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ABSTRACT

The traditional statistical description of the spatial and temporal distributions of cloud droplets and
raindrops is the Poisson process, which tends to place the drops as uniformly as randomness allows. Yet,
the ‘‘clumpy’’ nature of clouds and precipitation is apparent to most casual observers and well known to
cloud physicists. Is such clumpiness consistent with the Poisson statistics? The authors explore the pos-
sibility of deviations from the Poisson distribution using temporal raindrop counting experiments. Disdro-
meter measurements during the passage of a squall line strongly indicate that a mixture of Poisson distri-
butions (Poisson mixture) provides a better description of the frequency of drop arrivals per unit time in
variable rain than does a simple Poisson model. Poisson mixture generally yields distributions different
from Poissonian. While the validity of the Poisson mixture model to smaller scales requires much finer
temporal resolution than available in this study, these results do show that one must carefully interpret the
statistical and physical meaning of average drop concentrations when the measurements are collected
through variable rain, whether observed by airborne or ground-based instruments. Statistically, the variance
in the measurements is greatly increased, due to the added variability from the rain field, thus minimizing
the reduction of the variance normally achieved by increasing the sample mean (N). In fact, in some cases
the variance of relevant distributions scales as N2 rather than N, thereby making the relative fluctuations
independent of N. Consequently, the sampling criteria proposed by Cornford are not necessarily generally
applicable. Moreover, the authors conjecture that in most clouds the distribution of drop concentrations in
small volumes may be more aptly described by a Poisson mixture rather than by a pure Poisson distribution.
This may have significant implications with regard to the droplet growth and the evolution of rain.

1. Introduction

The soothing sound produced by raindrops striking
the roof of a house has long been considered a classic
example of a Poisson process, that is, the probability of
k drops arriving per unit time on a surface is described
by the Poisson distribution (e.g., van Kampen 1992, 34).
However, closer attention at times reveals hints of a
rhythm in the rain. Presumably such pulsations have to
do with ‘‘clumpiness’’ or ‘‘patchiness’’ often observed
during a storm. While the structure of rain has been
explored using radars (e.g., Crane 1990), such analyses
have been restricted to spatial scales larger than about
1 km.

On scales much smaller than 1 km, it is usually
assumed that raindrops and cloud droplets are nearly
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evenly distributed in space to the extent allowed by
randomness. We quote from Rogers and Yau (1989,
134):

Even in a well-mixed cloud with the same average droplet
concentration throughout, there will be local variations
in concentration. In particular, if n denotes the average
concentration of droplets in a given size interval, then
the number m of such droplets in a volume V obeys the
Poisson probability law . . . .

Nevertheless, measurements in clouds often reveal com-
plex structures in drop concentrations and cloud water
contents. So what exactly, then, does ‘‘well mixed’’
mean?

To the extent that turbulence is responsible for stir-
ring, clumpiness is to be expected because turbulence
is well known to be intermittent and spotty. That is, an
initially homogeneous ‘‘blob’’ of cloud droplets (as-
sumed sufficiently light to be regarded as passive trac-
ers) will be twisted and distorted by a succession of
turbulent eddies as time progresses. The resultant
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FIG. 1. Time series of the number of drops per minute in the con-
vective, stratiform rain at Wallop’s Island, Virginia.

clumpy ‘‘structures’’ must be viewed stochastically. One
might, then, expect fluctuations in particle count to be
in excess of that implied by Poisson statistics because
of local variations in the mean concentrations, that is,
because of clumpiness. (Here the word ‘‘local’’ refers
to scales shorter than a typical clump size.) Although
perhaps less readily visualized for precipitation, rain-
drops will often experience a spectrum of air velocity
fluctuations, as well as drop interactions and differential
advection, likely to produce clustering similar to that in
clouds. With regard to raindrops, a seminal work ap-
pears to be that of Cornford (1967). By assuming that
the randomness obeys the Poisson distribution, he was
able to define precisely when a mean concentration cor-
responding to a particular drop size had been adequately
sampled. Since then, for both clouds and rain, it is gen-
erally accepted that Poisson statistics apply (see also
Gillespie 1972, 1975; Young 1993).

Yet the fine but visible ‘‘streakiness’’ of rain falling
from clouds or striking the pavement during a thun-
derstorm is a matter of common experience. That is,
over brief periods the spatial distribution of the rain-
drops no longer appears even but clumpy, with clusters
of raindrops in close proximity separated by extended
regions containing few if any drops as can be clearly
seen in the so-called sheets of rain passing across the
pavement during thunderstorms, for example.

A description of such randomness is important when
attempting to measure drop concentrations, for example,
since it is necessary to decide when the mean concen-
tration at a particular drop size has been adequately
sampled (Cornford 1967). In addition, the spatial dis-
tribution of raindrops and cloud droplets is relevant to
the evolution of rain, particularly with regard to sto-
chastic collection models (see discussion in Pruppacher
and Klett 1978).1

We propose here to test the following question:
Does the distribution of raindrop counts deviate from
the Poissonian one? To explore this, we will use the
property that the mean and variance are equal for a
Poisson distribution. In contrast, as shown below, the
variance can be greatly enhanced for a mixture of
Poisson distributions because of the additional un-
certainty introduced by the randomly varying local
mean. Our question can then be rephrased to become:
Does the variance of raindrop counts exceed the Pois-

1 A particularly vexing problem in cloud physics has been to ex-
plain the rapid broadening of drop size spectra and appearance of
the first raindrops. Theory suggests much slower development than
is actually observed. Among the proposed solutions is the notion of
‘‘ultra-giant nuclei’’ (Johnson 1982). This concept appears quite rea-
sonable and replaces the earlier notion of ‘‘statistically fortunate’’
drops (Twomey 1964). Using arguments based upon Poissonian sta-
tistics, this latter explanation has been discounted (Gillespie 1972,
1975; Young 1993). Nevertheless, if the variances of concentration
fluctuations are enhanced as in a Poisson mixture, then the original
argument of Twomey may still have some validity.

son value? To find out, we will count raindrops as a
function of time and have the data tell us whether or
not the distribution is Poissonian.

In time, the assumptions underlying the Poisson
distribution (e.g., Feller 1968, 157–159) are that the
random process is stationary, that two events are much
less likely than one or zero on sufficiently short time-
scales, and that events in nonoverlapping time inter-
vals are statistically independent. With regard to
space, the assumptions are that the probability of hav-
ing more than one occurrence in sufficiently small
volumes is negligible compared to having none or one
and that the occurrences in nonoverlapping regions
are statistically independent. One can question these
assumptions since rain evolves through the processes
of drop collision, breakup, and coalescence, leading
to possible correlations among the drops (Bayewitz
et al. 1974).

The physics of this paper is in the conjecture that in
both, time and space, the uneven and intermittent mixing
by atmospheric turbulence, among other factors, causes
clumpiness of clouds and rain on the scales of most
counting experiments. This clumpiness, in turn, is as-
sociated with correlations between drop counts corre-
sponding to nonoverlapping time (or space) intervals.
Such correlations represent departures from the statis-
tical independence assumption and, therefore, lead to
deviations from the Poisson distribution. In fact, these
correlations define what we mean by ‘‘size’’ (temporally
or spatially) of the clumps or patches of rain as deter-
mined by the appropriate coherence times.

In this study, the fundamental data are the one minute
disdrometer counts of the number of drops of a given
size as illustrated in Fig. 1. We regard such counts and
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their time series as realizations of a random variable
and random process, respectively. Indeed, an observed
time series of counts (with a single disdrometer) is but
one ‘‘realization’’ of an infinite number of such series.
While this ‘‘ensemble’’ of time series can be regarded
as stationary or even ergodic, each realization is an un-
predictable expression of time-dependent ‘‘variable me-
teorological conditions.’’2

In particular, we assume that each 1-min count is
drawn from a larger ‘‘patch’’ of rain characterized by
some mean number of drops per minute. We incorporate
the concept of rain patchiness on scales characterized
by some coherence time (say, 10 min). More precisely,
since the 1-min measurements are much shorter than
the 10-min timescale, one can argue that each 1-min
measurement is one realization of a Poisson process with
a fixed local mean associated with a particular patch.
As different rain patches pass over a detector in an
unknown and unpredictable (and therefore random)
manner, the local mean itself fluctuates, leading to a
Poisson mixture and increased variance. Throughout
this paper, the words local or instantaneous will refer
to measurement durations shorter than corresponding
coherence times.

We report in this work that the temporal distribution
of raindrops appears to be non-Poissonian at least over
the long timescales of these observations. Moreover,
we will see that such statistics are appropriately de-
scribed in terms of a probability mixture of Poisson
distributions. This finding is not just an intellectual
curiosity. For example, the validity of a measured
drop size distribution depends upon proper sampling,
as pointed out by Cornford. Thus, depending upon the
length of the observation period, sampling time, and
the coherence time (patch size), the Cornford criteria
may not always apply, particularly, if ever increas-
ingly finer resolution counts lead to ever decreasing
coherence times. Furthermore, on longer timescales,
the physical interpretation of a ‘‘mean concentration’’
itself becomes obscured by the variability (increased
variance) of the rain. This is so because a mixture of
Poisson distributions is, in general, not Poisson dis-
tributed. In fact, as we shall see, its variance no longer
scales as N (the average number of drops), but rather
as N2, which prevents convergence of the relative
counting error with progressively larger numbers of
sampled drops.

Furthermore, although this analysis is based upon
temporal measurements, there are reasons to believe
that such variability also occurs spatially as aircraft
measurements abundantly suggest. If so, it is reason-

2 Here it should be noted that small-scale inhomogeneities or clum-
piness in clouds and rain do not preclude statistical homogeneity.
The probability distribution can still be statistically homogeneous
because its moments, for example, mean and variance are unaffected
by shifts in the choice of origin (either in time or space).

able to expect that there may also be a ‘‘super-Pois-
sonian’’ variance in the spatial distribution of rain-
drops caused by clumpiness and clustering. If true,
this may be important to our understanding of the
evolution of rain, to the scattering of microwaves by
raindrops, and even to cloud and precipitation evo-
lution. For example, any additional clustering asso-
ciated with the deviations from the Poisson statistics
may not only affect the scatter and absorption of solar
and terrestrial radiation but may also lead to a more
rapid growth of a few ‘‘favored’’ cloud droplets into
the first raindrops, a critical step for the subsequent
conversion of cloud into rainwater.3

In the next section we consider drops of constant size
and begin by presenting classic Poisson statistics ap-
plicable to evenly mixed conditions when the mean con-
centration is a constant in time and space. We then pro-
ceed to the more general case when the local mean
concentration varies. Finally, these theoretical results
are used to interpret measurements of nearly uniform
size in actual rain.

2. Theory

The Poisson distribution is often derived as a limiting
case of the binomial one. This perspective, however,
tends to obscure the reasons for the pivotal place of the
Poisson distribution in describing counting processes of
physical sciences. The role of the assumption of statis-
tical independence is of particular importance to us here.
The general conditions underlying the Poisson distri-
bution are that (e.g., Goodman 1985)

1) the probability of a single event occurring during the
interval t, t 1 dt is proportional to dt;

2) the probability of more than one event in the interval
t, t 1 dt is vanishingly small for sufficiently small
dt; and

3) event counts in nonoverlapping time intervals are
statistically independent.

If these conditions are satisfied, the Poisson distri-
bution results and is given by (e.g., Feller 1968)

k¯ ¯(k) exp(2k)
p(k) 5 , (1)

k!

where is the mean value and k is the random variablek̄
(number of events). With respect to raindrops, there
are two interpretations of and k. In time, can be¯ ¯k k

3 To illustrate this point, we quote from Rogers and Yau (1989,
134): ‘‘Some statistically ‘fortunate’ drops fall through regions
of locally high droplet concentration, experiencing more than the
average number of collisions early in their development, and are
subsequently in a favored position to continue to grow relatively
rapidly.’’ Note that the super-Poissonian fluctuations in the num-
ber of collisions can significantly accelerate the fortunate droplet
growth.
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considered the mean number of drops per unit time
for the entire series of trials, while k is then the ran-
dom number actually observed during one particular
counting interval of duration t (one trial). In space,

can be interpreted as the mean concentration ofk̄
drops per unit volume, while k would then be the
number of drops actually observed in one unit vol-
ume. For such a distribution the mean and variance
are equal ( 5 ), where s2 is the variance (e.g.,2k̄ sk

Wilks 1995). Thus, the relative fluctuation (sk/ ) de-k̄
creases with increasing as that is, the more¯ ¯k 1/Ïk
drops sampled, the better.

However, if the mean concentration ( ) is an unpre-k̄
dictable, random variable in time and space, this Pois-
sonian ‘‘evenly mixed’’ model does not apply. Vari-
ability in might occur because of differential advectionk̄
among different patches having different or becausek̄
of horizontal gradients in the vertical wind shear, for
example. Also, drops of many different sizes may ac-
cidentally be nearly collocated. Because each drop size
has a different mean concentration, clustering results.
We postpone such considerations and confine ourselves
here to the simpler scenario of drops of one size. The
question, then, is how to describe the statistics when
conditions (i.e., ) are variable?k̄

Let us regard a given time series of drop counts as
one member of an ergodic ensemble of such series. This
is akin to asserting that the time series is in some sense
‘‘typical’’ so that another disdrometer nearby sampling
another realization of this ensemble would measure sta-
tistically similar features. Then the time series can be
assumed statistically stationary (homogeneous). Note
that physical heterogeneity in space–time does not pre-
clude statistical homogeneity–stationarity in the sense
that the moments (e.g., mean and variance) are unaf-
fected by the choice of space–time origin. We further
assume that a typical clump size is both much larger
than the elementary counting volume (time interval) and
much smaller than the total volume sampled (total ob-
servation time).

The Poisson distribution is a function of one pa-
rameter, the mean value (equal to the variance). There
are two natural generalizations of the Poisson process
in the statistical literature: 1) a Poisson process having
a time-dependent mean, and 2) a Poisson process with
the mean as a random variable (the so-called doubly
stochastic Poisson process or the ‘‘Poisson mixture,’’
for short).

In the first, the mean is viewed as a time-varying but
deterministic variable. As a result, the distribution for
the number of drops observed during time interval (0,
T) is given by (see Ochi 1990, 437–439)

kT

k̄(t) dtE1 2 T
0

¯p(k) 5 exp 2 k(t) dt . (2)E1 2k!
0

It is important to note that this distribution still has the
property that the mean and variance are equal.

In the second case of the Poisson mixture, however,
in (1) is no longer a constant but is itself a randomk̄

(unpredictable) variable. Indeed, consider a given time
series consisting of various rain patches each having a
constant . Then the Poisson distribution applies to eachk̄
patch as long as the elementary counting intervals are
small, compared with the patch duration. Thus, the Pois-
son distribution must be considered a conditional one;
that is, it is conditioned upon the fact that a random
count is drawn from a patch having a mean value . Ifk̄
the entire experiment duration involves several patches,
the corresponding probability density functions (PDFs)
must be added or ‘‘mixed.’’ In other words, the isk̄
itself an unpredictable and, therefore, a random variable.
Hence, aside from the variance associated with a Pois-
son distribution, there is now an additional source of
randomness introduced by the random variable . Ink̄
order to derive an unconditioned PDF of the drop
counts, we must then integrate over the probability dis-
tribution of the patches f( ) (e.g., Goodman 1985, 468–k̄
474; Mandel et al. 1964, 449–450):

` ` k¯ ¯(k) exp(2k)¯ ¯ ¯ ¯ ¯p(k) 5 P(k z k) f (k) dk 5 f (k) dk,E E k!0 0

(3)

where the vertical bar denotes conditional probability
and is the mean corresponding to each patch con-k̄
tributing to the mixture as described by the probability
density function f( ). Moreover, it is well known that,k̄
for conditional random variables (e.g., Ochi 1990, 65–
66),

5 E [s2(k z )] 1 (E[k z ]),2 2¯ ¯s ¯ k s¯ kk k k (4)

where E denotes the expectation value. Thus, the vari-
ance of a Poisson mixture is enhanced beyond that of
a pure Poisson PDF by the variance of , that is, 52k̄ sk

1 where the first term is the pure Poisson con-2 2s s¯P k

tribution, that is, 5 m [ f( ) d , and m is the`2 ¯ ¯ ¯s ∫ k k kk 0

global mean number of drops per unit volume (‘‘global’’
here refers to long times compared with the coherence
timescale).

The physical meaning is as follows. There are two
sources of randomness: Poissonian fluctuations (rep-
resented by ), which happen at a steady rain rate2sP

( 5 m held constant), and the rain rate fluctuationsk̄
themselves . These sources of randomness are sta-2sk̄

tistically independent and their variances therefore
add. As an illustration of the effect of probability
mixing, suppose f( ) is given by an exponential dis-k̄
tribution of the form

¯1 k¯f (k) 5 exp 2 . (5)1 2m m

This choice is often a good starting point because in the
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FIG. 2. The PDF of a Poisson distribution having m 5 183 min21

compared to the geometric histogram for a Poisson mixture having
an exponential PDF of , that is, f( ) 5 (1/m)exp(2 /m) and the¯ ¯ ¯k k k
negative binomial distribution for a gamma PDF of (see text) cor-k̄
responding to the same mean but with a variance of 8555 min22 and
parameter m 5 4.

absence of any other information, this is the maximum
entropy guess (the Boltzmann principle).

In passing, we note that in the case of monodisperse
rain, (5) is equivalent to an exponential distribution of
the mean rainfall rate in still air (R0):

R0 5 0.6 pD3V(D),k̄ (6)

where in this context is the mean number of drops perk̄
cubic meter and V(D) is the terminal fall speed (m s21)
of drops of diameter D. Because all the terms except

are constants in (6), an exponential distribution of¯ ¯k k
implies an exponential distribution of R0.

With (5) inserted into (3) for f( ), the integration cank̄
be readily performed to yield the geometric distribution

k1 m
p(k) 5 , (7)1 2m 1 1 m 1 1

where m is again the global (‘‘long time’’) mean number
of drops per unit volume.

The variance of the geometric distribution is (e.g.,
Goodman 1985)

5 m 1 m2,2sk (8)

and scales as m2 for large m, in sharp contrast to the
Poisson distribution. In such cases, the relative fluctu-
ation (sk/m) no longer decreases with increasing sample
mean, as opposed to the Poisson distribution. Instead,
sk/m approaches unity no matter how many drops are
counted!

Other distributions are possible, of course. For ex-
ample, if f( ) were a gamma distribution, p(k) wouldk̄
then be described by the negative binomial distribu-
tion (Ochi 1990, 438–439). That is, if f( ) is given byk̄

1
m m21 21¯ ¯ ¯f (k) 5 l k exp(2lk); l [ h , (9)

G(m)

with parameters m and h, then (3) yields

m k1 m mk 1 m 2 1
p(k) 5 ; h 51 21 2 1 2k 1 1 h 1 1 h m

(10)

where m is the global average. For such a distribution,
the parameters h and m can then be adjusted to fit the
mean, m, and the variance to a simple relation:

2m
2s 5 m 1 . (11)n m

There are several reasons that make this methodology
convenient. First, the m 5 1 case reduces to the geo-
metric distribution, while for very large m, (10) re-
duces to the Poisson distribution (Ochi 1995, 105).
Second, it has been used extensively to model bunch-
ing and clustering in other fields (Ochi 1995). More-
over, it has an appealing physical interpretation when
the exponential distribution of clumps is applicable.
Then, the m 5 1 case corresponds to t K t regime

(the geometric distribution), while for very large m
and for very long counting intervals (t K t), m may
be interpreted as t/t (number of coherence times in a
counting interval).

As an example, Fig. 2 illustrates the effects of dis-
tribution mixing for the cases of an exponential f( )k̄
for which a disdrometer measures a mean value (m)
of 183 drops per minute (min21) over a period of 600
min, and for a negative binomial distribution with the
same mean and with m 5 4. Also included in the figure
is the PDF corresponding to a pure Poisson distri-
bution with the same mean value (i.e., corresponding
to either stationary or a time-dependent Poisson pro-
cess as discussed above). The variance of the mixtures
is seen to be much larger than the Poissonian one.
The increased variance is due to the patchiness (vari-
ability) of the rain, a feature completely hidden when
computing only a mean value. For drops of one size,
this figure also suggests that the increased variance
and deviation from Poisson statistics should be strik-
ing and, therefore, readily detectable.

We conclude this section by describing one more tool,
specifically designed to detect departures from the Pois-
sonian behavior. For a general statistically stationary
random process in time, the joint probability P(1, 2) of
detecting two droplets in very short nonoverlapping
time intervals of durations dt1 and dt2 is

P(1, 2) 5 ( )2[dt1dt2 1 h(t)],k̄ (12)

where h(t) is the excess two-point correlation function
and t is the lag time between the two intervals (e.g.
Mandel et al. 1964). The h(t) is defined as
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FIG. 3. Contour plot of the data of List et al. (1988) in light strat-
iform rain. The contours are in drops per minute as functions of drop
size and time.

FIG. 4. Similar to Fig. 3 except for the data from the NASA Wal-
lop’s Island flight facility.

2[k(t)k(0) 2 m ] k(t)k(0)
h(t) [ 5 2 1. (13)

2 2m m

Note from (12) that the assumption of statistical inde-
pendence of counts in nonoverlapping time intervals
implies h(t) 5 0. Equivalently, from the definition of
h(t) in (13), it can be seen that the two-point autocor-
relation function is zero in the absence of correlations
(the Poissonian case). Hence, it is the violation of this
statistical independence assumption and the presence
of correlations that is characteristic of clumpiness of
rain or bunching of raindrop arrival times. Conse-
quently, clumpiness can be detected by measuring h(t)
directly for various delay times.

3. Analyses of observations

The definition of f( ) in (3) implies that over somek̄
temporal duration or spatial extent there is a definable
characteristic ‘‘coherence time’’ (distance) to the mea-
surements over which may be considered approxi-k̄
mately constant. We will use this coherence time as a
measure of patch size. In order to estimate the of ak̄
patch, the counting interval t must be smaller than the
coherence time t of the patch of rain, so that many trials
can be performed. On the other hand, the full description
of f( ) requires that the entire observation period T bek̄
much larger than t. Hence, in order to estimate f( ) withk̄
sufficient resolution and accuracy, we must satisfy

t K t K T. (14)

The question then is how do such criteria apply to real
measurements? It appears that under some circumstanc-

es, these criteria are met for data collected by a Joss–
Waldvogel (JW) disdrometer (Joss and Waldvogel
1967). This instrument determines the size of drops as
they impact a surface, places them in a size bin category,
and counts the number in a bin over a period of time,
typically 1 min. In this work we consider two sets of
data, one being the passage of a squall line over Wallop’s
Island, Virginia, and a second being measurements by
List el al. (1988) in ‘‘streaky,’’ light stratiform rain.

These data are illustrated in Figs. 3 and 4 as contour
plots of the number of drops per minute as a function
of time and drop size. Figure 3 represents the data of
List et al. (1988) collected over a 33-min period during
‘‘. . . intermittent, streaky warm/cold rain from a mul-
tiple stratiform deck. . . .’’ Figure 4 represents a much
more extensive set of data (almost 900 min or 15 h)
collected during the passage of a squall line (at about
240 min) across the National Aeronautics and Space
Administration (NASA) flight facility at Wallop’s Is-
land, Virginia, in June 1996. Most of the rain event
appears to be due to weakly convective stratiform clouds
associated with the squall. In Fig. 3 there is clear evi-
dence of patches having timescales (t) on the order of
2–3 min. In Fig. 4, the fluctuations in the contours also
suggest fine-scale structures.

In order to define more objectively a timescale for
the patches, we calculate the normalized autocovariance
function (Fig. 5a) of the time series of 1-min counts for
different drop sizes during the period of more intense
rain from about 240 to 500 min (see Fig. 5). The nor-
malized autocovariance is defined as

2[k(t)k(t 1 L) 2 m ]
cov[k(t), k(t 1 L)] 5 , (15)

2 2k 2 m
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FIG. 5. Cov{(K(t), K(t 1 L)} 5 {,K(t)K(t 1 L). 2 ,K.2}/{,K2(t). 2 ,K.2} for lags L and for (a) the Wallop’s Island data for
four different drop sizes. There is a coherence time, t ø 10 min, for these data. (b) For List’s data, t ø 2 min.

where L is the time lag. From sizes of 1.33 up to 3.2
mm diameter, the autocovariance drops to (1/e) at about
10 min for the Wallop’s Island data. Consequently, we
choose that time as the temporal patch size. Since t 5
1 min, t 5 10 min, while T 5 900 min, the Poisson
mixture criteria (14) are satisfied. On the other hand,
for List’s data (Fig. 5b), t is about 2 min, so that t, t,
and T only partially meet the criteria (14).

The effect of rain clumpiness is evident in the his-
tograms of minute by minute counts as illustrated in
Fig. 6 where Poisson distributions corresponding to each
mean (m) are also plotted. Clearly, in all three examples
from the Wallop’s Island data, the observed distributions
are considerably broader (by factors of 10–100 in some
cases) than would be the case if the statistics were those
of a Poisson process. In other words, it appears that

1) the statistics are not consistent with either a station-
ary or a time-dependent Poisson process;

2) the results may perhaps be described by a Poisson
mixture (because the geometric PDFs fit the data
reasonably well in spite of using no adjustable pa-
rameters); and

3) the variance is dominated by the rain variability
(variance of ).k̄

Although it is impossible to prove the validity of the
second point rigorously, we can test the consistency of
the argument by constructing Poisson mixture approx-
imations to some data using t 5 10 min as a definition
of patch size. Two examples are given of this consis-
tency test. In the first, we consider a 262-min period at
the time of the most intense rain (see Fig. 4). We take
26 10-min averages to estimate the mean number of
counts, which are then used to define f( ) in (3). Thek̄

Poisson mixture is calculated next and plotted along
with the ‘‘equivalent’’ Poisson distribution (defined as
Monte Carlo simulated time series having the observed
mean value during that period). The results are illus-
trated in Fig. 7. The Poisson mixture essentially repro-
duces the observed mean, explaining about 85% of the
observed variance, while the Poisson PDF captures only
about 4% of the variance. If we then consider the entire
900 min of measurements and repeat the process, the
Poisson mixture closely reproduces the observed dis-
tribution (Fig. 8), capturing about 93% of the variance.
On the other hand, the Poisson PDF (stationary or time-
dependent) is clearly inadequate.

With regard to List’s data, Fig. 9 also suggests that
the Poisson distribution having the observed mean does
not fit these data well. On the other hand, the geometric
distribution, having the observed mean (like the Poisson
distribution) and using no additional information, ap-
pears to fit the data relatively well. Unfortunately, t and
t are comparable and it is not possible to determine
f( ) with sufficient clarity to calculate a meaningfulk̄
Poisson mixture approximation. (This example dem-
onstrates the need for finer temporal resolution in such
disdrometer measurements.)

However, this is not to say that the Poissonian ap-
proach is always invalid for the 1-min time series. Fig-
ure 10a illustrates the time series of counts correspond-
ing to 1.66-mm drops over a 180-min period of unusu-
ally steady drop flux during the postconvective strati-
form rain (Wallop’s Island data). The observations at
the top are almost equal to an equivalent Poisson dis-
tribution, that is, to a random number–generated Poisson
distributed time series with the same mean as that of
the data (10.03 min21). This is consistent with the near
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FIG. 6. The observed histograms of the number of drops per minute
at three different drop sizes at Wallop’s Island having the indicated
means m and variances s2. Poisson PDFs having the observed means
(and corresponding to a time-dependent Poisson process) and geo-
metric PDFs are also plotted for comparison. In all cases, the observed
distributions are considerably broader than would be expected for
time-dependent Poisson processes.

equality between the observed mean and variance
(11.61). The ‘‘near’’ Poisson nature of the observations
at this one size during this interval is also apparent in
the similarity between the data histogram and the equiv-
alent Poisson distribution (Fig. 10b). It is important to
note, however, that correlations on a scale of, say, 10
s, are ‘‘washed out’’ in such 1-min time series and are
difficult to detect without having finer temporal reso-
lution.

This analysis is further confirmed by the calculation
of the excess two-point autocorrelation function h(t)
presented in Fig. 11 and defined in (13). The ‘‘theoret-
ical’’ value is simply meant to illustrate that h(t) is
identically zero in the Poissonian case. As anticipated
in Fig. 10, h(t) is seen to be nearly identically zero for
the 1.66-mm-size data. On the other hand, the 1.33-mm
size data are consistent with the non-Poissonian char-

acter of the data in Fig. 6c. The non-Poissonian ‘‘bunch-
ing’’ of drops is most apparent for the larger 1.91-mm
size where correlations are not only the strongest but
also occur on a shorter timescale, as expected for con-
vective storms.

The transition from the Poisson mixture to a pure
Poisson distribution is explored in Figs. 12a–c. The
1.11-mm-size histograms are compared using the en-
tire 900, 300, and 50 min (the latter intervals, being
centered on the 445th minute, do not include the
squall line). The pattern illustrates the transition from
the geometric to the Poissonian distribution as the
experiment duration (T) decreases. This pattern is
well characterized by the changing shape of the neg-
ative binomial distribution of (10) as the parameter
m increases from 1 (for the geometric distribution) to
a large value of 70 (recall that the Poissonian ap-
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FIG. 7. A comparison of the observed histogram of the number of
drops per minute and the PDFs expected for Poisson (dashed line)
and Poisson mixture (solid line) processes at a drop size of 1.33 mm
during the 262-min period of intense rain when the number of drops
(N) per minute $27. The Poison mixture of 26 Poisson distributions
(corresponding to t 5 10 min) is in good agreement with observa-
tions.

FIG. 8. Similar to Fig. 7 except that these plots correspond to the
entire 900 min of Wallop’s Island data and the Poisson mixture is a
combination of 90 Poisson distributions (corresponding to t 5 10
min.).

FIG. 9. A comparison between the observed histogram and the
PDF expected for the time-dependent Poisson process (solid line)
derived using List’s data. The geometric PDF (dashed-dot line)
based solely on the mean value provides a better approximation
to these data. It was not possible to construct a Poisson mixture
because the coherence time t 5 2 min is too close to the sample
time t.

proximation is recovered in the limit of very large
m). The value of m was chosen to fit the observed
variance and mean according to (11).

4. Concluding remarks

The results of this case study indicate that the effect
of the variability (patchiness) of rain on drop sampling
appears to be best described in terms of a Poisson mix-
ture, at least on the timescales of these data.4 Such a
description, in our opinion, is preferred to the time-
dependent Poisson description that yields results anal-
ogous to those of Cornford (1967).

In particular, a time series of counts of drops around
1.33 mm diameter is shown in Fig. 13. Using a locally
weighted linear regression fit, we then compute a
smooth ‘‘mean’’ curve to the data (heavy solid line
in Fig. 13) and subtract this mean curve from the data
to yield a time series of residual fluctuations. Cal-

4 Our approach was inspired by the ‘‘light bucket’’-antenna
analogy (. . . to collect the light from the star like rain in a bucket
and pour it onto the detector.’’ (see Hanbury Brown 1974, 5), and
by the Poisson mixture derivation of the Bose–Einstein (geomet-
ric) distribution by Mandel and et al. (1964). There, the mean
light intensity is analogous to the mean rain rate, and raindrops
arriving at a disdrometer are similar to photons arriving at a pho-
todetector. Our clumpiness of rain is then analogous to the famous
wave noise of Einstein, that is, mean intensity fluctuations of the
blackbody radiation caused by random interference (similar to
Rayleigh fading of radar echoes).

culations show that the mean values of the data and
mean curve are nearly identical (28.17 vs 28.23
min21, respectively), while that for the fluctuations is
near zero (20.06 min21). Moreover, calculations show
that the fluctuations are uncorrelated. The total vari-
ance of the data (449.4 min22) is nearly equal (to
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FIG. 10. (a) Time series of counts of 1.66-mm drops compared
to an equivalent (i.e., the same mean value) Poisson time series
during a time of unusually constant flux. (b) The histogram of the
time series observations compared to the equivalent Poisson dis-
tribution.

FIG. 11. Plots of the excess two-point autocorrelation function (see
text) during the passage of a squall line for two different sizes of
drops. The open circles correspond to 1.66-mm size drops (see Fig.
10) during a period of unusually steady flux after passage of the
squall line.

within 99%) to the sum of the variance of the mean
fit (410.9 min22) and that for the residual fluctuations
(34.6 min22). In addition, this latter variance is very
near the mean, in agreement with (4). Thus, it appears
that (3) is essentially satisfied, consistent with the
Poisson mixture hypothesis. We must emphasize that
simply because one can derive a mean curve by post-
processing the data does not imply that the original
data statistics are then those of a time-dependent Pois-
son process. Indeed, at the time of experiments, the
local mean variation is unpredictable and must, there-

fore, be viewed as an additional source of random-
ness.

What this work shows, then, is that given a time series
of drop counts, the best strategy for estimating the mean
is not always the standard (Cornford) approach of add-
ing up samples. As Fig. 13 illustrates, the uncertainty
in the estimated mean may actually increase as the sam-
ple size is increased when local conditions are highly
variable. In such situations it may be beneficial to iden-
tify appropriate coherence scales based on a time-series
methodology.

In the Wallop’s Island data analysis we assumed
(based on the data autocovariance functions) that the
1-min measurements over a 10-min period on average
are all drawn from a Poisson distribution having an
approximately constant mean. It should be remem-
bered, however, that the convective, stratiform rain
sampled here may have had unusually long autoco-
variance times and that the 1-min samples may have
somehow masked some of the true variability. After
all, fluctuations on scales finer than 10 min are evident
in Fig. 1. In this analysis we attributed many of these
fluctuations to random sampling from a Poisson dis-
tribution having a characteristic time scale of about
10 min. Yet when looking at the data of List (Fig. 4)
and at enlarged displays of the squall line data (Fig.
14), there are strong suggestions of structures on the
scale of 2–4 min, consistent with List’s data and very
near the time resolution limit of disdrometers. With
improved resolution (several seconds instead of min-
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FIG. 12. Histograms of counts of 1.11-mm drops as functions of
the length of sampling time (T) compared to equivalent (i.e., the same
mean value) fits for Poisson, geometric, and negative binomial pdfs.
Note that as T decreases the histograms undergo a transition from
(a) nearly geometric for 900 min, (b) to approximately negative bi-
nomial (m 5 3) for 300 min, and (c) to nearly Poisson for 50 min.
Here, m 5 70 for the negative binomial in (c).

utes), it is not unreasonable to speculate that a con-
siderable reduction might occur in the characteristic
autocovariance times (e.g., from several minutes to
several seconds). How would such fine structures in-
fluence the sampling strategy for determining mean
drop concentrations and drop size distributions?

This analysis shows the importance of rain variability
on sampling. Increased variability, whether experienced
by an aircraft flying through both stratiform and con-
vective cores during sampling or by disdrometers as
complex storms pass overhead, obviously leads to in-
creased uncertainty in the interpretation of a mean. At
the bottom of Fig. 8, for example, the 900-min mean
value is about 25 drops per minute, but the standard
deviation of the distribution is still 33 drops per minute
(even after 900 min). As the variance expressions (8)

and (11) show, the traditionally assumed 1/ N depen-Ï
dence of the relative sampling error on the total number
of drops (N) cannot be safely assumed when conditions
are changing rapidly.

The very meaning of a drop size distribution be-
comes sensitive to the counting duration in such cases.
For instance, if long times are required to collect an
adequate sample of large drops, what then happens to
the uncertainty associated with the mean of smaller
drops? It appears likely that the Poissonian treatment
of raindrop sampling statistics implied by Cornford
will not always apply, and that the appealing and sim-
ple sampling criteria requiring 23 drops per bin size
may, at times, not only miss the importance of the
effect of variability on the measurements but may
actually lead to increased uncertainty in the mea-
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FIG. 13. Joss–Waldrogel disdrometer time series data corresponding
to a mean drop diameter of 1.33 mm with an overlay of a least square
error fit (solid line). Here m is the mean number of drops per minute
over all the data, s2 is the variance of the observed data, is the2̄sk

variance of the mean fit, and is the variance of the residual2sfluc

fluctuations (very close to m). The fact that s2 is very nearly equal
to the sum of and suggests that the Poisson mixture model is2 2¯s sk fluc

applicable in this instance.

FIG. 14. Contour plot of 30 min of data from Wallop’s Island
showing what are apparently 2–3-min fine-scale structures similar to
those found in List’s data. The dashed lines are intended to highlight
apparent approximately 3-min structures (impulses) in the observa-
tions.

surements of other smaller drops. This is explored
further in Jameson and Kostinski (1997).

From the meteorological perspective, raindrop bunch-
ing can be visualized in several ways. For example, one
patch at one height might pass over patches at lower
altitudes. In addition, patches may overlap because of,
say, differential advection among clusters at different
altitudes in the presence of vertical wind shear or when
there are horizontal gradients in the vertical wind shear.
Consequently, when one imagines overlapping patches
particularly across spectrum of sizes, it is not hard to
visualize the possibility of a real, clumpy mixture of the
actual drops.5

However, at this stage, one must regard such sug-
gestions as speculative. Anyone who has seen the one
or two second ‘‘waves’’ of drop concentrations apparent
either as visible attenuation aloft or as increased splash-
ing on the pavement during a thunderstorm knows that
the detection of such features probably requires a count-
ing resolution on the order of seconds rather than the
minutes of these data. In lieu of such high-resolution

5 An intriguing possibility is that the bunching associated with
deviations from the Poisson statistics may also lead to nonex-
ponential interarrival (waiting) times. Indeed, the exponential
probability distribution of waiting times between consecutive drop
arrivals is but another characterization of a stationary Poisson
process (e.g., Ochi 1990). Bunching of drops causes departures
from the exponential distribution that should be detectable when
arrival times are recorded.

disdrometer measurements, one might anticipate that
physical clustering of raindrops would alter their cor-
relation functions or the arrival times, causing readily
detectable deviations from those anticipated for a Pois-
son distribution.
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