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ABSTRACT

For M drop size categories, rain is frequently viewed simply as the superposition of M, statistically independent
Poisson-distributed drop fluxes each described by its own mean concentration. Implicit in such a Poissonian
model is the assumption of uncorrelated counts among the drops. However, it is well known that drop size
distributions are the result of the processes of collision, coalescence, and breakup, which should lead to cor-
relations.

This inconsistency is resolved in this work. Using 1-min disdrometer measurements, two-point cross-correlation
functions are used to show that drop counts at different sizes are correlated rather than independent. Moreover,
it is argued that it is more appropriate to characterize rain statistically as a doubly stochastic Poisson process
(Poisson mixture) among a collection of M correlated random variables (fluxes) each having its own probability
distribution of unpredictable (random) mean values and its own coherence time, t M.

It is also shown that a drop size distribution has a characteristic coherence time, t . It is then argued that in
order to preserve the purity of a size distribution of interacting drops, t must be equivalent to the shortest t M.
For sampling intervals much shorter than t and when the observation time, T, is less than t , the drop counts
remain correlated and the drop size distribution assumes the definition of a collection of physically interacting
drops. On the other hand, when T k t , the drop counts decorrelate and the concept of the drop size distribution
changes to a formal relation among the M observed drop concentrations averaged over several different size
distributions. Moreover, when T is between the longest and shortest t M, part of the observed distribution will
represent the distribution of interacting drops and the other part will represent a mixture of drops from different
distributions.

Finally, this work suggests using multiple time series analysis techniques for estimating mean drop concen-
trations in order to use all the available information and to help reduce drop size distribution mixing associated
with the conventional analysis based on fixed time intervals.

1. Introduction

The observation by Marshall and Palmer (1948) that
the mean concentrations of drops of different sizes obey
a simple mathematical formula (the drop size distri-
bution) was fundamental in establishing the potential
quantitative application of radar and other remote sens-
ing devices to the measurement of rain. However, rather
than just being a formula, drop size distributions are
often considered to be physical entities. Studies over
the last 40 years (e.g., see Pruppacher and Klett 1997)
indicate that given enough time, a collection of inter-
acting drops will naturally evolve toward an ‘‘equilib-
rium’’ distribution through the processes of collision,
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coalescence, and breakup. The physics and resulting
mathematical descriptions of drop size distributions, in
turn, imply that there should be statistical correlations
among the different drop sizes (Bayewitz et al. 1974).
However, it is not clear that equilibrium conditions ever
prevail in the real atmosphere (Srivastava 1971; Valdez
and Young 1985; Hu and Srivastava 1995). Hence, the
first of three questions is, Are drops of different sizes
correlated in the real atmosphere?

The second question concerns the measurement of
drop size distributions using drop counts assigned to
data bins characterized by some mean size. Because of
the stochastic arrival of raindrops at a counter, some
averaging is always used to improve estimates of the
‘‘means’’ and to suppress statistical fluctuations. Our
second question, then, is, How much averaging is ap-
propriate?

There are divergent responses to this question. For
example, Marshall and Palmer deduced a family of drop
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FIG. 1. The 1-min rainfall rates measured during the passage of a
squall line at Wallop’s Island, Virginia.

size distributions by combining measurements gathered
in many clouds during an entire summer. Similarly, Joss
and Gori (1978) believe that ‘‘stable’’ drop size distri-
butions appear only after combining several 1-min dis-
tributions. On the other hand, others (e.g., Sheppard and
Joe 1994) describe the detailed features of 1-min dis-
tributions. Our third question, then, is, Are all of these
‘‘true’’ drop size distributions in the sense of physical
entities exhibiting correlations among the different drop
sizes? This and the first question are considered in the
next section.

2. Measurements and interdrop correlations

Before proceeding, it is worth noting that the math-
ematical description of a drop size distribution depends
upon accurately estimating the arithmetic mean con-
centration of drops in each of the different size bins.
However, when estimating any temporal arithmetic
mean, it is usually assumed that

1) the process is stationary (specifically, the local mean
does not vary) and

2) the samples are statistically independent.

If these conditions are satisfied, then the distribution of
the arithmetic sample mean approaches a Gaussian
probability distribution while the variance of the sample
mean decreases inversely with the number of samples,
in accordance with the Central Limit Theorem, regard-
less of the underlying probability density functions. Of-
ten, however, condition (2) may only be partially sat-
isfied in so far as sequential ‘‘samples’’ of the mean are
correlated during the interval it takes to reach the ‘‘time
to independence.’’ As an example from a different field,
estimates of the mean radar reflectivity factor, Z, are
computed assuming that condition 1 is satisfied during
the sampling period using a certain number of ‘‘cor-
related’’ samples having a time to independence defined
by the autocorrelation function (e.g., Atlas 1964). Here
it is shown that raindrop counts are also similarly cor-
related in time.

In this study, the fundamental data are disdrometer
counts of the number of drops of a given size for many
different size categories. The data are from a Joss–Wald-
vogel disdrometer (Joss and Waldvogel 1967) located
at Wallop’s Island, Virginia, at the National Aeronautics
and Space Administration (NASA) Flight Facility. This
instrument determines the size of drops as they impact
a surface, places them in a bin identified by a mean drop
size, and counts the number of drops in every bin over
a sample period, typically 1 min. However, drop impacts
produce a ‘‘ringing’’ in the detector that not only causes
a ‘‘dead time’’ in the instrument but also induces a de-
correlation among size bins and within each bin as a
function of time. For each bin, this dead time depends
upon the flux of similar and larger sized drops. Thus,
smaller drops will be most strongly affected, so that
throughout this work only drops larger than about 1.11-

mm diameter are considered. While the counts can be
adjusted (see Sheppard and Joe 1994), this correction
scheme introduces correlations among the various drop
sizes as we shall show below. Consequently, in a sta-
tistical study such as this, we, like others (e.g., Tokay
and Short 1996), adopt the more conservative approach
of not correcting for this dead time.

Specifically, in this work data collected during the
passage of a squall line over Wallop’s Island, Virginia
(Fig. 1, also see Fig. 4 in Kostinski and Jameson 1997,
hereafter referred to as Part I), are considered. These
data consist of two parts, the first from 240 to 300 min
being dominated by rain in a thunderstorm and the sec-
ond (300–778 min) being characteristic of postconvec-
tive, stratiform rain.

Using these data and the concept of the excess two-
point autocorrelation function for drops of one size, it
is shown in Part I that the number of drops, k, occurring
in interval Dt at time 0 and those occurring during Dt
at a later time t are correlated. Specifically, the excess
two-point autocorrelation function [a slight modification
of that in Peebles (1980)] is defined by

2[k(0)k(t) 2 m ]
h(t) [

2m

k(0)k(t)
5 2 1, (1)

2m

where m is the long-term mean over the entire period
of observations. In reality, the drop flux is always
random. While the drop flux varies from moment to
moment, for a statistically stationary process the av-
erage number of drops during Dt over the entire ob-
servation period T still remains constant. That is, as-
suming k(0) and k(t) are statistically independent, as
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FIG. 2. The two-point excess autocorrelation function of drop
counts per minute for the Wallop’s Island data in Fig. 1 (a) using
data not corrected for the disdrometer dead time and (b) using data
corrected for dead time (after Fig. 11 in Kostinski and Jameson 1997).

they would be for a Poisson distribution, k(0)k(t) 5
m 2 so that h(t) 5 0. On the other hand, a positive h(t)
indicates and, indeed, defines bunching as discussed
toward the end of this paper. This is what is shown
in Part I and is illustrated here in Fig. 2.

In this plot ‘‘corrected’’ means that the scheme given
in Sheppard and Joe (1994) was used to account for the

dead time of the disdrometer. Clearly, such a correction
enhances the correlations beyond those shown in Fig.
2a so that using the ‘‘uncorrected’’ measurements rep-
resents a conservative underestimate of the actual cor-
relation. Yet both parts of Fig. 2 show significant excess
correlation, albeit decreasing in time. Because of this
decreasing correlation, Kostinski and Jameson (1997)
define a time to independence that varies depending
upon the meteorological conditions. Consequently, Kos-
tinski and Jameson (1997) define a ‘‘rain’’ patch with
respect to drops of one size. That is, in a manner exactly
analogous to the radar estimation of a mean Z, station-
arity applies within a ‘‘patch,’’ but the sequential sam-
ples are correlated so that the uncertainty—that is, the
variance of the sample mean estimate—does not de-
crease as rapidly as 1/N, where N is the number of
samples of the mean concentration used in the estimate.

However, the fundamental question here goes beyond
these previous results, namely: Are the counts of drops
of different sizes correlated in time? If so, it can be
argued that the concept of drop size distribution applies
to collections of interacting drops in the atmosphere. To
investigate, we modify (1) to include different size
drops. Accordingly, h(t) now becomes V(t) given by

[k (0)k (t) 2 m m ]1 2 1 2V(t) [
m m1 2

k (0)k (t)1 25 2 1, (2)
m m1 2

where k1, m1 and k2, m2 correspond to two different drop
sizes. If k1 and k2 are statistically independent, then V(t)
5 0 whereas if V(t) ± 0, k1 and k2 are correlated. Results
for the Wallop’s Island data are shown in Fig. 3.

Clearly, the counts among different drop sizes are
correlated in time implying that drop size distributions
(as collections of interacting drops) are probably real.
In other words, the answer to our first question is ‘‘yes,’’
drops of different sizes in the real atmosphere are cor-
related over some timescales as one might expect for a
drop size distribution. However, in response to our third
question, Fig. 3 shows that these correlations obviously
decrease with time implying that there will be little if
any correlation among drop sizes after the observation
time, T, exceeds some coherence time, t , for a drop size
distribution. When T k t , the calculated drop size dis-
tribution cannot be viewed as a consequence of physical
interactions but instead becomes a convenient formal
description of the average relation among mean values
of drop concentrations. Thus, seasonal drop size distri-
butions should not be viewed the same way as a col-
lection of physically interacting drops simulated in nu-
merical models. Moreover, such long-term, average dis-
tributions may not exist in reality.

While Fig. 3 suggests that coherence times can be
defined for drop size distributions, what do they rep-
resent and what are their values? The latter part of this
question is investigated first in the next section.
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FIG. 3. The two-point excess cross correlation of raindrop counts
between 1.33-mm size drops and those at the other indicated diam-
eters.

FIG. 4. A stacked time series of disdrometer counts of the number
of drops per minute of the indicated mean size detected after the
passage of a squall line over the NASA Flight Facility at Wallop’s
Island, Virginia. The scales corresponding to each drop size are in-
dicated on the left with (0,200) at the bottom up to (0,20) at the top
for the 1.11- and 1.91-mm drops, respectively.

3. Coherence times for drop size distributions

Results in the previous section suggest that there ap-
pears to be a coherence time (t) over which drop size
distributions change so slowly that they may be con-
sidered nearly statistically stationary—that is, it is now
reasonable to define a drop size distribution patch anal-
ogous to the rain patch defined in Part I. To estimate a
coherence time for a drop size distribution, it is nec-
essary first to estimate mean concentrations at the dif-
ferent drop sizes as discussed earlier. The only approach
that the authors are aware of is that of calculating mean
values over fixed time intervals (blocked observation
times). For reasons discussed later, we instead extract
estimates of mean drop concentrations using multiple
time series analyses.

An example of these data is illustrated in Fig. 4 as a
stacked time series of drop counts per minute during
the second (stratiform) time period for sizes ranging
from the smallest used in this study (1.11 mm) up to
the largest (1.91 mm) occurring with significant fre-
quency after the passage of a thunderstorm. While the
fluctuations are obvious, so is the correlated behavior
among neighboring times. Rather than throwing away
this information, as is usually done when treating each
observation time block as an isolated entity, a local
weighted, least squares error algorithm (Cleveland and
Devlin 1988) is used to define curves of mean number
of counts per minute (fits) as functions of time. These
fits are then superposed on the times series data as il-
lustrated in Fig. 5a. Even at this stage of the analysis,
there appear to be correlations among these fits at dif-

ferent sizes. That is, ‘‘peaks’’ and ‘‘valley’’ are present
nearly simultaneously at several different drop sizes.

Subtracting these fits from the time series data then
leaves time series of fluctuations. As Kostinski and
Jameson (1997) found for single-sized drops, however,
the mean values of these fluctuations are indeed near
zero and are uncorrelated. Furthermore, it is shown here
that the fluctuations among the different drop sizes are
also uncorrelated. Specifically, Fig. 6 illustrates the cor-
relation coefficients among the fluctuations and the
mean counts (fits) at all different sizes for these time
series data. In all cases the fluctuations are indeed un-
correlated on the 1-min timescale. This is significant for
two reasons. First, these results imply that one cannot
simply take 1-min measurements of drop counts and
expect to compute meaningful ‘‘instantaneous,’’ 1-min
distributions because the fluctuations will likely mask
any underlying drop size distribution. Second, the very
high correlation among the mean values (fits) over all
of these different drop sizes suggest that at times there
is indeed coherent behavior among different sizes of
drops, reaffirming the results in Fig. 3. It is important
to remember, however, that the results in Fig. 3 are
derived entirely from the ‘‘raw’’ data and not the pro-
cessed data illustrated in Fig. 5.

An analysis of fluctuations is used in order to estimate
the ‘‘coherence’’ times associated with such behavior.
To start, an ensemble of time series of these fluctuations
is computed in which each member of the ensemble
corresponds to different time blocks or observing times.
That is, rather than taking 1-min data, successive counts
are combined over 2 min, 3 min, etc., and a curve of
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FIG. 5. Similar to Fig. 4 except that (a) is a plot of the least squares
error mean curves corresponding to the different drop sizes and (b)
is a plot of the residual fluctuations left after subtracting the mean
curves from the raw time series data.

FIG. 6. The correlation coefficients among the different drop sizes
for the mean values (top) and residual fluctuation components plotted
in Fig. 2. The differential diameter is the difference in diameter be-
tween other drop sizes and the selected drop size listed in the legend.
Note that the correlation coefficients for the fluctuations indicate that
even neighboring drop sizes are uncorrelated while the means are all
highly correlated.

mean counts is fit. These are then subtracted from the
reblocked data to calculate residuals. The idea is that
when the time blocks begin to exceed t , the residuals
should no longer be entirely statistical fluctuations but
should now begin to incorporate some of the variations
of the ‘‘real’’ average structure. Consequently, assuming
such structures should apply equally to all the drops (as

Fig. 6 suggests), the residuals among different drop sizes
should begin to correlate as the time block exceeds t .
Indeed, that appears to be the case as Fig. 7 illustrates.

The results for the thunderstorms in the squall line
are shown in Fig. 7a, illustrating the correlation coef-
ficients among drops as functions of the differential di-
ameter DD. During this time, it appears that the residuals
quickly decorrelate so that t , 2 min. This is not sur-
prising since in thunderstorms one would expect to find
rapidly changing mean counts over the many different
scales of convection. (These short coherence times,
however, have some interesting implications that are
best discussed at the end of this work.) In contrast,
during the stratiform rain (300–778 min), when con-
ditions change much more gradually, Fig. 7b indicates
that 10 # t # 15 min. That is, the coherence times are
much longer. This, in turn, suggests that the sampling
times used to estimate drop size distributions must be
adjusted depending upon conditions. Before exploring
this in more detail, however, it is first necessary to refine
our understanding of the statistical characterization of
rain.

4. A statistical characterization of rain and the
meaning of drop size distribution coherence
times

It is widely assumed that rain drops are distributed
in space as evenly as randomness permits—that is, in
accordance with Poisson statistics [e.g., see the discus-
sion in Kostinski and Jameson (1997)]. Consequently,
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FIG. 7. The correlation coefficients of the residual fluctuations be-
tween the indicated drop size and the other drop sizes plotted as a
function of the differential diameter, DD, for different sized time
blocks (i.e., observation times) (a) during the passage of the squall
line and (b) in the subsequent more stratiform rain. The coherence
time, t , is less than about 2 min in the squall line but increases to
10 , t , 15 min in the stratiform rain.

it is assumed that the process is statistically stationary
in time and/or statistically homogeneous in space and
that events in nonoverlapping intervals (volumes) are
statistically independent and, therefore, uncorrelated.
For M drop categories, rainfall is then implicitly viewed
as the superposition of M, independent Poisson distrib-

uted drop fluxes (e.g., Smith et al. 1993), and each 1-
min drop size distribution is then just one realization of
this random process. An ‘‘average’’ drop size distri-
bution is then calculated from the arithmetic means of
the M fluxes estimated from N samples in time (rain
flux at the ground) or in space (an aircraft flying through
a cloud with instruments having a known sampling vol-
ume). These assumptions are implicit, for example, in
the classic work by Cornford (1967) in which the Pois-
sonian statistical process is assumed in order to deter-
mine how many drops must be counted so that estimates
of the mean concentrations and, hence, the drop size
distributions fall within desired limits of accuracy.

However, it now appears that this perspective is not
quite correct. Although Lovejoy and Schertzer (1990)
most recently questioned the applicability of Poisson
statistics to the spatial distribution of raindrops, their
evidence is not convincing (see appendix). However,
Kostinski and Jameson (1997) show that because the
number of drops are correlated in time (e.g., see Fig. 2
in this paper) not only is convergence to the mean con-
centration slower, but more importantly the assumption
of statistical independence of drop counts in nonover-
lapping intervals underlying the Poisson distribution
does not apply. Consequently, the distribution of drop
counts is not Poisson. Moreover, they argue that the
observed distribution of counts is the result of a doubly
stochastic Poisson process in which the parameter of
the Poisson distribution (the mean number of counts, k,
over interval Dt) fluctuates randomly as described by a
probability density function f (k). The statistics of the
process is then described by the ‘‘Poisson probability
mixture’’ and the net result is that the distribution of
counts of drops of a single size is not Poisson but a
much broader distribution. That is, the variance of the
observed distribution of counts is greatly enhanced by
the variance of k. (In their studies, the distribution of
counts was often well characterized by the geometric
distribution corresponding to an exponential distribution
of k.) Hence, each of the M fluxes is described by a
Poisson mixture distribution function each having its
own f (k) and its own coherence time t M.

One among several factors that contribute to the
existence of f(k) is drop interactions. In retrospect, it is
perhaps not surprising, then, that these M fluxes are not
statistically independent—that is, that the counts of
drops at different sizes are correlated in time as Fig. 3
shows. To further emphasize this point, suppose we do
assume M independent fluxes. What would that imply
about the statistics of the count of the sum total number
of drops of all sizes? Under conditions quite similar to
those of the Central Limit Theorem—for example, that
the different fluxes at different sizes are uncorrelated,
that none dominate, etc.—statistical theory (Kovalenko
et al. 1996) shows that a sum of independent fluxes of
random counts tends to a Poisson distribution regard-
less of the underlying probability density functions of
the individual components. Hence, if rain consisted of
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FIG. 8. Histogram of the total number of drops each minute com-
pared to that expected for a Poisson distribution and a geometric
distribution p(K) 5 [1/(1 1 m)][m/(1 1 m)]K for the indicated mean
value, m.

M independent fluxes, the statistics of the sum total
should tend toward a Poisson distribution regardless of
the probability density functions of each of the M con-
tributing fluxes.

In Fig. 8 the histogram for the 1-min sum total counts
obviously deviates significantly from a Poisson distri-
bution. The likely reason is that the M fluxes are not
independent (Fig. 3). Interestingly, this observed dis-
tribution (Fig. 8), like the results in Part I for single size
drops, is well described by a geometric distribution. One
explanation is that for each drop size distribution patch
characterized by near stationarity, the sum total counts
are nearly Poisson distributed as the above theorem sug-
gests. However, the observed distribution includes re-
sults from many such drop size distribution patches so
that the identical conclusion of Kostinski and Jameson
(1997) for single size drops applies as well to the total
number of drops—namely, that the observed distribu-
tion of the sum total counts is a also likely the result
of a doubly stochastic Poisson process in which f (k) is
well approximated by an exponential distribution. These
results then lead to the statistical characterization of
the rain as a doubly stochastic Poisson process (Poisson
mixture) of M-correlated random variables (fluxes) each
having its own f (k) and its own coherence time.

This characterization is important. For example, let
the shortest coherence time associated with one of the
M fluxes of a drop size distribution be t 1 and that, for
the longest coherence time be t 2 so that t 2 k t 1. Then
if the total observation time T k t 2 k t 1, the measured
distribution will obviously be a mixture of this as well
as some other drop size distributions. Thus, T obviously
exceeds the coherence time of the drop size distribution.
On the other hand, if t 2 k t 1 k T, then the observations

should accurately reflect the drop size distribution. In
that case T is clearly less than the coherence time of
the distribution. The difficulties arise when t 2 k T k
t 1. Then part of the observed distribution will represent
a single size distribution, but the other part will be a
mixture of drops from more than one distribution. Thus,
the coherence time must be equivalent to the shortest
coherent time of all the M fluxes measured if the purity
of a physical drop size distribution is to be preserved.
This has important implications with respect to the mea-
surement of drop size distributions as discussed and
illustrated below.

5. On the measurement of drop size distributions

In order to preserve the purity of a physical drop size
distribution, then, it is necessary that Dt K T K t . But
if t then happens to correspond to a smaller drop size,
the scarcer larger drops may be undersampled, for ex-
ample. On the other hand, if one were to follow the
logic in Cornford and increase T in order to get ‘‘good’’
estimates of counts at larger sizes, then T k t and the
measured distribution would represent a mixture. More-
over, in this latter case the measured, but distribution
mixed, concentrations at smaller sizes would actually
become a function of T (i.e., ill-defined) and less reliable
even though the number of sampled drops is increased!
This is illustrated below.

Figure 9a shows the effect of different blocking (av-
eraging) times on the estimates of the variance and mean
value of drops of size 1.11 mm during the passage of
the thunderstorm when t , 2 min. In this case, as T
increases beyond a few minutes, it quickly exceeds t ,
and the variance increases rapidly while the mean value
continually changes. The same holds in the postcon-
vective rain as well (Fig. 9b). After 15–20 min, the
variance increases dramatically as the mean value wan-
ders.1

Moreover, these estimates lose statistical robustness
because of the greatly enhanced variance. That is, unlike
the normal expectations of decreasing sample variance
with increasing sample size when Dt K T K t , the
statistics of the counts corresponds to that of a Poisson
mixture probability density function (Part I) when T k
t k Dt. For such a mixture, as Fig. 9 illustrates, the
variance actually increases as more drops are counted
because the variance of the field of mean values (‘‘me-
teorological’’ variance) now contributes significantly.

However, while Fig. 9 corresponds to a single drop

1 Note that the mean wanders even during times less than the co-
herence time. The reason for this is that the plotted random variable
is a statistical estimate of the mean using partially correlated samples.
Hence, there is significant statistical uncertainty and variability as-
sociated with such estimates. Nevertheless, the most likely ‘‘best’’
statistical estimate of the mean is that when the blocking time ap-
proaches but does not exceed the coherence time.



290 VOLUME 55J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 9. Plots of the mean number of drops per minute and the
variance for the 1.11-mm drop size as functions of different sized
time blocks (i.e., observation times) for (a) the squall line and (b)
post convection stratiform rain. Note that beyond the coherence times,
the mean value is just a function of the observation time while the
variance substantially increases with increasing averaging. The time
series mean are those estimated from the time series analyses de-
scribed in the text (e.g., see Fig. 5).

size, the same applies to other drop sizes as well. Thus,
if one were to compute the slope of an exponential fit,
say between the 1.11- and 1.91-mm size drops, Fig. 10
illustrates that increasing T beyond t actually produces
ill-defined slopes (i.e., the specific value depends upon
T) and increasing uncertainty.2

If time-blocked data analysis is to be used, however,
the observations need to be monitored, at least, in order
to detect when mixing is likely to be occurring. One
approach is to keep track of the variance of the data.
That is, as long as the measurement interval Dt K T K
t , then for each drop size the samples can be considered
drawn from a Poisson distribution. Since a sum of in-
dependent Poisson-distributed random variables re-
mains Poisson distributed (Ochi 1990), the variance
should remain equal to the mean value. On the other
hand, if T k t , then the mean value of the Poisson
distribution corresponding to each sample during Dt can
change unpredictably (randomly), and the probability
density function (pdf ) describing the entire observation
becomes that of a Poisson mixture as discussed earlier.
Consequently, when mixing occurs, the variance will
exceed that for a Poisson distribution. In other words,
significant deviations of the ratio of the variance to the
mean (i.e., the Poisson variance) from unity can be used
to detect deviations from Poisson statistics due to mix-
ing.

This is well illustrated in Fig. 11a, and which clearly
indicates mixing at 255 and 265 min, for example. For
such lumpy mixtures, particularly when the sampling
interval Dt approaches the coherence time as is the case
for these data, it is likely to be difficult or perhaps
impossible to measure a physical drop size distribution
with any confidence.

Moreover, while such effects might be detected si-
multaneously for all drops as in Fig. 11a, this mixture
signature may also appear at different times for different
drop sizes (Fig. 11b). Consequently, at times, blocked
data may be contaminated by mixing at some drop sizes
but not others, as discussed at the conclusion of the
previous section (i.e., t 2 k T k t 1).

As mentioned previously as well, an alternative to
using fixed observation time blocks for determining
mean values from a sequence of successive blocks is to
consider all the drops simultaneously at all times using
multiple time series analysis. Hence, in contrast to
blocking data (information) at other times are not ig-
nored but are used to provide more stable estimates of
the means while minimizing fluctuations and reducing
the contaminating effects of mixed data. This approach
also provides an important method for achieving max-
imum temporal resolution using disdrometers and air-
craft measurements provided Dt K t .

2 For this purpose the uncertainty is given by the sum of the relative
errors for each concentration (standard deviation/mean) divided by
the difference in drop sizes.

Where the mean values at different sizes are changing
only slowly, it should then be possible to compute a
statistically robust drop size distribution. On the other
hand, where the mean values are obviously changing
rapidly with respect to one another particularly on time-
scales approaching Dt, computed drop size distributions
can be considered only formal relations among average
concentrations.

As an example, if we were using a 5-min observation
time during the 240–300-min period of the Wallop’s
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FIG. 10. The slope (x) of an exponential fit between 1.11- and 1.91-
mm drops and the associated uncertainty as a function of increasing
observation time during the convective part of the squall line. Beyond
the coherence time, more averaging produces increasing uncertainty
and slopes that are functions the averaging time. The time series
value is calculated using the time series estimates of the mean con-
centrations at the two sizes. Here, N1,2, Vt1,2, and D1,2 are the counts,
terminal fall speeds, and diameters corresponding to the two different
drop sizes.

FIG. 11. The ratio of observed variance s 2 to , the Poisson2s p

equivalent variance (i.e., equal to the observed mean value) (a) during
the squall line and in the stratiform rain (b) for the indicated obser-
vation (block) times. Values significantly greater than unity indicate
locations where statistical mixing is occurring.

Island data, Fig. 11a indicates that any calculated drop
size distribution would likely be meaningless at 255,
259, or 260 min because the mean values themselves
are changing on timescales much smaller than T and,
in fact, are changing on the order of Dt. Yet, if we look
at the time series mean values (Fig. 12) during periods
between rapid changes, it is possible to pick out some
intervals (such as during 260–265 min) when it might
still be possible to compute a robust drop size distri-
bution using the time series mean values because they
are changing relatively slowly.

On the other hand, it is clear from Figs. 11 and 12
that there are times (e.g., at 255, 259, and 265 min)
when conditions are changing so rapidly that it may not
be possible to compute a statistically robust drop size
distribution even using time series analyses. Here, Dt is
simply too large.

6. Results and some concluding remarks

To summarize, we return to our three initial questions,
namely: Are drops of different sizes correlated in the
real atmosphere? How much averaging is appropriate
in order to reduce statistical fluctuations? Are drop size
distributions computed using measurements averaged
over seasons down to minutes all true drop size distri-
butions in the sense of physical entities exhibiting cor-
relations among the different drop sizes? The answers
are that, yes, over sufficiently short durations (time less
than the coherence time of the distribution), drop counts
at different sizes are correlated indicating that size dis-

tributions likely exist as physical collections of inter-
acting drops. However, the drop size distribution is like-
ly only coherent for the shortest coherence time of the
M fluxes of the different drop sizes so that overaveraging
(averaging over times longer than the coherence time)
transforms the concept of the drop size distribution from
one of a physical collection of interacting drops to a
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FIG. 12. The time series–derived mean number of drops per minute
corresponding to the different drop sizes and normalized by each of
their overall respective mean values during the indicated period for
(a) the squall line and (b) the stratiform rain.

formal relation among the M-observed average drop
concentrations.

While a problem for those trying to define drop size
distributions everywhere, all the time, perhaps as im-
portantly, such coherent, correlated behavior suggests
that at times on many scales, there may be a physical
clustering of raindrops associated with the statistical
mixing of drops. This may be important to many prob-

lems, such as understanding the effects of small-scale
precipitation loading on cumulus dynamics, understand-
ing the onset of multiple scatter of microwaves passing
through rain, and understanding the effects of precipi-
tation fluctuations on the signal statistics of all scanning
remote sensing devices for measuring precipitation,
from lasers to radiometers (Jameson and Kostinski
1996).

So what is this clustering? This is visualized using a
geometric (borrowed directly from astronomy) rather
than a statistical interpretation of the two-point corre-
lation functions illustrated in Figs. 2 and 3. Specifically,
to see if raindrops are ‘‘clustered’’ one begins with the
product of the number of drops in two volumes sepa-
rated by a fixed distance, z, and then subtracts the square
of the average value computed over the entire volume
under study, V, for an ensemble of several such pairs
in V. That is, let us consider the quantity

f(z ) 5 ^k(0)k(z )& 2 m2, (3)

where k(0) and k(z ) are the number of raindrops in two
identical volumes separated by distance z, m is the mean
number over V, and the brackets denote an ensemble
average. [Note that (3) is essentially the numerator in
(1) after substituting z for t.] If the number of drops in
two separated volumes are distributed uniformly, then
^k(0)k(z )& 5 m2 so that f(z ) 5 0. If, on the other hand,
the number of drops in volumes separated by scales of
z tend to cluster (due to intermittent turbulence, for
example), f(z ) would then deviate from zero, that is,
^k(0)k(z )& ± m2. In other words, there would be a
‘‘bunching’’ of raindrops compared to the average num-
ber expected for a uniform, statistical spatial distribution
over V. While spatially separated measurements are re-
quired to compute (3), Figs. 2 and 3 suggest that such
clustering is occurring simultaneously (at times) over
many (but not necessarily all) spatial scales and over
many drop sizes.

The qualifying parenthetical expressions in the pre-
vious sentence are important. In particular, clustering
need not always occur, as Fig. 10 and 11 in Part I as
well as Fig. 11 in this work illustrate. Because deviations
from Poisson are a prerequisite for fractal structures,
such evidence of nonclustering, Poissonian structure
conflicts with any ubiquitous fractal description of rain.
Figure 11 suggests that the ratio of variances may then
become a convenient research tool because it can be
used readily to detect deviations from the Poisson dis-
tribution (clustering) over the relevant scales.

Moreover, in contrast to a formal fractal geometric
description, in this study (Parts I and II) we offer an
alternative probabilistic characterization of rain. In par-
ticular we

1) introduce and identify three relevant timescales and
discuss them in the context of appropriate meteo-
rological regimes;

2) identify, obtain, and analyze data most relevant to
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FIG. A1. Poisson Monte Carlo simulation of 453 raindrops
distributed over a 1.28 m 3 1.28 m area.

FIG. A2. Plots illustrating calculation of the fractal dimension using
the simulation in Fig. A1 computed using the average number of
drops in a circle of radius r (solid circles) and between logarithmically
spaced annuli [open squares, after Lovejoy and Schertzer (1990)] The
dimension found in this simulation agrees with that of Lovejoy and
Schertzer.

the internal characterization of rain (i.e., drop
counts);

3) offer a physical explanation for the fluctuation en-
hancement in the framework of a doubly stochastic
Poisson process caused by turbulent mixing, as well
as other factors; and

4) discuss important implications of such enhanced
fluctuations for droplet growth and size distribution
development.

Acknowledgments. This work was supported by the
National Science Foundation under Grants ATM95-
12685 (AK) and ATM-9419523 (AJ) with additional
funding from the National Aeronautics and Space Ad-
ministration under NAS5-32780 (AJ). Thanks are also
due Mr. Otto Thiele of NASA (Goddard Space Flight
Center) and Mr. Gene Furness of NASA (Wallop’s Is-
land Facility) for providing the essential disdrometer
data from Wallop’s Island.

APPENDIX

Apparent Fractal Dimension
of Poisson Distributed Raindrops

To quantify the spatial distribution of raindrops,
Lovejoy and Schertzer (1990) resurrected an old tech-
nique for determining drop size distributions, namely
exposing surfaces of dye coated paper briefly to rain.
They then used the dye stains left by the raindrops for
various analyses. In particular they analyzed one such
observation having 452 drops scattered over a 128 cm
3 128 cm surface and found fractal dimensions ranging
from 1.93 down to 1.79 with a preferred value of 1.83.

Because the Poisson distribution is expected to yield
the most uniform, random distribution of drops (due to
statistical independence of nonoverlapping volumes),
the fractal dimension for a Poisson distribution of drops
on a surface should be close to 2.0. Hence, observations
of fractal dimensions differing markedly from 2.0 are
used as evidence for deviations from Poisson statistics.
While the results in our present study indicate that Love-
joy and Schertzer may be correct sometimes, we shall
demonstrate that the described experiment is insufficient
to establish real departures from a Poisson distribution.

Specifically, as a Monte Carlo simulation, we take
453 drops and disperse them randomly over a 128 cm
3 128 cm surface in accordance to a Poisson distri-
bution as illustrated in Fig. A1. This figure is quite
similar to Fig. 1 of Lovejoy and Schertzer.

We then calculate the fractal dimension of such a
dispersion of drops following the approach of Lovejoy
and Schertzer. That is, we first compute the number of
‘‘drops’’ in a circle of radius r for all the drops. We
also then calculate the dimension for drops lying be-
tween logarithmically spaced annuli. These approaches
are standard for calculating the dimension of ‘‘perco-

lation fractals’’ (e.g., Schroeder 1991), for example. The
results are shown in Fig. A2.

Amazingly, we get the same fractal dimensions as
reported by Lovejoy and Schertzer. Since this simulation
is consistent with the Poisson distribution, we conclude
that the existence of the fractal dimension need not be
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the result of departures from Poisson, but may also sim-
ply be the result of an incomplete, finite sample drawn
from a Poisson distribution. Thus, this experiment can
no longer be used to support claims of fractal univer-
sality extending from the largest down to these small
scales in rain.
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