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Abstract: The paper presents a unified approach to different fluctuation relations for
classical nonequilibrium dynamics described by diffusion processes. Such relations com-
pare the statistics of fluctuations of the entropy production or work in the original process
to the similar statistics in the time-reversed process. The origin of a variety of fluctua-
tion relations is traced to the use of different time reversals. It is also shown how the
application of the presented approach to the tangent process describing the joint evolu-
tion of infinitesimally close trajectories of the original process leads to a multiplicative
extension of the fluctuation relations.

1. Introduction

Nonequilibrium statistical mechanics attempts a statistical description of closed and
open systems evolving under the action of time-dependent conservative forces or under
time-independent or time dependent non-conservative ones. Fluctuation relations are
robust identities concerning the statistics of entropy production or performed work in
such systems. They hold arbitrarily far from thermal equilibrium. Close to equilibrium,
they reduce to Green-Kubo or fluctuation-dissipation relations, usually obtained in the
scope of linear response theory [87,44]. Historically, the study of fluctuation relations
originated in the numerical observation of Evans, Cohen and Morriss [23] of a symme-
try in the distribution of fluctuations of microscopic pressure in a thermostatted particle
system driven by external shear. The symmetry related the probability of occurrence of
positive and negative time averages of pressure over sufficiently long time intervals and
predicted that the former is exponentially suppressed with respect to the latter. Ref. [23]
attempted to explain this observation by a symmetry, induced by the time-reversibility, of
the statistics of partial sums of finite-time Lyapunov exponents in dissipative dynamical
systems. This was further elaborated in [25] where an argument was given explaining
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such a symmetry in a transient situation when one starts with a simple state which evolves
under dynamics, see also [26]. In refs. [35,36], Gallavotti and Cohen provided a theore-
tical explanation of the symmetry observed numerically in [23] employing the theory of
uniformly hyperbolic dynamical systems. In this theory, the stationary states correspond
to invariant measures of the SRB type [82] and the entropy production is described by the
phase-space contraction [74]. The authors of [35,36] established a fluctuation theorem
about the rate function describing the statistics of large deviations of the phase-space
contraction in a time-reversible dynamics. To relate to the behavior of realistic systems,
they formulated the chaotic hypothesis postulating that many such systems behave, for
practical purposes, as the uniformly hyperbolic ones. They interpreted the numerical
observations of ref. [23] as a confirmation of this hypothesis. The difference between the
fluctuation relations for a transient situation analyzed in [25,26] and the stationary one
discussed in [35,36] was subsequently stressed in [16]. The debate about the connection
between the transient and stationary fluctuation relations still continues, see e.g. [77]
and [33].

In another early development, Jarzynski established in [48] a simple transient relation
for the statistics of fluctuations of work performed on a system driven by conservative
time-dependent forces. This relation is now known under the name of the Jarzynski
equality. A similar observation, but with more limited scope, was contained in earlier
work [4–6], see [52] for a recent comparison. The simplicity of the Jarzynski equality
and its possible applications to measurements of free-energy landscape for small systems
attracted a lot of attention, see [72,73] and the references therein.

The first studies of fluctuation relations dealt with the deterministic dynamics of
finitely-many degrees of freedom. Such dynamics may be also used to model systems
interacting with environment or with heat reservoirs. To this end, one employs simplified
finite-dimensional models of reservoirs forced to keep their energy constant [24]. This
type of models was often used in numerical simulations and in discussing fluctuation
relations, see e.g. [33]. A more realistic treatment of reservoirs would describe them as
infinite systems prepared in the thermal equilibrium state. Up to now, only infinite sys-
tems of non-interacting particles could be treated effectively, see [21,22]. A less realistic
description of interaction with environment or with reservoirs consists of replacing them
by a random noise, usually shortly correlated in time. This leads to Markovian stochas-
tic evolution equations. Stochastic models are often easier to control than deterministic
ones and they became popular in modeling nonequilibrium dynamics.

In [49], Jarzynski generalized his relation to time-dependent Markov processes with
the instantaneous generators satisfying the detailed balance relation. At almost the same
time, Kurchan has shown in [56] that the stationary fluctuation relations hold for the
stochastic Langevin-Kramers evolution. His result was extended to more general diffu-
sion processes by Lebowitz and Spohn in [59]. In [63], Maes has traced the origin of
fluctuation relations to the Gibbsian nature of the statistics of the dynamical histories,
see a recent discussion of the fluctuation relations from this point of view in [64]. Searles
and Evans generalized their transient fluctuation relation to the stochastic setup in [76].
Finally, within the stochastic approach, the scope of the transient fluctuation relations
was further extended due to the works of Crooks [18,19], Jarzynski [51], Hatano and
Sasa [46], Speck and Seifert [78] and Chernyak, Chertkov and Jarzynski [10], just to
cite only the papers that most influenced the present authors. It is worth stressing that
the general transient fluctuation relations do not impose the time reversibility of the
dynamics but compare the fluctuation statistics of the original process and of its time
reversal. Such an extension of the scope of fluctuation relations is a possibility in the
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stationary case as well, but it becomes a necessity in many transient situations. Within
the theory of the hyperbolic dynamical systems, the stationary fluctuation theorem of
[35] was recently generalized to the random dynamics in [8].

In [1], Balkovsky, Falkovich and Fouxon noticed another robust relation concerning
the large deviations of finite-time Lyapunov exponents in the context of homogeneous
hydrodynamic flows. It was remarked in [29], that this observation, which we shall
call, following [40], the multiplicative fluctuation relation, provides an extension of
the previously known fluctuation relations for the phase-space contraction. The simple
argument presented in [1] dealt with a transient situation. It was very similar to the
original Evans-Searles argument as formulated later in [26]. The multiplicative fluc-
tuation relation was explicitly checked in the Kraichnan model of hydrodynamic flows
[1,29,11].

The theoretical work on fluctuation relations has established most of them as mathe-
matical identities holding within precisely defined models, but concerning statistics of
events that are rare, especially for macroscopic systems. The relevance of such identities
to numerical simulations and, even more, to real experiments, required a confirmation.
Numerical (see e.g. [7,45,83,38,86]) and experimental testing of the fluctuation relations
(see e.g. [15,37,17,2,54,47]) has attracted over the years a lot of attention, inspiring fur-
ther developments. It will probably remain an active field in the future. It is not, however,
the topic of the present paper.

The growing number of different fluctuation relations made urgent a development of
a unifying approach. Several recent reviews partially provided such a unification from
different points of view, see ref. [26,64,57,10]. In the present paper, we attempt ano-
ther synthesis, with the aim of supplying a uniform derivation of most of the known
fluctuation relations, including the multiplicative ones. We shall work in the setup of
(possibly non-autonomous) diffusion processes in finite-dimensional spaces, somewhat
similar, but more general than the one adopted in [59]. The systems considered include,
as special cases, the deterministic dynamics, the Langevin stochastic equation, and the
Kraichnan model of hydrodynamic flow. This is certainly not the most general setup
possible for discussing fluctuation relations (for example, the discrete-time dynamics,
the stochastic dynamics with jumps, or non-Markovian evolutions are not covered),
but it is general enough for a unified discussion of a variety of aspects of fluctuation
relations. Most of our considerations are simple extensions of arguments that appea-
red earlier in usually more constrained contexts. There are two basic ideas that we try
to exploit to obtain a larger flexibility than in the previous discussions of fluctuation
relations. The first one concerns the possible time-reversed processes that we admit.
This idea appeared already in [10], where two different time inversions were used for
the Langevin dynamics with non-conservative forces, leading to two different back-
ward processes and two different fluctuation relations. We try to exploit the freedom of
choice of the time-inversion in a more systematic way. The second idea, which seems
original to us, although it is similar in spirit to the first one, is to obtain new fluctua-
tion relations by considering new diffusion processes derived from the original one.
In particular, we show that the multiplicative fluctuation relations for general diffusion
processes may be obtained by writing a more standard relation for the tangent diffu-
sion process describing a simultaneous evolution of infinitesimally close trajectories of
the original process. The same idea may be used [13] to explain additional fluctuation
relations, like the one for the rate function of the difference of finite-time Lyapunov
exponents “along unstable flag” that was observed in [11] for the anisotropic Kraichnan
model.
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The present paper is organized as follows. In Sect. 2, we define the class of diffusion
processes that will be discussed and list four special cases. Section 3 recalls the notions
of transition probabilities and generators of a diffusion process, as well as the detailed
balance relation. In Sect. 4, we introduce the tangent diffusion process induced from the
original one and define the phase-space contraction. Time inversions leading to different
backward processes are discussed in Sect. 5, with few important examples listed in
Sect. 6. A formal relation between the expectations in the forward and in the backward
process is introduced in Sect. 7. As examples, we discuss the case of tangent process in
the homogeneous Kraichnan flow, a simple generalization of the detailed balance relation
and the 1st law of thermodynamics for the Langevin dynamics. Section 8 is devoted to
a general version of the Jarzynski equality, whose different special cases are reviewed,
and Sect. 9 to a related equality established by Speck and Seifert in [78]. We formulate
the Jarzynski equality as a statement that for a certain functional W of the diffusion
process, the expectation value of e−W is normalized. In Sect. 10, the functional W is
related to the entropy production and the positivity of its expectation value is interpreted
as the 2nd law of thermodynamics for the diffusive processes. In Sect. 11, we show how
the general Jarzynski equality reduces in the linear response regime to the Green-Kubo
and Onsager relations for the transport coefficients and to the fluctuation-dissipation
theorem. In Sect. 12, we discuss briefly a peculiar one-dimensional Langevin process in
which the equilibrium is spontaneously broken and replaced by a state with a constant
flux, leading to a modification of the fluctuation-dissipation relation. The model is well
known from the theory of one-dimensional Anderson localization and describes also the
separation of infinitesimally close particles with inertia carried by a one-dimensional
Kraichnan flow. Section 13.3 formulates in the general setup of diffusion processes
what is sometimes termed a detailed fluctuation relation [51,19], an extension of the
Crooks fluctuation relations [18]. Few special cases are retraced in Sect. 14.

Up to this point of the paper, the discussion is centered on the transient evolution
where the system is initially prepared in a state that changes under the dynamics. In
Sect. 15, we discuss the relation of the transient fluctuation relations to the stationary
ones which pertain to the situation where the initial state is preserved by the evolution.
The stationary relations are usually written for the rate function of large deviations of
entropy production observed in the long-time regime. In our case, they describe the long
time asymptotics of the statistics of W . The Gallavotti-Cohen relation was the first
example of such identities. We show how the fluctuation relation for the tangent process
in the homogeneous Kraichnan flow discussed in Sect. 7 leads to a generalization of the
Gallavotti-Cohen relation that involves the large-deviations rate function of the so called
stretching exponents whose sum describes the phase-space contraction. In Sect. 16, we
extend such a multiplicative fluctuation relation to the case of general diffusion pro-
cesses. Section 17 contains speculation about possible versions of fluctuation relations
for multi-point motions and Sect. 18 collects our conclusions. Few simple but more tech-
nical arguments are deferred to Appendices in order not to overburden the main text,
admittedly already much more technical than most of the work on the subject. Some of
the technicalities are due to a rather careful treatment of the intricacies related to the
conventions for the stochastic differential equations that are usually omitted in physical
literature. The aim at generality, even without pretension of mathematical rigor, places
the stress on the formal aspects and makes this exposition rather distant from physical
discourse, although we make an effort to include many examples that illustrate general
relations in more specific situations. The physical content is, however, more transparent
in examples to such examples which are scarce in the present text but which abound in
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the existing literature to which we often refer. Certainly, the paper will be too formal for
many tastes, and we take precautions to warn the potential reader who can safely omit
the more technical passages.

After submission of the first version of the paper, we received the article [66] which
influenced our revision of Sect. 10.

2. Forward Process

As mentioned in the Introduction, the present paper deals with non-equilibrium systems
modeled by diffusion processes of a rather general type. More concretely, the main
objects of our study are the stochastic processes xt in Rd (or, more generally, on a
d-dimensional manifold), described by the differential equation

ẋ = ut (x) + vt (x) , (2.1)

where ẋ ≡ dx
dt and, on the right hand side, ut (x) is a time-dependent deterministic

vector field (a drift), and vt (x) is a Gaussian random vector field with mean zero and
covariance

〈
vi

t (x) v
j
s (y)

〉 = δ(t − s) Di j
t (x, y) . (2.2)

Due to the white-noise nature of the temporal dependence of vt (typical vt are distri-
butional in time), Eq. (2.1) is a stochastic differential equation (SDE). We shall consider
it with the Stratonovich convention1 [71,67], keeping for the Stratonovich SDEs the
notation of the ordinary differential equations (ODEs). Examples of systems described
by Eq. (2.1) include four special cases that we shall keep in mind.

Example 1. Deterministic dynamics. Here vt (x) ≡ 0 and Di j
t (x, y) ≡ 0 so that

Eq. (2.1) reduces to the ODE

ẋ = ut (x) . (2.3)

Example 2. Lagrangian flow in the Kraichnan model. This is a process used in modeling
turbulent transport. The SDE (2.1), where one usually takes ut (x) ≡ 0, describes the
motion of tracer particles in a stationary Gaussian ensemble of velocities vt (x) white
in time. Such an ensemble, with an appropriate time-independent spatial covariance
Di j (x, y), was designed by Kraichnan [62] to mimic turbulent velocities. In particular,
homogeneous flows are modeled by imposing the translation invariance Di j (x, y) =
Di j (x − y) and isotropic ones by assuming that Di j (x, y) is rotation-covariant. In this
paper, we shall consider only the case when Di j (x, y) is smooth. A discussion of the
case with Di j (x, y) non-smooth around the diagonal, pertaining to the fully developed
turbulence, may be found in [29], or, on a mathematical level, in [60].

Example 3. Langevin dynamics. Here Eq. (2.1) takes the form2

ẋ i = −�i j∂ j Ht (x) + �i j∂ j Ht (x) + Gi
t (x) + ζ i

t , (2.4)

1 The choice of the Stratonovich convention guarantees that ut and vt transform as vector fields under a
change of coordinates.

2 We use throughout the paper the summation convention.
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where � is a constant non-negative matrix and � an antisymmetric one, the Hamiltonian
Ht is a, possibly time dependent, function, Gt is an additional force, and ζt is the
d-dimensional white noise with the covariance

〈
ζ i

t ζ
j

s
〉 = 2 δ(t − s) β−1�i j . (2.5)

In this example, the noise ζt plays the role of the (space-independent) random vector
field vt so that Di j

t (x, y) = 2β−1�i j . For Gt ≡ 0 and a time independent Hamiltonian
Ht ≡ H , the Langevin dynamics is used to model the approach to thermal equilibrium at
inverse temperature β [46]. The deterministic vector field −�i j∂ j H drives the solution
towards the minimum of H (if it exists) whereas the Hamiltonian vector field �i j ∂ j H
preserves H . The noise ζt generates thermal fluctuations of the solution. Note that
its spatial covariance is aligned with the matrix � appearing in the dissipative force
−�i j∂ j H (such an alignment, known from Einstein’s theory of Brownian motion, is
often called the Einstein relation). Inclusion of the Hamiltonian vector field permits to
model systems where the noise acts only on some degrees of freedom, e.g. the ones
at the ends of a coupled chain, with the rest of the degrees of freedom undergoing a
Hamiltonian dynamics. The introduction of a time-dependence and/or of the force Gt
permits to model nonequilibrium systems. In the particular case of vanishing �, the
SDE (2.4) reduces to the ODE

ẋ i = �i j∂ j Ht (x) + Gi
t (x) (2.6)

describing a deterministic Hamiltonian dynamics in the presence of an additional force
Gt .

Example 4. Langevin-Kramers equation. This is a special case of the Langevin dynamics
that takes place in the phase space of n degrees of freedom with x = (q, p) and

�=
(

0 0
0 γ

)
, �=

(
0 1−1 0

)
, Ht = 1

2 p · m−1 p + Vt (q), Gt = (0, ft (q)),

where γ �= 0 is a non-negative n × n matrix, m−1 a positive one, and 1 the unit
one. Here, Eq. (2.4) reduces to the standard relation pi = mi j q̇ j between momenta and
velocities, where m is the mass matrix, and to the second order SDE,

mi j q̈
j = −γik q̇k − ∂i Vt (q) + fti (q) + ζi , (2.7)

that we shall call Langevin-Kramers equation, with the n-dimensional white noise ζ
such that

〈
ζi t ζ j t ′

〉 = 2β−1γi j δ(t − t ′) .

The Langevin-Kramers equation has the form of the Newton equation with the friction
−γ q̇ and white-noise ζt forces supplementing the conservative one −∇Vt and the
additional one ft . It was discussed in [57] in a very similar context. In the limit of
a strongly overdamped system when the friction term becomes much larger than the
second order one, the Langevin-Kramers equation (2.7) reduces to the first order SDE,

γik q̇k = − ∂i Vt (q) + fti (q) + ζi ,

which, if γ > 0, may be cast again into the form (2.4) but with � = γ−1, � = 0
and Ht = Vt . One should keep in mind this change when applying the results described
below for the Langevin dynamics (2.4) to the overdamped Langevin-Kramers dynamics.
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3. Transition Probabilities and Detailed Balance

Let us recall some basic facts about the diffusion processes in order to set the notations.
We shall denote by Et0

x the expectation of functionals of the Markov process xt solving
the SDE (2.1) with the initial condition xt0 = x . For t ≥ t0, the relation

Et0
x g(xt ) =

∫
Pt0,t (x, dy) g(y) ≡ (Pt0,t g)(x) (3.1)

defines the transition probabilities Pt0,t (x, dy) of the process xt and the operator Pt0,t .
The transition probabilities satisfy the normalization condition

∫
Pt0,t (x, dy) = 1 and

the Chapman-Kolmogorov chain rule
∫

Pt0,t (x, dy) Pt,t ′(y, dz) = Pt0,t ′(x, dz) .

The evolution of the expectation values is governed by the second-order differential
operators Lt defined by the relation

d

dt
Et0

x g(xt ) = Et0
x (Lt g)(xt ) . (3.2)

The explicit form of Lt is found by a standard argument that involves the passage from
the Stratonovich to the Itô convention. For reader’s convenience, we give the details in
Appendix A. The result is:

Lt = ûi
t∂i + 1

2 ∂ j d
i j
t ∂i , (3.3)

where

di j
t (x) = Di j

t (x, x) and ûi
t (x) = ui

t (x)− 1
2 ∂y j Di j

t (x, y)|y=x . (3.4)

Due to the relation (3.1), Eq. (3.2) may be rewritten as the operator identity ∂t Pt0,t =
Pt0,t Lt . Together with the initial condition Pt0,t0 = 1, it implies that Pt0,t is given by
the time-ordered exponential

Pt0,t =
−→T exp

( t∫

t0

Ls ds
)
=
∞∑

n=0

∫

t0≤s1≤s2≤....≤t

Ls1 Ls2 ....Lsn ds1ds2...dsn . (3.5)

In particular, Pt0,t = e(t−t0)L ≡ Pt−t0 in the stationary case with ut ≡ u and Dt ≡ D.
The operator Lt ≡ L is then called the generator of the process.

The stochastic process xt may be used to evolve measures. Under the stochastic
dynamics, the initial measure µt0(dx) evolves at time t to the measure

µt (dy) =
∫
µt0(dx) Pt0,t (x, dy) . (3.6)

We shall use below the shorthand notation: µt = µ0 P0,t . For measures with densities
µt (dx) = ρt (x) dx with respect to the Lebesgue measure dx , Eq. (3.6) is equivalent to
the evolution equation

∂tρt = ∂i
(− ûi

t + 1
2 di j

t ∂ j
)
ρt ≡ L†

t ρt , (3.7)
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where L†
t is the (formal) adjoint of the operator Lt . The latter relation may be rewritten

as the continuity equation

∂tρt + ∇ · j = 0 with j i
t = (ûi

t − 1
2 di j

t ∂ j )ρt , (3.8)

where ∇ · j ≡ ∂i j i
t is the divergence of the density current jt corresponding to the

measure µt (the probability current, if µt is normalized). In the case with no explicit
time dependence when Lt ≡ L , an invariant density ρ, corresponding to an invariant
measure µ(dx) = ρ(x) dx of the process, satisfies the equation L†ρ = 0 which may
be rewritten in the form of the current conservation condition ∇ · j = 0. We shall often
write the invariant density ρ(x) in the exponential form as e−ϕ(x). One says that the
process satisfies the detailed balance relation with respect to ϕ if the density current
j related to the measure µ(dx) = e−ϕ(x)dx vanishes itself, i.e. if

ûi = − 1
2 di j∂ jϕ .

Equivalently, this condition may be written as the relation

L† = e−ϕL eϕ ,

for the generator of the process or as the identity

µ(dx) Pt (x, dy) = µ(dy) Pt (y, dx) (3.9)

for the transition probabilities. In all these three forms, it implies directly that µ is an
invariant measure. The converse, however, is not true: there exist stationary diffusion
processes with invariant measures that do not satisfy the detailed balance relation.

The generator of the stationary Langevin equation with � = 0 and G = 0 satisfies
the detailed balance relation with respect to ϕ = βH so that the Gibbs density ρ(x) =
e−βH(x), and, if the latter is normalizable, the Gibbs probability measure µG(dx) =
Z−1e−βH(x)dx , are invariant under such dynamics. The invariance still holds when
� �= 0 but, in this case, the detailed balance relation fails. We shall see below how to
generalize the latter to catch also the case with conservative forces when � �= 0.

4. Tangent Process and Phase-Space Contraction

One may generate other processes of a similar nature from the diffusive process (2.1).
Such constructions will play an important role in studying fluctuation relations. As the
first example, let us consider the separation δxt between the solution xt of Eq. (2.1)
with the initial value x0 = x and another solution infinitesimally close to xt . Such a
separation evolves according to the law

δxt = Xt (x) δx0 ,

where the matrix Xt (x) with the entries

Xi
t j (x) =

∂xi
t

∂x j
0

(x) (4.1)

solves the (Stratonovich) SDE

Ẋ i
j =

(
∂kui

t + ∂kv
i
t

)
(xt ) Xk

j (4.2)
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with the initial condition X0(x) = 1. Together with Eq. (2.1), the SDE (4.2) defines
a diffusion process (xt ,Xt ) that we shall call the tangent process. In particular, the
quantity − ln det Xt that represents the accumulated phase-space contraction along the
trajectory xt , solves the SDE

d
dt

(− ln det X
) = −(∇ · ut + ∇ · vt )(xt ) . (4.3)

The right hand side of Eq. (4.3) is the phase-space contraction rate. We infer that

− ln det Xt = −
T∫

0

(∇ · ut )(xt ) dt −
T∫

0

(∇ · vt )(xt ) dt . (4.4)

The second integral on the right hand side should be interpreted with the Stratono-
vich convention. The phase-space contraction is an important quantity in the study of
nonequilibrium dynamics and it will reappear in the sequel.

5. Backward Processes

Among the diffusion processes that may be generated from the original process (2.1)
are the ones which may be interpreted as its time reversals. The action of time inversion
on space-time will be given by the transformation

(t, x) −→ (T − t, x∗) ≡ (t∗, x∗) (5.1)

for an involution x 
→ x∗. It may be lifted to the level of process trajectories by defining
the transformed trajectory x̃t by the relation

x̃t = x∗t∗ . (5.2)

In general, however, we shall not define the time-reversed process as x̃t because, in
the presence of dissipative deterministic forces like friction, such time inversion would
lead to an anti-dissipative dynamics. We shall then allow for more flexibility. In order to
define the time-reversed process, we shall divide the deterministic vector field ut into
two parts

ut = ut,+ + ut,− , (5.3)

that we shall loosely term dissipative and conservative, choosing different time-inversion
rules for them. The time-reversed process x′t will be given by the SDE

ẋ ′ = u′t (x ′) + v′t (x ′) (5.4)

with the deterministic vector field u′t = u′t,+ + u′t,− and the random one v′t defined by
the equations

u′it,±(x) = ±(∂k x∗i )(x∗) u k
t∗,±(x∗) and v′it (x) = ±(∂k x∗i )(x∗) vk

t∗(x
∗) . (5.5)

Note that ut,+ transforms as a vector field under the involution x 
→ x∗ and ut,− as a
pseudo-vector field. For vt we may use whichever rule since vt and −vt have the same
distribution. The SDE (5.4) for the time-reversed process x′t coincides with the one for
the process x̃t defined by Eq. (5.2) if and only if ut,+ vanishes and vt is transformed
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according to the pseudo-vector rule. We shall call x′t the backward process referring
to xt as the forward one. The random vector field v′t of the backward process is again
Gaussian with mean zero and white-noise behavior in time. Its covariance is

〈
v′it (x) v

′ j
s (y)

〉 = δ(t − s) D′i j
t (x, y) ,

where

D′i j
t (x, y) = (∂k x∗i )(x∗) Dkl

t∗ (x
∗, y∗) (∂l x

∗ j
)(y∗) . (5.6)

As before, see Eqs. (3.4), we shall denote

d ′i j
t (x) = D′i j

t (x, x), û′it (x) = u′it (x)− 1
2 ∂y j D′i j

t (x, y)|y=x . (5.7)

Remark 1. Using the chain rule (∂ j x∗i )(x∗)(∂k x∗ j )(x) = δi
k , it is easy to see that the

time-inversion transformations (5.5) are involutive.

Let us emphasize that the choice of a time inversion consists of the choice of the involution
(5.1) and of the splitting (5.3) of ut . We shall call the process time-reversible (for a
given choice of time inversion) if the deterministic vector fields u and u′ of the forward
and of the backward processes coincide and if the respective random vector fields vt
and v′t have the same distribution, i.e. if

ui
t,+(x) + ui

t,−(x) = (∂k x∗i )(x∗)
(
uk

t∗,+(x
∗) − uk

t∗,−(x∗)
)

and if

Di j
t (x, y) = (∂k x∗i )(x∗) Dkl

t∗ (x
∗, y∗) (∂l x

∗ j
)(x∗) . (5.8)

Note that the first identity is equivalent to the relations

ui
t,±(x) = 1

2

(
ui

t (x) ± (∂k x∗i )(x∗) uk
t∗(x
∗)

)
(5.9)

and can be always achieved by taking such a splitting of ut . It may be not easy, however,
to realize physically the backward process corresponding to the splitting (5.9). The
second condition (5.8) is a non-trivial constraint on the distribution of the the white-noise
velocity vt . Nevertheless, if Dt is time-independent, it may be satisfied by choosing
the trivial involution x∗ ≡ x .

Parallelly to the splitting (5.3) of the drifts ut and u′t , we shall divide the operators
generating the forward and the backward evolution into two parts:

Lt = Lt,+ + Lt,−, L ′t = L ′t,+ + L ′t,−
according to the formulae:

Lt,+ = ûi
t,+∂i + 1

2 ∂ j d
i j
t ∂i , Lt,− = ui

t,−∂i ,

L ′t,+ = û′it,+∂i + 1
2 ∂ j d

′i j
t ∂i , L ′t,− = u′it,−∂i .

The time-inversion rules become even more transparent when expressed in terms of the
split generators. Let R denote the involution operator acting on the functions by

(R f )(x) = f (x∗) . (5.10)
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Lemma 1.

L ′t,± = ± R Lt∗,±R . (5.11)

Proof of Lemma 1, involving a straightforward although somewhat tedious check, is
given in Appendix B.

Below, similarly as for the forward process, we shall denote by E′t0x the expectation
of functionals of the backward process satisfying the initial condition x′t0 = x . For
t ≥ t0, the relations

E′t0x g(x′t ) = (P ′t0,t g)(x) with P ′t0,t =
−→T exp

( t∫

t0

L ′s ds
)

define the operators whose kernels give the transition probabilities of the time-reversed
process x′t .

6. Examples of Time-Inversion Rules

The preceding considerations were very general. Physically, not all time-inversion rules
for the diffusive processes (2.1) described above are on equal footing. In particular
situations, some rules may be more natural or easier to implement than other ones. Let
us list here a few cases of special time inversions that were discussed in the literature
and/or will be used below.

6.1. Natural time inversion. Taking the trivial splitting ut,+ = 0, ut,− = ut com-
bined with an involution x 
→ x∗ leads to the time-inversion rules that produce
the backward process with trajectories related by the transformation (5.2) to the ones of
the forward process if the pseudo-vector field rule is used when transforming vt . This
is the time inversion usually employed for the deterministic systems but it may be used
more generally.

6.2. Time inversion with ût,+ = 0. Consider the time inversion corresponding to an
arbitrary involution x 
→ x∗ and the choice

ût,+ = 0, ut,− = ût . (6.1)

of the splitting of ut . Such a time inversion is a slight modification of the natural one to
which it reduces in the case of deterministic dynamics (2.3) with vt ≡ 0. As we show
in Appendix C, the backward dynamics corresponding to the splitting (6.1) is given by
the relations

û′it,+(x) = 1
2 d ′i j

t (x) (∂ j ln σ)(x), u′it,−(x) = −(∂k x∗i )(x∗) ûk
t∗(x
∗) , (6.2)

where σ(x) = σ(x∗)−1 denotes the absolute value | det(∂ j x∗i )(x)| of the Jacobian
of the involution x 
→ x∗. The time inversion considered here will be used to obtain
fluctuation relations in the limiting case of deterministic dynamics (2.3) when Di j

t is
set to zero and the backward dynamics is given by the ODE

ẋ ′i = u′it (x ′) for u′it (x) = −(∂k x∗i )(x∗) uk
t∗(x
∗) , (6.3)

obtained from the ODE (2.3) by the natural time inversion.
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6.3. Time inversion in the Langevin dynamics. To explain why the rules of time inversion
with non-vanishing ut,+ are more generally needed, we consider the case of the Lan-
gevin dynamics that involves the dissipative force −�∇Ht . Let us arbitrarily split the
corresponding drift ut into two parts:

ut = −�∇Ht + �∇Ht + Gt = ut,+ + ut,− , (6.4)

see Eq. (2.4). Recall the relation (2.5) that aligns the matrix � with the covariance of
the white-noise vt = ζt . It is natural to require the backward dynamics to be also of the
Langevin type but for the time-reversed Hamiltonian H ′t (x) = Ht∗(x∗). This requires
that

u′t = −�′∇H ′t + �′∇H ′t + G ′t = u′t,+ + u′t,− , (6.5)

and that v′t (x) = ζ ′t with the covariance of the white noise ζ ′t aligned with matrix �′ as
in Eq. (2.5). Upon restriction to linear involutions x∗ = r x with the matrix r squaring
to 1, the transformation rules (5.5) become

u′t,±(x) = ±rut∗,±(r x), ζ ′t = ±rζt∗ .

The condition on the covariance of ζ ′t imposes the relation �′ = r�r T . Applying r to
both sides of Eq. (6.5) taken at time t∗ and at point r x , we infer that

− r�′r T∇Ht (x) + r�′r T∇Ht (x) + rG ′t∗(r x) = ut,+(x)− ut,−(x) .

The latter identity, together with Eq. (6.4), result in the relations

ut,+(x) = −�∇Ht (x) + 1
2 (� + r�′r T )∇Ht (x) + 1

2 (Gt (x) + rG ′t∗(r x)) ,

ut,−(x) = − 1
2 (�− r�′r T )∇Ht (x) + 1

2 (Gt (x)− rG ′t∗(r x)) .

At least when � is strictly positive, Ht is not a constant, and the extra force Gt is
absent, one infers that the component ut,+ cannot vanish identically by considering the
contraction (∇Ht ) · ut,+. We shall call canonical a choice of the time inversion for the
Langevin dynamics for which

�′ = r�r T = � , �′ = −r�r T = �, (6.6)

ut,+ = −�∇Ht , ut,− = �∇Ht + Gt . (6.7)

Note that such a time inversion treats the force Gt as a part of ut,− even when this
force is of the non-conservative type. The Langevin dynamics is time-reversible under
a canonical time inversion if H ′t = Ht and G ′t = Gt . For the Langevin-Kramers
equation, the standard phase-space involution (q, p)∗ = r(q, p) = (q,−p) verifies
Eqs. (6.6) and it leads to the particularly simple canonical time-inversion rules with

V ′t = Vt∗ , f ′t = ft∗

and to the time-reversibility if Vt = Vt∗ and ft = ft∗ .
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6.4. Reversed protocol. The time inversion corresponding to the choice

ut,+ = ut , ut,− = 0 (6.8)

and the trivial involution x∗ ≡ x was termed in [10] a reversed protocol. It may be
viewed as consisting of the inversion of the time-parametrization in the vector fields
in the SDE (2.1), if the vector-field rule is used to reverse vt . In the stationary case,
where it results in time-reversibility, such a time inversion was employed already in [59].
Here, we shall admit also a possibility of a non-trivial involution x 
→ x∗. The reversed
protocol leads then to the backward process with

u′it,+ = (∂k x∗i )(x∗) uk
t∗(x
∗), u′it,− = 0, v′it = (∂k x∗i )(x∗) vk

t∗(x
∗) . (6.9)

6.5. Current reversal. Suppose that e−ϕt are densities satisfying L†
t e−ϕt = 0. Such

densities would be preserved by the evolution if the generator of the process were frozen
to Lt . The density current corresponding to e−ϕt has the form

j i
t =

(
ûi

t + 1
2 di j

t (∂ jϕt )
)

e−ϕt ,

see Eq. (3.8). It is conserved due to the relation L†
t e−ϕt = 0. The time inversion defined

by the choice

ûi
t,+ = − 1

2 di j
t ∂ jϕt , ui

t,− = ûi
t + 1

2 di j
t ∂ jϕt , (6.10)

and an arbitrary involution x 
→ x∗ leads, after an easy calculation using the results of
Appendix C, to the backward process with

û′it,+ = − 1
2 d ′i j

t ∂ jϕ
′
t , u′it,−(x) = −(∂k x∗i )(x∗) uk

t∗,−(x∗)

v′it = ±(∂k x∗i )(x∗) vi
t∗(x
∗) (6.11)

for ϕ′t (x) = (ϕt∗ + ln σ)(x∗). The density current for the backward process correspon-
ding to the densities e−ϕ′t is

j ′it =
(
û′it + 1

2 d ′i j
t (∂ jϕ

′
t )

)
e−ϕ′t

= u′it,−(x) e−ϕ′t (x) = −(∂k x∗i )(x∗) uk
t∗,−(x∗) e−ϕt∗ (x∗)σ (x)

= −(∂k x∗i )(x∗)
(
ûk

t∗(x
∗) + 1

2 di j
t∗ (x

∗)(∂ jϕt∗)(x
∗)

)
e−ϕt σ(x)

= − (∂k x∗i )(x∗) j k(x∗) σ (x) (6.12)

and is also conserved, as is easy to check. It follows that L ′†t e−ϕ′t = 0. We shall term the
time inversion corresponding to the choices (6.10) the current reversal. For x∗ ≡ x
when it just reverses the sign of the density current, it was already employed in an
implicit way in [43], and was introduced explicitly (under a different name) in [10]. The
latter reference discussed also a simple two-dimensional model for which the inverse
protocol and the current reversal led to different backward processes.
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6.6. Complete reversal. Finally, modifying slightly the last scheme, let us suppose the
densities ρt = e−ϕt evolve under the dynamics solving Eq. (3.7). With the same splitting
(6.10) as for the current reversal, we obtain the backward process for which Eqs. (6.11)
and (6.12) still hold for ϕ′t (x) = (ϕt∗ + ln σ)(x∗). We shall call the corresponding time
inversion the complete reversal. Unlike in the other examples, it depends also on the
choice of the initial density ρ0 and may be difficult to realize physically. The time-
reflected densities ρ′t = e−ϕ′t evolve now according to the backward-process version
of Eq. (3.7). The current reversal and the complete reversal coincide in the case without
explicit time dependence and with the choice of ϕt ≡ ϕ such that e−ϕdx is an invariant
measure.

7. Relation Between Forward and Backward Processes

A comparison between the forward and the backward processes will be at the core of
fluctuation relations that we shall discuss. To put the processes in the two time directions
back-to-back, we shall adapt to the present setup the arguments developed in Sect. 5 of
[59]. Let us introduce a perturbed version of the generator Lt of the forward process,

L1
t = Lt − 2 ûi

t,+∂i − (∂i û
i
t,+) + (∂i u

i
t,−) . (7.1)

Operator L1
t is related in a simple way to the generator of the backward process:

R
(
L1

t

)†
R = R

(
∂i û

i
t,+ − ∂i u

i
t,− + 1

2 ∂i d
i j
t ∂ j − (∂i û

i
t,+) + (∂i u

i
t,−)

)
R

= R Lt,+ R − R Lt,−R = L ′t∗ , (7.2)

where R is defined by Eq. (5.10) and the last equality is a consequence of the relations
(5.11). Let us consider the time-ordered exponential of the integral of L1

t . Using the
relation L1

t = (R L ′t∗R)† that follows from Eq. (7.2), we infer that

P1
t0,t ≡

−→T exp
( t∫

t0

L1
s ds

)
= ←−T exp

(
t∗0∫

t∗
(R L ′s R)† ds

)

=
[

R
−→T exp

(
t∗0∫

t∗
L ′s ds

)
R
]† = (

R P ′t∗,t∗0 R
)†
. (7.3)

Above, the first inversion of the time order from
−→T to

←−T was due to the change of
integration variables s 
→ s∗ = T − s, and the second one, to the fact that the hermitian
conjugation reverses the order in the product of operators. Let us remark that A(y,dx)

dx dy
is the kernel of the operator A† and A(x∗, dy∗) of the operator R AR if A(x, dy) is
the kernel of a real operator A. Rewriting Eq. (7.3) in terms of the kernels, with these
comments in mind, we obtain the identity

dx P1
t0,t (x, dy) = dy P ′t∗,t∗0 (y

∗, dx∗) . (7.4)
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Remark 2. The transition probability of the backward process on the right hand side may
be replaced by the one of the forward process in the time-reversible case.

Note that the 2nd order differential operator L1
t differs from Lt only by lower order

terms, see Eq. (7.1). A combination of the Cameron-Martin-Girsanov and the Feynman-
Kac formulae [79] permits to express the kernel P1

t0,t (x, dy) as a perturbed expectation
for the forward process.

Lemma 2. If the matrix
(
di j

t (x)
)

is invertible for all t and x then

P1
t0,t (x, dy) = Et0

x e
−

t∫

t0

Js ds

δ(xt − y) dy , (7.5)

where

Jt = 2 ût,+(xt ) · d−1
t (xt ) ẋt − 2 ût,+(xt ) · d−1

t (xt ) ut,−(xt ) − (∇ · ut,−)(xt ) (7.6)

is a (local) functional of the solution xt of the SDE (2.1). The right hand side of Eq. (7.6)
uses the vector notation. The first term in the expression for Jt has to be interpreted
with the Stratonovich convention.

Proof of Lemma 2 is deferred to Appendix D. A combination of the relations (7.5) and
(7.4) gives immediately

Proposition 1.

dx Et0
x e
−

t∫

t0

Js ds

δ(xt − y) dy = dy P ′t∗,t∗0 (y
∗, dx∗) . (7.7)

This is the first fluctuation relation of a series to be considered. It connects the transition
probability of the backward process to an expectation in the forward process weighted
with an exponential factor. Let us illustrate this relation in a few particular situations
related to the examples of the diffusion processes considered in Sect. 2.

Example 5. Tangent process in the stationary homogeneous Kraichnan model. Recall
Sect. 4 devoted to the definition of a tangent process. Let us consider the tangent process
(xt ,Xt ) with fixed initial data x0 = x and X0 = 1 for the homogeneous Kraichnan
model. As was discussed in detail in [40], in this case, the distribution of the process Xt
may be obtained by solving, instead of the SDE (4.2) with ut ≡ 0, a simpler linear Itô
SDE

d X = St dt X (7.8)

with a matrix-valued white-noise St such that

〈
Si

t k S j
s l

〉 = −δ(t − s) ∂k∂l Di j (0) .

In other words, in Eq. (4.2), we may replace ∂kv
i (xt ) by ∂kv

i
t (0) ≡ Si

t k , if we change
the SDE convention to the Itô one at the same time. Consequently, in the homogeneous
Kraichnan model, the process Xt may be decoupled from the original process xt . Let
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us abbreviate: −∂k∂l Di j
t (0) = Ci j

kl . Remark the symmetries Ci j
kl = C ji

lk = Ci j
lk = C ji

kl .
The Itô SDE (7.8) may be rewritten as the equation

Ẋ i
j = − 1

2 Cik
kl Xl

j + Si
t l Xl

j (7.9)

that employs the Stratonovich convention. Upon the use of the notations:

Ui
j (X) = − 1

2 Cik
kl Xl

j , V i
t j (X) = Si

t l Xl
j ,

it may be cast into the form

Ẋ = U (X) + Vt (X) , (7.10)

falling within the scope of (stationary) diffusion SDEs (2.1) and defining a Markov
process Xt . The covariance of the white-noise “velocity” Vt (X) is

〈
V i

t k(X) V j
s l(Y )

〉
= δ(t − s) Di j

kl (X,Y ) with Di j
kl (X,Y ) = Ci j

nm Xn
k Y m

l .

As in the general case (3.4), we shall denote:

di j
kl (X) = Di j

kl (X, X) Û i
j (X) = Ui

j (X)− 1
2 ∂X̃ k

l
Dik

jl (X,Y )
∣∣
Y=X = −

d + 1

2
Cni

nk Xk
j .

Let us apply the reversed-protocol time inversion discussed in Sect. 6.4 to the forward
SDE (7.10). It corresponds to the trivial splitting of U with U+ = U and U− = 0 and to
an involution X 
→ X∗ that we shall also take trivial: X∗ ≡ X . The backward evolution
is then given by the same equation (7.9) with St replaced by S′t = St∗ , a matrix-valued
white noise with the same distribution as St . The time-reversibility follows. Suppose
that the covariance C of the white noise S(t) is invertible3, i.e. that there exists a matrix
(C−1)lnjm such that Ci j

kl (C
−1)lnjm = δi

mδ
n
k . Then the matrix

(d−1)lnjm(X)= (X−1)l p(X
−1)nr (C

−1)
pr
jm

provides the inverse of di j
kl (X). Substituting these data into Eq. (7.6), we obtain

Jt=2(Û ) j
l(Xt ) (d

−1)lnjm(Xt ) Ẋm
t n=− (d + 1) (X−1

t )nm Ẋm
t n=− (d + 1)

d

dt
ln | det Xt |.

The relation (7.7) applied to the case at hand leads to the identity

d X0 Pt (X0, d X) | det X0|−(d+1)| det X |d+1 = d X Pt (X, d X0) , (7.11)

where Pt (X0, d X) denotes the transition probability of the forward process Xt solving
the SDEs (7.8) or (7.9) and d X0 on the left hand side and d X on the right hand side
stand for the Lebesgue measures on the space of d × d matrices. We made use of the
fact that the backward process has the same law as the forward one. Equation (7.11) is
nothing else but the detailed balance relation with respect to ϕ(X) = (d + 1) ln | det X |.

3 The assumption about inversibility of C may be dropped at the end by a limiting argument.
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Indeed, note that the density current corresponding to the density ρ(X) = | det X |−d+1

j (X) = (
Û (X) + 1

2 d(X)∇ϕ) | det X |−d+1 ,

see Eq. (3.8), vanishes.
Integrating the left hand side of the identity (7.11) against a function f (X0, X) and

using the relation Pt (X0, d X) = Pt (1, d(X X−1
0 )) that follows from the invariance of

the corresponding SDE under the right multiplication of X by invertible matrices, we
obtain the equalities

∫
f (X0, X) det(X X−1

0 )d+1 d X0 Pt (X0, d X)

=
∫

f (X0, X) det(X X−1
0 )d+1d X0 Pt (1, d(X X−1

0 ))

=
∫

f (X0, X X0) (det X)d+1 d X0 Pt (1, d X)

=
∫

f (X−1 X0, X0) (det X) d X0 Pt (1, d X) ,

where we twice changed variables in the iterated integrals. On the other hand, the inte-
gration of the right hand side of Eq. (7.11) against f (X0, X) gives

∫
f (X0, X) d X Pt (X, d X0) =

∫
f (X, X0) d X0 Pt (X0, d X)

=
∫

f (X X0, X0) d X0 Pt (1, d X)

=
∫

f (X−1 X0, X0) d X0 Pt (1, d X−1) .

Comparing the two expressions, we infer that

Pt (1, d X) (det X) = Pt (1, d X−1) . (7.12)

This is a version of the Evans-Searles [25] fluctuation relation for the stationary homoge-
neous Kraichnan model. In the context of general hydrodynamic flows, it was formulated
and proven by a change-of-integration-variables argument in [1], see also [40]. We shall
return in Sect. 15 to the relation (7.12) in order to examine some of its consequences.
Subsequently, we shall generalize it in Sect. 16 to arbitrary diffusion processes of the
type (2.1).

Example 6. Generalized detailed balance relation. Consider the complete-reversal rules
discussed in Sect. 6.6 and corresponding to the choice (6.10). Since, by virtue of the
assumption that the densities e−ϕt evolve under the dynamics, see Eq. (3.7),

L†
t e−ϕt = −∂i ui

t,−e−ϕt = e−ϕt (ui
t,−∂iϕt − ∂i u

i
t,−) = −e−ϕt ∂tϕt , (7.13)

the last two terms in the definition (7.6) reduce to − (∂tϕt )(xt ) in this case so that

Jt = −(∇ϕt )(xt ) · ẋt − (∂tϕt )(xt ) = − d

dt
ϕt (xt ) . (7.14)
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Upon integration over time, this produces boundary terms and Eq. (7.7) implies the
generalized detailed balance relation:

µ0(dx) P0,T (x, dy) = µT (dy) P ′0,T (y∗, dx∗) , (7.15)

for µt (dx) = e−ϕt (x)dx . Note that Eq. (7.15) holds for any choice of the involution
x 
→ x∗. Upon integration over x , it assures that the measures µt stay invariant under
the dynamics, what was assumed from the very beginning. In the case with no explicit
time dependence, i.e. when Lt ≡ L , Eq. (7.15) holds, in particular, for ϕt ≡ ϕ such
that µ = e−ϕdx is an invariant measure. In that case, the generalized detailed balance
relation reduces to the detailed balance one (3.9) if u− in the splitting (6.10) vanishes
and x∗ ≡ x . This was the case in Example 5. Below, we shall see examples where the
invariant measure µ is known and the generalized detailed balance relation holds but
where the detailed balance itself fails. Some of those cases fall under the scope of the
Langevin dynamics. Let us discuss them first.

Example 7. 1st law of thermodynamics and generalized detailed balance for Langevin
dynamics. For Langevin dynamics with the splitting (6.7) of the drift, a direct substitution
yields

Jt = −β(∇Ht )(xt ) · ẋt + β(∇H)(xt ) · Gt (xt )− (∇ · Gt )(xt ) ≡ J Lan
t .

Upon the use of the dynamical equation (2.4),

T∫

0

J Lan
t dt =

T∫

0

[
β (∇Ht )(xt ) · �(∇Ht )(xt ) − β (∇Ht )(xt ) · ζt

−(∇ · Gt )(xt )
]
dt ≡ βQ , (7.16)

where Q may be identified with the heat transferred to the environment modeled by
the thermal noise. On the other hand, using the original expression for J Lan

t together
with the (Stranonovich convention) identity d

dt Ht (xt ) = (∇Ht )(xt ) · ẋt + (∂t Ht )(xt ),
we obtain the relation

T∫

0

J Lan
t dt = −β�U + βW , (7.17)

where �U = HT (xT )− H0(x0) is the change of the internal energy of the system and

W =
T∫

0

[
(∂t Ht )(xt ) + (∇H)(xt ) · Gt (xt )− β−1(∇ · Gt )(xt )

]
dt (7.18)

may be interpreted as the work performed on the system. With these interpretations, a
comparison of the two expressions for the integral of J Lan

t leads to the 1st law of
thermodynamics:

�U = −Q + W . (7.19)
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This was discussed in a simple example of the forced and damped oscillator in [53]. In
the absence of the extra force Gt , the expression for the work reduces to

W =
T∫

0

(∂t Ht )(xt ) dt (7.20)

and represents the so called Jarzynski work introduced in [48] for deterministic
Hamiltonian dynamics. In the stochastic Langevin-Kramers dynamics, the expressions
for the heat and the work become:

Q =
T∫

0

[
q̇t · γ q̇t − q̇t · ζt

]
dt, W =

T∫

0

[
(∂t Vt )(qt ) + q̇t · ft (qt )

]
dt . (7.21)

The second quantity is equal to the sum of the Jarzynski work and of the work of the
external force ft . It was introduced and discussed in [57]. In the stationary case, it
reduces to the injected work [56] and, up to the β-factor, coincides with the “action
functional” (for uniform temperature) given by Eq. (6.3) of [59]. Note that the general
expression (7.18) for work also makes sense in the case of deterministic dynamics (2.6)
obtained from the SDE (2.4) by setting � = 0, in particular for the deterministic
Hamiltonian evolution with Gt ≡ 0.

If Gt ≡ 0, the splitting (6.7) is a special case of the splitting used for the current
reversal for ϕt = βHt , see Eq. (6.10). In particular, if Ht ≡ H then the transition
probabilities of the Langevin process satisfy the generalized detailed balance relation
(7.15) that takes the form

µ(dx) PT (x, dy) = µ(dy) P ′T (y∗, dx∗) (7.22)

for µ(dx) = e−βH(x)dx and any involution x 
→ x∗ = r x . The latter identity replaces
in the presence of the conservative force �∇H the detailed balance relation (3.9) and
still assures that the Gibbs density e−βH is invariant under such Langevin dynamics. If
the involution r satisfies additionally the relations (6.6) and H(r x) = H(x), resulting
in the time-reversibility, then one may replace P ′T by PT in Eq. (7.15).

Example 8. Linear Langevin equation. Consider the linear SDE

ẋ = M x + ζt , (7.23)

where M is a d × d matrix and ζt is the white noise with the covariance (2.5) and
matrix � strictly positive. We shall be interested in cases when the matrix �−1 M is
non-symmetric. For an elementary discussion of mathematical aspects of such SDEs see
e.g. [42]. In the context of nonequilibrium statistical mechanics, examples of such linear
equations were considered in [58] as models of a harmonic chain of oscillators interacting
with environment of variable temperature or, quite recently, in [81] for modeling coiled
polymers in a shearing flow. The diffusion process xt that solves Eq. (7.23) with the
initial value x0 = x is given by the formula

xt = e t M x +

t∫

0

e (t−s)M ζs ds .
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The transition probabilities of this process are Gaussian and have the explicit form

Pt (x, dy) = det(2πβ−1Ct )
−1/2 exp

[
− β

2

(
y − e t M x

) · C−1
t

(
y − e t M x

)]
dy ,

(7.24)

where

Ct = 2

t∫

0

es M�es MT
ds (7.25)

is a strictly positive matrix. Suppose that all the eigenvalues λ of M have negative real
parts. Under this condition, et M tends to zero exponentially fast when t →∞ so that
C∞ ≡ C is finite and

Pt (x, dy) −→
t→∞ det(2πβ−1C)−1/2 exp

[
− β

2
y · C−1 y

]
dy ,

with the right hand side defining the unique invariant probability measure of the process.
This Gaussian measure has the form of the Gibbs measure for the quadratic Hamiltonian

H(x) = 1
2 x · C−1x . (7.26)

Introducing the matrix

� = � + MC (7.27)

that is antisymmetric:

� + �T = 2� + 2

∞∫

0

e s M (M� + �MT )e s MT
ds

= 2� + 2

∞∫

0

d

ds
e s M�e s MT

ds = 0,

the linear SDE (7.23) may be rewritten in the Langevin form (2.4) as

ẋ = −�∇H(x) + �∇H(x) + ζt . (7.28)

Conversely, the last SDE with H as in Eq. (7.26) for some C > 0 is turned into the
form (7.23) upon setting

M = −(� −�)C−1 . (7.29)

Note that the last equation implies the relation (7.27) for �. In Appendix E, we show
that M given by Eq. (7.29) has necessarily all eigenvalues with negative real part and
that C may be recovered from M as C∞ given by Eq. (7.25) with t = ∞. This
establishes the equivalence between the SDEs (7.23) and (7.28).
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The probability current associated by the formula (3.8) to the Gaussian invariant
Gibbs measure µG(dx) = Z−1e−βH(x)dx is

j (x) = Z−1�C−1x e−βH(x) .

It vanishes only when � = 0. In the latter case, the transition probabilities (7.24)
satisfy the detailed balance relation (3.9) for ϕ = βH + ln Z . If � �= 0 then only a
generalized detailed balance relation (7.22) holds for any choice of the linear involution
x 
→ x∗ = r x . If moreover r�r T = �, r�r T = −� and rCr T = C , then P ′T on
the right hand side of Eq. (7.15) may be replaced by PT .

8. Jarzynski Equality

We shall exploit further consequences of the relation (7.7) between the forward and
the backward processes. In this section we shall derive an identity that generalizes the
celebrated Jarzynski equality [48,49] and shall prepare the ground for obtaining more
refined fluctuation relations following the ideas of [31,63] and [19]. Let ϕ0 and ϕT be
two functions generating measures

µ0(dx) = e−ϕ0(x)dx, µT (dx) = e−ϕT (x)dx , (8.1)

respectively. In particular, we could take e−ϕT (x) such that the measure µT is related to
µ0 by the dynamical evolution (3.6), i.e. µT = µ0 P0,T , but we shall not assume such
a choice unless explicitly stated. In general, the measures (8.1) may be not normalizable
but we shall impose the normalization condition later on. We shall associate to µ0 and
µT the time-reflected measures

µ′0(dx) = e−ϕ′0(x)dx = e−ϕT (x∗)dx∗, µ′T (dx) = e−ϕ′T (x)dx = e−ϕ0(x∗)dx∗.

Let us modify the functional
T∫

0
Jt dt introduced in the last section by boundary terms

�ϕ ≡ ϕT (xT )− ϕ0(x0) by setting

W = �ϕ +

T∫

0

Jt dt . (8.2)

The functional W will be the basic quantity in what follows. Its physical interpretation
in terms of the entropy production will be discussed in Sect. 10 below.

For any functional F on the space of trajectories xt parametrized by time in the
interval [0, T ], we shall denote by F̃ the functional defined by F̃(x) = F(x̃), where
x̃ is given by Eq. (5.2). We shall also introduce the shorthand notation

E0,T
x,y F(x) = E0

x F(x) δ(xT − y)

for the (unnormalized) expectation of the process xt with fixed initial and final points,
and similarly for the backward process. The following refinement of the relation (7.7)
of Proposition 1 holds:
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Proposition 2.

µ0(dx) E0,T
x,y F(x) e−W(x) dy = µ′0(dy∗) E′0,Ty∗,x∗ F̃(x′) dx∗. (8.3)

Proof of Proposition 2 is contained in Appendix F. Note that the explicit dependence on
the choice of measures µ0 and µ′0 trivially cancels the one buried in W . In particular,
for F ≡ 1, Proposition 2 reduces to Proposition 1 with t0 = 0 and t = T . As before,
the backward-process expectation E′ may be replaced by the forward-process one E
for the time-reversible process.

If the measures µ0 and µ′0 are normalized then we may use them as the probability
distributions of the initial points of the forward and of the backward process, respec-
tively. The corresponding probability measures M(dx) and M ′(dx′) on the space of
trajectories on the time-interval [0, T ] are given by the relations

∫
F(x)M(dx) =

∫ (
E0

x F(x)
)
µ0(dx) ≡

〈
F

〉
, (8.4)

∫
F(x′)M ′(dx′) =

∫ (
E′0x F(x′)

)
µ′0(dx) ≡

〈
F

〉′
. (8.5)

Upon integration over x and y, the identity (8.3) induces the following equality between
the expectations with respect to the trajectory measures M and M ′:

Corollary 1.
〈
F e−W 〉

=
〈
F̃

〉′
. (8.6)

It was stressed in [63], and even more explicitly in [19], that the identity of the type of
(8.6), comparing the expectations in the forward and the backward processes, is a source
of fluctuation relations. An important special case of Eq. (8.6) is obtained by setting
F ≡ 1. It was derived in [48] in the context of the Hamiltonian dynamics and in [49] in
the one of Markov processes:

Corollary 2. (Jarzynski equality).
〈

e−W 〉
= 1 . (8.7)

Let us illustrate the meaning of the above relation by considering a few special cases.

Example 9. The case of Langevin dynamics. With the splitting (6.7) used for the canonical
time inversion, upon taking ϕt = β(Ht − Ft ), where Ft = −β−1 ln

∫
e−βHt (x)dx

denotes the free energy, we infer from Eq. (7.17) that

W = β(W − �F) , (8.8)

where �F = FT −F0 is the free energy change and W is the work given by Eq. (7.18).
The difference W − �F is often called the dissipative work. The Jarzynski equality
(8.7) may be rewritten in this case in the original form

〈
e−βW

〉
= e−β�F , (8.9)

in which it has become a tool to compute the differences between free energies of
equilibrium states from nonequilibrium processes [45,17,72,73].
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Example 10. The case of deterministic dynamics. Upon splitting the drift ut with ût,+ ≡
0 related to the modified natural time inversion described in Sect. 6.2, the expression
(7.6) reduces to

Jt=−(∇ · ût )(xt ) ≡ J n̂at
t . (8.10)

For the deterministic dynamics where Di j
t (x, y) ≡ 0, the difference between the vector

fields ût and ut disappears and J n̂at
t reduces to

J det
t = −(∇ · ut )(xt ) . (8.11)

The right hand side represents the phase-space contraction rate along the trajectory xt ,
see Eq. (4.3). In this case,

W = �ϕ −
T∫

0

(∇ · ut )(xt ) dt =
T∫

0

[ d
dt
ϕt (xt )− (∇ · ut )(xt )

]
dt ≡ Wdet . (8.12)

For ϕT = ϕ0 = ϕ, the last integral in Eq. (8.12) was termed “the integral of the
dissipation function” in [26]. In the case of the deterministic dynamics (2.6) obtained
from the Langevin equation by setting � = 0, the expression (8.12) for W reduces to
the one of Eq. (8.8) if we take ϕt = β(Ht − Ft ). In the deterministic case, the Jarzynski
equality (8.7) reads

∫
e

T∫

0
(∇·ut )(xt ) dt

e−ϕT (xT ) dx0 = 1 (8.13)

and may be easily proven directly. To this end recall Eq. (4.4) which implies for the

deterministic case that
T∫

0
(∇ · ut )(xt ) dt = ln det XT (x0), where the matrices Xt (x) of

the tangent process are given by Eq. (4.1). The equality (8.13) is then obtained by the
change of integration variables x0 
→ xT whose Jacobian is equal to det XT (x0).

Example 11. The reversed protocol case. In the setup of Sect. 6.4 with ut,− = 0,

Jt = 2 ût (xt ) · d−1
t (xt ) ẋt ≡ J tot

t .

In the stationary case, the integral
T∫

0
J tot

t dt , rewritten with use of the Itô convention, was

termed an “action” in [59], see Eq. (5.3) therein. In [43], it was considered in the context
of the Langevin equation with the extra force Gt (but without the Hamiltonian term
�∇Ht ). It was then identified as βQtot with the quantity Qtot interpreted, following
[68], as the total heat produced in the environment. The functional W of the forward
process is given here by the formula

W = �ϕ + 2

T∫

0

ût (xt ) · d−1
t (xt ) ẋt dt ≡ W tot . (8.14)
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In particular, for the Langevin dynamics (2.4), one obtains:

W tot = �ϕ + β

T∫

0

(−�∇Ht +�∇Ht + Gt )(xt ) · �−1ẋt dt . (8.15)

The Jarzynski equality (8.7) was discussed for this case in [43,78,10]. Note that W tot

is not well defined for the Langevin-Kramers dynamics. On the other hand, for the linear
Langevin equation of Example 8 and for ϕt = β(H − F),

W tot = β

T∫

0

xt · (C−1 + MT�−1) ẋt dt = −β
T∫

0

xt · C−1��−1ẋt dt (8.16)

and it vanishes if � = 0. A long time asymptotics of the probability distribution of a
quantity differing from the last one by a boundary term was studied in [81].

Example 12. Hatano-Sasa equality [43]. In the current-reversal setup of Sect. 6.5, with
the splitting (6.10) of the drift ut induced by the normalized densities e−ϕt such that
L†

t e−ϕt = 0,

Jt = −(∇ϕt )(xt ) · ẋt ≡ J ex
t , (8.17)

since now the last two terms on the right hand side of Eq. (7.6) vanish, compare to
Eq. (7.13). Upon integration, this gives:

T∫

0

J ex
t dt = −�ϕ +

T∫

0

(∂tϕt )(xt ) dt. (8.18)

In [43], the integral given by Eq. (8.17) was identified in the context of the Langevin
equation with the force Gt as equal to βQex , where Qex was termed the excess heat,
following [68]. The difference Qtot − Qex = Qhk was called, in turn, the housekee-
ping heat and was interpreted as the heat production needed to keep the system in a
nonequilibrium stationary state, see again [68,43,78,10]. Using in the definition (8.2)
the functions ϕ0 and ϕT from the same family, we infer from Eq. (8.18) that

W =
T∫

0

(∂tϕt )(xt ) dt ≡ Wex . (8.19)

The equality (8.7) for this case was proven by Hatano-Saso [43], see also [57]. Note
that in the stationary case, Wex = 0. The Langevin dynamics discussed in Example 9
provides a special instance of the situation considered here if Gt ≡ 0. Consequently, in
that case, Wex is equal to the dissipative Jarzynski work (in the β−1 units) β(W−�F)
with W given by Eq. (7.20).

Example 13. The case of complete reversal. Recall that for the complete reversal rule of
Sect. 6.6 based on the choice of densities e−ϕt evolving dynamically, Jt is the total
time derivative, see Eq. (7.14). The use in the definition (8.2) of the functions from the
same family annihilates the functional W:

W ≡ 0 . (8.20)
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9. Speck-Seifert Equality

Let us consider the two functionals W tot and Wex of the process xt introduced in
Examples 11 and 12. We shall take them with the same functions ϕt satisfying L†

t e−ϕt =
0. The two Jarzynski equalities

〈
e−W tot

〉
= 1 =

〈
e−Wex

〉
hold simultaneously. In [78]

a third equality of the same type, this time involving the quantity

Whk = W tot −Wex =
T∫

0

[∇ϕt (xt ) + 2 ût (xt ) · d−1
t (xt )

]
ẋt dt

was established in the context of the Langevin equation where Whk = βQhk = βQtot−
βQex is the housekeeping heat (in the β−1 units). We shall prove here a generalization of
the result of [78]. To this end, let us consider, besides the original process xt satisfying
the SDE (2.1), the Markov process x′′t satisfying the same equation but with the drift
ût replaced by

û′′t = −ût − dt∇ϕt . (9.1)

We shall denote by
〈 · 〉′′ the expectation defined by Eq. (8.4) but referring to the process

x′′t . Note in passing the relations L ′′†t e−ϕt = 0, where the operators L ′′t are given by
Eq. (3.3) with û′′t replacing ût . In particular, in the stationary case, the processes xt
and x′′t have the same invariant measure.

Proposition 3.

〈
F e−Whk

〉
=

〈
F

〉′′
. (9.2)

Proof. The above identity may be proven directly with the use of the Cameron-Martin-
Girsanov formula, see Appendix D, by comparing the measures of the processes xt and
x′′t corresponding to SDEs differing by a drift term. Here we shall give another proof
based on applying twice the relation (8.6). First, we use this relation with the functional
F replaced by F e−W tot +2Wex

for the current-reversal time inversion with the trivial
involution x∗ ≡ x and the vector-field rule for vt . This results in the equality

〈
F e−Whk

〉
=

〈
F̃ e−W̃ tot +2W̃ex

〉′
, (9.3)

where the expectation
〈 · 〉′ pertains to the backward dynamics with

û′it = −ûi
t∗ − di j

t∗ ∂ jϕt∗ , v′it = vi
t∗ ,

see Eqs. (6.11). Now, we observe that the same backward process may be obtained by
the reversed-protocol time inversion, again for x∗ ≡ x , from the process x′′t introduced
above. The identity (8.6) applied for the processes x′′t and x′t reads:

〈
F ′′ e−W ′′ 〉′′ =

〈
F̃ ′′

〉′
, (9.4)
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where

W ′′ = �ϕ + 2

T∫

0

û′′t (xt ) · d−1
t (xt ) ẋt dt

is the functional W referring to the dynamics with û′′t = û′′t,+ given by Eq. (9.1). The

application of Eq. (9.4) to F ′′ = F e−W tot +2Wex
reduces the right hand side of Eq. (9.3)

to the expectation
〈
F e−(W tot−2Wex +W ′′)〉′′. The equality (9.2) follows by checking that

W tot − 2Wex + W ′′ = �ϕ + 2

T∫

0

ût (xt ) · d−1
t (xt ) ẋt dt − 2

T∫

0

(∂tϕt )(xt ) dt

+ �ϕ + 2

T∫

0

(− ût (xt )− dt (xt )∇ϕt (xt )
) · d−1

t (xt ) ẋt dt

= 2�ϕ − 2

T∫

0

[
∂tϕt (xt ) + ∇ϕt (xt ) · xt

]
dt = 0 .

�

Setting F ≡ 1 in the identity (9.2), we obtain the result that was established by a
different argument in [78] in the context of the Langevin equation:

Corollary 3. (Speck-Seifert equality).
〈

e−Whk
〉
= 1 . (9.5)

10. Entropy Production

An immediate consequence of the Jarzynski equality (8.7) and of the Jensen inequality
(i.e. of convexity of the exponential function) is

Corollary 4. (2nd law of thermodynamics for diffusion processes).
〈
W

〉 ≥ 0 . (10.1)

To explain the relation of the latter inequality to the 2nd law of thermodynamics, let us
first remark that the quantity on the left hand side has the interpretation of a relative
entropy. Recall, that for two probability measures µ(dx) and ν(dx) = e−w(x)µ(dx),
the relative entropy of ν with respect to µ is defined by the formula

S(µ|ν) =
∫
w(x) µ(dx)

and is always non-negative. Now, the identity (8.6) may be read as the relation

M̃ ′(dx) = e−W M(dx)
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between the measures M(dx) and M̃ ′(dx) ≡ M ′(dx̃). In other words, e−W is the
relative (Radon-Nikodym) density of the trajectory measure M̃ ′ with respect to the
measure M . It follows that

〈
W

〉 = S(M |M̃ ′)
so that the inequality (10.1) expresses the positivity of the relative entropy.

Up to now, the measures µ0 and µT were unrelated. Let us consider the parti-
cular case when µT is obtained by the dynamical evolution (3.6) from µ0 so that
µT = µ0 P0,T . In this case, the relative entropy S(M |M̃ ′) may be interpreted as the
overall entropy production in the forward process between times 0 and T , relative
to the backward process, see [27,65,39]. Let for a measure ν(dx) = ρ(x)dx , S(ν) =
− ∫

ln ρ(x) ν(dx) denotes its entropy. Using the definition (8.2), we may rewrite
〈
W

〉 = S(µT ) − S(µ0) + �Senv, (10.2)

where the difference S(µT )− S(µ0) is the change of entropy of the fixed-time distri-
bution of the process during the time T and

�Senv =
T∫

0

〈
Jt

〉
dt . (10.3)

The latter quantity will be interpreted as the mean entropy production in the environ-
ment modeled by the stochastic noise, measured relative to the backward process. The
inequality (10.1) states that the overall entropy production cannot be negative in mean.
In this sense, it is a version of the 2nd law of thermodynamics for the diffusion processes
under consideration. In the stationary case, where µT = µ0, the overall mean entropy
production reduces to the one in the environment �Senv .

The rate of change of the fixed-time entropy S(µt ) for µt = µ0 P0,t is easily
calculated with the use of Eq. (3.7) to be

d S(µt )

dt
=

∫ [
ût · ∇ϕt + 1

2 (∇ϕt ) · dt (∇ϕt )
]
(x) µt (dx) (10.4)

for µt (dx) = e−ϕt (x)dx . Rewriting the expression (7.6) for Jt in terms of the Itô
convention, it is also easy to show that

〈
Jt

〉 =
∫ [

2 ût,+ · d−1
t ût,+ + (∇ · ût,+) − (∇ · ut,−)

]
(x) µt (dx) . (10.5)

The average (10.5) represents the instantaneous mean rate of the entropy production in
the environement. Combining the last two expressions, we obtain the relation

d S(µt )

dt
+

〈
Jt

〉 = 2
∫ [

(ût,+ + 1
2 dt (∇ϕt )) · d−1

t (ût,+ + 1
2 dt (∇ϕt ))

]
(x) µt (x) (10.6)

which is explicitly positive. This provides still another proof of the positivity of the
expectation

〈
W

〉
which is the time integral of the latter expression if the measure µT

is obtained by evolving dynamically µ0. See Eq. (13) in [66] for the special case of the
latter relation. If µT �= µ0 P0,T then one has to distinguish between those two measures
and the relation (10.2) is modified to

〈
W

〉 = S(µ0 P0,T ) − S(µ0) + �Senv + S(µ0 P0,T )|µT ) ,
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i.e. the right hand side is increased by the relative entropy of the measure µT with
respect to the measure obtained from µ0 by the dynamical evolution. Consequently, the
average

〈
W

〉
is minimal when µT = µ0 P0,T .

Note that �Senv as defined by Eq. (10.3) depends on the time inversion employed
(more precisely, on the splitting of ut ), and the quantities obtained by employing different
time inversions are, in general, different. They may have different physical relevance.
We may talk about the total mean entropy production in the environment

�Stot
env =

T∫

0

〈
J tot

t

〉
dt =

T∫

0

dt
∫ [

2 ût · d−1
t ût + (∇ · ût )

]
(x) µt (dx) ,

if the reversed protocol of Sect. 6.4 and Example 11 is used or about the excess mean
entropy production

�Sex
env =

T∫

0

dt
∫ [∇ · ût − 2ût · (∇ϕt )− 1

2 (∇ϕt ) · dt (∇ϕt )
]
(x) µt (dx)

in the environment for the current reversal of Sect. 6.5 and Example 12 (in the latter
formula, e−ϕt satisfies L†

t e−ϕt = 0 and is, in general different from the density of
µt = µ0 P0,t ). The Speck-Seifert equality (9.5) combined with the Jensen inequality
imply that �Sex

env does not exceed �Stot
env which may be also seen directly since

�Stot
env −�Sex

env =
〈
Whk 〉

= 2

T∫

0

dt
∫ [

(ût + 1
2 dt · (∇ϕt )) · d−1

t (ût + 1
2 dt · (∇ϕt ))

]
(x) µt (dx) ≥ 0 .

As an illustration, consider the stationary Langevin equation with the vanishing additio-
nal force where �Sex

env = 0 although �Stot
env may be non-zero if � �= 0. In particular,

in the linear case studied in Example 8,

�Stot
env =

T∫

0

〈
J tot

t

〉
dt =

T∫

0

〈
β xt · MT�−1 Mxt + tr M

〉
dt = −T tr��−1 M

by Eq. (10.5).
For the general diffusion process and the drift splitting corresponding to the modified

natural time inversion of Sect. 6.2, i.e. for ût,+ ≡ 0,

�Sn̂at
env =

T∫

0

〈
J n̂at

t

〉
dt = −

T∫

0

dt
∫
(∇ · ût )(x) µt (dx) , (10.7)
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see Eq. (8.10). The difference

�Stot
env − �Sn̂at

env = 4

T∫

0

T (µt ) dt, (10.8)

where the functional

T (µt ) = 1
2

∫ [
ût · d−1

t ût + (∇ · ût )
]
(x) µt (dx) (10.9)

was called the traffic in [66].
For the Langevin equation with the splitting (6.7) corresponding to the canonical

time inversion, the entropy production in the environment is proportional to the mean
heat transferred to the environment as given by Eq. (7.16):

�SLan
env = β〈Q〉 =

T∫

0

dt
∫ [

β (∇Ht )(x) · �(∇Ht )(x) − �i j∂i∂ j H(x)

−(∇ · Gt )(x)
]
µt (dx) .

In the deterministic case when Jt is given by Eq. (8.11), the mean rate of entropy
production in the environment is

〈
J det

t

〉 = −
∫
(∇ · ut )(x) µt (dx)

for µt = µ0 P0,t obtained by the dynamical evolution from µ0 with P0,t (x0, dy) =
δ(y − xt )dy. For uniformly hyperbolic dynamical systems without explicit time
dependence, the measures µt tend for large t to the invariant SRB measure µ∞ and
the mean rate of entropy production in the environment converges to the expectation of
the phase-space contraction rate −∇ · u with respect to µ∞ [74]. A discussion of the
relation between of the phase-space contraction and the production of thermodynamic
entropy in deterministic dynamics employing models of finite-dimensional thermostats
may be found in [33].

Finally, let us remark that if the complete reversal of Sect. 6.6 is employed to define
the backward process then the overall entropy production vanishes because W ≡ 0 in
this case, see Eq. (8.20). With our flexibility of the choice of backward processes, there
are always ones with respect to which there is no overall entropy production!

11. Linear Response for the Langevin Dynamics

11.1. Green-Kubo formula and Onsager reciprocity. As noted in [23,32,59], fluctuation
relations may be viewed as extensions to the non-perturbative regime of the Green-Kubo
and Onsager relations for the nonequilibrium transport coefficients valid within the linear
response description of the vicinity of the equilibrium. Here, for the sake of completeness,
we shall show how such relations follow formally from the Jarzynski equality (8.7) for
the Langevin dynamics. To this end, we shall consider the latter with a time independent
Hamiltonian Ht ≡ H and the additional time-dependent force

Gt (x) = gta Ga(x) ,
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where the couplings gta, a = 1, 2, are arbitrary (regular) functions of time (and the
summation over the index a is understood). In the case at hand, we infer from Eq. (8.8)
that

W =
T∫

0

gta J a(xt ) dt for J a = β(∇H) · Ga − ∇ · Ga .

In particular, for the Langevin-Kramers equation (2.7),

J a = β f a
i (q) q̇i

is the power injected by the external force f a (in the β−1 units). The quantities J a

are often called fluxes associated to the forces Ga .
Let us denote by

〈
F

〉
the expectation defined by Eq. (8.4) with µ0 standing for the

Gibbs measure Z−1e−βH dx and by
〈
F

〉
0 the same expectation taken for gta ≡ 0,

i.e. in the equilibrium system. Expanding Eq. (8.7) up to the second order in gta and
abbreviating J a(xt ) ≡ J a

t , we obtain the identity

−
T∫

0

gta
〈
J a

t

〉
0 dt−

T∫

0

T∫

0

gta gtb
〈
J a

t Rb
t ′
〉
0 dt dt ′ + 1

2

T∫

0

T∫

0

gta gtb
〈
J a

t J b
t ′
〉
0 dt dt ′ = 0 ,

(11.1)

where the insertion of the response field Ra
t is defined by the relation

〈
F Ra

t

〉
0 =

δ

δgta

∣∣∣
g≡0

〈
F

〉
.

Note that
〈
J a

t Rb
t ′
〉
0 = 0 for t ′ > t because of the causal nature of the stochastic evolu-

tion. The vanishing of the term linear in gta in Eq. (11.1) implies that the equilibrium
expectation of the fluxes J a vanishes

〈
J a

t

〉
0 = Z−1

∫
J a(x) e−β H(x) dx = 0 ,

which is easy to check directly. Stripping the quadratic term in Eq. (11.1) of arbitrary
functions gta , we infer that

〈
J a

t Rb
t ′
〉
0 = θ(t − t ′)

〈
J a

t J b
t ′
〉
0 .

The integration of the latter equation over t ′ ≥ 0 results in the relation

∂

∂gb

∣∣∣
g=0

〈
J a

t

〉 =
t∫

0

〈
J a

t J b
t ′
〉
0 dt ′ , (11.2)

where on the left hand side we consider the derivative with respect to the coupling gb
constant in time. In the limit t →∞, we may expect the convergence of the expectation〈
J a

t

〉
in the presence of the time-independent force gaGa (and of its derivatives over

gb) to the nonequilibrium stationary expectation
〈
J a

t

〉
st (and its derivatives). Let us also

assume that the temporal decay of the stationary equilibrium correlation function of
the fluxes is sufficiently fast, e.g. exponential. These may be often established for the
dynamics governed by the Langevin equation by studying the properties of its generator.
With these assumptions, Eq. (11.2) implies
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Proposition 4. (Green-Kubo formula).

∂

∂gb

∣∣∣
g=0

〈
J a

t

〉
st =

t∫

−∞

〈
J a

t J b
t ′
〉
0 dt ′ .

The stationary equilibrium correlation function
〈
J a

t J b
t ′
〉
0 depends only on the difference

t − t ′ of times. Besides, if the system is time-reversible, then
〈
J a

t J b
t ′
〉
0 =

〈
J b

t J a
t ′
〉
0 and

the Green-Kubo formula may be rewritten in the form

∂

∂gb

∣∣∣
g=0

〈
J a

t

〉
st =

1
2

∫ 〈
J a

t J b
t ′
〉
0 dt ′ = 1

2

∫ 〈
J b

t J a
t ′
〉
0 dt ′

which implies

Corollary 5. (Onsager reciprocity).

∂

∂gb

∣∣∣
g=0

〈
J a

t

〉
st =

∂

∂ga

∣∣∣
g=0

〈
J b

t

〉
st .

11.2. Fluctuation-dissipation theorem. Let us consider again the Jarzynski equality for
the Langevin dynamics, this time in the absence of the additional force Gt but with a
time dependent Hamiltonian

Ht (x) = H(x) − hta Oa(x) , (11.3)

where hta, a = 1, 2, vanish at t = 0 and Oa(x) are functions of x (“observables”).
In this case, Eq. (8.8) reduces to the relation

W = −β
T∫

0

ḣta Oa(xt ) − β�F ,

where

β�F = − ln
∫

e−β
(

H(x)− hT a Oa(x)
)
dx + ln

∫
e−βH(x)dx .

Expanding the left hand side of the Jarzynski equality (8.7) up to the second order in
hta and abbreviating Oa(xt ) ≡ Oa

t , we infer that

β
T∫

0
ḣta

〈
Oa

t

〉
0 dt − β hT a

〈
Oa

0

〉
0 = 0 (11.4)

and that

1
2 β

2
T∫

0

T∫

0
ḣta ḣt ′b

〈
Oa

t Ob
t ′
〉
0 dt dt ′ + β

T∫

0

T∫

0
ḣta ht ′b

〈
Oa

t Rb
t ′
〉
0 dt dt ′

− 1
2 β

2 hT a hT b
〈
Oa

0 Ob
0

〉
0 = 0 , (11.5)
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where the insertion of the response field Ra
t is defined similarly as that of Ra

t before
by

〈
F Ra

t

〉
0 =

δ

δhta

∣∣∣
h≡0

〈
F

〉
.

Again, similarly as before,
〈
Oa

t Rb
t ′
〉
0 = 0 for t ′ > t because of causality.

The first order equality (11.4) is equivalent to the time-independence of the equili-
brium expectation of Oa

t . As for the second order relation (11.5), upon expressing hta

as the integral of ḣta , it is turned into the equality

β
T∫

0

T∫

0
ḣta ḣt ′b

〈 (
Oa

t Ob
t − Oa

t Ob
t ′
) 〉

0 dt dt ′ = 2
T∫

0

T∫

0

t ′∫

0
ḣta ḣt ′′b

〈
Oa

t Rb
t ′
〉
0 dt dt ′ dt ′′ .

After the change of the order of integration over t ′ and t ′′ followed by the interchange
of those symbols, the right hand side becomes

2
T∫

0

T∫

0

T∫

t ′
ḣta ḣt ′b

〈
Oa

t Rb
t ′′

〉
0 dt dt ′ dt ′′ = 2

T∫

0

T∫

0

t∫

t ′
ḣta ḣt ′b θ(t − t ′)

〈
Oa

t Rb
t ′′

〉
0 dt dt ′ dt ′′

with the use of causality. Stripping the resulting identity of the integrals against arbitrary
functions ḣta , we obtain the identity

β
〈
Oa

t Ob
t

〉
0 − β

〈
Oa

t Ob
t ′
〉
0 = θ(t − t ′)

∫ t

t ′

〈
Oa

t Rb
t ′′

〉
0 dt ′′ + θ(t ′ − t)

∫ t ′

t

〈
Oa

t ′ Rb
t ′′

〉
0 dt ′′

which is the integrated version of the differential relation between the dynamical 2-point
correlation function and the response function:

Proposition 5. (Fluctuation-dissipation theorem). For t > t ′,

− ∂t
〈
Oa

t Ob
t ′
〉
0 = β−1〈Oa

t Rb
t ′
〉
0 . (11.6)

Note the explicit factor β in this identity. Relations between the dynamical correlation
functions and the response functions were used in recent years to extend the concept of
temperature to nonequilibrium systems [20,14].

12. One-Dimensional Langevin Equation with Flux Solution

Let us consider, as an illustration, the one-dimensional Langevin equation of the form

ẋ = −∂x Ht (x) + ζt (12.1)

with
〈
ζt ζt ′

〉 = 2β−1δ(t − t ′) (any force is a gradient in one dimension). As before,
xt will represent the Markov process solving the SDE (12.1). First, let us consider the
time-independent case with a polynomial Hamiltonian H(x) = axk + . . . with a �= 0
and the dots representing lower order terms.

• If k = 0 then, up to a linear change of variables, xt is a Brownian motion and does
not have an invariant probability measure.

• If k = 1 then xt + at is, up to a linear change of variables, a Brownian motion and
xt still does not have an invariant probability measure.
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• If k ≥ 2 and is even then for a > 0 the Gibbs measure µ0(dx) = Z−1e−βH(x)dx
provides the unique invariant probability measure of the process xt . It satisfies the
detailed balance condition j (x) = 0, where j (x) is the probability current defined
by Eq. (3.8). If a < 0, however, then the Gibbs density e−βH(x) is not normalizable4.
In this case, the process xt escapes to ±∞ in finite time with probability one and
it has no invariant probability measure.

• If k ≥ 3 and is odd then the Gibbs density e−βH(x) is not normalizable. The
process xt escapes in finite time to −∞ if a > 0 and to +∞ if a < 0, but it
has a realization with the trajectories that reappear immediately from ±∞. Such a
resuscitating process has a unique invariant probability measure

µ0(dx) = ±N−1
(

e−βH(x)

x∫

∓∞
eβH(y)dy

)
dx ≡ e−ϕ0(x)dx (12.2)

with the density e−ϕ0(x) = O(x−k+1) when x → ±∞ and N the (positive) nor-
malization constant. The measure µ0 corresponds to a constant probability current
j (x) = ∓(βN )−1 and the model provides the simplest example on a nonequilibrium
steady state with a constant flux.

Let us look closer at the last case. Adding the time-dependence and taking ϕt as in
Eq. (12.2) but with Ht replacing H , we obtain the Hatano-Sasa version of the Jarzynski
equality (8.7) with W =Wex given by Eq. (8.19). Suppose, in particular, that the time
dependence of Ht has the form (11.3) with functions Oa having compact support. Let
us introduce also the deformed observables

Ôa(x) =

x∫

∓∞
Oa(y) eβH(y) dy

x∫

∓∞
eβH(y) dy

.

Expanding the Jarzynski identity (8.7) to the second order in hat as in Sect. 11.2, one
obtains:

Proposition 6. (Deformed fluctuation-dissipation relation). For t > t ′,

− ∂t
〈
Aa

t Ob
t ′
〉
0 = β−1〈Aa

t Rb
t ′
〉
0

∓(βN )−1
∫
(∂x Ob)(x) dx Pt−t ′(x, dy) Aa(y) , (12.3)

where Pt (x, dy) is the transition probability in the stationary process and
Aa = Oa − Ôa.

Remark 3. It is easy to show directly, that Eq. (12.3) still holds if Aa is replaced by Oa .
Note that the term on the right hand side of (12.3) violating the standard fluctuation-
dissipation theorem (11.6) contains the constant flux of the probability current j (x) as
a factor. Proof of Proposition 6 and of its version with Aa replaced by Oa will be given
in [12].

4 This leads to the breaking of the quantum-mechanical supersymmetry underlying the Fokker-Planck
formulation of the Langevin dynamics [85,69,80].
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The Langevin equation (12.1) with the flux solution arises when one studies the
tangent process for particles with inertia moving in the one-dimensional homogeneous
Kraichnan ensemble of velocities vt (y) with the covariance

〈
vt (y) vs(y

′)
〉 = δ(t − s) D(y − y′) ,

see Example 2. The position y and the velocity w of such particles satisfy the SDE [3]

ẏ = w, ẇ = 1
τ
(−w + vt (y)) ,

where τ is the so called Stokes time measuring the time-delay of particles with inertia
as compared to the Lagrangian particles that follow the flow. The separation between
two infinitesimally close trajectories of particles satisfies the equations [84]

d
dt
δy = δw,

d
dt
δw = 1

τ
(−δw + (∂yvt )(y) δy) (12.4)

and, similarly as in Example 5, we may replace 1
τ ∂yvt (y) on the right hand side by a

white noise ζ(t) with the covariance

〈
ζt ζs

〉 = −δ(t − s) τ−2 D′′(0) ,

where the primes denote the spatial derivatives. The ratio x = δw
δy satisfies then the SDE

ẋ = −x2 − 1
τ

x + ζt (12.5)

which has the form (12.1) with H(x) = 1
3 x3 + 1

2τ x2, a third order polynomial. The
solution with the trajectories appearing at +∞ after disappearing at −∞ corresponds
to the solution for (δy, δw) with δy passing through zero with positive speed. The top
Langevin exponent for the random dynamical system (12.4) is obtained as the mean value
of x (which is the temporal logarithmic derivative of |δy|) in the invariant probability
measure (12.2) with constant flux [84].

A very similar SDE arose earlier [41] in the one-dimensional Anderson localization
in white-noise potential V (y) , where one studies the stationary Schrödinger equation

− ψ ′′(y) + V (y) ψ(y) = E ψ(y) .

By setting x = ψ ′/ψ , one obtains then the evolution SDE

x ′ = −x2 − E + V (y) (12.6)

that has an invariant probability measure with constant flux, as already noticed in [41].
The expectation value of x in that measure may be expressed by the Airy functions [61].
It gives the (top) Lyapunov exponent which is always positive, reflecting the permanent
localization in one dimension. The SDE (12.5) may be obtained from (12.6) but taking
in the latter E = − 1

4τ 2 and by the substitutions x − t
2τ 
→ x , V 
→ ζ and y 
→ t .

This shifts the Lyapunov exponent down by − 1
2τ and the top exponent for the inertial

particles may have both signs [84].
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13. Detailed Fluctuation Relation

For a general pair of forward and backward diffusion processes (2.1) and (5.4), it is still
possible to obtain identities resembling the generalized detailed balance relation (7.15)
at the price of adding constraints on the process trajectories. Let us introduce a functional
W ′ of the backward process by mimicking the definition (8.2) of W for the forward
process:

W ′ = �ϕ′ +

T∫

0

J ′t dt

with

J ′t = 2 û′t,+(x′t ) · d ′−1
t (x′t ) ẋ′t − 2 û′t,+(x′t ) · d ′−1

t (x′t ) u′t,−(x′t ) − (∇ · u′t,−)(x′t ) ,
see Eq. (7.6). Since the time inversion is involutive, the mirror version of the identity
(8.3),

µ′0(dx ′) E′0,Tx ′,y′ F ′(x′) e−W ′(x′) dy′ = µ0(dy′∗) E0,T
y′∗,x ′∗ F̃ ′(x) dx ′∗dx ′∗ , (13.1)

must also hold. Taking x ′ = y∗, y′ = x∗ and F ′ = F̃ e−W̃ , we infer that the
compatibility of identities (8.3) and (13.1) imposes the equality

W ′ = −W̃ , (13.2)

which may be also checked directly. We infer that, whatever the time inversion used in
their definition, the entropy-production functionals W for the forward and the backward
processes are related by the natural time inversion. The replacement in Eq. (8.3) of the
functional F(x) by the functional F(x) δ(W(x)− W ) including the constraint fixing
the value of W , leads then to

Proposition 7. (Detailed fluctuation relation).

µ0(dx) E0,T
x,y F(x) δ

(
W(x)−W

)
dy = µ′0(dy∗) e W

×E′0,Ty∗,x∗ F̃(x′) δ
(
W ′(x′) + W

)
dx∗ .

(13.3)

The primes on the right hand side may be dropped in the time-reversible case if, addi-
tionally, ϕ0 = ϕ′0 and ϕT = ϕ′T . �

A relation of this type, named the ”detailed fluctuation theorem”, was established in [51]
in the setup of Hamiltonian dynamics. It is close in spirit to the earlier observation made
for the long-time asymptotics of deterministic dynamical systems in [31]. We shall view
Proposition 7 as a source of fluctuation relations that hold for the diffusion processes
(2.1), including the Jarzynski equality (8.7) already discussed and various identities that
appeared in the literature in different contexts, see [51,18,19,57]. Taking, in particular,
F ≡ 1 in Eq. (13.3) and introducing the joint probability distributions of the end-point
of the process and of the entropy production functional W ,

E0,T
x,y δ(W(x)−W ) dy dW = P0,T (x, dy, dW ) ,

E′0,Tx,y δ(W ′(x′)−W ′) = P ′0,T (x, dy, dW ′) ,
we obtain
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Corollary 6.

µ0(dx) P0,T (x, dy, dW ) = µT (dy) e W P ′0,T (y∗, dx∗, d(−W )) . (13.4)

This may be viewed as an extension to a general diffusive SDE (2.1) of the detailed
balance relation (3.9), or of its generalization (7.15). In particular, when the backward
process is obtained by the complete reversal of Sect. (6.6) with W ≡ 0, the latter relation
reduces to Eq. (7.15) with both sides multiplied by δ(W )dW .

In the case when the measures µ0 and µ′0 are normalized, Proposition 7 gives rise,
upon integration over x and y, to a detailed fluctuation relation between the forward
and the backward processes with the initial points sampled with measures µ0 and µ′0,
respectively:

Corollary 7.
〈
F δ

(
W −W

)〉 = eW
〈
F̃ δ

(
W ′ + W

) 〉′
.

Finally, taking F = 1 in the latter identity and denoting

p0,T (dW ) =
〈
δ
(
W −W

) 〉
dW, p′0,T (dW ′) =

〈
δ
(
W ′ −W ′

) 〉′
dW ′ ,

we obtain

Corollary 8. (Crooks relation) [18,19].

p0,T (dW ) = e W p′0,T (d(−W )) . (13.5)

Note that p0,T (dW ) is the distribution of the random variable W if the time-zero
values of the forward process xt are distributed with the measure µ0 and, similarly,
p′0,T (dW ′) is the distribution of the random variable W ′ if x′0 is distributed with
the measure µ′0. In particular, in the time-reversible case, p′0,T (dW ) = p0,T (dW )

if ϕ′0 = ϕ0 and ϕ′T = ϕT . Finally, note that integrating the Crooks relation (13.5)
multiplied by e−W over W , one recovers the Jarzynski equality (8.7).

14. Special Cases

14.1. Deterministic case. As already explained in Sect. 6.2 and 13, taking ût,+ = 0 and
ut,− = ût leads in the limit of the deterministic dynamics (2.3) to the expression (8.12)
for W . The time-reversed dynamics corresponds to the vector fields of Eqs. (6.2). It
reduces in the deterministic case to the ODE (6.3). The functional W ′ of the backward
process, that could be also found from the relation (13.2), takes the form

W ′ = �ϕ′ +

T∫

0

[
(∇ ln σ)(x′t ) · (ẋ ′t − u′t,−) − (∇ · u′t,−)(x′t )

]
dt .

In the deterministic limit, this simplifies to the expression

W ′ = �ϕ′ −
T∫

0

(∇ · u′t )(x′t ) dt
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which is of the same form as Eq. (8.12) for W . Proposition 7 and Corollaries 6,7 and
8 still hold in the deterministic limit. In particular, in the time-reversible deterministic
case with u′ = u and ϕT = ϕ0 = ϕ′0, the fluctuation relation (13.5) reduces to

Corollary 9. (Evans-Searles transient fluctuation theorem) [25,26].

p0,T (dW ) = eW p0,T (d(−W )) .

The latter relation may also be proven directly by a change of the integration variables
x0 
→ xt [26].

14.2. Reversed protocol case. For the reversed protocol time inversion of Sect. 6.4 and
Example 11 that corresponds to the choice (6.8), the backward process is given by
Eq. (6.9) and

W ′ = �ϕ′ + 2

T∫

0

û′t (x′t ) · d ′−1
t (x′t ) ẋ′t dt

and has the same form as W , see Eq. (8.14). For such a time inversion with x∗ ≡ x ,
employed already in the stationary context in [59], the fluctuation relation (13.5) for the
choice of ϕt such that L†

t e−ϕt = 0 was established in [10].

14.3. Current reversal case. For the time inversion (6.10) discussed in Sect. 6.5 and
Example 12, the functional W ′ of the backward process is given by the expression of
the same form as Eq. (8.19):

W ′ =
T∫

0

(∂tϕ
′
t )(x
′
t ) dt

for ϕ′t (x) = (ϕt∗+ln σ)(x∗). The fluctuation relation (13.5) for this type of time inversion
(with x∗ ≡ x) was proven in [10]. Integrated against e−W , Eq. (13.5) reduces to the
Hatano-Sasa case of the Jarzynski equality (8.7) that we discussed in Example 12.

14.4. Langevin dynamics case. Recall that for the Langevin dynamics (2.4), the back-
ward process obtained by using a canonical time inversion defined by Eqs. (6.6) and
(6.7) is also of the Langevin type with

u′t = −�∇H ′t + �∇H ′t + G ′t , (14.1)

where H ′t (x) = Ht∗(r x), G ′t (x) = −rGt∗(r x). The white noise ζ ′t = ±rζt∗ has the
same distribution as ζt . Consequently, for ϕ′t = β(H ′t − F ′t ), the functional W ′ is
given by the primed version of Eq. (8.8) and is equal to the dissipative work (in the β−1

units).
If, instead of the canonical time inversion, we use the reversed protocol with x∗ ≡ x ,

then the backward process is again the Langevin dynamics with u′t given by Eq. (14.1),
except that this time H ′t (x) = Ht∗(x) and G ′t (x) = Gt∗(x). The white noise ζ ′t = ζt∗
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has again the same distribution as ζt . The functional W ′ is given in that case by the
primed version of Eq. (8.15). The two time inversions lead to the equivalent backward
processes for the Langevin-Kramers equation but, as already mentioned, W tot is not
well defined in the case of the reversed protocol.

Finally, if we apply the current-reversal time inversion (6.10) with x∗ ≡ x to the
Langevin dynamics (2.4) with Gt ≡ 0 by setting ϕt = β(Ht − Ft ) = ϕ′t∗ = β(H ′t∗ −
F ′t∗) for H ′t (x) = Ht∗(x), the drift of the backward dynamics becomes

u′t = −�∇H ′t − �∇H ′t

and has the changed sign of the antisymmetric matrix � with respect to the forward
process. The white noise ζ ′t = ±ζt∗ . Here both W and W ′ have the form of the
dissipative work.

15. Transient Versus Stationary Fluctuation Relations

The fluctuation relations considered up to now dealt with the quantities related to finite-
time evolution in a random process that, in general, was not stationary. Such simple
relations, whose prototypes were the Evans-Searles fluctuation relation [25] or the Jar-
zynski equality [48] are called transient fluctuation relations. On the other hand, as
was recalled in Introduction, Gallavotti and Cohen have established in [35] a fluctuation
relation for quantities pertaining to the long-time evolution in stationary deterministic
dynamical systems of chaotic type and similar relations were subsequently obtained for
the Langevin dynamics and Markov processes in [57] and [59]. Such fluctuation rela-
tions, that are commonly termed stationary, are usually more difficult to establish than
the transient ones and require some non-trivial work that involves the existence and the
properties of the stationary regime of the dynamics. Such properties are in general harder
to establish in the non-random case than in the random one. Also, in the random case,
the invariant measure of the process, if it exists, is usually smooth. It could be used as the
measure µ0(dx) = e−ϕ0(x)dx = µT (dx) = µ′0(dx∗) in the definition (8.2), leading to
the exact detailed fluctuation relation (13.3) pertaining to the stationary evolution. On
the other hand, in the dissipative deterministic systems, the invariant (SRB) measures
are not smooth, so that they may not be used this way and the exact stationary fluctuation
relations may be obtained only in the asymptotic long-time regime. Let us discuss briefly
a formal relation between such asymptotic fluctuation relations and the transient ones,
sweeping under the rug the hard points.

We shall consider the stationary case of the SDE (2.1), with ut ≡ u and Dt (x, y) ≡
D(x, y). Under precise conditions, the Markov process xt that has decaying dynamical
correlations and attains at long times the steady state independent of the initial (or/and
final) position [42,55]. In such a situation, the distribution of the functional W is
expected (and may often be proven with some work) to take for long time T and for
W/T = O(1) the large deviation form

P0,T (x, dy, dW ) ∝ e−T ζ(W/T ) dy dW (15.1)

independent of x and y. The function ζ is called the large deviations rate function. It
has vanishing minimum. More exactly, the relation (15.1) means that
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− sup
w∈I

ζ(w) ≤ lim
T→∞

1

T
ln

∫

T I
P0,T (x, y|W) dW

≤ lim
T→∞

1

T
ln

∫

T I
P0,T (x, y|W) dW ≤ − inf

w∈I
ζ(w)

for any interval I in the real line. In particular, in the limit T →∞, the distribution of
W/T concentrates at the non-random value w0 , where the rate function ζ attains its
minimum. With similar assumptions about the inverse process, we shall denote by ζ ′
the large deviation rate function of the functional W ′. The detailed fluctuation relation
(13.4) implies then immediately, if the boundary term ϕ′0(y∗)/T = (ϕT (y)+ln σ(y))/T
converges to zero when T →∞, a relation between the rate functions ζ and ζ ′:

Corollary 10. (Stationary fluctuation relation).

ζ(w) = ζ ′(−w) − w. (15.2)

Equation (15.2) connects the statistics of large deviations of W for the forward and for
the backward stationary stochastic processes. Note that the equality ζ ′ ≥ 0 implies that
the asymptotic value w0 of W/T is non-negative. This conclusion may be also drawn
from the 2nd law (10.1). In the special case of a stationary time-reversible dynamics, the
inverse process coincides with the direct one so that ζ ′ = ζ . Equation (15.2) compares
then the large deviations of W of opposite signs in the forward process. In particular,
it states that the probability that W/T takes values opposite to the most probable ones
around w0 is suppressed by the exponential factor e−T w0 for large times T .

Recall from the definition (8.2) that W differs from the extensive quantity
T∫

0
Jt dt

by a boundary term which should not contribute to the large deviations if ϕT stays
bounded, although the presence of such terms may change the time-scales on which
the large deviation regime is effectively visible. On the contrary, unbounded ϕT may
give contributions to the large deviations statistics [83,9,86,70]. For the deterministic

dynamics where
T∫

0
Jt dt = −

T∫

0
(∇ · u)(xt ) dt is the phase-space contraction along the

trajectory, see Eq. (8.11), the identity (15.2) with ζ ′ = ζ is essentially the original
Gallavotti-Cohen fluctuation relation [35,31] established rigorously by the authors for
the reversible Anosov dynamical systems with discrete time. For such systems, the
thermodynamic formalism [75,34] may be used to prove the existence of the stationary
(SRB) measure and of the large deviations regime for the phase-space contraction, see
also [74] for a somewhat different approach. In [56], the fluctuation relation (15.2) was
discussed for the Langevin-Kramers dynamics, see also [59,57]. Its version considered
here for a general stationary diffusion process is equivalent in the case of vanishing
time-inversion-odd drift u− to the fluctuation relation discussed in [59], see Eq. (5.8)
therein.

As another (although related) example of how the transient fluctuation relations yield
stationary ones involving large deviations, let us recall the case of the tangent process in
the homogeneous Kraichnan model leading to the Itô multiplicative SDE (7.8) (or the
Stratonovich SDE (7.10) equivalent to it) and defining the matrix-valued process Xt .
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We have established for it the transient fluctuation relation (7.12) that may be rewritten
as the identity

E0
1 det(XT ) f (XT ) = E0

1 f (X−1
T ) (15.3)

for functions f of real d × d matrices with positive determinant. Such matrices X
may be cast into the form

X = O ′ diag(eρ1 , . . . , eρd ) O−1 (15.4)

with a diagonal matrix of non-increasing positive entries sandwiched between two
orthogonal ones. Note that ln det X = ∑

ρi . The so called stretching exponents
ρ1 ≥ · · · ≥ ρd are uniquely defined by Eq. (15.4). Consider functions f (X) that
are left- and right-invariant under the action of the orthogonal group O(d). They may
be viewed as functions of the vector �ρ of the stretching exponents. The distribution
PT (d �ρ) of such exponents is defined by the relation

E0
1 f (XT ) =

∫

�ρ1≥..≥�ρd

f ( �ρ) PT (d �ρ) .

The identity (15.3) implies then that

PT (d �ρ) e
∑ �ρi = PT (d(− �ρ)) , (15.5)

where − �ρ = (−ρd , . . . ,−ρ1) is the vector of the stretching exponents of the matrix
X−1. In a few particular situations (e.g. in the isotropic case), it has been established
that for long times and �ρ/T = O(1), the distribution of the stretching exponents takes
the large deviation form

PT (d �ρ) ∝ e−T Z( �ρ/T )d �ρ
and the identity (15.5) implies then the stationary fluctuation relation

Z(�σ) −
d∑

i=1

σi = Z(− �σ) , (15.6)

see [11]. Since −∑
ρi represents the phase-space contraction − ln det Xt in the

Kraichnan model, the relation (15.6) may be viewed as a modified Gallavotti-Cohen
identity (15.2) for the homogeneous Kraichnan model. The modification goes in two
directions. On one hand, the original Gallavotti-Cohen relation involved the determinis-
tic dynamics, whereas the relation (15.6) pertains to random Kraichnan dynamics. On the
other hand, it refers to the “multiplicative” large deviations for the vector �ρ of the stret-
ching exponents containing more detailed information than the phase-space contraction
represented by −∑

ρi . For example, the most probable values of the stretching rates
σi = ρi/T for which Z(�σ) = 0 define the Lyapunov exponents λi whereas the most
probable phase-space contraction rate is equal to the negative of their sum. We shall see
in the next section how to extend such multiplicative fluctuation relations to the gene-
ral diffusive processes. The source of such an extension resides in transient relations
that may be proven for general random or deterministic dynamical systems by a simple
change-of-variables argument à la Evans-Searles [26], as first indicated in [1].
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16. Multiplicative Fluctuation Relations

As we have mentioned above, the SDE (2.1) defining the diffusive process xt may be
used to induce other diffusive processes, the simplest example being the tangent process
(xt ,Xt ) introduced in Sect. 4 and satisfying the SDEs

ẋ = ut (x) + vt (x), Ẋ = Ut (x, X) + Vt (x, X)

with

Ui
t j (x, X) = (∂kui

t )(x) Xk
j , V i

t j (x, X) = (∂kv
i
t )(x) Xk

j ,

see Eq. (4.2). The covariance of the white noise vector field (vt , Vt ) is given by the
relations (2.2) and

〈 vi
t (x) V k

s l(y,Y ) 〉 = δ(t − s) ∂ym Dik
t (x, y) Y m

l ,

〈 V p
t r (x, X) v j

s (y) 〉 = δ(t − s) ∂xn D pj
t (x, y) Xn

r ,

〈 V p
t r (x, X) V k

s l(y,Y ) 〉 = δ(t − s) ∂xn∂ym D pk
t (x, y) Xn

r Y m
l .

One may now apply the theory developed above for general diffusion processes to the
case of the tangent process. As an example, let us consider the natural time inversion of
Sect. 6.1 corresponding to the trivial splitting

(ut,+, Ut,+) = 0, (ut,−, Ut,−) = (ut , Ut )

and to the involution

(x, X)∗ = (x∗, X∗) with (X∗)i j = (∂k x∗i )(x) Xk
j .

The backward process (x′t ,X′t ) satisfies in this case the SDE

ẋ ′ = u′t (x ′) + v′t (x ′), Ẋ ′ = U ′t (x ′, X ′) + V ′t (x ′, X ′)

with

u′it (x) = −(∂k x∗i )(x∗) uk
t∗(x
∗) ,

U ′t (x, X) = −(∂k∂m x∗i )(x∗) (X∗)mj uk
t∗(x
∗) − (∂m x∗i )(x∗)U m

t∗ j (x
∗, X∗)

= (∂nu′it )(x) Xn
j

and, similarly,

v′it (x) = ±(∂k x∗i )(x∗) vk
t∗(x
∗), V ′t (x, X) = (∂nv

′i
t )(x) Xn

j .

Note that the backward process (x′t ,X′t ) defined this way coincides with the tangent
process of x′t . Equations. (3.4) applied to case at hand give:

(
ûi

t,+(x) , (Ût,+)
k
l(x, X)

) = − d+1
2

(
∂yn Din(x, y)|y=x , ∂xn∂ym Dkm(x, y)|y=x Xn

l

)

= − d+1
2

(
0 , (X−1)rp

)
(

di j
t (x) ∂ym Dik

t (x, y)|y=x Xm
l

∂xn D pj
t (x, y)|y=x Xn

r ∂xn∂ym D pk
t (x, y)|y=x Xn

r Xm
l

)
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in the matrix notation, where the matrix on the right hand side is the counterpart of(
di j

t (x)
)

for the tangent process. Substituting the above expression to the definition
(7.6), we infer that

Jt = −(d + 1)(X−1
t )rp Ẋp

t r + (d + 1)(X−1
t )rp ∂nu p

t (xt )Xn
t r − (d + 1) ∂nun

t (xt )

= −(d + 1)
d

dt
ln det Xt .

The relation (7.7) of Sect. 7 gives then for the case of the tangent process the identity

dx d X0 P0,T (x, X0; dy, d X) (det X0)
−(d+1)(det X)d+1

= dy d X P ′0,T (y∗, X∗; dx∗, d X∗0)

that may be viewed as an extension of the relation (7.11) obtained in Example 5 for the
homogeneous Kraichnan process to a general diffusive process. Similarly as in Example 5,
we infer from the above equation the multiplicative fluctuation relation

dx P0,T (x, 1; dy, d X) (det X) = dy P ′0,T (y∗, 1∗; dx∗, d(X−1)∗) . (16.1)

Suppose that we are given a Riemannian metric γ on Rd (for example the usual flat one).
Since the matrix X = XT maps the tangent space at x = x0 to the one at y = xT , see
Eq. (4.2), it is natural to define the stretching exponents �ρ of X by the relation (15.4)
with O and O ′ mapping the canonical basis of Rd into a basis orthonormal with
respect to the metric γ (x) and γ (y), respectively. The joint probability distribution
P0,T (x, dy, d �ρ) of the end-point of the process xt and of the stretching exponents of
Xt is then given by the relation

∫
f (X) P0,T (x, 1, dy, d X) =

∫

ρ1≥..≥ρd

f ( �ρ) P0,T (x, dy, d �ρ)

for functions f (X) left- and right-invariant under the action of the orthogonal groups
preserving, respectively, the metric γ (x) and γ (y). Similarly we introduce the kernels
P ′0,T (x ′, dy′, d �ρ′) using the transition probabilities of the backward process and the
metric γ ′ obtained from γ by the involution x 
→ x∗. Equation (16.1) implies then
the identity

vγ (dx) P0,T (x, dy; d �ρ) e

∑

i
ρi = vγ (dy) P ′0,T (y, dx∗; d(− �ρ)) ,

where vγ (dx) is the metric volume measure. For the stationary dynamics, we may
expect the emergence of the large deviations regime for the stretching rates with

P0,T (x, dy; d �ρ) ∼= e−T Z( �ρ/T ) dy d �ρ
for large T and �ρ/T = O(1), and similarly for the backward process. One obtains
then the identity

Z(�σ) −
d∑

i=1

σi = Z ′(− �σ) . (16.2)
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As usually, the rate function Z ′ for the backward process may be replaced by Z for a
time-reversible dynamics. The relation (16.2) generalizes the fluctuation relation (15.6)
obtained for the Lagrangian flow in the homogeneous Kraichnan model that was time-
reversible. The multiplicative fluctuation relations were studied recently in [30] also for
particles with inertia carried by the homogeneous Kraichnan flow. Due to the Stokes
friction force, the standard time-reversibility is broken in such a system, leading to a
modification of the relation between the rate functions Z ′ and Z .

17. Towards N-Point Hierarchy of Fluctuation Relations

Another way to induce new diffusive processes from the original one described by the
SDE (2.1) is to consider simultaneously its N solutions starting at different initial points.
They may be viewed as a solution of the SDE

ẋ = ut (x) + vt (x) (17.1)

with x = (x1, . . . , xN ), ut (x) = (ut (x1), . . . , ut (xN )), and vt (x) = (vt (x1), . . . ,

vt (xN )). The covariance of the white noise vector field vt ≡ (vt,1, . . . , vt,N ) appearing
on the right hand side is

〈 vi
t,m(x) v

j
s,n( y) 〉 = δ(t − s) Di j

t (xm, yn) .

The spatial part of the covariance restricted to the diagonal is

di j
t,mn(x) = Di j

t (xm, xn) .

The machinery producing the fluctuation relations described in this paper may be applied
to the N -point diffusion process governed by the SDE (17.1), at least if the matrix(
di j

t,mn(x)
)

is invertible, recall that the inverse of the matrix
(
di j

t (x)
)

appears in the
expression (7.6) for Jt . We postpone a closer examination of the possible hierarchy
of fluctuation relations obtained this way to the future. Here, let us only remark that
the tangent process (xt ,Xt ), which was studied in the preceding section and led to
the multiplicative fluctuation relation (16.1), could be viewed as a limiting case of the
(d + 1)-point process where the last d points are infinitesimally close to the first one.

18. Conclusions

We have developed a unified approach to fluctuation relations for finite-dimensional dif-
fusion processes. The setup of the paper covered the cases of deterministic dissipative
continuous-time dynamical systems, of the Langevin dynamics with non-conservative
forces, and of the Kraichnan model of hydrodynamic flows. The fluctuation relations
were obtained by comparing the forward diffusion process to the backward one produ-
ced by a time inversion. We have admitted different time inversions that treated diffe-
rently two parts of the deterministic drift in the diffusion equations. This was physically
motivated in situations when one part of the drift was assimilated with a dissipative and
another one with a conservative force, but was used in other situations as well, leading
to a greater flexibility. As particular cases, we discussed the natural time inversion used
for deterministic systems, its slight modification for stochastic dynamics that permit-
ted to take easily the deterministic limit of fluctuation relations, as well as the reverse
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protocol and the current reversal discussed in a similar context in [10], and the com-
plete reversal. We showed that any of the allowed time inversions leads to a detailed
fluctuation relation (13.3) of Proposition 7 that may be viewed as a constrained version
of the generalized detailed balance relation to which the identity (13.3) reduces in the
case of the complete reversal. The constraint fixes the value of the entropy production
measured relative to the corresponding backward process. We obtained various tran-
sient fluctuation relations as corollaries of the detailed one. Among examples were the
Evans-Searles fluctuation relation (14.1), the Crooks one (13.5), and various versions of
the Jarzynski equality (8.7), including the original ones for the deterministic Hamilto-
nian dynamics and for the Langevin dynamics with local detailed balance (8.9), the one
for reversed protocol, and the Hatano-Sasa one. By comparing the detailed fluctuation
relations for two different time inversions, we obtained also a generalization (9.2) of the
Speck-Seifert equality (9.5). For the sake of completeness, we included into the paper
a derivation from the Jarzynski equality of the Green-Kubo and the Onsager relations,
and of the fluctuation-dissipation theorem. On a simple example of a one-dimensional
Langevin equation with spontaneously broken equilibrium, we indicated how in such a
situation the Hatano-Sasa version of the Jarzynski equality induced corrections to the
fluctuation-dissipation theorem proportional to the flux of the probability current.

In the case of stationary diffusion processes, we pointed out that the transient fluc-
tuation relations may give rise to the asymptotic symmetries of the large-deviations rate
function of the entropy production which were established first by Gallavotti-Cohen for
the uniformly hyperbolic dynamical systems and were extended later to (some) diffusion
processes by Kurchan and Lebowitz-Spohn. Finally, we wrote explicitly a detailed fluc-
tuation relation for the induced tangent diffusion process obtained from the original one.
This produced a multiplicative transient fluctuation relation that led for long times to a
Gallavotti-Cohen-type symmetry of the large-deviations rate function for the stretching
exponents governing the behavior of infinitesimally close trajectories of the diffusion
process. We speculated that considering distant multi-point trajectories of the process
should give rise to a hierarchy of fluctuation relations. It could also provide a way to
produce fluctuation relations for flow processes describing the simultaneous evolution
of all trajectories of the process [55]. A similar extension should also permit to formu-
late fluctuation relations for hydrodynamic flows modeling fully developed turbulence
[40,60]. We postpone such questions to further studies.

Appendix A.

The Stratonovich SDE (2.1) defining the process xt is equivalent to the Itô SDE

dxi = (
ui

t (x) + ũi
t (x)

)
dt + vi

t (x) dt ,

with the correction term

ũi
t (x) = 1

2 ∂x j Di j
t (x, y)|y=x .

By the Itô calculus, g(xt ) satisfies the Itô SDE

dg(x) = (
ui

t (x) + ũi
t (x)

)
∂i g(x) dt + vi

t (x)∂i g(x) dt + 1
2 di j

t (x)∂i∂ j g(x) dt

with the second order Itô term. For the expectation of g(xt ), this gives the ODE

d

dt
Et0

x g(xt ) = Et0
x

(
ui

t (xt ) + ũi
t (xt )

)
∂i g(xt ) + 1

2 di j
t (xt )∂i∂ j g(xt )



Fluctuation Relations for Diffusion Processes 513

from which the formula

Lt =
(
ui

t + ũi
t (xt )

)
∂i + 1

2 di j
t ∂i∂ j ,

easily seen to be equivalent to Eq. (3.3), follows.

Appendix B.

Proof of Lemma 1.

(Lt,−Rg)(x) = ui
t,−(x)∂i (Rg)(x) = ui

t,−(x) (∂i x∗k
)(x)(∂k g)(x∗)

= −(u′kt∗∂k g)(x∗) = −(R L ′t∗,−g)(x) ,

(Lt,+ Rg)(x) = ûi
t,+(x)∂i (Rg)(x) + 1

2 ∂ j d
i j
t (x)∂i (Rg)(x)

= ui
t,+(x)(∂i x∗k

)(x)(∂k g)(x∗) − 1
2 ∂y j Di j (x, y)|y=x (∂i x∗k

)(x)(∂k g)(x∗)

+ 1
2 (∂ j x∗l)(x)∂x∗l d

i j
t (x)(∂i x∗k

)(x)(∂k g)(x∗)

= (u′kt∗,+∂k g)(x∗) − 1
2 (∂ j x∗l)(y)∂y∗l Di j (x, y)|y=x (∂i x∗k

)(x)(∂k g)(x∗)

− 1
2

(
∂x∗l ∂ j x∗l(x)

)
di j

t (x)(∂i x∗k
)(x)(∂k g)(x∗)

+ 1
2 ∂x∗l (∂ j x∗l)(x)di j

t (x)(∂i x∗k)(x)(∂k g)(x∗)

= (u′kt∗,+∂k g)(x∗) − 1
2 ∂y∗l (∂ j x∗l)(y)Di j

t (x, y)(∂i x∗k
)(x)|y=x (∂k g)(x∗)

+ 1
2 ∂x∗l d

′kl
t∗ (x

∗)(∂k g)(x∗)

= (û′kt∗,+∂k g)(x∗) + 1
2 (∂ld

′kl
t∗ ∂k g)(x∗) = (R L ′t∗,+g)(x) ,

where we have used the relations (3.4), (5.5, (5.6) and (5.7). �


Appendix C.

In order to prove the first of the equalities (6.2), let us note that the condition ût,+ = 0
means that

ui
t,+(x) = 1

2 ∂y j Di j
t (x, y)|y=x

so that, according to Eqs. (5.5) and (5.6),

u′it∗,+(x∗) = (∂k x∗i )(x) 1
2 ∂yl Dkl

t∗ (x, y)|y=x

= 1
2 ∂yn (∂ j x∗n

)(y∗)(∂l x
∗ j
)(y)(∂k x∗i )(x)Dkl

t (x, y)|y=x

= 1
2 (∂ j x∗n

)(y∗)∂yn (∂k x∗i )(x)Dkl
t (x, y)(∂l x

∗ j
)(y)|y=x

+ 1
2

(
∂xn (∂ j x∗n)(x∗)

)
(∂k x∗i )(x)dkl

t (x)(∂l x
∗ j
)(x)

= 1
2 ∂y j D′i j

t∗ (x
∗, y)|y=x∗ + 1

2 (∂n x∗k)(x)(∂k∂ j x∗n
)(x∗) d ′i j

t∗ (x
∗)

= 1
2 ∂y j D′i j

t∗ (x
∗, y)|y=x∗ + 1

2 d ′i j
t∗ (x

∗)(∂ j ln σ)(x∗) ,
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where we used the identity

(∂ j ln σ)(x∗) = (∂n x∗k)(x)(∂ j∂k x∗n
)(x∗)

to obtain the last equality. The first of the relations in Eqs. (6.2) follows. The second one
is an immediate consequence of the transformation rule in Eqs. (5.5).

Appendix D.

Proof of Lemma 2. The Cameron-Martin-Girsanov formula5 says that if yt is the dif-
fusion process solving the SDE

ẏ = wt (y) + ut (y) + vt (y) , (D.1)

then

Et0
x F(y) = Et0

x F(x) e−U (x)

for xt solving the SDE (2.1) and

U (x) =
t∫

t0

[
− ws(xs) · d−1

s (xs) ẋs + ws(xs) · d−1
s (xs) ûs(xs)

+ 1
2ws(xs) · d−1

s (xs) ws(xs) + 1
2 (∇ · ws)(xs)

]
ds

if the functional F depends on the process restricted to the time interval [t0, t]. The
first term under the integral in the expression for U (x) has to be interpreted with the
Stratonovich rule. Denoting by L̃ t the generator of the process yt solving the SDE
(D.1),

L̃ t = (wi
t + ûi

t )∂i + 1
2 ∂ j d

i j
t ∂i ,

we obtain this way the relation

P̃t0,t (x, dy) ≡ Et0
x δ(yt − y) dy = −→T exp

[ t∫

t0

L̃s ds
]
(x, dy)

= Et0
x e−U (x) δ(xt − y) dy .

Next, if ft (x) is a time-dependent function then, by the Feynman-Kac formula,

−→T exp
[ t∫

t0

(L̃s − fs) ds
]
(x, dy) = Et0

x e
−U (x)−

t∫

t0

fs (xs ) ds

δ(xt − y) dy .

The application of the latter formula for wt = −2ût,+ and ft = −∇ · ût,+ + ∇ · ut,−
gives Eq. (7.5) in view of the relation (7.1). �


5 We have transformed the formula usually written in the Itô convention [79] to the Stratonovich one.



Fluctuation Relations for Diffusion Processes 515

Appendix E.

Here we show that the matrix M given by Eq. (7.29), where � and C are strictly
positive and � is antisymmetric, has eigenvalues with negative real parts and that the
matrix C may be recovered from Eq. (7.25) by setting t = ∞. If λ is an eigenvalue of
M , i.e. if

− (� −�)C−1xλ = λxλ

for some xλ �= 0 then

λ = − xλ · C−1(� −�)C−1xλ
xλ · C−1xλ

= − xλ · C−1�C−1xλ
xλ · C−1xλ

< 0 .

Equation (7.29) implies that

MC + C MT = −2�

which is solved by C∞ given by Eq. (7.25) with t = ∞. Besides, this is the unique
solution because if M D + DMT = 0 then

d

dt
e t M De t MT = 0

and

D = lim
t→∞ e t M De t MT = 0 .

Appendix F.

Proof of Proposition 2. It is enough to check the last identity for the so called cylindrical
functionals

F(x) = f (xt1 , . . . , xtn )

for 0 ≤ t1 ≤ · · · ≤ tn ≤ T . Since

e−W = eϕ0(x0) e
−

t1∫

0
Js ds

e
−

t2∫

t1

Js ds

· · · e
−

T∫

tn
Js ds

e−ϕT (xT ) ,

then, by virtue of Eq. (7.5), the left hand side of Eq. (8.3) is equal to

dx
∫

f (x1 . . . , xn) P1
0,t1(x, dx1) P1

t1,t2(x1, dx2) · · · P1
tn ,T (xn, dy) e−ϕT (y)

with the integral over x1, · · · , xn . With the use of relation (7.4), this may be rewritten
as

e−ϕT (y)dy
∫

f (x1 . . . , xn) P ′0,t∗n (y
∗, dx∗n ) · · · P ′t∗2 ,t∗1 (x

∗
2 , dx∗1 ) P ′t∗1 ,T (x

∗
1 , dx∗)

and, after the change of variables x∗i+1 
→ x ′n−i , as

e−ϕT (y)dy
∫

f (x ′∗n . . . , x ′∗1 ) P ′0,t∗n (y
∗, dx ′1) · · · P ′t∗2 ,t∗1 (x

′
n−1, dx ′n) P ′t∗1 ,T (x

′
n, dx∗).

This is equal to the left hand side of the identity (8.3) since e−ϕT (y)dy = e−ϕ′0(y∗)dy∗.
�
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13. Chetrite, R., Horvai, P., Gawȩdzki, K.: In preparation
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