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Abstract—WO3 nanowires (WO3-NWs) decorated with gold 

nanoparticles (AuNPs) were utilized in resistive gas sensor devices 

to detect ethanol by use of fluctuation enhanced sensing (FES).  

The experimental system records both DC resistance and 

fluctuations of the sensing film. Our data verify that the sensitivity 

and selectivity of the gas sensor are improved by applying FES 

when the sensor is stimulated with a combination of UV light and 

heating. We conclude that UV light can produce improved gas 

sensing at low operating temperatures for the investigated AuNP-

decorated WO3-NWs films. 

Keywords: AuNP-decorated WO3 nanowires; fluctuation 

enhanced sensing; UV light; noise 

I.  INTRODUCTION 

A commonly used method for gas sensing involves DC 
resistance measurements on a single resistive gas sensor or on 
an array of such sensors. The gas sensing element comprises a 
semiconducting film deposited on the alumina or ceramic 
substrate of the sensing chip, which is also provided with an 
integrated heater. The sensor conductivity changes in the 
presence of the detectable gas, in proportion with its 
concentration. Specifically, the sensing film is reduced or 
oxidized by the gas, which leads to modifications in the DC 
resistance via an alteration of the charge carriers’ mobility, 
concentration, or a combination of both of these factors [1]. An 
electrical circuit converts conductivity changes to an output 
signal, which corresponds to the gas concentration. This method 
often suffers from insufficient sensitivity and selectivity for the 
detection of various gases, which is the main reason to further 
develop the technology [2, 3], as discussed below. 

Improved sensitivity can be achieved by fluctuation-
enhanced sensing (FES), which records low-frequency 
fluctuations in the resistance instead of, or in addition to, 
changes in the DC resistance. It has been shown that the gas 
detection ability, especially for some nanoparticle film sensors 

[4, 5], can be significantly improved by employing the FES 
method, and noise spectroscopy provided a more efficient gas 
detection when compared with DC resistance measurements 
only [6–10]. 

Importantly, a gas sensor responds to the presence of 
particular gases from its surrounding environment when it is 
stimulated by an external energy necessary to activate chemical 
processes, such as adsorption and desorption. The easiest and 
most commonly used way to provide this energy is to heat the 
sensor to a specified temperature in the range of hundreds of ºC. 
Generally, the heat exchange process is time dependent due to 
thermal inertia, and therefore some period of time is required to 
stabilize the sensor’s temperature and other parameters after 
switching on the heater. Moreover, heating requires energy and 
it also limits some gas sensing applications (e.g., detection of 
explosives or combustible gases). 

However, there are other ways than thermal to transfer 
energy to a sensor, one of these being UV light generated by a 
cheap UV semiconductor diode [8, 11]. In the present study, we 
used light, instead of heating, to improve the selectivity of Au-
nanoparticle (NP)-decorated WO3-nanowires (NWs) gas 
sensors. The pros and cons of using UV light wave instead of, or 
combined with, heating to stimulate the sensor are discussed in 
some detail. 

II. MEASUREMENT SYSTEM 

Fig. 1 shows the measurement system that was set up to 
determine the DC resistance and the fluctuations of the 
investigated AuNP-decorated WO3-NWs film irradiated with a 
controlled UV light source. The hardware comprises a low-noise 
voltage amplifier, heat and light drivers, a sensor bias current (Is) 
driver, a power supply and a computer to acquire the data and 
control the measurement system [10]. The collected data were 
processed using Mathworks Matlab scripts and built-in 
functions. The resolution of the analog–digital converters was 



24 bits in both measurement channels. Time-dependent 
waveforms of resistance fluctuations were sampled using 2 kHz 
sampling rate and were registered as consecutive records  
of 106 samples. 

 

Figure 1. Block diagram of the measurement system. Is denotes the DC current 
flowing through the studied gas sensor. Low-pass (LP) and high-pass (HP) 

filters were applied to measure DC resistance and its fluctuations, respectively, 
by analog–digital converters (ADCs) 

III. GAS SENSING AUNP-DECORATED WO3-NWS FILM 

Nanotechnology is able to produce quasi-one-dimensional 
nanomaterials on a large scale, such as metal-decorated WO3-
NWs with excellent sensing properties upon exposure to 
different gases [12, 13]. Many techniques can be used to grow 
WO3 nanowires doped with metal nanoparticles; in our case, we 
use a deposition method based on aerosol-assisted chemical 
vapor deposition (AACVD). As shown by our previous results 
[14, 15], this is a versatile, inexpensive and high-yield technique 
for growing metal oxides with remarkable gas sensing 
properties. Moreover, the synthesis of nanostructures, as well as 
the decoration with metal NPs and the integration in the structure 
of a device, can be realized in a single processing step. AuNP-
decorated WO3-NWs films were grown at 350 ºC by AACVD 
directly on the electrode area of alumina gas sensor substrates 
using tungsten hexacarbonyl and hydrogen tetrachloroaurate as 
precursors. Full details on the deposition conditions can be 
found elsewhere [14]. The average size of the AuNPs was 

10 nm, while the WO3-NWs were ~5 m in length and  
60–120 nm in width. 

 

Figure 2. Gas sensing AuNP-decorated WO3-NWs film and a T5F UV LED 

diode. Left and right panels show top side with the diode T5F 
and bottom side with the heater, respectively 

Fig. 2 depicts the AuNP-decorated WO3-NWs gas sensor 
together with the UV LED diode employed for irradiation.  
The T5F UV diode has its peak wavelength at 365 nm, which 
corresponds to photons of 3.1 eV energy. Therefore the change 
in sensor conductance after irradiating the AuNP-decorated 
WO3-NWs material can be expected to depend mainly on 
interband electronic transitions (for photon energies greater than 
the energy band gap of 2.56 eV). Additionally, the plasmonic 
resonance on the surface of gold nanoparticles can increase 
penetration of the UV light into the sensing layer [16]. 

IV. EXPERIMENTAL RESULTS 

A. Sensing by DC resistance changes 

The main difference between energy transfer by UV light 
and by heating is related to the impact area: the heating affects 
the entire volume of the gas sensor, while the UV light impacts 
mainly on its surface. Both factors might potentially be used to 
improve gas detection, but they have different efficiency.  
Thus, in order to compare both features we have measured the 
sensor’s DC resistance in ambient atmospheres of synthetic air 
(s.a.) and 200 ppm of ethanol (Fig. 3) when the sensor was 
heated to different temperatures. Additionally, UV light 
irradiated the sensor to accelerate adsorption and desorption 
processes. We can conclude that the investigated AuNP-
decorated WO3-NW film is sensitive to ethanol, and its 
sensitivity depends on both temperature and UV light. 

 

Figure 3. DC resistance RS of an AuNP-decorated WO3-NWs gas sensing film 

versus temperature in synthetic air (s.a.) and in 200 ppm of ethanol. Id denotes 
the DC current of the UV LED diode used to irradiate the sensing film; the 

diode was placed ~5 mm from the gas sensing film 

At low temperatures, below 150 C, we observed that the UV 
light induces significant changes in the sensor’s DC resistance, 
of up to as much as one order of magnitude. The difference in 
DC resistance of the AuNP-decorated WO3-NWs film with and 
without UV light depends on the sensor’s ambient atmosphere. 



In the presence of ethanol vapor, the change of DC resistance 
caused by UV light becomes less pronounced. At higher 

temperatures, above 150 C, we noticed much lower DC 
resistance changes induced by UV light than at lower 
temperatures. This fact is in fact as expected, because 
adsorption–desorption processes are so intense at high 
temperatures that the additional energy introduced by UV light 
does not change the conditions within the gas sensing film to any 
significant degree. A similar argument could be used to explain 
why UV light does not change the DC resistance as much at 

temperatures below 150 C in the presence of ethanol as it does 
in the case of synthetic air: The DC resistance of an AuNP-
decorated WO3-NWs film in synthetic air is relatively high 
because the activation energy of oxygen ions captured at the 
WO3 grains is higher than the activation energy of ethanol 
molecules. Thus the extra energy of the UV light makes the 
potential energy between the grains comparatively much lower 
for synthetic air than for ethanol. 

 

Figure 4. Normalized product of frequency f and power spectral density Su(f ) 

of voltage fluctuations across an AuNP-decorated WO3-NWs sensor biased by 

the DC voltage U versus f. Data were taken at the shown temperatures T with 
the sensor placed in the dark in synthetic air 

B. Sensing by low-frequency fluctuations 

Benefits of using UV light to stimulate the AuNP-decorated 
WO3-NWs gas sensor can be clearly seen when low-frequency 
noise is analyzed. The results of noise measurements in an 
ambient atmosphere of synthetic air, and under dark conditions, 
are presented in Fig. 4. The 1/f noise component was observed 
within at least three frequency decades up to 1 kHz and 
depended strongly on the sensor temperature. We observed a 
crossover frequency in the spectra whose value shifted upon 
temperature rise from a few Hz to about 20 Hz. The crossover 
frequency was identified as the local maximum of the product 

Su(f )f/U 2 (cf. Fig. 4). 

When UV light irradiation was applied—as indicated in 
Fig. 5 for Id = 20 mA—we noticed at the lower sensor 

temperature (150 C) that the crossover frequency was shifted 
towards lower frequencies and that the 1/f noise component 
dominated up to 40 Hz. This means that the UV light can be a 
very efficient factor for determining the intensity of low 
frequency noise and helping to establish what kind of gas is 
present in the sensor’s ambiance. 

Similar results were observed when the sensor was placed in 
200 ppm of ethanol, as shown in Fig. 6. There is again a 
crossover frequency similar to that of the noise observed in the 
dark and in synthetic air but having lower intensity in the case 
of ethanol. When UV light is applied the crossover frequency 
shifts towards lower frequencies. We expect that this frequency 
shift is characteristic for the gas present in the ambient 
atmosphere, but a firm conclusion on this issue requires 
additional experimental studies. Nevertheless, the presented 
results confirm that FES is very informative when the properties 
of the gas sensing film are modulated by UV light. 

 

Figure 5. Normalized product of frequency f and power spectral density Su(f ) 

of voltage fluctuations across an AuNP-decorated WO3-NWs sensor biased by 

the DC voltage U versus f. Data were taken at 150 C and in synthetic air. UV 

light irradiation was accomplished by a UV LED diode with the shown values 

of DC current Id 

V. RESULTS AND DISCUSSION 

The experimental data were acquired with the purpose of 
determining which detection method was preferable under 
different conditions. Fig. 7 confirms that the effect of low 
frequency noise changes caused by UV light is very strong at 
low concentrations of ethanol. This conclusion is consistent with 
the data reported in Figs. 5 and 6, which show that the noise 
change induced by UV light was largest in an atmosphere of 
synthetic air. Thus noise modulated by UV light should be very 
efficient for ethanol detection at low concentrations. 
Furthermore, the effect caused by UV light starts to saturate very 
fast at low intensities of UV light. At the given distance between 
the gas sensing film and the applied UV diode (cf. Fig. 2) we 
observed that a DC current of 3 mA was sufficient to saturate 



noise changes, and a further increase of the UV light intensity 
did not alter the low-frequency noise. 

 

Figure 6. Normalized product of frequency f and power spectral density Su(f ) 
of voltage fluctuations across an AuNP-decorated WO3-NWs sensor biased  

by the DC voltage U versus f. Data were taken at 150 C in 200 ppm  

of ethanol. UV light irradiation was accomplished by a UV LED diode  
with the shown values of DC current Id 

 

Figure 7. Normalized product of frequency f and power spectral density Su(f ) 

of voltage fluctuations across an AuNP-decorated WO3-NWs sensor biased  
by the DC voltage U versus ethanol concentration. Data were taken  

at f = 100 Hz and 150 ºC. UV light irradiation was accomplished  

by a UV LED diode with the shown values of DC current Id 

 

 

 

Figure 8. Relative noise level difference, as discussed in the main text, 

versus ethanol concentration. Data were taken at f = 100 Hz and 150 ºC. 
UV light irradiation was accomplished by a UV LED diode with the shown 

values of DC current Id 

 

Figure 9. Relative resistance difference, as discussed in the main text, versus 
ethanol concentration. Data were taken at 150 ºC. UV light irradiation was 

accomplished by a UV LED diode with the shown values of DC current Id 

Fig. 8 shows relative changes of power spectral density 

Su(f )/S(f ) of voltage fluctuations at f = 100 Hz. Fig. 9 shows 

relative changes of DC resistance RS/RS. Both figures compare 

these data in order to establish which method is most sensitive 

to ethanol. The relative changes of the noise are seen to be 

several times stronger than the relative changes in the DC 

resistance when the sensor was in the dark. The measurements 



were performed at 150C, when we observed the crossover 

frequency in the low-frequency range of the spectra. This 

significant change of noise intensity was due to the shift of that 

frequency. When the UV light was switched on (Id = 3 mA), the 

noise intensity did not change as much with ethanol 

concentration, because the additional energy of UV light altered 

the noise component identified by the crossover frequency and 

responsible for the previously noticed intense noise changes. 

This means that the best sensitivity can be guaranteed by low-

frequency noise when the temperature and the UV light are 

carefully selected to assure a shift of the crossover frequency in 

the spectra. Thus low-frequency noise can be an important 

source of information and improve gas sensing in photo-

catalytic materials, as suggested previously when noise was 

applied to predict the reliability of similar materials in optical 

applications [17]. 

VI. CONCLUSIONS 

The investigated AuNP-decorated WO3-NWs gas sensing 
film was sensitive to ethanol, and gas sensing could be 
modulated by UV light to gather more information about the 
ambient atmosphere. We found that a cautiously selected 
operating temperature could significantly increase the sensitivity 
for low-concentration ethanol gas detection. Moreover, the 
operating temperature of the gas sensing film can be reduced to 
limit energy consumption, and the sensor can be gas activated 
by UV light. 
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