1, or equivalently,

the time-average power density dissipated in the interior of

body 1 by the field φ1 produced by ξ 1.

Computing the interior dissipated power from an arbitrary
surface current turns out to be somewhat complicated, since

one needs to take into account the possibility that the equivalent

surface currents arise from sources both outside and inside

V 1. If, on the other hand, we could restrict ourselves to

equivalent currents ξ 1 that are outside of V 1, then we can use

the result from above that the incoming Poynting flux (the ab-

sorbed power) is simply − 1
4
Re〈ξ 1,φ1〉 = − 1

4
x1∗(symG1)x1.

Substituting this into Eq. (14), we would be immediately

led to the identity x1∗S(C1)TSx1 = − 2
π

Re (x1∗G1x1), and

this gives an expression for C1 in terms of G1. It turns out

that indeed, we need not handle arbitrary ξ 1 since the Ĉ

matrix is never used by itself—it is only used in the trace

expression

� = − 1
4
Tr[ĈW ∗(symĜ2)W ] = − 1

4
Tr[· · · ]T

= − 1
4
Tr[SWSS(symĜ2)SSW ∗SĈT]

= − 1
4
Tr[SW (symĜ2)W ∗SĈT ]

= − 1
4
Tr[SĈTSW (symĜ2)W ∗], (15)

using reciprocity. As shown in Sec. III A, the standard definite-

ness properties of the Green’s functions (currents do nonnega-

tive work) imply that symĜr is negative semidefinite and hence

admits a Cholesky factorization96 symĜr = −Û r∗Û r . It fol-

lows that Eq. (15) can be written as − 1
4
Tr[X∗SĈTSX], where

X = WÛ 2∗ are the “currents” due to “sources” represented by

the columns of Û 2∗, which are all of the form (
0

s2 ): currents

from sources in V 2 alone. So, effectively, SĈTS is only used

to evaluate the power dissipated in V 1 from sources in V 2,

and by the same Poynting-theorem reasoning from above, it

follows that S(C1)TS = − 2
π

symG1, and hence

Ĉ = −
2

π
symS(Ĝ1)TS = −

2

π
symĜ1 (16)

by the symmetry of Ĝ1. Substituting this result into Eq. (10)

then gives the heat-transfer formulation summarized in the

next section.

D. Heat-transfer formula

The result of the above derivation is that the ensemble-

averaged flux from V 1 to V 2 can be expressed in the compact
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form

� =
1

2π
Tr[(symĜ1)W ∗(symĜ2)W ] (17)

=
1

2π
Tr[(symG1)W 21∗(symG2)W 21], (18)

with W 21 relating incident fields at the surface of body 2 to the

equivalent currents at the surface of body 1. Our simplified

expression is computationally convenient because it only

involves standard matrices that arise in BEM calculations,26

with no explicit need for evaluation of fields or sources

in the volumes,29,39,40 separation of incoming and outgoing

waves,30–32,37,38,78 integration of Poynting fluxes,39 or any

additional scattering calculations.

III. GENERALIZATIONS

In this section, we study the positivity and symmetries of

the two-body heat-transfer formula above and consider gen-

eralizations to include other situations of interest. Following

similar arguments as those employed in the previous section,

we derive formulas for the emissivity of isolated bodies, the

spatial distribution of Poynting flux on the surfaces of bodies,

and the heat transfer between multiple and nested bodies. In

Sec. III B, we show that abandoning our choice of real-β basis

functions above in favor of complex-β functions does not

change the final formula for �, so long as the βs come in

complex conjugate pairs.

A. Positivity and reciprocity

In addition to its computational elegance, Eq. (18) al-

gebraically captures crucial physical properties of the flux

spectrum: � is positive-definite � � 0 and symmetric with

respect to 1 ↔ 2 exchange, as required by reciprocity. Of

course, the positivity of � is immediately clear from the Rytov

starting point of fluctuating currents inside the bodies: the

absorbed power in one body from sources in the other body

is simply ∼
´

(ωImǫ)|E|2 � 0 (since ω Imǫ � 0 for passive

media83,84). Hence positivity must hold for any formulation

that is mathematically equivalent to the Rytov picture. How-

ever, it is still useful and nontrivial to understand how this

positivity manifests itself algebraically in a given formulation.

For example, Ref. 35 showed how positivity manifests itself

in a scattering-matrix framework. In our FSC framework,

positivity turns out to correspond to the fact that � can be

interpreted as a kind of matrix norm.

As derived above, the standard definiteness properties

of the Green’s functions (currents do nonnegative work)

imply that symGr is negative semidefinite and hence admits

a Cholesky factorization symGr = −U r∗U r , where U r is

upper-triangular. It follows that

� =
1

2π
Tr[U 1W ∗U 2∗U 2WU 1∗]

=
1

2π
Tr[Z∗Z] =

1

2π
‖Z‖2

F , (19)

where Z = U 2WU 1∗, is a weighted Frobenius norm of the

SIE matrix W , which from above we know is necessarily

non-negative.

Furthermore, reciprocity (symmetry of � under 1 ↔ 2

interchange) corresponds to simple symmetries of the ma-

trices. As derived in Appendix C 1, Ŵ(y,x)T = SŴ(x,y)S,

ĜT = SĜS, and WT = SWS, where S = ST = S−1 = S∗ is

the matrix that flips the signs of the magnetic basis coefficients

and swaps the coefficients of βn and βn. It follows that

� =
1

2π
Tr[SWS(symSĜ2S)SW ∗S(symSĜ1S)]

=
1

2π
Tr[(symĜ2)W ∗(symĜ1)W ], (20)

where the S factors cancel, leading to the 1 ↔ 2 exchange.

B. Complex-valued basis functions

For convenience, we assumed above that the basis functions

βn were purely real-valued. However, it easy to generalize the

final result a posteriori to complex-valued basis functions.

The relevant case to consider are basis functions that come in

complex-conjugate pairs βn and βn′ = βn (true for any practi-

cal complex basis). Such a basis can always be transformed into

an equivalent real-valued basis β̃n by the linear transformation

β̃n = 1√
2
(βn + βn′ ) and β̃n′ = i√

2
(βn − βn′ ). In an expansion

ξ =
∑

n xnβn =
∑

n x̃nβ̃n, this is simply a rotation x̃ = Qx

where the matrix Q is easily verified to be unitary (Q∗ = Q−1),

since it is composed of unitary 2 × 2 blocks (operating on

n,n′ complex-conjugate pairs). Given such a unitary change

of basis, we can make a corresponding unitary change to

the G and W matrices from above, G̃ = QĜQ∗ and W̃ =
QWQ∗, to obtain the matrices in the complex basis. By

inspection of the � expression above, all of the Q factors

cancel after the change of basis and one obtains the same

expression in the complex basis with the new G̃ and W̃

matrices.

C. Emissivity of a single body

The same formalism can be applied to compute the

emissivity of a single body. For a single body 1 in medium 0,

the emissivity of the body is the flux �0 of random sources in

V 1 into V 0.23 Following the derivation above, the flux into V 0

is − 1
4
Re〈ξ 1,φ0〉 = − 1

4
〈ξ 1,Ŵ0 ⋆ ξ 1〉. The rest of the derivation

is essentially unchanged except that W = (G1 + G0)−1 since

there is no second surface. Hence we obtain

�0 =
1

2π
Tr[(symG1)W ∗(symG0)W ], (21)

which again is invariant under 1 ↔ 0 interchange from the

reciprocity relations (Kirchhoff’s law).

D. Surface Poynting-flux pattern

It is also interesting to consider the spatial distribution of

Poynting-flux pattern, which can be obtained easily because,

as explained above, 1
4
Re[ξ 2(x)∗φ2(x)] is exactly the inward

Poynting flux at a point x on surface 2. It follows that the mean
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contribution �2
n of a basis function βr

n to � is

�2
n = −

1

4

〈

Re
[

s∗W ∗e2
ne

2∗
n Ĝ2Ws

]〉

= −
1

4
Re
[

e2∗
n Ĝ2W 〈ss∗〉W ∗e2

n

]

=
1

2π
Re
[

e2∗
n Ĝ2W (symĜ1)W ∗e2

n

]

,

where e2
n is the unit vector corresponding to the β2

n component.

This further simplifies to �2
n = F 2

nn, where

F 2 =
1

2π
Re[G2W 21(symG1)W 21∗]. (22)

Note that � = TrF 2. Similarly, by swapping 1 ↔ 2, we obtain

a matrix F 1 such that �1
n = F 1

nn is the contribution of β1
n to

the flux on surface ∂V 1.

E. Multiple and nested bodies

In this section, we extend the FSC formalism above to situ-

ations involving multiple and nested bodies. For simplicity, we

only consider an additional medium 3, since generalizations

to include additional bodies or levels of nesting readily follow.

Because the derivation is almost identical to the two-body case,

we only focus on those aspects that differ.

1. Multiple bodies

Consider the system depicted in Fig. 2, consisting of three

disconnected bodies at different temperatures. Applying the

principle of equivalence, one finds

φ0 = φ0+ + Ŵ0 ⋆ (ξ 1 + ξ 2 + ξ 3), φr = φr+ − Ŵr ⋆ ξ r ,

for r = 1,2,3, with fictitious currents ξ r determined by the

boundary conditions of continuous tangential fields at the body

interfaces. Equating the tangential components of the fields at

T
2

ξ2

φ2−

T
1 ξ1

φ1−

φ0−
ξ3

φ3
T

3

V
1

V
2

V
3

FIG. 2. (Color online) Schematic depicting three disconnected

bodies described by surfaces ∂V 1, ∂V 2, and ∂V 3, and held at

temperature T 1, T 2, and T 3, respectively. Surface currents ξ 1, ξ 2,

and ξ 3, laying on the surfaces of the bodies give rise to scattered

fields φ1−, φ2−, and φ3−, respectively, in the interior of the bodies,

and scattered field φ0− in the intervening medium 0.

the surfaces of the bodies, one obtains the integral equations:

(Ŵ0 + Ŵr ) ⋆ ξ r +
∑

i =r

(Ŵ0 ⋆ ξ j )|∂V r = φr+ − φ0+|∂V r , (23)

along with the corresponding SIE matrix:

⎛

⎜
⎝

W 11 W 12 W 13

W 21 W 22 W 23

W 31 W 32 W 33

⎞

⎟
⎠

−1

︸ ︷︷ ︸

W−1

=

⎛

⎜
⎝

G0,11 G0,12 G0,13

G0,21 G0,22 G0,23

G0,31 G0,32 G0,33

⎞

⎟
⎠

︸ ︷︷ ︸

Ĝ0

+

⎛

⎜
⎝

G1

0

0

⎞

⎟
⎠

︸ ︷︷ ︸

Ĝ1

+

⎛

⎜
⎝

0

G2

0

⎞

⎟
⎠

︸ ︷︷ ︸

Ĝ2

+

⎛

⎜
⎝

0

0

G3

⎞

⎟
⎠

︸ ︷︷ ︸

Ĝ3

. (24)

The derivation of the flux spectrum for any given pair of

bodies mirrors exactly the derivation in Sec. II, with the

only difference being the modified SIE matrix W . The final

expression for the flux spectrum into V j due to random

currents in V i =j is given by

�ij =
1

2π
Tr[(symGi)W ji∗(symGj )W ji], (25)

which again is invariant under i ↔ j interchange.

2. Nested bodies

Consider now the system depicted in Fig. 3, involving

three bodies at different temperatures with one of the bodies

(medium 2) containing another (medium 3). Applying the

principle of equivalence again, one finds

φ0 = φ0+ + Ŵ0 ⋆ (ξ 1 + ξ 2),

φ2 = φ2+ − Ŵ2 ⋆ (ξ 2 − ξ 3),

φr = φr+ − Ŵr ⋆ ξ r ,

T
2

ξ2

φ2−

T
1

ξ1
φ1−

φ0−

φ3−

T
3ξ3

V
1

V
2

V
3

FIG. 3. (Color online) Similar three-body geometry as that

depicted in Fig. 2 but with body 3 now embedded in the interior

of body 2. Here, the scattered field φ2− includes contributions from

both ξ 2 and ξ 3.
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for r = 1,3, with fictitious currents ξ r determined by the

boundary conditions of continuous tangential fields at the body

interfaces. Equating the tangential components of the fields at

the surfaces of the bodies, one obtains the following integral

equations:

(Ŵ0 + Ŵ1) ⋆ ξ 1 + Ŵ0 ⋆ ξ 2|∂V 1 = φ1+ − φ0+|∂V 1 ,

(Ŵ0 + Ŵ2) ⋆ ξ 2 + Ŵ0 ⋆ ξ 1 − Ŵ2 ⋆ ξ 3|∂V 2 = φ2+ − φ0+|∂V 2 ,

(Ŵ2 + Ŵ3) ⋆ ξ 3 − Ŵ2 ⋆ ξ 2|∂V 3 = φ3+ − φ2+|∂V 3 ,

where ∂V 2 denotes the interface between V 2 and V 0, from

which one obtains the corresponding SIE matrix:
⎛

⎜
⎝

W 11 W 12 W 13

W 21 W 22 W 23

W 31 W 32 W 33

⎞

⎟
⎠

−1

︸ ︷︷ ︸

W−1

=

⎛

⎜
⎝

G0,11 G0,12

G0,21 G0,22

0

⎞

⎟
⎠

︸ ︷︷ ︸

Ĝ0

+

⎛

⎜
⎝

G1

0

0

⎞

⎟
⎠

︸ ︷︷ ︸

Ĝ1

+

⎛

⎝

0

G2 −G2,23

−G2,32 G2,33

⎞

⎠

︸ ︷︷ ︸

Ĝ2

+

⎛

⎜
⎝

0

0

G3

⎞

⎟
⎠

︸ ︷︷ ︸

Ĝ3

. (26)

Although he derivation of the flux spectrum for any given pair

of bodies closely mirrors the derivation in Sec. II C, important

deviations arise due to the difference in topology. In what

follows, we only focus on those steps that differ significantly.

The asymmetry of the geometry also means that we must

consider � for each pair separately.

First, we compute the flux spectrum �13 into V 3 (the

absorbed power in 3) due to dipole current sources in V 1.

The flux into body 3 due to a single dipole source σ 1 inside

body 1 is given by

�13
σ 1 = 1

4
Re〈ξ 3,φ2〉 = 1

4
Re〈ξ 3,φ3〉

= 1
4
Re〈ξ 3,−Ŵ3 ⋆ φ3〉

= − 1
4
Re(x3∗G3x3).

After ensemble averaging over σ 1 as before, we obtain

�13 =
1

2π
Tr[(symG1)W 31∗(symG3)W 31]. (27)

Second, we compute the flux spectrum �12 into V 2 (the

absorbed power in body 2) due to dipole current sources in V 1.

Direct application of Poynting’s theorem at ∂V 2 in this case

does not yield �12 but rather the quantity we denote as �1(2):

the flux into the entire region contained by ∂V 2 from sources

in V 1, which includes absorption in both V 2 and V 3. It follows

that �12 = �1(2) − �13. So, it only remains to compute �1(2),

starting with the flux from a single σ 1 source, given by

�
1(2)

σ 1 = 1
4
Re〈ξ 2,φ0〉 = 1

4
Re〈ξ 2,φ2〉

= 1
4
Re〈ξ 2,−Ŵ2 ⋆ (ξ 2 − ξ 3)〉

= − 1
4
Re[x2∗(G2x2 − G2,23x3)],

with the additional x3 term stemming from absorbed power in

body 3. We ensemble average as before and obtain

�12 = �1(2) − �13

=
1

2π
Tr[(symG1)W 21∗(symG2)W 21

− (symG1)sym(W 21∗G2,23W 31)] − �13. (28)

Finally, we compute the flux spectrum �32 into V 2 (the

absorbed power in body 2) due to dipole current sources in V 3.

�23 can be computed by subtracting the flux �3(2) leaving body

2 through ∂V 2 from the flux �3(3) entering body 2 through

∂V 3. Specifically, for a single dipole σ 3, we find

�32
σ 3 = 1

4
Re〈ξ 3,φ2〉 − 1

4
Re〈ξ 2,φ2〉

= 1
4
Re〈ξ 3,φ3〉 − 1

4
Re〈ξ 2,φ2〉

= 1
4
Re〈ξ 3,−Ŵ3 ⋆ ξ 3〉 − 1

4
Re〈ξ 2,−Ŵ2 ⋆ (ξ 2 − ξ 3)〉

= − 1
4
Re(x3∗G3x3)

︸ ︷︷ ︸

�
3(3)

σ3

+ 1
4
Re[x2∗(G2x2 − G2,23x3)]
︸ ︷︷ ︸

−�
3(2)

σ3

.

The final result is the expression

�32 = �3(3) − �3(2), (29)

with

�3(2) =
1

2π
Tr[(symG3)W 23∗(symG2)W 23

+ (symG3)sym(W 23∗G2,23W 33)] (30)

�3(3) =
1

2π
Tr[(symG3)W 33∗(symG3)W 33]. (31)

For example, the heat transfer between V 1 and the com-

bined V (2) = V 2 ∪ V 3 is given by

H 1(2) =
ˆ

�T 1�1(2) − �T 2�12 − �T 3�13, (32)

where the integral is taken over all positive frequencies ω and

�T ≡ �(ω,T ). In the special case T 2 = T 3, the expression

reduces to the expected form:

H 1(2) =
ˆ

(�T 1 − �T 2 )�1(2). (33)

As before, we obtain reciprocity relations �ij = �ji between

every pair of bodies, but these relations are no longer

apparent merely by inspection of �ij . Because each body

is topologically distinct, �ji is no longer obtained from �ij

merely by interchanging i and j , but instead must be derived

separately (using analogous steps). Upon carrying out this

derivation, we verify that �ij = �ji as required. Furthermore,

the positivity of �ij appears harder to derive algebraically from

the final expression than in the non-nested cases, and we do not

do so in this work. (Although it follows from the second law

of thermodynamics, the scattering-matrix proof of positivity35

should apply to nested bodies with minimal modification.)

IV. VALIDATION

We now apply our FSC formulation to obtain results

obtained previously using other scattering formulations in

several high-symmetry geometries. In Sec. IV A, we discuss
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the choice of basis, contrasting BEMs that use a generic

surface mesh with spectral methods that use a Fourier-like

basis, and point out that the latter are actually closely related

to scattering-matrix methods in the case of high-symmetry

geometries. In Sec. IV B, we derive semianalytical expressions

of heat radiation and heat transfer for spheres and plates, using

surface spherical-harmonics and Fourier bases to describe

the SIE surface unknowns, and show that these agree with

previous formulas derived using other formulations.9,34,35,97

In Sec. IV C, we present a general-purpose numerical im-

plementation of the FSC formulation based on a standard

triangular-mesh discretization of the surfaces of the bodies

known as the BEM “RWG” method; we check it against

previous heat-transfer methods by computing the heat transfer

between spheres.

A. Choice of basis

The standard approach for solving the SIEs above is to

discretize them by introducing a finite set of basis functions

βn defined on the surfaces of the bodies. As noted above,

an important property of SIE formulations is that βn is an

arbitrary basis of surface vector fields: unlike scattering-matrix

formulations,30–32 they need not satisfy any wave equation,

nor encapsulate any global information about the scattering

geometry, nor consist of “incoming” or “outgoing” waves into

or out of the bodies. This lack of restriction on βn is a powerful

property of the SIE formalism.

There are two main categories of basis functions that one

could employ: spectral bases or boundary-element bases. A

spectral basis consists of a Fourier-like complete basis of non-

localized functions, such as spherical harmonics or Chebyshev

polynomials,94 which are truncated to obtain a finite basis.

BEMs instead first discretize each surface into a mesh of

polygonal elements (e.g., triangles) and describe functions

piecewise by low-degree polynomials in each element.24,25,27

Spectral bases have the advantage that they can converge

exponentially fast for smooth functions,94 or in this case for

smooth interfaces, but they are not as well suited to handle

singularities such as corners, and moreover represent surfaces

with essentially uniform spatial resolution. A BEM basis, on

the other hand, is more flexible because it can use a nonuniform

mesh to concentrate spatial resolution where it is needed,25,26

and furthermore the localized nature of the basis functions has

numerical advantages in assembling and applying the W and

G (Green’s function) matrices.98,99 The most common BEM

technique employs a mesh of triangular elements (panels)

with vector-valued polynomial basis functions called an RWG

(Rao–Wilson–Glisson) basis,93 where each basis function is

associated with each edge of the mesh and is nonzero over

a pair of triangles sharing that edge. Many years of research

have been devoted to the efficient assembly of the G matrices

for the RWG basis (by evaluating the singular panel integrals

of Ŵ),100–102 and to fast methods for solving the resulting linear

equations.99,103

For a handful of highly symmetric geometries, however,

spectral bases have an additional advantage: a special basis

can be chosen such that most of the matrix elements can

be computed analytically (and many of the G matrices are

diagonal as a consequence of orthogonality). This has a close

connection to scattering methods, because whenever there

is a known incoming/outgoing wave basis (e.g., spherical

waves), one can construct an equivalent set of surface-current

basis functions (e.g., spherical harmonics) by the principle of

equivalence. (In fact, the principle of equivalence can be used

to derive an exact equivalence between our � expressions

and the analogous expressions from the scattering-matrix

formulation, which we do not show here.) In the example

of interactions between two spherical bodies, if we employ a

(vector) spherical-harmonic basis on each body, then the Gr

self-interaction matrices are diagonal and the G0,rr ′
interaction

matrix is given by “translation matrices” that relate spherical-

wave bases at different origins.104 In this way, by choosing

a geometry-specific basis, the FSC formulation can retain

all of the efficiency of the scattering-matrix methods, while

preserving the flexibility to employ a different basis as needed.

B. Spectral basis

In this section, we explicitly apply our FSC formulation

with a spectral basis in three high-symmetry geometries for

which the matrix elements can be evaluated semianalytically:

radiation of an isolated plate and an isolated sphere, and

heat transfer between two parallel plates. In each case, we

reproduce known solutions that were derived previously using

scattering-matrix formulations.9,34,35,97 The main purpose of

this section is to illustrate how the FSC formulation with

a spectral basis allows semianalytical calculations similar to

scattering-matrix formulations (albeit only in the handful of

high-symmetry geometries where exact wave solutions can

be constructed in each body). To begin with, we review the

well-known spectral representation of the homogeneous DGF

Ŵ in bases specialized to particular coordinate systems.

1. Basis of Helmholtz solutions

We wish to work with solutions of Maxwell’s equations

known analytically within each body and which are orthogonal

when evaluated on the interfaces. These solutions, evaluated

at the interface of each body, will then provide a basis of

surface-tangential vector fields in which the G matrices can

be evaluated analytically or semianalytically. In particular, we

wish to work with solutions M and N of the vector Helmholtz

equation (equivalent to Maxwell’s equations in a homogeneous

isotropic medium),105

(∇2 + k2)

(
M

N

)

= 0, (34)

with M = −i/k∇ × N and N = i/k∇ × M denoting purely

electric and purely magnetic vector fields. [Note that M and N
come in two flavors, depending on whether on solves Eq. (34)

for outgoing or incoming boundary conditions.] Furthermore,

we seek solutions of Eq. (34) in a coordinate system that

allows separation of variables into “normal” and “tangential”

components to some surface ∂V (which is possible for a

small number of coordinate systems). We let η⊥ represent

the separable coordinate identified as the normal coordinate,

and let η‖ represent the remaining tangential coordinates. The

choice of coordinate system ultimately corresponds to a choice

of basis, or independent solutions labeled by an index n that

054305-9



RODRIGUEZ, REID, AND JOHNSON PHYSICAL REVIEW B 88, 054305 (2013)

correspond to different scattering channels. Specifically, one

is led to vector fields:105

M±
n (η⊥,η‖) = κ±

n,E(η⊥)Xn(η‖), (35)

N±
n (η⊥,η‖) = κ±

n,M (η⊥)Zn(η‖), (36)

with κ±
n and {Xn,Zn} denoting the normal and tangential

components of the fields and with ± denoting incoming

(+) and outgoing (−) solutions. For example, solutions in

spherical coordinates yield the well-known vector spherical-

wave solutions M±
ℓ,m(r,θ,φ) = R±

ℓ (r)Yℓ,m(θ,φ), described by

spherical Hankel functions κ±
ℓ,m,E = R±

ℓ and vector spherical

harmonics Xℓ,m = Yℓ,m in terms of radial and angular coor-

dinates η⊥ = r and η‖ = {θ,φ}, respectively, and labeled by

angular-momentum “quantum” numbers n = {ℓ,m}.
Because Mn and Nn form an orthonormal basis (due to the

self-adjointness of the Helmholtz operator), the homogeneous

photon DGFs G and C of Sec. II A can be expressed in such a

basis as104–106

G(k; x,x′) =
η⊥(x̂)η⊥(x̂′)

2ik
δ(x − x′) +

∑

n

{

χn,EM+
n (x) ⊗ M−

n (x′) + χn,MN+
n (x) ⊗ N−

n (x′) η⊥(x) > η⊥(x′)

χn,EM−
n (x) ⊗ M+

n (x′) + χn,MN−
n (x) ⊗ N+

n (x′) η⊥(x) < η⊥(x′),
(37)

and C = i
k
∇ × G, respectively, where the coefficients χn are

determined by taking the Wronskian of the outgoing (−) and

incoming (+) solutions.

The SIE matrices appearing in Eq. (18) involve inner

products of Eq. (37) with basis functions βn defined at the

surfaces of the bodies. (Note that because the Green’s functions

are evaluated on the surface, inclusion of the delta-function

term is crucial.107 Just as the vector fields Mn and Nn form a

convenient basis in which to expand waves propagating inside

and outside ∂V , so too do the tangential components Xn and

Zn form a suitable basis in which to express surface-current

basis functions βn defined on ∂V . In this case, as in the case of

RWG basis functions,26 βn can be chosen to be purely electric

(E) or purely magnetic (M), so that

βn,E =
(

Xn

0

)

, βn,M =
(

0

Zn

)

. (38)

Moreover, the orthogonality relations of the tangential vector

fields, 〈Xm,Xn〉 = 〈Zm,Zn〉 = δmn and 〈Xm,Zn〉 = 0, mean

that only basis functions with the same n and same polarization

have nonzero overlap. These surface currents form a complete

basis and satisfy convenient orthogonality relations with the

corresponding vector fields:

〈Xm,M±
n 〉 = (κ±

n,E|∂V )δmn, (39)

〈Zm,N±
n 〉 = (κ±

n,M |∂V )δmn, (40)

〈Xm,N±
n 〉 = 〈Zm,M±

n 〉 = 0, (41)

with inner products 〈·,·〉 corresponding to surface integrals

over the tangential coordinates evaluated at the surface ∂V ,

i.e., 〈ϕ,ψ〉 =
‚

∂V
d2η‖ J (η⊥,η‖)ϕ∗ψ , where J denotes the

Jacobian factor for the coordinate system.

The combination of these orthogonality relations and the

Green’s function expression of Eq. (37), implies that the

G matrices arising in the SIE formulation for interface

∂V will be diagonal and known analytically in this basis.

Therefore choosing this basis simplifies the calculation of �,

as illustrated in the next sections.

2. Heat-transfer formulation

Expression of the homogeneous Green’s function in the

interior of each high-symmetry body r in the basis specialized

for that body yields a block-diagonal self-interaction matrix Gr

with matrix elements Gr
mn,QQ′ = 〈βr

m,Q,Ŵr ⋆ βr
n,Q′〉 ∼ δmn,

where Q denotes polarization. In contrast, the lack of any

orthogonality relations between wave solutions constructed

for different, unrelated bodies means that the interaction

matrices Ĝ0,rr ′
are dense, i.e., the matrix elements G

0,rr ′

mn,QQ′ =
〈βr

m,Q,Ŵ0 ⋆ βr ′

n,Q′〉 generally do not vanish. The outgoing fields

into the intervening medium Ŵr ⋆ βr
m,Q due to currents in body

r are still known analytically from Eq. (37), described in terms

of the wave solutions specialized to body r (albeit evaluated

in the exterior medium 0), but in order to take inner products

with βr ′

n,Q for a body r ′ we need to “translate” the solutions

centered on r to the different basis of waves centered on r ′ = r .

Such change of bases are often performed via “translation”

and “conversion” matrices that are well-known and tabulated

for most shapes of interest,104 and immediately yield the SIE

interaction matrices G0,rr ′
.

For the remainder of the section, we restrict ourselves

to situations involving either a single body or two identical

bodies described by a common set of basis functions, in which

case the individual SIE matrices are block-diagonal in n and

polarization. In particular, the G matrices for a given n are

given by

Ĝ0 =

⎛

⎜
⎜
⎜
⎜
⎝

G
0,11
⊥ G

0,12
⊥

G
0,21
⊥ G

0,22
⊥

G
0,11
‖ G

0,12
‖

G
0,21
‖ G

0,22
‖

⎞

⎟
⎟
⎟
⎟
⎠

,

Ĝ1 =

⎛

⎜
⎜
⎜
⎝

G1
⊥

0

G1
‖

0

⎞

⎟
⎟
⎟
⎠

, Ĝ2 =

⎛

⎜
⎜
⎜
⎝

0

G2
⊥

0

G2
‖

⎞

⎟
⎟
⎟
⎠

,

where G⊥ and G‖ = G⊥(E → H ) are 2 × 2 block matrices

G⊥,nn =

(

〈Xn,Ŵ
EE ⋆ Xn〉 〈Xn,Ŵ

EH ⋆ Zn〉
〈Zn,Ŵ

HE ⋆ Xn〉 〈Zn,Ŵ
HH ⋆ Zn〉

)

. (42)
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Here, the subscripts ⊥ and ‖ refer to the two decoupled polar-

ization states, corresponding to purely electric E and purely

magnetic M surface currents, respectively. The separability

of the two polarizations means that the flux spectrum � can

be written in the form � =
∑

p �p, with �p denoting the

contribution of the p polarization. From the definitions of the

Ŵ functions, it follows that the two are related to one another

by �‖ = �⊥(Z → 1/Z).

In the subsequent sections, we derive semianalytical ex-

pressions for � in special geometries involving isolated and

interacting plates and spheres. The symmetry of these geome-

tries make it convenient to represent the SIE matrices using

Fourier and spherical-wave surface basis functions, described

in Appendix A. Our final expressions agree with previous

formulas derived using the scattering-matrix approach.9,34,35,97

3. Isolated plates

We first consider the radiation of an isolated plate. Using

the appropriate Fourier basis supplied in Appendix A 1 and

the corresponding Green’s function expansion of Eq. (37), the

G⊥ matrices for the plate are given by

G
0,11
⊥ =

1

2

(
Z0

γ0
1

1 − γ0

Z0

)

, G1
⊥ =

1

2

(
Z1

γ1
−1

−1 − γ1

Z1

)

, (43)

where γr =
√

1 − (|k⊥|/kr )2 is the wavenumber in the z

direction normalized by kr . It follows that the flux spectra

for the two polarizations are given by

�⊥ =
1

4π
Tr

⎡

⎣
Re
(

γ0

Z0

)

Re
(

γ1

Z1

)

∣
∣ γ0

Z0
+ γ1

Z1

∣
∣
2

⎤

⎦ ,

(44)

�‖ = �⊥

(

Z →
1

Z

)

,

with Tr� =
´

d2k⊥
(2π)2 �(k⊥) corresponding to integration over

the parallel wave vector. Assuming a nondissipative external

medium (Imε0 = Imμ0 = 0), and performing straightforward

algebraic manipulations, one obtains the well-known formula

for the emissivity of the plate:17

�(ω) =
1

8π

ˆ ω

0

d2k⊥

(2π )2

∑

p={⊥,||}

ǫp(k⊥,ω), (45)

where ǫp = 1
2
(1 − |rp|2) denotes the directional emissivity of

the plate for the p polarization, expressed in terms of the

Fresnel reflection coefficients:83

r⊥ =
γ0

Z0
− γ1

Z1

γ0

Z0
+ γ1

Z1

, r‖ = r⊥

(

Z →
1

Z

)

. (46)

4. Isolated spheres

We now consider the radiation of an isolated sphere.

Using the appropriate vector spherical wave basis sup-

plied in Appendix A 2 and the corresponding Green’s

function expansion, the G⊥ matrices for the sphere are

given by

G
0,11
⊥ = (z0R)2

(

Z0jℓ(z0)hℓ(z0) ijℓ(z0)h̆ℓ(z0)

−ijℓ(z0)h̆ℓ(z0) 1
Z0

j̆ℓ(z0)h̆ℓ(z0)

)

, (47)

G1
⊥ = (z1R)2

(

Z1jℓ(z1)hℓ(z1) ij̆ℓ(z1)hℓ(z1)

−ij̆ℓ(z1)hℓ(z1) 1
Z1

j̆ℓ(z1)h̆ℓ(z1)

)

, (48)

where f̆ (z) ≡ (1/z + d/dz)f , jℓ and hℓ are Bessel functions

of the first and second kind, respectively, and zr = krR.

Employing a number of well-known properties of spherical

Bessel functions, such as the Wronskian identity j ′
ℓ(z)hℓ(z) −

h′
ℓ(z)jℓ(z) = i/z2, one arrives at the following flux spectra for

the two polarizations:

�⊥ =
1

8π
Tr

⎡

⎣
1

|z0hℓ(z0)|2
Im
[

Z0

Z1

j̆ℓ(z1)

jℓ(z1)

]

∣
∣Z0

Z1

j̆ℓ(z1)

jℓ(z1)
− h̆ℓ(z0)

hℓ(z0)

∣
∣
2

⎤

⎦ , (49)

�‖ = �⊥

(

Z →
1

Z

)

, (50)

with Tr� =
∑

ℓ,m �ℓm corresponding to a sum over the

angular-momentum quantum numbers. Assuming vacuum

as the external medium (ε0 = μ0 = 1) and a nonmagnetic

sphere (μ1 = 1), one obtains the well-known formula for the

emissivity of a sphere in vacuum:97

�(ω) =
1

8π

∑

ℓ>1

(2ℓ + 1)

|z0hℓ(z0)|2

×

⎡

⎣
Im
[

n1
j̆ℓ(z1)

jℓ(z1)

]

∣
∣n1

j̆ℓ(z1)

jℓ(z1)
− h̆ℓ(z0)

hℓ(z0)

∣
∣
2

+
Im
[

n∗
1

j̆ℓ(z1)

jℓ(z1)

]

∣
∣n1

h̆ℓ(z0)

hℓ(z0)
− j̆ℓ(z1)

jℓ(z1)

∣
∣
2

⎤

⎦ ,

(51)

where n1 = √
ε1 is the index of refraction of the sphere.

5. Two plates

Finally, we consider the heat transfer between two parallel,

semi-infinite plates separated by distance d. Just as in the case

of isolated plates, it is convenient to express the G⊥ matrices in

the Fourier basis supplied in Appendix A 1. Here, in addition

to the self-interaction matrices

G
0,rr
⊥ =

1

2

(
Z0

γ0
1

1 − γ0

Z0

)

, Gr
⊥ =

1

2

(
Zr

γr
−1

−1 − γr

Zr

)

, (52)

for r = 1,2, one obtains the interaction or “translation”

matrices

G12
⊥ = G21

⊥ =
1

2

(
Z0

γ0
1

1
γ0

Z0

)

eik0γ0d , (53)

where the exponential factors above couple or “translate”

waves arising in different origins. Straightforward matrix alge-

bra yields the following flux spectra for the two polarizations:

�⊥ =
1

2π
Tr

⎡

⎣

∣
∣ γ0

Z0
e2ik0γ0d

∣
∣
2

|ρ⊥|2
Re
(

γ1

Z1

)

Re
(

γ2

Z2

)

∣
∣ γ0

Z0
+ γ1

Z1

∣
∣
2∣
∣ γ0

Z0
+ γ2

Z2

∣
∣
2

⎤

⎦ , (54)

�‖ = �⊥

(

Z →
1

Z

)

, (55)
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where ρp = |1 − r1
p r2

p e2ik0γ0d |2 and r
q
p is the Fresnel reflection

coefficient of plate q for the p polarization given in Eq. (46).

Assuming a nondissipative external medium (Imε0 = Imμ0 =
0), and performing straightforward algebraic manipulations,

one obtains the well-known formula17

�(ω) = �prop(ω) + �evan(ω), (56)

with

�prop(ω) =
1

4π

∑

p

ˆ ω

0

d2k⊥

(2π )2

ǫ1
pǫ

2
p

ρp

, (57)

�evan(ω) =
1

4π

∑

p

ˆ ∞

ω

d2k⊥

(2π )2

(

Imr1
p

)(

Imr2
p

)e−2Im(k0γ0)d

ρp

,

(58)

where ǫ
q
p denotes the emissivity of plate q for the p polarization

and where � has been conveniently decomposed into far-

field (propagating) and near-field (evanescently decaying)

contributions.

C. BEM discretization via RWG basis

In contrast to spectral methods, BEMs discretize the

surfaces of the bodies into polygonal elements or “panels,”

and describe piecewise functions in each element by low-

degree polynomials.25,27 The most common BEM technique

employs a so-called RWG basis of vector-valued polynomial

functions defined on a mesh of triangular panels.93 Such a

basis is applicable to arbitrary geometries and yields results

that converge with increasing resolution (smaller triangles),

where variants with different convergence rates depend upon

the degree of the polynomials used in the triangles (which

can be curved). The simplest discretizations involve degree-1

polynomials and flat triangles, where the error decreases

at least linearly with 1/diameter of the triangles, but can

converge faster with adaptive mesh refinements.27 In contrast

to spectral methods, the Gnm integrals here must be performed

numerically and the resulting G matrices are dense, but,

thankfully, fast techniques to perform these integrals are

well established and need only be implemented once for a

given RWG basis, independent of the geometry.24,25,93 One

such implementation is the free-software solver SCUFF-EM,108

which we exploit in this section to compare results from

BEM RWG to known results for spheres; the same code is

employed in Sec. V to obtain results in new and more complex

geometries.

The heat-transfer rate H between two spheres was recently

obtained numerically by Ref. 29. In contrast to scattering-

matrix methods or the FSC formalism above, the method of

Ref. 29 involves straightforward integration of the inhomoge-

neous Green’s function of the geometry over the volumes of the

two spheres, expressed in terms of a specialized spherical-wave

basis expansion with coefficients determined by enforcing con-

tinuity of the fields across the various interfaces. The result of

the integration is an exponentially convergent semianalytical

formula of the kind derived in Sec. IV B. Figure 4 compares

the results of the BEM RWG method (red circles) against

those obtained by evaluating the semianalytical formula of

Ref. 29, truncated at a sufficiently large but finite order (solid

lines). In particular, the heat-transfer ratio H = H/σT 4A
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FIG. 4. (Color online) Ratio H = H/σT 4A of the heat-transfer

rate H between gold spheres of radii R = 0.2 μm and the Stefan-

Boltzmann law σT 4A, where A = 4πR2 is the surface area of the

spheres, with one sphere held at T = 300 K and the other held at zero

temperature, as a function of their surface-surface separation. (Inset)

Flux spectra �(ω) per unit area A (units of μm2) of the two spheres

at d = R (green circles) and of an isolated sphere (blue circles).

is plotted as a function of surface-surface separation d for

gold spheres of radius R = 1 μm, where one sphere is held

at T = 300 K, while the other is held at zero temperature,

and where σT 4A is the Stefan-Boltzmann (SB) law (for a

planar black body), with σ = π2k2
B/(60h̄3c2) and A the surface

area of the spheres. The inset of the figure also shows the

corresponding flux spectra � of both interacting (d = R) and

isolated spheres, normalized by A and plotted over relevant

wavelengths λ � λT , where λT = h̄c/kBT ≈ 7.6 μm denotes

the thermal wavelength corresponding to the peak of the

thermal spectrum. In both cases, the BEM results (circles)

are shown to agree with the corresponding semianalytical

formulas [in the case of isolated spheres, the flux spectrum

is compared against Eq. (51)].

V. APPLICATIONS

In this section, we illustrate the generality and broad

applicability of the FSC formulation by applying the BEM

RWG method to obtain new results in complex geometries.

As discussed above, most calculations of heat transfer have

focused primarily on semi-infinite planar bodies.23 Finite

bodies only recently became accessible with the development

of sophisticated spectral methods,30–35,78 albeit for highly

symmetric bodies with smooth shapes (e.g., spheres) for which

convenient spectral bases exist. Here, we will focus instead

on geometries involving finite bodies with sharp corners

(combinations of finite plates, cylinders, and cones) that pose

no challenge for the BEM RWG method but which prove

difficult to model via spectral methods.
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FIG. 5. (Color online) Ratio H = H/σT 4A of the heat-transfer

rate H from a finite, gold circular plate of lateral size 2R and

thickness L = 0.2 μm held at T = 300 K, to an identical plate

held at zero temperature, and the SB law σT 4A (where A = πR2

is the “interaction” surface area of the plates), as a function of their

surface-surface separation d . H is plotted for multiple aspect ratios

2R/L (circles). The solid black line corresponds to the heat-transfer

ratio H∞ = H∞(R → ∞) obtained upon taking the limit R → ∞,

which is computed via the semianalytical formula in Ref. 109. (Inset)

Heat-transfer rate between two plates at a fixed separation d = 0.1L

(solid circles) and heat radiation of an isolated plate (open circles) or

sphere (thick solid line) as a function of lateral size or diameter.

A. Plates and cylinders

To begin with, we extend the calculation of heat transfer

between planar semi-infinite plates to the case of finite plates,

which quantifies the influence of lateral size effects in that

geometry. Figure 5 shows the ratio H = H/σT 4A of the

heat-transfer rate H between finite circular plates of thickness

L and lateral size 2R and the SB law, with one plate held

at T = 300 K and the other held at zero temperature as a

function of their surface-surface separation d. H is plotted

for multiple aspect ratios 2R/L (solid circles), with fixed

L = 0.2 μm. For comparison, we also plot the heat-transfer

ratio H∞ for semi-infinite (R → ∞) plates of the same

thickness (black solid line), which is obtained analytically

from the absorptivity of the plates via Kirchhoff’s law of

thermal radiation.4,110 As expected, one finds that at small d,

near-field effects dominate and H ∼ 1/
√

d for both finite and

semi-infinite plates. In contrast, at asymptotically large d, the

finite plates behave like dipoles and one finds that H ∼ 1/d5,

whereas the semi-infinite transfer rate approaches a constant

H∞(d → ∞) ≪ 1 independent of d; the rate is significantly

smaller than that of a perfect black body because gold is

highly reflective. As R → ∞, the BEM results approach H∞
for all separations d, albeit at different rates, where smaller

separations converge faster than larger separations.

To quantify finite-size effects, the inset of Fig. 5 shows

H/H∞ for isolated and interacting plates (at a single separa-

tion d = 0.1L) as a function of R. As above, in the limit of

large R ≫ λT ≫ L, such that the dominant wavelengths and

corresponding skin depths δ = c/Im
√

εω are much smaller

than the lateral dimensions of the plates, H → H∞. In the

case of isolated plates, the relevant length scales are λT and

δ, whereas in the case of interacting plates, the separation

d also factors into the convergence rate: the increasing

contribution of (long-wavelength) near-field effects to the heat

transfer at smaller separations means that smaller separations

converge faster to the H∞ result than larger separations. (For

the particular separation d = 0.1L plotted here, near-field

effects are large enough to cause the convergence rate of the

interacting plates to be significantly larger than that of the

isolated plate.) At intermediate R � L ≪ λT , the plates no

longer resemble plates but rather elongated cylinders, leading

to significant deviations in H.

Compared to the heat radiation of semi-infinite cylinders

(L/R → ∞ for fixed R), studied previously by Ref. 34, the

radiation of finite cylinders displays a number of interesting

features. (Note that H here includes radiation emitted in both

the axis-parallel, H‖, and axis-perpendicular, H⊥, directions.)

First, due to the finite value of L, in the limit R → ∞, the

radiation of our finite cylinders is best characterized by the

radiation of thin plates with H‖ ≫ H⊥. Not surprisingly, we

find that H → H∞ from below as R → ∞, in contrast to what

is observed in the semi-infinite case where H∞ is approached

from above.34 Second and most interestingly, we find that

below a critical R, determined by the smallest skin-depth

δ ≈ 20 nm of Au over the relevant thermal wavelengths, the

radiation normalized by surface area increases with decreasing

R, leading to nonmonotonicity. Such behavior is unusual in

that in this R � δ regime, bodies most often behave like

volume emitters, causing H to grow with the volumes rather

than surfaces of the bodies (as observed in the case of

semi-infinite cylinders).34 Indeed, we find that for dielectric

bodies with small and positive ε, one obtains the usual volume

dependence of H . In contrast, the enhancement in Fig. 5

arises because for small R, the cylinders act as metallic dipole

emitters, whose radiation is increasingly dominated by H‖
as R → 0 and whose quasistatic (long wavelength) parallel

polarizability grows with decreasing R (a consequence of the

increasing anisotropy of the cylinder and large Imε).111,112

For sufficiently small R, the heat transfer per unit area of the

uniaxial cylinders can greatly exceed that of the semi-infinite

plate, i.e., H ≫ H∞. (The dipole model also predicts that H

will eventually vanish as R → 0, but only at radii too small

to be easily calculated by BEM. We intend to explore these

phenomena more fully in subsequent work.)

It is also interesting to study the convergence of the

cylinder radiation rate with L, comparing our results against

the semianalytical results obtained in the special case of

semi-infinite (L → ∞) cylinders.34 We also consider the heat

transfer between nonuniaxial (parallel) cylinders. Figure 6

shows the flux spectra � of isolated cylinders of radius

R = 0.2 μm and varying lengths L; for comparison, we also

plot the spectrum of the semi-infinite cylinders34 (solid lines).

As before, � is normalized by the surface area A of each

object. (For the relevant wavelength range shown in the figure,

R is several times δ, which means that most of the radiation

is coming from sources near the surface of the objects.34)

We find that for L/R ≈ 2 (not shown), corresponding to
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FIG. 6. (Color online) Flux spectrum �(ω) of an isolated gold

cylinder of length L and radius R = 0.2 μm normalized by its

corresponding surface area A and plotted for multiple aspect ratios

L/R (solid circles). The solid line shows � in the limit L → ∞ of a

semi-infinite cylinder, as computed by the semianalytical formula of

Ref. 34. (Inset) Heat-transfer ratio H of heat transfer H from a room-

temperature cylinder of aspect ratio L/R = 5 to an identical cylinder

at zero temperature, and the SB law σT 4A, with A = 2πR(R + L)

denoting the total surface area of each cylinder, as a function of their

surface-surface separation d . H is plotted for both parallel (θ = 0)

and crossed (θ = 90◦) cylinder configurations, with the shaded region

corresponding to intermediate θ .

nearly isotropic cylinders, � is only slightly larger than that

of an isolated sphere due to the small but non-negligible

contribution of volume fluctuations to �. As L/R increases, �

increases over all λ, and converges towards the L → ∞ limit

(black solid line) as λ → 0, albeit slowly. Moreover, �L ≫
�∞ at particular wavelengths, a consequence of geometrical
resonances that are absent in the semi-infinite case—away

from these resonances, � clearly straddles the L → ∞ result

so long as λ � L. As in the case of finite plates, the �

of interacting cylinders exhibits significant enhancement at

large λ due to near-field effects, so that H → ∞ with

decreasing separation d. The enhancement is evident in Fig. 6,

which shows H over a wide range of d for both parallel-

(θ = 0) and crossed-cylinder (θ = 90◦) configurations, with

one cylinder held at T = 300 K and the other at zero

temperature (both cylinders have aspect ratio L/R = 5). We

find once again that there are two very distinct separation

regimes of heat transfer: at large d ≫ R, the cylinders act

like dipole emitters and H/H∞ ∼ 1/d5 ≪ 1 whereas at small

d ≪ R, flux contributions from evanescent waves dominate

and H/H∞ ∼ 1/
√

d ≫ 1. Comparing the heat transfer H

in the parallel and crossed-cylinder configurations, we find

that H‖/H⊥ ≈ 1 at large d ≫ R but increases significantly

at smaller d ≪ R, again due to near-field effects: in the

d → 0 limit, H is dominated by the closest surface-surface

interactions, so H‖/H⊥ ∼ L/R → 5. As expected, H‖/H⊥ →
∞ as L → ∞ because the increased “interaction” area in
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FIG. 7. (Color online) Heat-transfer rate H from a room-

temperature gold cone of base radius R = 1 μm and length L =
2R, to either an identical cone (green circles) or a gold plate of

radius R and thickness h = 0.2 μm, held at zero temperature, as a

function of their surface-surface separation d . H is normalized by

the Stefan-Boltzmann law σT 4A, where A is the surface area of the

cone. (Inset) Flux spectrum �(ω) of the cone-plate configuration at

a single separation d = 0.2L, normalized by the area of the cone.

The two surface-contour plots show the distribution of flux pattern

on the surfaces of the bodies at two wavelengths, λ ≈ 30L and

≈2.2L, where white/black denotes the maximum/minimum flux at

the corresponding wavelength.

this limit favors the parallel over the crossed configuration.

Specifically, whereas H grows linearly with L in the parallel

configuration, it grows sublinearly (and asymptotes to a finite

value in the L → ∞ limit) in the crossed configuration due to

the diminishing contributions of near-field and radiative fluxes

between surface elements in the extremities of the cylinders.

B. Cones

Finally, motivated by recent predictions,69 we consider the

heat transfer between finite cones and plates. In Ref. 69,

the cone-plate geometry (with a semi-infinite plate) was

obtained using a “hybrid” scattering-BEM method69 based

on the scattering-theory formulation of Ref. 32. (In contrast

to semi-infinite plates or spheres, the scattering-matrix of a

cone cannot be easily obtained analytically, and was instead

computed numerically by exploiting the BEM method in

combination with a multipole basis of cylindrical waves.)

Here, in addition to extending these predictions to the case

of finite plates, we consider the heat-transfer rate between two

oppositely oriented cones. Figure 7 shows the heat-transfer

rate h (as in the previous section, h = H/σT 4A where here

A = πR2 is the projected area of the cone) from a cone of

radius R = 0.5 μm and length L = 2R to either an identical

cone rotated by 180◦ (green circles) or a plate of radius

R and thickness L = 0.2 μm (red circles), as a function of

their surface-surface separation d. As before, we consider
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gold bodies, with one held at 300 K, while the other is

held at zero temperature Similar to Ref. 69, we find that the

heat-transfer rate H ∼ ln(d) varies logarithmically with d at

short separations d ≪ L ≪ λT , a consequence of near-field

interactions and the finite size of the cone.113 While h exhibits

similar scaling with d for both geometries, h turns out to be

almost two orders of magnitude smaller at small d ≪ L in the

cone-cone geometry, as would be expected from a proximity-

approximation (PA) model.114 The situation is reversed at large

separations d ≫ λT ≫ L: beyond a critical d ≈ 7L, the cone-

cone heat transfer becomes larger than the cone-plate transfer.

The reversal is expected on the basis that at these separations,

the two bodies act like fluctuating dipoles oriented mainly

along their largest dimension (along the axis of symmetry

for the cone and along the lateral dimension for the plate), in

which case the cone-plate interaction resembles the interaction

of two orthogonal dipoles whereas the cone-cone interaction

resembles the interaction of two parallel dipoles. Another

interesting feature of the heat transfer in this geometry is that

the spatial distribution of pattern over the plate exhibits a local

minimum directly below the tip of the cone, a consequence of

the dipolar field induced on the cone at long wavelengths.69

Here, we observe a similar phenomenon, but we find that the

finite size of the plate significantly alters the scope of the

anomalous radiation pattern. In particular, whereas Ref. 69

found this effect to persist over a wide range of wavelengths

(surviving even in the total or integrated radiation pattern),

we find that in the finite-plate case, it disappears much more

rapidly with decreasing wavelength.

VI. CONCLUSION

The FSC approach to nonequilibrium fluctuations presented

here permits the study of heat transfer between bodies of

arbitrary shape, paving the way for future exploration of heat

exchange in microstructured geometries that until now remain

largely unexplored in this context. Our formulation shares

many properties with previous scattering-matrix formulations

of radiative heat transfer, e.g., our final expressions involve

traces of matrices describing scattering unknowns, but differs

in that our “scattering unknowns” are surface currents defined

on the surfaces of the bodies rather than incident and outgoing

waves propagating into and out of the bodies.29–38 As argued

above, this choice of description has important conceptual

and numerical implications: it allows direct application of the

surface-integral equation formalism as well as the boundary-

element method. When specialized to handle high-symmetry

geometries using special functions that exploit those sym-

metries, our approach can be used to obtain fast-converging

semianalytical formulas in the spirit of previous work based on

spectral methods.32,34,35 Moreover, it can also be applied as a

brute-force method, taking advantage of existing, well-studied,

and sophisticated BEM codes (with no modifications), to

obtain results in arbitrary/complex geometries.

While the main focus of this work was on exploring

some of the ways in which the FSC formulation can be

applied to study nonequilibrium heat transfer, we believe that

analogous techniques can be used to derive corresponding

FSC approaches to other fluctuation phenomena, including

near-field fluorescence,115 quantum noise in lasers,116 and

nonequilibrium Casimir forces,32,117 an idea we plan to explore

in future work. Furthermore, although our calculations here

focused on geometries involving compact bodies, the same

heat-transfer formulas derived above apply to geometries

involving infinitely extended/periodic bodies (of importance

in applications of heat transfer to thermophotovoltaics). Mod-

ifying BEM solvers to handle periodic structures, however,

is nontrivial,118–122 and we therefore consider that case in a

subsequent publication.

Finally, although Eq. (18) is already well-suited for efficient

numerical implementation, its computational efficiency may

be improved by adopting a modified formulation in which

the dense G matrices are replaced by certain sparse matrices

involving overlap integrals among basis functions. In addition

to reducing the computational cost of the trace in Eq. (18),

this approach has the advantage of allowing the computation

of other fluctuation-induced quantities such as nonequilibrium

Casimir forces and torques. This alternative formulation will

be discussed in a forthcoming publication.
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APPENDIX A: EIGENFUNCTIONS OF

THE HELMHOLTZ EQUATION

In this section, we provide and exploit the standard Fourier

and spherical-wave eigenfunctions of the vector Helmholtz

operator, obtained by solving Eq. (34) in planar and spherical

coordinates,104,105 to obtain the coefficients χ and κ appearing

in the Green’s function expansion and orthogonality relations

of Eqs. (37), (39), and (41), respectively.

1. Fourier basis

In planar geometries, described by normal and tangential

coordinates z and x⊥, respectively, the eigenfunctions of

the Helmholtz operator, labeled by Fourier wave vectors k⊥
perpendicular to the ẑ axis, are given by

M±
k⊥kz

(z,x⊥) = φ±(kzz)Xk⊥(x⊥),

N±
k⊥kz

(z,x⊥) = φ±(kzz)

[

∓
kz

k
Zk⊥(x⊥) +

|k⊥|
k

eik⊥·xẑ

]

,

where φ±
k⊥kz

= 1
|k⊥|e

ik⊥·x⊥±ikzz, kz =
√

k2 − |k⊥|2, and where

the tangential fields Xk⊥ and Zk⊥ = ẑ × Xk⊥ are

Xk⊥(x⊥) =
i

|k⊥|
(ẑ × k⊥)eik⊥·x⊥ , (A1)

Zk⊥ (x⊥) =
ik⊥

|k⊥|
eik⊥·x⊥ . (A2)

The precise form of the Fourier functions φ± = e±ikzz depends

on whether one desires a solution involving outgoing (+) or

incoming (−) fields, or equivalently, fields propagating away
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or toward the origin. The corresponding χ and κ coefficients

appearing in the Green’s function expansion and orthogonality

relations are given by

κ±
k⊥,kz,E

(z) = φ±(kzz), (A3)

κ±
k⊥,kz,M

(z) = ∓γφ±(kzz), (A4)

χk⊥,kz
=

i

2kz

, (A5)

with γ ≡ kz/k =
√

1 − |k⊥|2/(εμω2).

2. Spherical multipole basis

In spherically symmetric geometries, described by normal

and tangential coordinates r and {θ,φ}, respectively, the

eigenfunctions of the Helmholtz operator, labeled by angular-

momentum quantum numbers ℓ and m, are given by

M±
ℓm(r,θ,φ) = R±

ℓ (kr)Xℓm(θ,φ),

N±
ℓm(r,θ,φ) = R̆±

ℓ (kr)Zℓm +
ℓ(ℓ + 1)

r
R±

ℓ (kr)Ylm(θ,φ)r̂,

where R±
ℓ and Yℓm denote spherical Hankel functions and

spherical harmonics,83 respectively, and where the tangential

fields Xℓm = − 1√
ℓ(ℓ+1)

(r̂ × ∇)Yℓm and Zℓm = r̂ × Xℓm are

Xℓm(θ,φ) =
1

√
l(l + 1)

[
im

sin θ
Yℓmθ̂ −

∂Yℓm

∂θ
ϕ̂

]

,

Zℓm(θ,φ) =
1

√
l(l + 1)

[
∂Yℓm

∂θ
θ̂ +

im

sin θ
Yℓmϕ̂

]

.

Above, we defined f̆ (z) ≡ (1/z + d/dz)f for brevity. The

precise form of the spherical Bessel radial function

R±
ℓ =

{

h
(1)
ℓ +,

jℓ −,

depends on whether one desires a solution corresponding to

outgoing (+) or incoming (−) waves toward the origin, or

equivalently, a solution that is well behaved at the origin or

at infinity. The χ and κ coefficients appearing in the Green’s

function expansions and orthogonality relations are given by

κ±
ℓ,m,E(r) = r2R±

ℓ (kr), (A6)

κ±
ℓ,m,M (r) = ir2R̆±

ℓ (kr), (A7)

χlm = ik. (A8)

APPENDIX B: EQUIVALENCE PRINCIPLE

In this section, we provide a compact derivation and review

of the equivalence principle of classical electromagnetism

(closely related to Huygens’s principle88), which expresses

scattered waves in terms of fictitious equivalent currents in a

homogeneous medium replacing the scatterer.24 The equiva-

lence principle is usually derived in a somewhat cumbersome

way from a Green’s-function approach,24,89 but a much shorter

proof can be derived from the differential form of Maxwell’s

equation. Understanding this result is central to our FSC

formulation of heat transfer.

As before, we restrict ourselves to linear media for which

Maxwell’s equations can be written as

( ∇×
−∇×

)

︸ ︷︷ ︸

M

(
E

H

)

︸ ︷︷ ︸

φ

=
∂

∂t
[φ + χ ⋆ φ] +

(
J

K

)

︸ ︷︷ ︸

ξ

, (B1)

with χ⋆ denoting convolution with a 6 × 6 susceptibility tensor

χ =
(

ε − 1

μ − 1

)

.

Consider an arbitrary incident wave φ, which solves the

source-free Maxwell’s equations in some χ medium with

no current sources: Mφ = ∂
∂t

(φ + χ ⋆ φ). The equivalence

principle states that given any arbitrary but finite domain V ,

one can always choose an equivalent surface current ξ that

generates the same incident field φ in V . To show that such a

surface current exists, define the field

φ̃ =

{

φ ∈ V,

0 elsewhere.
(B2)

It follows that φ̃ satisfies the source-free Maxwell’s equations

in both the interior and exterior regions—the only question

is what happens at the interface ∂V . In particular, the

discontinuity of φ̃ at ∂V produces a surface δ function δ∂V in

the spatial derivative Mφ̃, and so in order to satisfy Maxwell’s

equations with this φ̃, one must introduce a matching δ

function, a surface current ξ , on the right-hand side. [Here,

δ∂V is the distribution such that
˝

δ∂V φ(x) =
‚

∂V
φ(x) for

any continuous test function f .] Specifically, letting n be the

unit inward-normal vector,123 only the normal derivative n · ∇
contains a δ function (whose amplitude is the magnitude of

the discontinuity), which implies a surface current:

ξ = (�φ)δ∂V =
(

n × H

−n × E

)

δ∂V , (B3)

where � is the real-symmetric unitary 6 × 6 matrix:

� =
(

n×
−n×

)

= �−1 = �T = �∗. (B4)

That is, there is a surface electric current given by the

surface-tangential components n × H of the incident magnetic
field, and a surface magnetic current given by the components

−n × E of the incident electric field. These are the equivalent

currents of the principle of equivalence (derived traditionally

from a Green’s function approach24,89 and from which Huy-

gens’s principle is derived88).

1. Application to surface integral equations

The equivalence principle is of fundamental importance to

SIE formulations of EM scattering. Consider two regions 0

and 1, described by volumes V 0 and V 1 and susceptibilities

χ0 and χ1, respectively, separated by an interface ∂V 1. As

before, one can express the total fields φr = φr+ + φr− in

each region r in terms of incident φr+ and scattered φr− fields.

The principle of equivalence describes an equivalent, fictitious
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problem, involving fields

φ̃ =
{
φ0 ∈ V 0,

0 elsewhere,

and surface currents ξ = �φ0 = �φ1 at the ∂V 1 interface,

where the second equality follows from continuity of the

tangential fields. Since φ̃ = 0 in V 1, it follows that one

can replace χ1 with any other local medium and yet φ̃

still satisfies Maxwell’s equations. In particular, replacing

χ1 with χ0 implies that one can write the scattered field

φ0− = Ŵ0 ⋆ ξ in V 0 as the field produced by the same fictitious

surface currents ξ in an infinite medium 0, with Ŵ0 denoting

the homogeneous-medium Green’s function of the infinite

medium.

A similar argument applies if one is interested in the field

in medium 1, except that the sign of the fictitious currents is

reversed to −ξ in order to account for the direction of the

discontinuity in going from 1 to 0 in this case. In particular,

one can write the scattered field φ1− = −Ŵ1 ⋆ ξ in V 1 as the

field produced by a fictitious surface current −ξ in an infinite

medium 1.

APPENDIX C: RECIPROCITY AND DEFINITENESS

In this section, we present a brief review of the reciprocity

relations and definiteness (positivity) properties of the DGF, Ŵ,

connecting surface currents ξ to fields φ = Ŵ ⋆ ξ , in dissipative

media, and explain how these relate to corresponding proper-

ties of the SIE matrices above (crucial to our derivation of heat

transfer in Sec. II). Although for our purposes we need only

prove reciprocity and definiteness of the homogeneous Green’s

function (trivial to show in that case since the homogeneous

DGF is known analytically), here we consider the more

general case of inhomogeneous media. Reciprocity is well

known82,124–127 and positivity follows from general physical

principles (currents always do nonnegative work in passive

materials83,84,110,125), but our goal here is to derive them using

the same language employed in our derivations above. More

specifically, we explain the source of the sign-flip matrices

S and S, which often go unmentioned because many authors

consider only 3 × 3 Green’s functions (relating currents to

fields of the same type).

1. Green’s functions

It is actually easier to derive the reciprocity and definiteness

properties of Ŵ from the properties of L = (Ŵ⋆)−1, the

Maxwell operator that connects fields φ to currents ξ = Lφ,

because L is a partial-differential operator that can be written

down explicitly starting from the (frequency-domain) Maxwell

equations ∇ × E = iωμH − M, ∇ × H = −iωεE + J, in

terms of the permittivity ε(x,ω) and permeability μ(x,ω)

tensors and electric J and magnetic M currents. Specifically,

the Maxwell operator

L =
(

iωε ∇×
−∇× iωμ

)

(C1)

is neither complex-symmetric, Hermitian, antisymmetric, nor

anti-Hermitian in general. Using our previous definition of the

inner product:

〈φ,φ′〉 =
ˆ

φ∗φ′

=
〈(

E

H

)

,

(
E′

H′

)〉

=
ˆ

E∗ · E′ + H∗ · H′,

it follows that the off-diagonal part of L is anti-Hermitian:
〈(

E

H

)

,

( ∇×
−∇×

)(
E′

H′

)〉

=
ˆ

E∗ · ∇ × H′ − H∗ · ∇ × E′

=
ˆ

(∇ × E∗) · H′ − (∇ × H)∗ · E′

=
〈

−
( ∇×

−∇×

)(
E

H

)

,

(
E′

H′

)〉

,

where we have used the self-adjointness of ∇× and assumed

boundary conditions such that the
‚

E∗ × H′ + E′ × H∗

boundary terms at infinity (from the integration by parts)

vanish. This is commonly attained by assuming loss in the

materials so that the fields decay exponentially at infinity (as-

suming localized sources), or by imposing outgoing-radiation

boundary conditions on Ŵ ⋆ at infinity.83

Instead, reciprocity relations are normally derived for the

unconjugated inner product:

(φ,φ′) =
ˆ

φTφ′ =
((

E

H

)

,

(
E′

H′

))

=
ˆ

ET · E′ + HT · H′, (C2)

under which the off-diagonal terms in L are still antisym-

metric while the diagonal terms are complex-symmetric,

assuming reciprocal materials: εT = ε and μT = μ (usu-

ally the case except for magnetooptical and other more

exotic materials82,95,128). Here, the transpose LT of the

operator L means the adjoint of L under the unconju-

gated inner product (φ,Lφ′) = (LTφ,φ′). In order to make

L fully symmetric, it suffices to flip the sign of the

magnetic components H → −H, an operation that can

be expressed as a (real, self-adjoint, unitary) sign-flip

matrix:

S =
(

I

−I

)

= S
−1 = S

T = S
∗. (C3)

That is, LS is complex-symmetric: (LS)T = SLT = LS, or

equivalently, LT = SLS = SLS−1. It follows that

(Ŵ⋆)T = (L−1)T = (LT)−1 = S(Ŵ⋆)S. (C4)

Alternatively,

(φ,Ŵ ⋆ φ′) =
ˆˆ

d3xd3yφT(x)Ŵ(x,y)φ′(y), (C5)

so by inspection (Ŵ(x,y)⋆)T = Ŵ(y,x)T⋆: transposing Ŵ⋆ cor-

responds to interchanging sources and fields. Thus we obtain

the reciprocity relation

ŴT⋆ = S(Ŵ⋆)S, (C6)
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i.e., one can interchange sources and fields if one flips the sign

of both magnetic currents and magnetic fields.

We also expect the operators L and Ŵ⋆ to be negative-

semidefinite on physical grounds, since − 1
2
〈φ,Lφ〉 =

− 1
2
〈φ,ξ 〉 = − 1

2
〈Ŵ ⋆ ξ,ξ 〉 is exactly the time-average power

− 1
2

´

E∗ · J + H∗ · M expended by the currents, which must

be �0 in passive materials.84 Indeed, one can show this

directly, since the anti-Hermitian property of the off-diagonal

part of L means that

symL = ω

(−Imε

−Imμ

)

for isotropic materials, but both ωImε and ωImμ are �0

for passive materials (no gain).83,84 Thus it follows that L

is negative-semidefinite, and so is L−1 = Ŵ ⋆ .

2. SIE matrices

The SIE matrices M = W−1 are formed from a sum

M of Green’s function operators Ŵr⋆ in homogeneous

regions r , expanded in a (real vector-valued) basis βn by a

Galerkin method, so that Mmn = 〈βm,Mβn〉 = (βm,Mβn).

For any Galerkin method, it is easy to show that if M is

self-adjoint or complex-symmetric, then M has the same

properties. Similarly, any definiteness of M carries over

to M . From the previous section, since Ŵr is negative-

semidefinite in any passive medium, it follows that any

sum M of Ŵr⋆ is also negative-semidefinite, and hence

M is negative-semidefinite (symM is Hermitian negative-

semidefinite).

As above, reciprocity requires some sign flips: MT =
SMS, so (MT)mn = Mnm = (βn,Mβm) = (βm,MTβn) =
(βm,SMSβn) = (Sβm,MSβn). Furthermore, suppose that we

use separate basis functions βH
n for magnetic currents and βE

n

for electric currents, as is typically the case in BEM (e.g., for

an RWG basis26,93), so that SβE
n = +βE

n and SβH
n = −βH

n .

That is, we write currents as ξ =
∑

n xnβn =
∑

xE
n βE

n +
xH

n βH
n , so that Sξ =

∑

xE
n βE

n − xH
n βH

n corresponds to a linear

transformation S on x that flips the sign of the xH
n components.

It follows that

MT = SMS. (C7)
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