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Quantum annealing has great promise in leveraging quantum mechanics to solve combinatorial optimization

problems. However, to realize this promise to its fullest extent we must appropriately leverage the underlying

physics. In this spirit, we examine how the well-known tendency of quantum annealers to seek solutions where

more quantum fluctuations are allowed can be used to trade off optimality of the solution to a synthetic problem

for the ability to have a more flexible solution, where some variables can be changed at little or no cost.

We demonstrate this tradeoff experimentally using the reverse annealing feature a D-Wave Systems quantum

processing unit for both problems composed of all binary variables, and those containing some higher-than-

binary discrete variables. We further demonstrate how local controls on the qubits can be used to control the

levels of fluctuations and guide the search. We discuss places where leveraging this tradeoff could be practically

important, namely in hybrid algorithms where some penalties cannot be directly implemented on the annealer

and provide some proof-of-concept evidence of how these algorithms could work.

DOI: 10.1103/PhysRevA.102.062606

I. INTRODUCTION AND BACKGROUND

Quantum annealing, in which combinatorial optimization

problems are mapped directly Hamiltonians and solved us-

ing sweeps of Hamiltonian parameters, has been a subject

of much interest recently. This is in part due to the wide

variety of potential applications, in a diverse range of subjects,

including for instance air traffic control [1], hydrology [2],

protein folding [3], flight gate assignment [4], finance [5–7],

and even quantum field theory [8,9]. This subject has further

attracted interest because of the experimental maturity of the

flux qubit devices produced by D-Wave Systems Inc. which

allow for large-scale experimentation.

One crucial direction in the growth of flux qubit quantum

annealing is an increase in the variety of controls which users

can be applied to the experimental quantum annealing process

on flux qubit annealers. Traditionally formulated quantum

annealing starts from an easy to prepare ground state of a

so-called driver Hamiltonian and monotonically interpolates

the Hamiltonian to a problem Hamiltonian with an unknown

ground state. However, major advantages can be gained by

using a different control pattern known as reverse annealing,

which starts in a state which is a guess for the solution of

the optimization problem, turns on fluctuations, and searches

nearby states in Hamming distance by taking advantage of

thermal dissipation [10]. Likewise, controls have been added

which allow different qubits to be annealed differently [11].

These features have proven useful in a variety of ways,

reverse annealing for instance is motivated by the ability to

implement more complex algorithms than traditional forward

annealing [12], and these algorithms have shown promising

initial experimental results. For example, it was shown in

*nicholas.chancellor@gmail.com

Ref. [6] that starting from the output of a simple classical

algorithm can lead to a large improvement over forward an-

nealing. References [13,14] showed that iterative methods

can help over non-negative matrix factorization. The work in

Ref. [15] showed experimentally that adding mutation per-

formed using reverse annealing can aid the performance of

genetic algorithms. Furthermore the simulation of the cele-

brated Kosterlitz-Thouless phase transition in Ref. [16] would

not have been possible without reverse annealing techniques,

and reverse annealing has been used to simulate quantum field

theories [9].

Similarly, anneal offsets have shown promise in synchro-

nizing the freezing of qubits [11,17]. The algorithmic use

of these controls was initially motivated by numerical work

which demonstrated that locally varying transverse fields can

mitigate perturbative anticrossings [18]. Fluctuations which

can be mitigated using these tools were shown [19] to be

important in the heavy tails which were observed in early

experimental work on D-Wave quantum processing units

(QPUs) [20]. The demonstration that anneal offsets can miti-

gate these effects came later, in Ref. [17].

The tendency of quantum fluctuations to lead to uneven

sampling of ground state manifolds has traditionally been

viewed as a drawback for quantum annealing [21–23]. How-

ever, it has been observed that when coupled with classical

techniques, this uneven sampling could be a positive feature

because the states which quantum annealers find tend to be

very different from those found by classical solvers, and there-

fore could give a more complete picture of the manifold [24]

if both were used together. In all of this previous work, the

uneven sampling was found to be due to quantum, rather

than thermal, fluctuations. While thermal fluctuations play an

unavoidable role in the experiments reported in this paper, the

tendency to favor solutions with more free spins is likely due

to the same quantum effects observed in this previous work.
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Furthermore, the tendency of the annealer to seek out

states with more free spins plays a fundamental role in the

effect observed in Ref. [16]. The role of quantum fluctua-

tions in causing uneven sampling is also important to graph

isomorphism applications which have been proposed and im-

plemented on quantum annealers [25–27] In this paper, we

explore a different advantage of this preferential search, the

fact that it tends to find states which are flexible in the sense

that some variables can be changed at little to no energy

cost.

In this paper we experimentally investigate the role which

quantum fluctuations can play in the local search which re-

verse annealing implements. This is done by using specialized

Hamiltonians which represent hard problems for the annealer

(although not necessarily hard in the computational sense) and

have sets of local minima in their energy landscape where

fluctuations are enhanced. We also show that the anneal off-

sets (controls offsets on chains or gadgets which enhance

(δs < 0) or suppress (δs > 0) fluctuations) can be used to

guide the search by locally enhancing fluctuations on some

parts of the system. The technique of locally enhancing fluc-

tuations is reminiscent of the methods proposed in Ref. [28]

and provides some experimental validation of these concepts.

To do this, we construct problems where there is a planted

solution which is guaranteed to have the lowest energy, but

which does not support strong quantum fluctuations, but fluc-

tuations can be increased by paying an energy cost. We study

structures which include both “gadgets” which involve binary

variables which, in some configurations, can be flipped with

no energy penalty. We also investigate higher than binary

variables encoded into “chains (Hamiltonian element which

encodes a discrete variable)” which have a “soft” configu-

ration where small changes have little or not effect on their

energy, but start in a configuration where a small change has a

large effect. We also study the effects of anneal offsets which

can locally increase or suppress fluctuations.

We use these fluctuations to trade off optimality in solu-

tions for flexibility, in other words find solutions which are

a bit less optimal, but for which certain variables can be

changed at little or no cost. These variables could either be

binary variables directly represented by qubits, or discrete

variables which can be encoded using a method we describe

later. We argue that this is a property which is likely to be

relevant in some real world situations and give a motivational

example of how it can be used in a hybrid quantum classical

algorithm to find a more optimal solution in the presence

of a global penalty function which is not encoded into the

annealer.

On the devices studied here (D-Wave 2000Q quantum

processing units), dissipation plays an important (often pos-

itive [29]) role in the annealing process, and the reverse

annealing techniques used here fundamentally rely on dissi-

pation. Dissipation can also play a very detrimental role, as

pointed out in earlier works such as Ref. [30]; however, when

techniques like reverse annealing are included, even devices

with more limited coherence still present opportunities for

quantum advantage [31]. Recent experiments, have suggested

that improvements can be made by reducing the noise on

the current D-Wave devices [32,33]; however, whether these

improvements would continue until the noise is reduced to

zero is an open question.

The intuition developed here, however, is likely to

carry over into the more coherent protocols proposed in

Refs. [34–36]. This is relevant because coherence rates can be

improved through a variety of routes, in both supercoducting

flux qubit architectures [32,37] and trapped ion quantum an-

nealers [38]. Furthermore, there is significant evidence that in

the fully coherent regime fast, but coherent, quenches known

as “diabatic” quantum computing may be a promising path

to a quantum advantage [31]. This is due to both adiabatic

mechanisms involving multiple energy levels [31,39] and

mechanisms related to energy transfer [40–42].

Because the experimental details are likely to be interesting

only to readers who engage with experiments on the D-Wave

devices at a relatively low level, we have reserved a detailed

description for the Appendix. In Sec. II we give the core ex-

perimental results, demonstrating how fluctuations can enable

a tradeoff between optimality and flexibility of solutions, as

well as how anneal offsets can be used to guide the search by

emulating these nonengineered fluctuations. Next, in Sec. III

we give a motivational example of how trading off optimality

and flexibility can be useful. We then discuss some of the more

detailed aspects of the experimental methods and concluded

the paper with some discussion.

II. RESULTS

In this section we discuss the results of the experiments,

which demonstrate how both existing and introduced fluc-

tuations can be used to guide the search which a quantum

annealer performs. First, we will introduce how the number of

free gadgets (gadget in the configuration which allows more

fluctuations) or soft chains (chain in a configuration where

more fluctuations are allowed) can be controlled by different

parameters, such as the value of the reversal parameter s⋆ and

the anneal offsets δs applied to the chains or gadgets. The pa-

rameter s⋆ controls the range of reverse annealing search with

s⋆ = 1 corresponds to no search, s⋆ = 0 to forward annealing.

Meanwhile δs controls offsets on chains or gadgets which

enhance (δs < 0) or suppress (δs > 0) fluctuations. Measures

of the performance of these different control settings will be

introduced in Sec. II A and further discussed in Sec. II B.

A proof-of-principle example for how guided search can be

useful will be discussed in Sec. III.

The first result which we find is that the number of free

gadgets and soft chains both can be increased by decreasing

the value of s⋆, in other words by increasing the range of the

search. Figure 1 shows this effect for gadgets, not only are

more free gadgets the lower value of s⋆, this effect is also

much stronger when the gadgets are not locked, indicating that

the free variables have a significant effect on the dynamics.

For s⋆ � 0.45 the dynamics are highly localized and very few

if any gadgets are free, meanwhile for s⋆ � 0.38, the behavior

is indistinguishable from a search with s⋆ = 0.2, effectively a

global search. We have chosen a nonuniform mesh of s⋆ values

which focuses on the regime where the reverse anneal can

lead to long-range dynamics, but does not search so far that

all information about the initial state is completely forgotten.
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FIG. 1. Fraction of observations for different numbers of free

gadgets against different values of s⋆ averaged over all 10 Hamilto-

nians (recall that s⋆ is a unitless quantity). Solid red (gray) lines with

“X” markers represent the mean for the plot, while the dashed line

with “+” markers is the mean of the other plot for comparison. (a)

Unlocked gadgets with no anneal offsets. (b) Locked gadgets with no

anneal offsets. The methods for creating the plots given the nonlinear

mesh are explained in the Appendix.

The experiments we have conducted can be understood

as probing a finite size precursor to a transition from the

the phase which is realized at s⋆ = 1 and the paramagnetic

phase found at s⋆ = 0. The exact nature of the phase which is

realized in the large system limit for s⋆ = 1 is not immediately

clear so therefore neither is the nature of the transition and the

factors which affect its location. The fact that annealing from

the paramagnetic precursor tends not to find the ground state

provides weak evidence against this phase transition being

a simple transition into a ferromagnetic phase and is more

consistent with a spin glass [43] or a Griffiths-type phase

transition [44,45].

Figure 2 shows the same effect for embedded chains in

planted solution problems. In this case, reducing the fluctu-

ations by increasing the softness coefficient leads to fewer

soft chains. As with the gadget example, nontrivial reverse

annealing dynamics are seen for 0.38 � s⋆ � 0.45.

Let us further observe that if we apply anneal offsets to

the locked gadgets [version of gadget element which does not

allow for more fluctuations (used as comparison point)], we

can mimic the effect of the free variables, as Fig. 3 shows

the proper choice of anneal offsets renders the distributions

indistinguishable for the locked and unlocked gadgets (Hamil-

tonian element encoding binary variables with configurations

allowing more or fewer fluctuations). We show in Sec. II B

that introduced fluctuations from anneal offsets can be as

effective if not more so than fluctuations due to truly free

variables.

The question now becomes whether anneal offsets can

similarly mimic the effect of a lower softness coefficient for

chains within the planted solution Hamiltonian. Figure 4 indi-

cates that it cannot, while a negative anneal offset parameter,

δs < 0, increases the number of soft chains at intermediate
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(b)

FIG. 2. Fraction of observations for different numbers of soft

chains against different values of reversal parameter s⋆ averaged

over all 10 Hamiltonians (recall that s⋆ is a unitless quantity). Solid

red (gray) lines with “X” markers represent the mean for the plot,

while the dashed line with “+” markers is the mean of the other

plot for comparison. (a) Minimum softness coefficient chains with

no anneal offsets. (b) Maximum softness coefficient chains with no

anneal offsets. The methods for creating the plots given the nonlinear

mesh are explained in the Appendix.

values of s⋆, it decreases the number at low s⋆. Therefore no

value can be used to mimic the behavior of a lower softness

coefficient simultaneously in both regimes. This is likely due

to the more complicated structure of the chain encoded dis-
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FIG. 3. Fraction of observations for different numbers of free

gadgets against different values of reversal parameter s⋆ averaged

over all 10 Hamiltonians (recall that s⋆ is a unitless quantity). Solid

red (gray) lines with ‘X’ markers represent the mean for the plot,

while the dashed line with “+” markers is the mean of the other

plot for comparison. (a) Unlocked gadgets with no anneal offsets.

(b) Locked gadgets with anneal offsets (δs) of up to −0.04 applied to

the gadgets. The methods for creating the plots given the nonlinear

mesh are explained in the Appendix.
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FIG. 4. Fraction of observations for different numbers of soft

chains against different values of reversal parameter s⋆ averaged over

all 10 Hamiltonians (recall that s⋆ is a unitless quantity). Solid red

(gray) lines with “X” markers represent the mean for the plot, while

the dashed line with “+” markers is the mean of the other plot for

comparison. (a) Chains with maximum softness coefficient and no

anneal offsets. (b) Chains with maximum softness coefficient and

offsets (δs) of up to −0.04 applied to the gadgets. The methods

for creating the plots given the nonlinear mesh are explained in the

Appendix

crete variables. We demonstrate in Sec. II B that in contrast

to the locked versus unlocked gadget example, anneal offsets

cannot make up the difference between the minimum and

maximum values of this parameter.

A. Conditional performance

Simply analyzing solution optimality is a losing proposi-

tion, since we have designed the experiments such that, by

construction, there is no way of improving beyond the starting

condition. However, there is still hope to find high-quality

solutions which meet conditions which the global solution

does not. We define this as conditional performance, the best

performance attainable which also meets certain conditions.

Because of how the gadgets and chains have been constructed,

the condition we have chosen to analyze is how many gadgets

can be in the free configuration, or chains can be in a soft con-

figuration. This is an interesting criteria since free gadgets and

soft chains both make the solution more flexible, allowing for

modifications which can be made with little or no energy cost.

This flexibility could be important in real world scenarios, for

instance, if small changes to the solution may need to be made

after the time of solving to account for unpredictable events,

or if the annealer is being used as part of a hybrid solving

technique where difficult to encode global constraints are not

included (for an example of the latter see Ref. [6]). In Sec. III

we give an example where flexible solutions can be used to

gain an advantage when an additional nonlinear constraint is

added.

For a fair comparison, we should compare the results from

the annealer with a trivial classical strategy of simply frustrat-

FIG. 5. Energy cost per free gadget for 10 different Hamiltonians

using best performing value of s⋆ blue “+” markers are without

anneal offsets, red “X” markers are best anneal offset (including

the possibility of no offset). Red boxes and blue circles represent

mean for without and with anneal offsets, respectively, with error

bars representing standard error. Black dashed line is a guide to the

eye at a cost of 2. Energy is in dimensionless coupling units, and s⋆

is a unitless quantity.

ing the couplings between the gadgets or chain and the rest of

the problem, this “trivial” strategy leads to a cost per gadget

or chain of two energy units compared to the most optimal

solution. Solutions with a lower cost per gadget or chain are

in principle interesting solutions, whereas those which have

a higher energy than the trivial approach are not, since there

is a know method which will always attain a better solution

using the same starting information. Since the focus of this

work is proof-of-concept rather than benchmarking, we will

not explore whether or not there are other, less trivial, classical

algorithms which can have better conditional performance

than the annealer.

To start off, let us examine the conditional performance for

the Hamiltonian with gadgets inserted without using anneal

offsets. As Fig. 5 shows, even without anneal offsets the

annealer is able to outperform a trivial algorithm in all but one

case, in which the energy cost is more only if every gadget is

made free. When different anneal offsets on the gadgets are

allowed, the energy cost per free gadget never exceeds 1.5.

For discrete variables represented as domain walls [feature

used to encode the information on the chains (see Appendix)],

reverse annealing is also usually able to find a solution which

beats the trivial approach, in fact Fig. 6 shows that even with-

out using anneal offsets, the annealer was always able to find

a solution which was better than the trivial approach when the

soft region of the chain is flat [softness parameter (parameter

controlling level of fluctuations within soft range) s of 0].

Even when the region of the chain which is being searched out

is not flat, but a sloping minima (softness parameter s of 1), the

annealer is able to beat the trivial approach in most cases, and

always does both on average, and for all cases examined with

less than 14 soft chains. The results for the higher softness

parameter are depicted in Fig. 7. A full definition of s can be

found in the Appendix.

I have now shown that reverse annealing in combination

with anneal offsets can be effective at modifying solutions to

meet certain conditions, but have not elucidated why or how

this might happen, in the next subsection we examine potential

062606-4



FLUCTUATION-GUIDED SEARCH IN QUANTUM ANNEALING PHYSICAL REVIEW A 102, 062606 (2020)

FIG. 6. Energy cost per soft chain for 10 different Hamiltonians

using best performing value of s⋆ blue “+” markers are without

anneal offsets, red “X” markers are best anneal offset (including the

possibility of no offset). Red boxes and blue circles represent mean

for without and with anneal offsets, respectively, with error bars

representing standard error. Black dashed line is a guide to the eye at

a cost of 2. Softness parameter used was s = 0 in both cases. Energy

is in dimensionless coupling units, and s⋆ is a unitless quantity.

underlying mechanisms and discuss what the data can teach us

about anneal offset strategies.

B. Performance with anneal offsets and locked gadgets

It is now worth examining more closely the role which

quantum fluctuations play in conditional performance, by

comparing Figs. 6 and 7 (averages directly compared in Fig. 8

(left)). We are able to see that better solutions are possible with

a lower softness parameter s, the question not yet explicitly

answered is whether the same is true for the fluctuations the

free spins cause in the gadgets. To do this we need to compare

the “free” and “locked” versions of the gadgets, where free

spins are not possible, regardless of the configuration of ex-

ternal spins, which are described in detail in the Appendix. As

Fig. 8 (right) shows, in the absence of anneal offsets having

locked gadgets is very detrimental to performance, at least if

more than about six gadgets are desired to be free. On the

FIG. 7. Energy cost per soft chain for 10 different Hamiltonians

using best performing value of s⋆ black “+” markers are without

anneal offsets, magenta “X” markers are best anneal offset (including

the possibility of no offset). Magenta boxes and black circles repre-

sent mean for without and with anneal offsets, respectively, with error

bars representing standard error. Black dashed line is a guide to the

eye at a cost of 2. Softness parameter used was s = 1 in both cases.

Energy is in dimensionless coupling units.
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FIG. 8. Average energy cost per gadget (a) and chain (b) av-

eraged over 10 different Hamiltonians. Magenta boxes and black

circles represent mean of best performance without and with anneal

offsets, respectively, and for locked gadgets (a) or softness parameter

1 (b). Red boxes and blue circles represent the same, but with un-

locked gadgets (a) or softness parameter 0 (b). Error bars represent

standard error. Black dashed line is a guide to the eye at a cost of 2.

Energy is in dimensionless coupling units.

other hand there is barely any difference once anneal offsets

are employed, suggesting that the offsets can enhance the

fluctuations and guide the search. Conversely, the effect of an-

neal offsets seems to be rather minimal for discrete variables

encoded in chains.

The first question to ask is what is the optimal value of s⋆

for given a desired number of free gadgets and soft chains,

and how is this affected by factors like whether or not gadgets

are locked and the softness parameter used for chains, as well

as whether or not anneal offsets are used. Figure 9 shows the

optimal value of s⋆ for both gadgets and chains under different

circumstances. The first thing to notice from this figure is that,

perhaps unsurprisingly, s⋆ decreases monotonically (within

statistical uncertainty) with the desired number of free gadgets

0.3

0.4

0.5

s
⋆

(a)
0.0 2.5

0.50

0.75

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Number of soft chains or free gadgets

0.3

0.4
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0.6

s
⋆

(b)

0 2

0.50

0.75

FIG. 9. Average value of s⋆ (averaged over 10 Hamiltonians)

used to obtain optimal conditional performance with a desired num-

ber of free gadgets (a) or soft chains (b). Red and magenta squares

represent cases where no anneal offsets are used and are unlocked

(softness parameter 0) and locked (softness parameter 1), respec-

tively. Blue and black circles represent represent the cases where

anneal offsets are used and and are unlocked (softness parameter 0)

and locked (softness parameter 1), respectively. Error bars represent

standard error. In all cases the largest value of s⋆ was taken in the

event of a tie. Insets are the same plots but zoomed out. Energy is in

dimensionless coupling units.
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FIG. 10. Average anneal offset δs taken for 10 Hamiltonians.

Blue [red (lighter gray)] triangles represent Hamiltonians with un-

locked (locked) gadgets. While black [magenta (darker gray)] stars

represent Hamiltonians with chains with a softness parameter of 0

(1). Error bars represent standard error. Note that positive offsets

indicate that fluctuations are suppressed, relative to the rest whereas

negative indicates that they are enhanced. In the event of a tie, the

lowest numerical value of the offsets which gave the tying energy

were taken. Energy is in dimensionless coupling units.

or soft chains, this behavior makes intuitive sense, because

changing more variables requires a broader search. Further-

more, constant with Fig. 8, the values of s⋆ based on whether

or not anneal offsets are used differ much more for gadgets

than for chains, indicating that allowing anneal offsets greatly

changes the optimal strategy for gadgets, and does not change

it as much for chains. Furthermore, except for when about

14 or more free gadgets are desired, the optimal value of s⋆

when anneal offsets are used is almost the same for locked and

unlocked gadgets, supporting the hypothesis that increased

fluctuations from anneal offsets can act as an effective proxy

for truly free variables.

To better understand the role anneal offsets are playing,

it is worth examining how the best choice of anneal offset

depends on the number of free gadgets, or soft chains desired.

As Fig. 10 shows, the best strategy is indeed to use stronger

offsets in the locked gadget case, and to use them to enhance

rather than suppress fluctuations on the gadgets, suggesting

that there is indeed a mechanism where offsets artificially

guide the search by making the locked gadgets behave as if

they have free qubits.

Figure 10 further shows that domain wall encoded dis-

crete variables show very different behavior to the gadgets,

in particular, up to statistical uncertainty, the offsets used

in the discrete variable case monotonically approaches zero

as more soft chains are desired, while for gadgets with free

binary variables, there is nonmonotonic behavior, and a trend

toward locally enhancing fluctuations if more free gadgets are

desired. This difference is likely due to the more complex

structure of the domain wall encoded variables, leading to

less tolerance to fluctuations before they no longer faithfully

encode the intended variable.

III. MOTIVATIONAL EXAMPLE FOR FLEXIBLE

SOLUTIONS

Now that it has been shown that the underlying dynamics

of quantum annealers can be used to find solutions which are

more flexible, it is worth demonstrating an example where

such solutions could be useful. To do this, let us consider a

problem which natively fits onto the chimera graph, but is also

subject to global nonlinear penalty. Such global penalties are

likely to be encountered in realistic problems, and for example

may arise when a shared resource is being used for different

purposes and there is a penalty which depends on the total

amount required. A simple example of how such a constraint

could arise in the real world is minimizing the total cost of a

project if a company owns X number of a piece of equipment,

so there is no penalty for a solution which uses any number

up to X ; however, there is a cost associated with renting every

additional piece of equipment beyond the original X .

While techniques are known to implement global nonlinear

penalties on quantum annealers, for example, those proposed

in Refs. [46,47], these techniques require a fully connected

graph and number of auxiliary qubits equal to the number of

original qubits, and such an encoding is not practical for large

problems on existing quantum annealers. Consider first an al-

ternative strategy for solving such problems: first, encode the

entire problem except for the global penalty onto the annealer

and use reverse annealing techniques to find solutions with

various levels of trade-off between flexibility (for example,

measured by the number of free gadgets) and optimality. We

then perform greedy optimization as described in the Methods

section starting from the best solution found at each level of

flexibility. This greedy optimization is performed against the

entire problem including the nonlinear penalty.

Before considering the results for the QPU-sized problems

used in earlier demonstrations, it is worth demonstrating this

approach with a simpler 16-qubit example. To do this, con-

sider the Hamiltonian used in Ref. [29], which is in turn

similar to the Hamiltonian considered in Ref. [48]. This

Hamiltonian has both a local minimum where eight of the 16

qubits are “free,” able to exist in either the zero or one state

without incurring an energy penalty, and a global minimum

where none of the qubits are free; the (unique) ground state

and first excited state manifold of this Hamiltonian are de-

picted in Fig. 11. At least for short run times, the close avoided

crossings in these devices mean that quantum annealers will

typically find the false minimum with more free qubits due

to a close avoided crossing relatively late in the annealing

schedule [29].

We now consider the ability of the solution to adjust to

nonlinear penalties of different strength. The global nonlinear

penalty we elect to use is nonlinear function of the Hamming

distance D from a random state

E (D) = 1 − exp

{

[

D −
(

n
2

+
√

n + 1
)]2

n + 1

}

, (1)

where n is the number of qubits involved in the Hamiltonian.

The states which the annealer returns will be a Hamming

distance D = n
2

away from most random states, therefore this

penalty offsets the Gaussian from the point where a typical

solution will sit by its standard deviation,
√

n + 1. This will

guarantee that the nonlinear penalty will have a substantial

gradient for typical starting states.

Equipped with this definition let us consider the results of

adding a nonlinear penalty followed by a greedy search for
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FIG. 11. The 16-qubit gadget used in Ref. [29]. Edges represent

ferromagnetic coupling of unit strength, and circles represent qubits.

Red (and dotted borders) indicates that a qubit is subject to a field

of +1, while magenta (and dashed borders) indicates −1 and gray

(solid borders) indicates no field. In the top figure diagram the arrows

indicate the unique ground state which satisfies +1 fields on the outer

qubits but frustrates the −1 field. The bottom diagram is the first

excited manifold, where a superimposed 0 and 1 indicates that a qubit

is “free” and can take either value without affecting the energy.

the 16-qubit problem mentioned earlier. As Fig. 12 shows, it

is much easier for the greedy search heuristic to compensate

for the global nonlinear penalty starting from the higher en-

ergy but more flexible solution which the annealer finds as

compared to the true minimum; the result is that for moderate

penalty strength, the more flexible state is a superior choice

for a starting configuration.

FIG. 12. Energy in dimensionless coupling units after applying a

nonlinear penalty with a strength given by the x axis and performing

greedy search. The gold (lighter gray) line shows results for starting

from the true minimum, while the blue (darker gray) line shows

the result starting from the higher energy, but more flexible false

minimum the annealer typically finds. The dashed red line is the

energy of the true lowest energy state. Ten thousand samples were

taken for each point on this plot, and statistical error bars are smaller

than the depicted lines.

FIG. 13. Energy in dimensionless coupling units of the best so-

lution (where planted solution energy is defined to be zero) with a

different number of free gadgets versus nonlinear penalty strength.

The color encoding of the number of gadgets is depicted in the inset.

This plot is for Hamiltonian number 7 and for the best solution

found including the use of anneal offsets, although it is typical of the

behavior seen in both cases. The green (dark gray) line is included as

a visual aid and follows the state with zero free gadgets. These data

were averaged over 300 choices of random states, and in cases where

multiple states were tied for the lowest energy for a given number of

free gadgets, a new state was chosen at random for each sample.

A. Synthetic use case: Optimizing with global

nonlinear penalties

We now consider what happens when we apply a nonlinear

penalty followed by greedy search to states with different

numbers of free gadgets found for QPU scale problems. While

neither the original problem nor the nonlinear penalty is based

on anything which one might encounter in the real world,

recall that situations where a problem containing a nonlinear

penalty must be solved are realistic, and this can therefore be

considered a “synthetic” use case for a quantum annealer, not

directly based on an application, but with a structure which

is likely to be encountered in the real world. We start by

considering the best solutions the annealer could find with

different free gadget numbers for a single Hamiltonian, in this

case Hamiltonian number 7. As Fig. 13 shows, as the penalty

strength is increased to a moderate value, the best solution is

no longer obtained from starting a greedy search at the true

energy minimum, but from starting with a more flexible state

with more free gadgets. For these experiments we consider

only the best solution found with each number of free gadgets,

choosing at random in the event of a tie. All greedy searches

are performed on the unlocked gadgets, where having free

variables is likely to improve the solution quality when the

nonlinear penalty is added.

From Fig. 14 we can see that the behavior seen in Fig. 13

is indeed typical of results found both with and without an-

neal offsets, although, unsurprisingly, the cases where anneal

offsets are used perform better on average since lower energy

solutions can be found by using anneal offsets.

Finally, consider the optimal number of free gadgets in the

starting state for different Hamiltonians and penalty strengths.

Figure 15 shows that, for both the strategy using anneal offsets

and the one which does not, the typical number of free gadgets

in the best performing state increases for a while with penalty
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FIG. 14. Energy difference in dimensionless coupling units be-

tween greedy search performed with a nonlinear penalty starting

in planted solution (with no free gadgets) and the best performing

state found via reverse annealing. Panel (a) considers only solutions

found without using anneal offsets, while panel (b) is the same but

including offsets. The colored lines represent the average over all

10 Hamiltonians, and the gray squares represent individual Hamilto-

nians. Panel (c) shows only the averages, with the blue (dark gray)

circles representing the method inducing offsets and red (lighter gray

than the circles but still darker than background) squares without.

These data were averaged over 300 choices of random states, and

in cases where multiple states were tied for the lowest energy for a

given number of free gadgets, a new state was chosen at random for

each sample. Penalty strength is in dimensionless coupling units.

strength and then settles to an average across all Hamiltonians

of around seven free gadgets. While it is possible that the av-

erage number of free gadgets is slightly higher for the strategy

using offsets, the difference is relatively small. It is however

clear that for the solutions which used anneal offsets, there is a

much wider variety of solutions and, in particular, a tendency

to use some solutions with many more free gadgets.

Recall that the gadgets and chains were observed to be-

have qualitatively differently in the previous section, so the

results from gadgets may or may not carry over to chains.

The purpose of this section is to provide proof-of-concept for

the usefulness of fluctuation guided behaviors, not to provide

exhaustive evidence of how they can be used, so we will not

analyze these in detail. The data associated with this paper

however are publicly available [49], and analysis of the chain

data from the perspective of hybrid algorithms, similar to what

we have done here for gadgets, is likely to produce interesting

results.

IV. METHODS

All reverse annealing experiments were performed using

the maximum allowed annealing rate on both the forward and

reverse anneal, and at this rate the entire (forward) anneal

would be completed in 5 μs. All experiments used a hold

time τ of 20 μs. All annealer calls were set to perform 1000

individual runs. The reverse annealing experiments presented

here were performed using the D-Wave Matlab API between

27 October 2018 and 30 October 2018 on a commercially
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FIG. 15. Top: number of free gadgets in optimal solution for all

10 Hamiltonians versus penalty strength, shading indicates number

of Hamiltonians where the same number of free gadgets are optimal

for the same penalty strength; a legend for the shading levels appears

in the middle of the figure. The colored lines are the mean. Panel

(a) is the best solutions not including anneal offsets, and (b) is

including them. (c) The mean from the top two plots shown on the

same axis to compare them. Penalty strength is in dimensionless

coupling units.

available D-Wave 2000Q QPU with QPU time purchased by

BP plc. Data are publicly available at Ref. [49].

Greedy optimization was performed by checking all single

bit flips and performing the one which reduces the energy the

most, choosing at random in the event of a tie. The greedy

procedure is repeated until no single bit flip will reduce the

energy.

All plots were produced in the Python language [50] and

the matplotlib plotting package [51] l code used to produce

the plots and perform the experiments is available from the

same public repository as the experimental data. Heat-map

plots with nonlinear grids were plotted such that the center of

each cell aligns with the value of each axis. The NumPy [52]

and SciPy [53] packages were also used as well as jupyter

notebooks [54] and the IPython interpreter [55].

V. DISCUSSION AND CONCLUSIONS

In this paper, we have demonstrated how fluctuations can

guide quantum annealers to trade off optimality for more

flexible solutions, as well as motivated cases where such a

tradeoff could be useful. The particular useful case we focus

on is when a problem involved global penalties which cannot

practically be implemented on the annealer. While in the past

the tendency of quantum annealers to find solutions where

fluctuations are stronger has been seen as a weakness, for

instance, in inhibiting the ability to uniformly sample ground

states, we demonstrate ways in which it could be useful.

In addition to demonstrating that the existing fluctuations

on the annealer can help guide searches toward more flexible

states, we show that locally offsetting the annealing schedule

of the qubits can be used to guide the search. This provides

experimental motivation for methods like those proposed in
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Ref. [28], which incorporate bitwise uncertainty into algo-

rithms.

Realistic problems may have chain like structures if the

encode discrete variables, but will not contain gadgets like the

ones discussed here. Even for problems which encode discrete

variables, it will not necessarily be obvious which chains

should have the offsets applied. Identifying areas where there

is more potential for flexibility to be increased using anneal

offsets in the setting of either binary or higher-than-binary

discrete variables is an interesting problem, but one which

is beyond the scope of the current work. Techniques could

include experimental analysis to see where soft chains or free

qubit variables appear and offset those parts of the problem

Hamiltonian, but testing would need to be done to determine

whether this approach is useful or practical.

While not explored here, it is likely that analogous effects

could be seen in quantum inspired algorithms based on spin-

like systems, for example, quantum Monte Carlo techniques

[56] which should show analogous effects to the fluctua-

tions observed here. In fact, the proof-of-concept numerics

in Ref. [28] exhibited that fluctuations can attract quantum

Monte Carlo dynamics preferentially to some minima over

others. This work has introduced alternative ways in which

quantum annealers and related algorithms can be used, be-

yond directly finding the most optimal solution, an important

direction in hybrid quantum-classical computing. By laying

the groundwork for how modifying fluctuations locally can

be used algorithmically to guide a search, the work here opens

a path to using these modified fluctuation strengths algorith-

mically, in a similar vein to currently used reverse annealing

techniques, but guiding the direction of the search, rather than

the starting point.
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APPENDIX: EXPERIMENTAL SETUP

These experiments involve both specially engineered

Hamiltonians to construct a search space with the necessary

properties and the use of advanced control features of the

QPU, both anneal offsets and reverse annealing, which are

used in combination. We first describe how the Hamiltonians

are constructed, and than how they are used in the actual ex-

perimental protocols. Before we do this, it is useful to provide

some background on the operation of the quantum annealer.

In the simplest implementation of its protocol, QPU realizes a

transverse field Ising Hamiltonian

H = −A(s)
∑

i

Xi + B(s)Hprob, (A1)

where A(s) and B(s) are functions of a control parameter 0 �

s � 1, which are nonlinear in general but could also be linear

in principle, Xi is a Pauli X acting on qubit i, and Hprob is a

programmable Ising problem Hamiltonian,

Hprob =
∑

i j

Ji jZiZ j +
∑

i

hiZi, (A2)

where Zi is a Pauli Z acting on qubit i; the details of how Ji j

and hi are chosen is discussed later.

The QPU is designed so that |A(0)

B(0)
| ≫ 1 and |A(1)

B(1)
| ≪ 1,

the ratio |A(s)

B(s)
| decreases monotonically with s, and neither

A nor B schange sign during the protocol. We do employ a

more advanced feature known as anneal offsets, which slightly

changes the form of Eq. (A1) and will be discussed in due

course.

1. Hamiltonian construction

The goal of the experiments in this paper are to study the

ability of a quantum annealer to use fluctuations to find high-

quality solutions which are flexible in the sense that changing

some elements of the solution will not affect the energy of

the solution or will affect it only very little. Since we am not

developing this study as a benchmark against classical meth-

ods, we have focused on designing Hamiltonians which are

difficult to solve for the annealer and have a known solution,

but which are not necessarily computationally hard problems.

To this end, the problems used here build on the planted

solution construction from Ref. [57], which yields limited

computational hardness [58,59] (for state-of-the-art solution

planting techniques, see Ref. [60]). Furthermore, we use many

more clauses than would be desirable to construct the hardest

problems in the interest of ensuring that the problem graph is

connected and to reduce the degeneracy of the ground state

manifold.

The methods which we use, proposed in Ref. [57],

construct problems with planted solutions by generating over-

lapped frustrated loops on the edges of the underlying graph

via random walks which terminate when they intersect their

own path. We use planted solution problems with loop size

less than six and 8000 loops on a QPU with approximately

2000 qubits (some of which are reserved for specialized

features as discussed later in this section), with a coupling

arrangement known as a chimera graph. The details of this

coupling graph are not important to understand this study,

but a full description of the graph can be found in Ref. [61].

Figures 17 and 18 depict chimera graphs with a 3×3 grid of

eight qubit unit cells, and the 2000Q has the same eight qubit

unit cells arranged in a 16×16 grid.

In addition to having a known planted solution, the experi-

mental Hamiltonians also need features which can explore the

ability of the annealer to use fluctuations to find more flexible

solutions. Since we intend to study the ability to find more

flexible solutions in both a binary and discrete setting, in other

words both in the setting where a variable can take two values

and in the setting where it still takes a finite number of discrete

values, but can take more than two, two different strategies

need to be employed: gadgets where variables are allowed

to become “free” should be embedded, henceforth referred

to as “gadgets,” as well as chains of qubits which encode

discrete variables using the domain wall encoding described

in Ref. [62], henceforth referred to as “chains.”
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FIG. 16. A free spin gadget inserted into a planted solution

Hamiltonian. Green circles (dark gray) and dashed edges indicate

qubits which are not part of the gadget, while black qubits indicate

the active qubits within the gadget, with black edges indicating

ferromagnetic couplers of unit strength and red edges indicating

antiferromagnetic couplers of unit strength. Gray circles and edges

indicate the unused couplers and qubits within the gadget. Pink

(gray) is used as a guide to the eye.

Fortunately, the planted solution construction does not re-

quire a full chimera graph to be effective. This means that the

construction can be performed with some qubits reserved for

either gadgets or chains, and these features can be added in

later. The gadgets are constructed with the following proper-

ties:

(1) Couplings to neighboring qubits within the planted

solution construction

(2) A unique ground state when all external qubits which

the gadget couples to are in the |0〉 (or |1〉) configuration

(3) Degenerate ground state with free variables in cases

where the external couplings do not agree, and therefore the

planted solution components may be frustrated, and these

have equal energy to the unique state

(4) Occupy a single chimera unit cell

Figure 16 depicts a gadget which obeys these properties

embedded into a larger problem Hamiltonian. The top row of

Fig. 17 depicts the lowest energy states of this gadget when

external qubits either agree of disagree. To be able to separate

the effects of fluctuations due to free spins from other effects,

we have also developed a “locked” version of the free variable

gadget; in this version some of the couplings are reduced

to half the strength of the others so that the lowest energy

state when the external variables do not agree no longer con-

tains free variables; these are depicted on the bottom row of

Fig. 17.

To embed discrete variables, we use the domain wall en-

coding from Ref. [62] to encode a variable with 16 possible

values within a 15-qubit chain with unit ferromagnetic cou-

pling strength. For completeness, we review the domain wall

encoding at the end of the Appendix. We use the field controls

of the annealer to control the potential on this chain such

FIG. 17. Top: Minimum energy state of free variable gadget with

different configurations of external variables; left is where all exter-

nal variables agree, right is where one disagrees. Bottom: Same but

for locked gadget. Gray edges and circles indicate unused couplers

and qubits, green indicates (dark gray) external qubits, red (dark

gray, between pairs of dark nodes), and black edges indicate anti-

ferromagnetic and ferromagnetic coupling, respectively, while thick

edges indicate coupling of unit strength and thin indicate coupling

with a strength of 0.5. Superimposed 1 and 0 characters indicate free

variables. Slashes indicate frustrated couplings, with gray slashes

indicating multiple possibilities depending on the values of the free

variables.

that the 0 value of the variable (all qubits are in the |0〉
configuration) has the same energy as the minimum energy in

a “soft” region which corresponds to seven consecutive values

of the discrete variable which are randomly chosen to start

anywhere from two to six (recall that we use a convention

where the allowed values run from 0 to 15). The chain is

coupled to to the rest of the problem Hamiltonian on the first

and last qubit of the soft region, such that the planted solution

must be frustrated if the domain wall is in the soft region.

All other values of this variable have an energy which is two

energy units higher than either the minimum of the soft range

(range of values where more fluctuations are allowed) or the 0

state of the variable. Henceforth we refer to a chain where the

domain wall is in the soft region as a “soft chain.” The qubit

chain used to encode the domain wall variable is randomly

placed within the planted solution problem by performing 15

steps of a non-self-intersecting random walk on the hardware

graph; an example of a chain within the larger Hamiltonian is

depicted in Fig. 18.

The potential within the soft range is always equal to

the 0 value of the variable at the midpoint m of the range.

Away from the midpoint the potential increases such that

E (m + j) = E (m) + s| j/2|. Lower values of s allow for more

fluctuations since it costs less energy for the domain wall to

move away from the center of the chain.

For both the gadget and chain versions of the problem, 10

Hamiltonians were created at random. Other than the reduced

strength of the gadget couplings, the free and locked gadget
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FIG. 18. Chain encoding domain wall variable placed within a

planted solution problem. Black circles indicate qubits which are

part of the domain wall encoding but not within the soft range, blue

(darker gray) is a guide to the eye to indicate the soft range and the

externally coupled qubits at each end of the range. Green (lighter

gray) indicates those outside of the domain wall variable. Solid edges

indicate ferromagnetic coupling of unit strength, while dashed edges

indicate couplings which are part of the planted solution encoding.

Pink (gray) is used as a guide to the eye.

runs use the same 10 Hamiltonians. Each Hamiltonian incudes

either 15 gadgets or 15 chains.

2. Annealing protocol

The key feature of the Hamiltonians constructed for these

experiments is that they have known planted solutions. This

is crucial for the purpose of this study: to explore the ability

of the device to trade off between optimality and flexibility,

we need to start off in a state which is known to be optimal.

Fortunately the reverse annealing feature [10] allows for a

search around the planted (or any other classical) state. The

reverse annealing feature uses a protocol which starts the QPU

in a state determined by the user at s = 1, anneals to a value s⋆

held for a time τ , and then anneals back to s = 1 as depicted

in Fig. 19. Thermal dissipation allows the device to seek out

lower energy states during the reverse annealing protocol.

In addition to the reverse annealing feature, we also make

use of another feature called anneal offsets [11]. The function

of this feature is to offset the annealing parameter on different

qubits. In particular, we offset the parameter values of either

the chains or the gadgets (a subset of qubits we call g), which

makes the Hamiltonian

H = −A(s)
∑

i/∈g

Xi + B(s)

(

∑

i/∈g, j /∈g

Ji jZiZ j +
∑

i/∈g

hi

)

− A(s + δs)
∑

i∈g

Xi + B(s + δs)

×

(

∑

i∈g, j∈g, j /∈g

Ji jZiZ j +
∑

i∈g

hi

)

, (A3)

t

1

s
,s
−

δ
s

τ

s
⋆

FIG. 19. Schematic of reverse annealing protocol; solid line is

the value of s for qubits not in gadgets or chains (or all qubits in no

offset case). Dot-dashed line is the schedule for chains and gadgets

with positive δs, the dashed line is the same for negative δs. The

quantity s is unitless, and time is typically in units of μs.

where i ∈ g means that qubit i belongs to a gadget or chain

and i /∈ g means that it does not. Effectively, for a positive

value of δs the strength of the couplings and longitudinal field

terms within g as well as coupling between g and the rest of

the qubits is increased, while the transverse field within g is

decreased. For negative g the opposite happens. In simplified

terms, positive δs leads to weaker fluctuations with g, while

negative δs leads to stronger. Since the original purpose of the

anneal offset purpose was to suppress fluctuations, previous

work has focused most strongly on positive δs.

For all experiments reported here, the anneals in the reverse

annealing protocol were performed at the maximum allowed

rate, which traverses from s = 0 to s = 1 in 5 μs and a hold

time τ of 20 μs was used. As a comparison point, the energy

scale of these devices leads to natural frequencies in the GHz

range. The same parameters were used for chains and gadgets.

For all values of s⋆, we used a linearly spaced grid of 11 values

of δs evenly spaced between −0.2 to 0.2, inclusive of the end

points. Since not all qubits are capable of the full range of

offset values, the maximum magnitude allowed (positive or

negative) value was used when the desired value fell outside of

the range. Because we wanted to study extreme values of s⋆ as

well as studying more values within a region of interest where

the data were observed to change rapidly with s⋆, we chose

the nonuniform grid of 19 values of s⋆ depicted in Fig. 20.

3. Review of the domain wall variable encoding strategy

The domain wall encoding strategy used here was origi-

nally developed to undertake the research described in this

paper, since it can encode discrete variables on a chimera

graph without requiring minor embedding unlike the more

traditional one-hot strategy. Because the domain wall encod-

ing strategy has been observed to significantly out perform

the one-hot strategy on several key metrics related to em-

bedding on realistic hardware graphs, a full description of

this technique as well as numerical evidence of its superior

performance has been published elsewhere [62], and an ex-

perimental study of its comparative performance to one-hot is
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FIG. 20. Grid of values of s⋆ used in this study; dotted lines

are guides to the eyes to show the region of higher interest, be-

tween about s⋆ = 0.4 and s⋆ = 0.5. Both quantities in this plot are

unitless.

forthcoming [63]. This technique has also been used in solv-

ing quantum field theory problems using quantum annealers

[8].

In the interest of making the current paper self-contained,

we review the basics of the domain wall encoding and some

of its key features. As Fig. 21 (top), shows, the domain wall

encoding is produced by creating a linearly connected chain

of n − 1 qubit with frustrating fields on each end such that

there are n total possible domain wall locations, including

frustrating the the fields at either end, which can be thought of

as couplings between the terminal qubits and “virtual” qubits

which are constrained to take either the 1 or 0 value. As was

discussed in detail in Ref. [62], any interaction between two

discrete variables can be realized using two body couplings

FIG. 21. Top: Encoding of a discrete variable as a domain wall

position, where the domain wall is depicted in blue, real qubits in

green, and “virtual” qubits which are fixed are depicted in pink

with dotted borders. Bottom: A binary variable in the domain wall

encoding reduces to the standard qubit representation.

between the qubits in the domain wall encoding, and arbitrary

penalties can be realized by putting fields (single body terms)

on the chain. Moreover, the domain wall encoding of a binary

variable simply reduced to a normal qubit representation, as

depicted in Fig. 21 (bottom).

I am interested in simple couplings which force frustration

in the planted solution problem if the domain wall variable

takes one of its soft values, while simultaneously avoiding

the need for minor embedding. To do this, we place a single

ferromagnetic coupler between the qubits encoding the dis-

crete variables and the other qubits at each end of the soft

region. For the additional energy penalties on the chain, we

make use of the fact that a single (nonextreme) value of the

discrete variable can be penalized using a term of the form

δi = 1
2
(Zi − Zi−1). For the extreme values can be penalized in

the same way, but omitting terms which correspond to virtual

qubits. This method is described in more detail in Ref. [62],

and software for realizing these encodings can be found at

Ref. [64].
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