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Abstract. We consider an effective interface model on a hard wall in (1+1) di-
mensions, with conservation of the area between the interface and the wall. We
prove that the equilibrium fluctuations of the height variable converge in law to the
solution of a SPDE with reflection and conservation of the space average. The proof
is based on recent results obtained with L. Ambrosio and G. Savaré on stability
properties of Markov processes with log-concave invariant measures.

1. Introduction

This paper concerns fluctuations of a ∇φ interface model on a hard wall with
conservation of the area between the interface and the wall. The system is defined
on the one-dimensional lattice ΓN := {1, 2, . . . , N} and the location of the interface
at time t is represented by the height variables φt = {φt(x), x ∈ ΓN} ∈ Ω+

N :=
[0,∞)ΓN measured from the wall ΓN .

In order to describe the dynamics of φt we need some notation. Let {(wt(x))t≥0 :
x = 1, . . . , N} be independent standard Brownian motions and define the N × N
matrices
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Then the dynamics of (φt(x) : x ∈ ΓN )t≥0, height from the wall of the reflected
interface, is governed by the stochastic differential equation of the Skorohod type

dφt = − σσT {σV ′(σTφt) dt+ dlt} +
√

2σ dwt (1.1)

for all x ∈ ΓN , subject to the conditions

φt(x) ≥ 0, t 7→ lt(x) continuous and non − decreasing, l0(x) = 0,
∫ ∞

0

φt(x) dlt(x) = 0, x ∈ ΓN .
(1.2)

We refer to Funaki (2005) for an introduction to interface models.

Throughout the paper the potential V satisfies the following conditions

(V1) (convexity) V ∈ C2(R) is convex and lim|r|→∞ V (r) = +∞.

Notice that for a convex V

lim
|r|→∞

V (r) = +∞ ⇐⇒
∫

exp(−V ) dr <∞ ⇐⇒ V (r) ≥ a+ b|r| ∀ r ∈ R,

for some a ∈ R and b > 0. In particular we have

q :=

∫

R

r2 exp(−V (r)) dr < ∞ (1.3)

(V2) (normalization),

∫

R

exp(−V (r)) dr = 1.

(V3) (0 mean),

∫

R

r exp(−V (r)) dr = 0.

The normalization (V2) does not affect equation (1.1), where only V ′ appears.
If X is a real random variable with distribution e−V dx, then X has zero mean

by (V3) and variance equal to q by (1.3). Notice that q is the only trace of the
potential V which survives in the limit fluctuation process, see (1.5) and Theorem
1.1 below. See also subsection 1.3 below for a discussion of related random walk
models.

We shall prove in the following sections existence and uniqueness of solutions of
(1.1) and other properties.

1.1. The main result. For any N ∈ N we set ΛN : R
N 7→ L2(0, 1),

ΛN (φ)(θ) :=
1√
N
φ(⌊Nθ⌋ + 1), θ ∈ [0, 1), (1.4)

where ⌊·⌋ denotes the integer part, and we define the spaces

HN = ΛN (RN ) ⊂ L2(0, 1), Ω+
N := (R+)N , KN := ΛN (Ω+

N ).

Notice that KN can be identified with the space of non-negative functions on [0, 1)
being constant on I(x) = [(x− 1)/N, x/N) for all x ∈ ΓN .

For all k ∈ KN and t ≥ 0 we define now the rescaled interface ΦN

ΦN
t := ΛN (φN4t) , ΦN

0 := ΛN (φ0) .

In other words

ΦN
t (θ) =

1√
N
φN4t(⌊Nθ⌋ + 1), θ ∈ [0, 1).

In the main result of this paper, i.e. Theorem 1.1 below, we state the weak con-
vergence of ΦN to the unique solution u of the following stochastic Cahn-Hilliard
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equation on [0, 1] with homogeneous Neumann boundary condition and reflection
at u = 0



































∂u

∂t
= − ∂2

∂θ2

(

1

q

∂2u

∂θ2
+ η

)

+
√

2
∂

∂θ
Ẇ ,

∂u

∂θ
(t, 0) =

∂u

∂θ
(t, 1) =

∂3u

∂θ3
(t, 0) =

∂3u

∂θ3
(t, 1) = 0,

u(0, θ) = u0(θ), θ ∈ [0, 1]

(1.5)

where Ẇ is a space-time white noise on [0,+∞)× [0, 1], u is a continuous function
of (t, θ) ∈ [0,+∞)× [0, 1], η is a locally finite positive measure on (0,+∞)× [0, 1],
subject to the constraint

u ≥ 0,

∫

(0,+∞)×[0,1]

u dη = 0. (1.6)

Such equation has been studied by Debussche and Zambotti (2007), see Proposition
6.2 below.

With an abuse of notation, we say that a sequence of measures (Pn) on the
space C([a, b];L2(0, 1)) converges weakly in C([a, b];L2

w(0, 1)) if, for all m ∈ N

and h1, . . . , hm ∈ C1([0, 1]), the process (〈X·, hi〉L2(0,1), i = 1, . . . ,m) under (Pn)
converges weakly in C([a, b]; Rm) as n→ ∞.

Then we can state the main result of this paper.

Theorem 1.1. If ΦN
0 → u0 in L2(0, 1) as N → ∞ with

ΦN
0 ≥ 0,

∫ 1

0

ΦN
0 (θ) dθ = c > 0 ∀ N ∈ N,

then, for any 0 < ε ≤ T < ∞, the law of (ΦN
t , t ∈ [ε, T ]) converges to the law of

the unique solution u of (1.5), weakly in C([ε, T ];L2
w(0, 1)).

Notice that the technique used in this paper to prove Theorem 1.1 could also
be applied to other situations, see e.g. the discussion below. However, not all
situations can be covered: for instance, if the macroscopic (hydrodynamical) limit
is not constant, then the fluctuations process is not in general a time-homogeneous
Markov process and our technique can not be applied (in its present formulation).

1.2. A conservative dynamics. The starting point of this work is the paper by
Funaki and Olla (2001). In that paper, the following ∇φ interface model on a hard
wall is considered

dφt(x) = − σV ′(σTφt) dt+ dlt(x) +
√

2 dwt(x), x ∈ ΓN , (1.7)

with constraints analogous to (1.2) and Dirichlet boundary condition φt(0) =
φt(N + 1) = 0. Using the definition (1.4), it is then proven that in the stationary
case, the process (ΛN (φN2t), t ≥ 0) converges in law as N → ∞ to the law of the
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unique stationary solution of the second order equation






























∂u

∂t
=

1

q

∂2u

∂θ2
+ η +

√
2
∂2W

∂t∂θ

u(t, 0) = u(t, 1) = 0, t ≥ 0

u ≥ 0, dη ≥ 0,
∫

u dη = 0

(1.8)

At the end of the introduction of Funaki and Olla (2001), it is remarked that
it would be more natural to consider a stochastic dynamics conserving the area
between the interface and the wall, namely

∑

x φ(x). Such conservative dynamics,
but without the hard wall constraint, has indeed been studied in Nishikawa (2002)
and Nishikawa (2007), where respectively hydrodynamic limit and large deviations
are considered; the hydrodynamic scaling limit of the interface is the solution of a
fourth-order equation, as predicted by Spohn (1993).

The SDE (1.1) combines the hard wall and the conservation of volume con-
straints; indeed, σT 1 = 0, where 1 = (1, . . . , 1) ∈ R

N , and it is easy to see that

d

[

N
∑

x=1

φt(x)

]

=
N
∑

x=1

[

σT1
]

(x)
{

−
[

σT {σV ′(σTφt) dt+ dlt}
]

(x) +
√

2 dwt(x)
}

= 0.

The main novelty of this paper is the use of a technique recently developed by
Ambrosio et al. (2008) for the convergence in law of stochastic processes associated
with symmetric Dirichlet forms of gradient type and with log-concave invariant
measures; see section 2 below. The general principle is in fact very simple: this
class of reversible dynamics is parametrized by two objects, the invariant measure
and the scalar product of the Hilbert space which defines the gradient. If such
objects converge (in a sense to be made precise), it is natural to conjecture that
the associated processes converge; the results of Ambrosio et al. (2008) confirm this
conjecture in the case of log-concave reference measures: see section 2 below.

The solutions of equations (1.1), (1.5), (1.7) and (1.8) are all in this class and the
techniques of Ambrosio et al. (2008) give a general framework to prove results like
Theorem 1.1 or the convergence result of Funaki and Olla (2001). We recall that
the results by Funaki and Olla (2001) are based on monotonicity properties, i.e. on
rather special properties of (1.7)-(1.8), not shared by (1.1)-(1.5). One can notice
that, given the general results of Ambrosio et al. (2008), the proof of convergence
of equilibrium fluctuations as in Funaki and Olla (2001) and in this paper becomes
much easier.

We also notice that Theorem 1.1 is comparatively stronger than the analogous
statement in Funaki and Olla (2001). Indeed, we consider a convex microscopic
interaction potential V , instead of a strictly convex and symmetric one. Moreover
the convergence is proven not only in the stationary case, but for any sequence of
initial conditions which converge under the rescaling (1.4). Using the techniques
of this paper, one could improve correspondingly the results of Funaki and Olla
(2001).

1.3. Boundary conditions and random walk models. Finally, we notice that the
boundary conditions we consider are of Neumann type, like in Collet et al. (1995),
while many other papers consider the Dirichlet case, see e.g. Funaki and Olla
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(2001), or the periodic case, see e.g. Nishikawa (2002). The case of periodic bound-
ary condition could be proven with no additional difficulty with the techniques of
this paper. Indeed, like in the Neumann case, the invariant measure of the limit
SPDE is absolutely continuous w.r.t. the Gaussian invariant probability measure
of the linear SPDE (i.e. without reflection). The weak convergence of the rescaled
stationary measures is then a simple consequence of a standard invariance principle:
see the proof of Proposition 6.3.

For the case of homogeneous Dirichlet boundary conditions, on the contrary,
the invariant measure of the limit SPDE is singular w.r.t. the Gaussian invariant
probability measure of the linear SPDE, due to the interplay of the homogeneous
boundary conditions and the non-negativity constraint. This makes the convergence
of the rescaled invariant measures more delicate.

In fact, we could prove the results of this paper for Dirichlet boundary condition,
if we could prove the following invariance principle: we consider a random walk
Sn = X1 + · · ·+Xn, n = 1, . . . , N , with step distribution Xi ∼ e−V dx, conditioned
to be non-negative (i.e. S1, . . . , SN ≥ 0), to be 0 at time N (i.e. SN = 0) and to have

a fixed sum (i.e.
∑N

n=1 Sn = cN3/2, c > 0); then we would like to prove that such
processes converge under Brownian rescaling as N → ∞ to a Brownian excursion e

conditioned to have integral c (i.e.
∫ 1

0 ex dx = c). Since we have not found a proof
for this invariance principle, we restrict to the Neumann case, for which we can
prove convergence of the stationary measures. In the Dirichlet boundary condition
case the limit SPDE would be an analog of (1.5), with boundary conditions

u(t, 0) = u(t, 1) =
∂3u

∂θ3
(t, 0) =

∂3u

∂θ3
(t, 1) = 0,

i.e. Dirichlet for u and Neumann for ∂2u
∂θ2 . Such equation is studied in Zambotti

(2008).
The invariance principle for Sn, conditioned to be 0 at time N (i.e. SN = 0) and

to have a fixed sum (i.e.
∑N

n=1 Sn = cN3/2, c > 0), but without positivity con-
straint, is treated in Caravenna and Deuschel (2008a) and Caravenna and Deuschel
(2008b).

2. A general convergence result

In this section we recall the results of Ambrosio et al. (2008), already mentioned
in the introduction. It turns out that the processes (φt) and (u(t, ·), solutions of
(1.1) and (1.5) respectively, are both monotone gradient systems, i.e. the equation
they satisfy can be interpreted as follows

dX = −∇U(X) dt+
√

2 dW

where W is a Wiener process in a Hilbert space H and U : H 7→ R ∪ {+∞} is a
convex potential. These processes are reversible and associated with a gradient-type
Dirichlet form. The general results of existence and convergence of such processes
given in Ambrosio et al. (2008), have a nice application in the present setting.
Hence we devote this section to recall them.

Let H be a separable Hilbert space with scalar product 〈·, ·〉H and let γ be a
probability measure on H . We suppose that γ is log-concave, i.e. for all pairs of
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open sets B, C ⊂ H

log γ ((1 − t)B + tC) ≥ (1 − t) log γ(B) + t log γ(C) ∀t ∈ (0, 1). (2.1)

If H = R
k, then the class of log-concave probability measures contains all measures

of the form (here Lk stands for Lebesgue measure)

γ :=
1

Z
e−ULk, (2.2)

where U : H = R
k → R ∪ {+∞} is convex and Z :=

∫

Rk e
−U dx < +∞, see

Theorem 9.4.11 in Ambrosio et al. (2005), in particular all Gaussian measures.
Notice that the class of log-concave measures is closed under weak convergence.
Moreover, if γ is log-concave and K is a convex set with γ(K) > 0, then the
conditional measure γ(·|K) := γ(· ∩K)/γ(K) is also log-concave.

We denote the support of γ by K = K(γ) and the smallest closed affine subspace
of H containing K by A = A(γ). We write canonically

A = H0 + h0, (2.3)

where H0 = H0(γ) is a closed linear subspace of H and h0 = h0(γ) is the element
of minimal norm in A. We endow H0 with the scalar product 〈·, ·〉H0 induced by
H .

We want to consider a stochastic processes with values in A and reversible with
respect to γ. We denote by Cb(H) the space of bounded continuous functions in
H and by C1

b (A) the space of all Φ : A 7→ R which are bounded, continuous and
Fréchet differentiable. To ϕ ∈ C1

b (A) we associate a gradient ∇H0ϕ : A 7→ H0,
defined by

d

dε
ϕ(k + ε h)

∣

∣

∣

∣

ε=0

= 〈∇H0ϕ(k), h〉H0 , ∀ k ∈ A, h ∈ H0. (2.4)

We denote by Xt : K [0,+∞[ → K the coordinate process Xt(ω) := ωt, t ≥ 0.
Finally, we denote the set of probability measures on H by P(H) and we set

P2(H) :=

{

µ ∈ P(H) :

∫

H

‖x‖2
H dµ(x) <∞

}

,

Then we recall one of the main results of Ambrosio et al. (2008).

Theorem 2.1 (Markov process and Dirichlet form associated with γ and ‖ · ‖H0).

(a) The bilinear form E = Eγ,‖·‖
H0

given by

E(u, v) :=

∫

K

〈∇H0u,∇H0v〉H0 dγ, u, v ∈ C1
b (A), (2.5)

is closable in L2(γ) and its closure (E , D(E)) is a symmetric Dirichlet Form.
Furthermore, the associated semigroup (Pt)t≥0 in L2(γ) maps L∞(γ) in
Cb(K).

(b) There exists a unique Markov family (Px : x ∈ K) of probability measures
on K [0,+∞[ associated with E. More precisely, Ex[f(Xt)] = Ptf(x) for all
bounded Borel functions and all x ∈ K.

(c) For all x ∈ K, P
∗
x (C(]0,+∞[;H)) = 1 and Ex[‖Xt − x‖2] → 0 as t ↓ 0.

Moreover, P
∗
x (C([0,+∞[;H)) = 1 for γ-a.e. x ∈ K.
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(d) (Px : x ∈ K) is reversible with respect to γ, i.e. the transition semi-
group (Pt)t≥0 is symmetric in L2(γ); moreover γ is invariant for (Pt), i.e.
γ(Ptf) = γ(f) for all f ∈ Cb(K) and t ≥ 0.

(e) If γ ∈ P2(H), then γ is the only invariant probability measure for (Pt) in
P2(H).

We shall see below that the solutions of (1.1), (1.5), (1.7) and (1.8) are all
particular cases of the class of Markov processes described in Theorem 2.1. This
fact will be crucial in the proof of Theorem 1.1.

We consider now a sequence (γN ) of log-concave probability measures on H such
that γN converge weakly in H to γ. We denote by KN the support of γN , and
by AN the smallest closed affine subspace of H containing KN . We suppose that
AN ⊆ A for all N .

We write AN = h0
N + H0

N , where h0
N ∈ AN and H0

N ⊆ H0 is a closed linear
subspace of H . We want to consider situations where each H0

N is a Hilbert space
endowed with a scalar product 〈·, ·〉H0

N
, possibly different from the scalar product

induced by H0. In order to ensure that this family of scalar products converges (in
a suitable sense) to the scalar product of H0 as N → ∞, we will make the following
assumptions.

(1) There exists a finite constant κ ≥ 1 such that

1

κ
‖h‖H0 ≤ ‖h‖H0

N
≤ κ‖h‖H0 ∀ h ∈ H0

N , N ∈ N. (2.6)

(2) Denoting by ΠN : H0 → H0
N the orthogonal projections induced by the

scalar product of H0, we have

lim
N→∞

‖ΠNh‖H0
N

= ‖h‖H0 ∀ h ∈ H0. (2.7)

These assumptions guarantee in some weak sense that the geometry of H0
N con-

verges to the geometry of H0; the case when all scalar products coincide with 〈·, ·〉H ,
H0

N ⊂ H0
N+1 and ∪NH

0
N is dense in H0 is obviously included.

Let (PN
x : x ∈ KN) (respectively (Px : x ∈ K)) be the Markov process in

[0,+∞[KN associated to γN (resp. in [0,+∞[K associated to γ) given by Theo-
rem 2.1. We denote by P

N
γN

:=
∫

P
N
x dγN (x) (resp. Pγ :=

∫

Px dγ(x)) the associated
stationary measures.

With an abuse of notation, we say that a sequence of measures (Pn) on the space
C([a, b];H) converges weakly in C([a, b];Hw) if, for all m ∈ N and h1, . . . , hm ∈ H ,
the process (〈X·, hi〉H , i = 1, . . . ,m) under (Pn) converges weakly in C([a, b]; Rm)
as n→ ∞.

In this setting we have the following stability and tightness result, also proven
in Ambrosio et al. (2008).

Theorem 2.2 (Stability and tightness). Suppose that γN → γ weakly in H and
that the norms of H0

N satisfy (2.6) and (2.7). Then, for any xN ∈ KN such that
xN → x ∈ K in H, for any 0 < ε ≤ T < +∞, P

N
xN

→ Px weakly in C([ε, T ];Hw);

This stability property means that the weak convergence of the invariant mea-
sures γN and a suitable convergence of the norms ‖ · ‖H0

N
to ‖ · ‖H0 imply the

convergence in law of the associated processes, starting from any initial condition.

We recall that the above results, proven in Ambrosio et al. (2008), are based on
the interpretation of the Markov semigroup (Pt) as the solution of a gradient flow
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in P2(H) with respect to the relative entropy functional H(·|γ) in the Wasserstein
metric: see Ambrosio et al. (2008) for details.

In the rest of the paper we show how the results of this section apply to Theorem
1.1.

3. The microscopic dynamics

On R
N we consider the canonical scalar product and we denote it by 〈·, ·〉RN ,

with associated norm ‖ · ‖RN .
We define 1 := (1, . . . , 1) ∈ R

N and the vector space VN := {v ∈ R
N : v1 +

· · · + vN = 0} = 1⊥. It is easy to see that the kernels of σ and σT are respectively
Ker(σ) = {(0, . . . , 0, t) : t ∈ R} and Ker(σT ) = {t · 1 ∈ R

N : t ∈ R}; it follows
that the image of σ is Im(σ) = (Ker(σT ))⊥ = VN and that Ker(σ) ∩ VN = {0};
therefore σ : VN 7→ VN is bijective, σ−1 : VN 7→ VN is well defined and we can
define the scalar product in VN

〈v1, v2〉VN
:= 〈σ−1v1, σ

−1v2〉RN , ∀ v1, v2 ∈ VN .

We want now to give a useful representation of 〈·, ·〉VN
. Let (Bt, t ≥ 0) be a standard

Brownian motion and set

Di := Bi −
B1 +B2 + · · · +BN

N
, i = 1, . . . , N, D := (D1, . . . , DN) ∈ VN .

(3.1)

Lemma 3.1. For all v ∈ VN

‖v‖2
VN

= E
[

〈v,D〉2
RN

]

=

N−1
∑

i=1





i
∑

j=1

vj





2

.

Proof. Let V ∈ VN such that σV = v. Then ‖v‖2
VN

= ‖V ‖2
RN . Moreover Vi =

∑i
j=1 vj , i = 1, . . . , N , and in particular VN = 0 since v ∈ VN . Since σTD =

(B2 −B1, . . . , BN −BN−1, 0) and VN = 0

E
[

〈v,D〉2
RN

]

= E
[

〈V, σTD〉2
RN

]

= ‖V ‖2
RN = ‖v‖2

VN
. �

Recall that {(wt(x))t≥0 : x = 1, . . . , N} is an independent family of standard
Brownian motions; then w = (w(1), . . . , w(N)) is a Wiener process in R

N and
σw is a Wiener process in VN , i.e. for all t ≥ 0

E
[

〈h,wt〉2RN

]

= t‖h‖2
RN , ∀ h ∈ R

N , E
[

〈v, σwt〉2VN

]

= t‖v‖2
VN
, ∀ v ∈ VN .

Lemma 3.2. For all φ0 ∈ KN there exists a unique pair (φt, lt)t≥0, solution of
(1.1). We use the notation φ(t, φ0) = φt, t ≥ 0.

Proof. We start by (pathwise) uniqueness. Let (φ, l) and (φ, l) be solutions of (1.1)

with initial condition φ0, resp. φ0. Setting ψt := φt−φt, by Itô’s formula we obtain

d〈ψt,1〉RN = 〈σT 1,− σT {σ(V ′(σTφt) − V ′(σTφt)) dt+ dlt − dlt}〉RN = 0

so that 〈ψt,1〉 = 0 for all t ≥ 0 and therefore ψt ∈ VN . Then, again by Itô’s formula

d〈ψt, ψt〉VN
= −〈σTψt, V

′(σTφt) − V ′(σTφt)〉 dt+ 〈ψ, dlt − dlt〉RN ≤ 0

since V ′ is monotone non-decreasing and by (1.2).
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For or existence of (strong) solutions, we can refer to Cépa (1998). Indeed,
setting 1φ := 〈φ0,1〉RN 1 and ζt := φt − 1φ, (1.1) is equivalent to

dζt = − σσT {σV ′(σT (ζt + 1φ)) dt+ dlt} +
√

2σ dwt (3.2)

for all x ∈ ΓN , subject to the conditions

t 7→ lt(x) continuous and non − decreasing, l0(x) = 0,

ζt(x) + 〈φ0,1〉RN ≥ 0,

∫ ∞

0

(ζt(x) + 〈φ0,1〉RN ) dlt(x) = 0, x ∈ ΓN .

Equation (3.2) is a Skorohod problem in the convex set [0,∞[ΓN∩VN ; in other
words, ζ solves the stochastic differential inclusion

dζ ∈ −∂U(ζt) dt+
√

2 σ dwt

where U : VN 7→ R is the convex potential

U(ζ) :=



















N
∑

x=2

V (ζ(x) − ζ(x − 1)), if ζ + 1φ ∈ [0,∞[ΓN∩VN

+∞, otherwise,

see in particular Proposition 3.1 in Cépa (1998). Therefore existence of a strong
solution of 3.2 follows from Theorem 5.1 of Cépa (1998). �

4. The microscopic invariant measure

In this section we study invariant measures of (1.1) and the associated Dirichlet

forms. Since (1.1) conserves the sum
∑N

x=1 φt(x) =
∑N

x=1 φ0(x) for all t ≥ 0, each
subspace V

c
N = VN + c1, with c > 0, supports an invariant measure. Therefore it

is natural to fix c > 0 and consider only initial conditions φ0 in V
c
N .

We consider a sequence of i.i.d. real random variables (Xi)i∈N, such that Xi has
probability density exp(−V )dr on R. Then q = E

[

X2
1

]

, see (1.3). For n ∈ N we
set Sn := X1 + · · · +Xn, S0 := 0. Moreover, for any c ∈ R and N ∈ N we set

TN,c
i := Si−1 −

1

N

N−1
∑

j=1

Sj + cN1/2, i = 1, . . . , N,

and

V
c
N :=

{

φ ∈ R
N :

N
∑

i=1

φi = cN3/2

}

= VN + cN1/2 1.

Notice that a.s. TN,c = (TN,c
1 , . . . , TN,c

N ) ∈ V
c
N . Clearly V

c
N is a (N−1)-dimensional

affine subspace of R
N ; we denote by LN−1(dφ) the induced (N − 1)-dimensional

Lebesgue measure.

Lemma 4.1. The law of (TN,c
1 , . . . , TN,c

N ) on V
c
N is

Pc
N (dφ) :=

1

Zc
N

1(φ∈Vc
N

) exp {−HN(φ)} LN−1(dφ), (4.1)

where Zc
N is a normalization constant and HN is the Hamiltonian

HN (φ) :=
N
∑

x=2

V (φ(x) − φ(x − 1)), φ ∈ R
N .
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Proof. It is enough to prove the case c = 0. We set τ : R
n−1 7→ R

N ,

τ(y) := − 1

N

N−1
∑

k=1

yk · 1 + (0, y1, . . . , yN−1) , y ∈ R
N−1.

For all f ∈ Cb(R
N ), we have

E[f(TN,0)] =

∫

RN−1

f(τ(y)) e−V (y1)−V (y2−y1)−···−V (yN−1−yN−2) dy1 · · · dyN−1.

Now we define the (N − 1) × (N − 1) matrix

L := (Lij), Lij = 1(i=j) −
1

N
,

so that τi(y) = (Ly)i−1 for all i = 2, . . . , N . Let us now use the following change
of variable

R
N−1 ∋ y 7→ (φ2, . . . , φN ) ∈ R

N−1, φi := (Ly)i−1, i = 2, . . . , N.

Moreover we set

φ1 := − 1

N

N−1
∑

k=1

yk = −(φ2 + · · · + φN ).

Then (φ1, . . . , φN ) ∈ VN and y1 = φ2 − φ1, yi − yi−1 = φi+1 − φi, for all i =
1, . . . , N − 1. Finally

E[f(TN,0)] =

∫

RN−1

f(φ1, . . . , φN )
e−V (φ2−φ1)−···−V (φN−φN−1)

| detL| dφ2 · · · dφN . �

We also set P
c,+
N = Pc

N ( · |Ω+
N ). Then

P
c,+
N (dφ) =

1

Zc,+
N

1(φ∈Vc
N
∩Ω+

N
) exp {−HN (φ)} LN−1(dφ), (4.2)

where Zc,+
N = Pc

N (Ω+
N ) is a normalization constant.

Since V
c
N = c1+VN is an affine space obtained by a translation of VN , it is natural

to consider VN as its tangent space. More precisely, for any F : V
c
N 7→ R in C1,

one can define a gradient ∇VN
F : V

c
N 7→ VN as follows

d

dε
F (φ+ ε v)

∣

∣

∣

∣

ε=0

= 〈∇VN
F (φ), v〉VN

, ∀ φ ∈ V
c
N , v ∈ VN ,

recall (2.4). Notice that ∇VN
is the gradient operator in VN with respect to the

scalar product 〈·, ·〉VN
. If F ∈ C1(RN ) and φ ∈ V

c
N , then it is possible to compare

the gradient in VN and the standard gradient ∇F = ( ∂F
∂φi

, i = 1, . . . , N)

∇VN
F = σσT∇F, ‖∇VN

F‖2
VN

= ‖σT∇F‖2
RN = 〈∇F, σσT∇F 〉RN .

Proposition 4.2. Let c > 0.

(1) The Markov process (φ(t, φ0))t≥0,φ0∈Vc
N
∩Ω+

N
is the diffusion generated by the

symmetric Dirichlet Form in L2(Ω+
N ,P

c,+
N ), closure of

C1
b (Ω+

N ) ∋ F 7→ ec,N(F, F ) :=

∫

∑

x,y∈ΓN

∂F

∂φ(x)
[σσT ]xy

∂F

∂φ(y)
dPc,+

N

=

∫

‖∇VN
F‖2

VN
dPc,+

N .
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(2) P
c,+
N is the only tempered invariant probability measure of φ on V

c
N ∩ Ω+

N ,
where temperedness means having finite second moment.

Proof. Closability of ec,N on C1
b (Ω+

N ) follows from Theorem 2.1, since the Hamil-

tonian HN and the set V
c
N ∩ Ω+

N are convex and P
c,+
N is therefore log-concave (see

Theorem 9.4.11 of Ambrosio et al. (2005)). Since V
c
N ∩ Ω+

N is locally compact, by
Fukushima’s theory of Dirichlet forms there exists a continuous Markov process
(ψt, t ≥ 0) in V

c
N ∩ Ω+

N , starting from quasi-every ψ0 ∈ V
c
N ∩ Ω+

N , weak solution of
(1.1). By the pathwise uniqueness result of Lemma 3.2, (ψt, t ≥ 0) and (φt, t ≥ 0)
are identical in law if ψ0 = φ0 and therefore (φt, t ≥ 0, φ0 ∈ V

c
N ∩Ω+

N ) is the Markov
process associated with ec,N .

The second assertion follows from point (e) of Theorem 2.1, since P
c,+
N ∈ P2(R

N )
by the convexity of V and in particular (1.3). �

5. The rescaling

Recall now the rescaling map ΛN : R
N 7→ L2(0, 1), defined in (1.4). In this

section we show how the scalar product of VN is transformed under this map. This
issue is crucial for the proof of (2.6) and (2.7) in our setting, see Proposition 6.3
below.

We define the linear subspace HN of L2(0, 1) as the image of ΛN . We denote by
1I(x) the indicator function of the interval I(x), where

I(0) := ∅, I(x) := [(x− 1)/N, x/N), x ∈ ΓN .

Then, by the definition of ΛN

HN =

{

N
∑

i=1

ai 1Ii
, (a1, . . . , aN ) ∈ R

N

}

,

i.e. HN can be identified with the space of functions on [0, 1) being constant on
I(x) for all x ∈ ΓN .

Let B denote a standard Brownian motion in R with B0 = 0. We set

BN :=
B 1

N
+B 2

N
+ · · · +B1

N
, B :=

∫ 1

0

Br dr.

Then we define the process

Y N
r := B⌊Nr+1⌋/N −BN , r ∈ [0, 1),

Yr := Br −B, r ∈ [0, 1],

where ⌊·⌋ denotes the integer part. Notice that almost surely

〈Y N , 1〉 = 〈Y, 1〉 = 0, Y N
r → Yr, ∀ r ∈ [0, 1)

as N → ∞. Both processes are centered Gaussian. Recall that 〈·, ·〉 = 〈·, ·〉L2(0,1)

denotes the scalar product in L2(0, 1). Now we define

〈h, k〉HN
:= E

[

〈h, Y N 〉 〈k, Y N 〉
]

+ 〈h, 1〉 〈k, 1〉, ∀ h, k ∈ HN ,

〈h, k〉H := E [〈h, Y 〉 〈k, Y 〉] + 〈h, 1〉 〈k, 1〉, ∀ h, k ∈ L2(0, 1).
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Lemma 5.1.

• For any N ∈ N and h ∈ HN

〈h, h〉HN
= 〈h, 1〉2 +

1

N

N−1
∑

i=1





i
∑

j=1

〈h− 〈h, 1〉, 1I(j)〉





2

(5.1)

= 〈h, 1〉2 + E
[

〈h,ΛND〉2
]

,

where D is defined in (3.1). In particular, if h 6= 0 then 〈h, h〉HN
> 0.

• For any h ∈ L2(0, 1)

〈h, h〉H = 〈h, 1〉2 +

∫ 1

0

(

−〈h, 1〉 +

∫ t

0

h(s) ds

)2

dt.

In particular, if h 6= 0, then 〈h, h〉H > 0.

Proof. Let h ∈ HN and set

k :=
∑

i

〈h− 〈h, 1〉, 1I(1) + · · · + 1I(i)〉 1I(i),

and notice that 〈k, 1I(N)〉 = 0. Then

〈h, h〉HN
− 〈h, 1〉2 = E

[

〈h− 〈h, 1〉, B⌊N ·+1⌋/N 〉2
]

= E





(

N
∑

i=1

〈h− 〈h, 1〉, 1(i)〉B i
N

)2




= E





(

〈k, 1I(N)〉B1 −
N−1
∑

i=1

〈k, 1I(i)〉
(

B i+1

N
−B i

N

)

)2




=
1

N

N−1
∑

i=1

〈k, 1I(i)〉2,

and (5.1) is proven, also recalling Lemma 3.1.
Analogously, for any h ∈ L2(0, 1) we set kr :=

∫ r

0
(h − 〈h, 1〉). Then we find

k1 = 0 and

〈h, h〉H−〈h, 1〉2 = E
[

〈h− 〈h, 1〉, B〉2
]

= E

[

(

k1 B1 −
∫ 1

0

k dB

)2
]

=

∫ 1

0

k2. �

Therefore 〈·, ·〉HN
, respectively 〈·, ·〉H , defines a scalar product on HN , resp. on

L2(0, 1). We define the Hilbert space H , completion of L2(0, 1) with respect to
the scalar product 〈·, ·〉H . Notice that the associated norms are controlled by the
L2(0, 1) norm.

Lemma 5.2. For all N ∈ N and h ∈ HN

‖h‖2
HN

≤ ‖h‖2
L2(0,1).

For all h ∈ L2(0, 1)

‖h‖2
H ≤ ‖h‖2

L2(0,1).
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Proof. For any N ∈ N and h ∈ HN

〈h, h〉HN
− 〈h, 1〉2 = E

[

〈h− 〈h, 1〉, B⌊N ·+1⌋/N 〉2
]

≤ ‖h− 〈h, 1〉‖2
L2(0,1) E

[

‖B⌊N ·+1⌋/N‖2
L2(0,1)

]

= ‖h− 〈h, 1〉‖2
L2(0,1)

1

N

N
∑

i=1

i

N

≤ ‖h− 〈h, 1〉‖2
L2(0,1).

Therefore

〈h, h〉HN
≤ 〈h, 1〉2 + ‖h− 〈h, 1〉‖2

L2(0,1) = ‖h‖2
L2(0,1).

Analogously, for any h ∈ L2(0, 1)

〈h, h〉H − 〈h, 1〉2 = E
[

〈h− 〈h, 1〉, B〉2
]

≤ ‖h− 〈h, 1〉‖2
L2(0,1) E

[

‖B‖2
L2(0,1)

]

= ‖h− 〈h, 1〉‖2
L2(0,1)

∫ 1

0

t dt ≤ ‖h− 〈h, 1〉‖2
L2(0,1). �

We define now the image measures of Pc
N and P

c,+
N under ΛN ,

νc
N := Λ∗

N(Pc
N ), νc,+

N := Λ∗
N (Pc,+

N ), c > 0,

where ΛN , Pc
N and P

c,+
N are defined, respectively, in (1.4), (4.1) and (4.2), and e.g.

Λ∗
N(Pc

N ) denotes the image measure of Pc
N under the map ΛN . Finally, we set for

all c ∈ R

Hc
N := {h ∈ HN , 〈h, 1〉 = c} , Hc := {h ∈ H, 〈h, 1〉 = c} ;

in particular, H0
N and H0 are Hilbert space w.r.t. to the restrictions of 〈·, ·〉HN

,
respectively 〈·, ·〉H , that we denote

〈h, k〉H0
N

:= E
[

〈h, Y N 〉 〈k, Y N 〉
]

, ∀ h, k ∈ H0
N ,

〈h, k〉H0 := E [〈h, Y 〉 〈k, Y 〉] , ∀ h, k ∈ H0.

By (5.1) and Lemma 3.1, we see that the scalar product in H0
N is the push-forward

of the scalar product in VN under ΛN , i.e. for all h ∈ H0
N

‖h‖2
H0

N
= ‖Λ−1

N h‖2
VN
. (5.2)

As in the case of V
c
N , for a differentiable F : Hc

N 7→ R we can define a gradient
∇H0

N
F : Hc

N 7→ H0
N

d

dε
F (k + ε h)

∣

∣

∣

∣

ε=0

= 〈∇H0
N
F (k), h〉H0

N
, ∀ k ∈ Hc

N , h ∈ H0
N .

Analogously for a differentiable F : Hc 7→ R we can define a gradient ∇H0F : Hc 7→
H0

d

dε
F (k + ε h)

∣

∣

∣

∣

ε=0

= 〈∇H0F (k), h〉H0 , ∀ k ∈ Hc, h ∈ H0.

Moreover, ΛN : V
c
N 7→ Hc

N is bijective. Then, for any f ∈ C1
b (Hc

N ) we have
f ◦ ΛN ∈ C1

b (Vc
N ) and

∑

x,y∈ΓN

∂(f ◦ ΛN)

∂φ(x)
[σσT ]xy

∂(f ◦ ΛN)

∂φ(y)
=

1

N4
‖∇H0

N
f‖2

H0
N
◦ ΛN . (5.3)
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Then we have for any ϕ, ψ ∈ C1
b (Hc

N )

Ec,N(f, g) :=

∫

KN

〈∇H0
N
ϕ,∇H0

N
ψ〉H0

N
dνc,+

N = N4 ec,N(ϕ ◦ ΛN , ψ ◦ ΛN ).

We obtain readily from Proposition 4.2

Proposition 5.3. The bilinear form (Ec,N , C1
b (Hc

N )) is closable in L2(νc,+
N ) and

the closure (Ec,N , D(Ec,N )) is a symmetric Dirichlet form with associated Markov
process ΦN .

6. Proof of Theorem 1.1

6.1. The limit equation. We recall that B denotes a standard real Brownian motion
and

B :=

∫ 1

0

Br dr,

We define the process

Y c
θ := q1/2

(

Bθ −B
)

+ c, θ ∈ [0, 1],

where q is defined in (1.3).

Lemma 6.1. For all c > 0, the probability of the event {infθ∈[0,1] Y
c
θ > 0} is

positive.

Proof. Notice that P(infθ∈[0,1] |Bθ| ≤ ε) > 0 for all ε > 0, and {infθ∈[0,1] |Bθ| ≤
q−1/2c/4} ⊂ {infθ∈[0,1] Y

c
θ > 0}. �

In particular, νc(K) > 0, where K := {h ∈ L2(0, 1), h ≥ 0} and νc is the law of
Y c. Moreover, if νc,+ is the law of Y c conditioned to be non-negative on [0, 1], then
νc,+ = νc( · |K). The following result has been proven in Debussche and Zambotti
(2007).

Proposition 6.2.

(1) For all u0 ∈ Hc ∩ K there exists a unique strong solution of (1.5). We
denote Xt(u0) := u(t, ·) ∈ Hc ∩K

(2) The process (Xt(u0))t≥0,u0∈Hc∩K is the diffusion associated with the Dirich-
let form (Ec, D(Ec)), closure of the symmetric form

Ec(ϕ, ψ) :=

∫

〈∇H0ϕ,∇H0ψ〉H0 dνc,+, ∀ ϕ, ψ ∈ C1
b (Hc).

(3) νc,+ is the only invariant measure of (Xt(u0))t≥0,u0∈Hc∩K .

6.2. Proof of (2.6) and (2.7). We are going to show now that, as N → ∞, νc,+
N

converges weakly to νc,+ and the norm ‖ · ‖H0
N

converges to ‖ · ‖H0 , in the sense of

(2.6) and (2.7).

Proposition 6.3. In the notation of section 5

(1) If c > 0 then νc,+
N converges weakly in H to νc,+ as N → +∞.

(2) We have

1

6
‖h‖H0 ≤ ‖h‖H0

N
≤ ‖h‖H0 ∀ h ∈ H0

N , N ∈ N. (6.1)
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(3) Denoting by ΠN : H0 → H0
N the orthogonal projections induced by the

scalar product of H0, we have

lim
N→∞

‖ΠNh‖H0
N

= ‖h‖H0 ∀ h ∈ H0. (6.2)

Proof. We start with weak convergence of νc,+
N to νc,+. We set νc

N := Λ∗
N (Pc

N ),
i.e. νc

N is the law of the process Y c,N

Y c,N
θ :=

S⌊Nθ⌋ − SN√
N

+ c, θ ∈ [0, 1).

By the invariance principle, νc
N converges weakly to the law νc of Y c. We have to

prove now that for c > 0

νc(∂K) = P

(

inf
θ∈[0,1]

Y c
θ = 0

)

= 0.

Notice that, by the symmetry of Y c with respect to time inversion θ 7→ 1 − θ, we
have

P

(

inf
θ∈[0,1]

Y c
θ = 0

)

≤ 2 P

(

inf
θ∈[0,1/2]

Y c
θ = 0

)

.

Notice that B ∼ N (0, 1/3). By a standard Gaussian computation, it is easy to see
that the law of (Y c

θ , θ ∈ [0, 1/2]) is equivalent to the law of

Vθ := q1/2(Bθ − Z) + c, θ ∈ [0, 1/2],

where Z ∼ N (0, 1/3) is independent of B. Since the minimum value of B over
[0, 1/2] has the law of |B1/2|, we obtain that

P

(

inf
θ∈[0,1/2]

Vθ = 0

)

= P

(

|B1/2| = Z − q−1/2c
)

= 0

and therefore P
(

infθ∈[0,1/2] Y
c
θ = 0

)

= 0. Then νc(∂K) = 0 and νc
N ( · |K) = νc,+

N

converges weakly to νc( · |K) = νc,+.

We prove now (6.1) and (6.2). The key result is the following lemma.

Lemma 6.4. For all N ∈ N and h ∈ HN

‖h‖2
HN

+
1

6N2
〈h, 1〉2 = ‖h‖2

H +
1

6N2
‖h‖2

L2(0,1). (6.3)

Proof. Since 〈h, 1〉H = 〈h, 1〉HN
= 〈h, 1〉, then (6.3) is equivalent to

‖h− 〈h, 1〉‖2
HN

= ‖h− 〈h, 1〉‖2
H +

1

6N2
‖h− 〈h, 1〉‖2

L2(0,1), ∀ h ∈ HN .

This, in turn, is equivalent to

E
[

〈h,B⌊N ·+1⌋/N 〉2
]

= E
[

〈h,B〉2
]

+
1

6N2
‖h‖2

L2(0,1), ∀ h ∈ H0
N .

This formula can be proven by noting that for all i = 1, . . . , N

B i
N

= N

∫ i
N

i−1

N

Bs ds+N

∫ i
N

i−1

N

(

B i
N
−Bs

)

ds.
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Indeed, it follows that for all h ∈ HN

E
[

〈h,B⌊N ·+1⌋/N 〉2
]

= E





(

N
∑

i=1

〈h, 1(i)〉B i
N

)2




= E
[

〈h,B〉2
]

+ E





(

N
∑

i=1

〈h, 1(i)〉N
∫ i

N

i−1

N

(

B i
N
−Bs

)

ds

)2




+ 2N2
E



〈h,B〉
N
∑

i,j=1

〈h, 1(i)〉 〈h, 1(j)〉
∫

j

N

j−1

N

Br dr

∫ i
N

i−1

N

(

B i
N
−Bs

)

ds





By independence of increments of the Brownian motion, the second term in the
right hand side is

E





(

N
∑

i=1

〈h, 1(i)〉N
∫ i

N

i−1

N

(

B i
N
−Bs

)

ds

)2


 =
1

3N

N
∑

i=1

〈h, 1(i)〉2 =
1

3N2
‖h‖2

L2(0,1).

Now, for the third term, we need to calculate

Iij := E

[

∫
j

N

j−1

N

Br dr

∫ i
N

i−1

N

(

B i
N
−Bs

)

ds

]

.

Again by independence we have Iij = 0 if j < i. On the other hand

i < j =⇒ Iij =

∫
j

N

j−1

N

dr

∫ i
N

i−1

N

(

i

N
− s

)

ds =
1

2N3
,

i = j =⇒ Iii =

∫ i
N

i−1

N

dr

∫ i
N

i−1

N

(s− r) ds =
1

6N3
.

Then we must compute for all h ∈ HN

1

N

∑

i<j

〈h, 1(i)〉 〈h, 1(j)〉 +
1

3N

∑

i

〈h, 1(i)〉2

=
1

2N

∑

i6=j

〈h, 1(i)〉 〈h, 1(j)〉 +
1

3N

∑

i

〈h, 1(i)〉2

=
1

2N

∑

i,j

〈h, 1(i)〉 〈h, 1(j)〉 −
1

6N

∑

i

〈h, 1(i)〉2 =
1

2N
〈h, 1〉2 − 1

6N2
‖h‖2

L2(0,1).

Finally, we have proven that for all h ∈ HN

E
[

〈h,B⌊N ·+1⌋/N 〉2
]

= E
[

〈h,B〉2
]

+
1

6N2
‖h‖2

L2(0,1) +
1

2N
〈h, 1〉2

and choosing h such that 〈h, 1〉 = 0 we have the desired result. �

End of the proof of Proposition 6.3. We prove now (6.1), namely the estimate

1

6
‖h‖2

H0
N

≤ ‖h‖2
H0 ≤ ‖h‖2

H0
N
, ∀ N ∈ N, h ∈ H0

N . (6.4)
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The second inequality of (6.4) follows from (6.3). For the first inequality, recall
now (5.1), where we proved that for all h ∈ H0

N

‖h‖2
H0

N
=

1

N

N−1
∑

i=1





i
∑

j=1

〈1(j), h〉





2

.

Then we obtain for all h ∈ H0
N

‖h‖2
L2(0,1) = N

N
∑

i=1

〈1(i), h〉2

= N
N−1
∑

i=1





i
∑

j=1

〈1(j), h〉 −
i−1
∑

j=1

〈1(j), h〉





2

+N





N−1
∑

j=1

〈1(j), h〉





2

≤ 4N
N−1
∑

i=1





i
∑

j=1

〈1(j), h〉





2

+N





N−1
∑

j=1

〈1(j), h〉





2

≤ 5N2 ‖h‖2
H0

N
.

Using (6.3) we obtain the first inequality and (6.4) is proven.

We prove now (6.2), namely we prove that, denoting by ΠN : H0 → HN the
orthogonal projections induced by the scalar product of H0, we have

lim
N→∞

‖ΠNh‖H0
N

= ‖h‖H0 ∀ h ∈ H0.

We denote by PN : L2(0, 1) 7→ L2(0, 1) the following projection

PNh :=

N
∑

i=1

N 〈h, 1I(i)〉 1I(i), h ∈ L2(0, 1). (6.5)

Then PN is an orthogonal projector with respect to the scalar product of L2(0, 1)
and for all h ∈ L2(0, 1), ‖h − PNh‖L2(0,1) → 0 as N → ∞. Now, let us fix

h ∈ L2(0, 1) ∩H0; then we have

‖PNh‖2
H0

N
= E

[

〈Y N , h〉2
]

→ E
[

〈Y, h〉2
]

= ‖h‖2
H0 , N → ∞. (6.6)

Now we claim that ‖ΠNh‖2
H0 → ‖h‖2

H0 , as N → ∞. Indeed, ΠN is the element of
minimal H0-distance from h in H0

N . Then, since PNh belongs to H0
N , by Lemma

5.2

‖ΠNh− h‖H0 ≤ ‖PNh− h‖H0 ≤ ‖PNh− h‖L2(0,1) → 0, N → ∞. (6.7)

Now, by (6.3)

‖ΠNh‖2
H0

N
= ‖ΠNh‖2

H0 +
1

6N2
‖ΠNh‖2

L2(0,1) ≥ ‖ΠNh‖2
H0 → ‖h‖2

H0 , N → ∞.

In particular
lim inf
N→∞

‖ΠNh‖H0
N
≥ ‖h‖H0 .

On the other hand, by (6.4)

‖ΠNh‖H0
N
≤ ‖PNh‖H0

N
+ ‖PNh− ΠNh‖H0

N
≤ ‖PNh‖H0

N
+ ‖PNh− ΠNh‖H0 .

Since limN (PNh− ΠNh) = 0 in H0 by (6.7), then by (6.6) we find

lim sup
N→∞

‖ΠNh‖H0
N
≤ ‖h‖H0 .
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If we set now
ψN : H0 7→ R, ψN (h) = ‖ΠNh‖H0

N
,

then ψN is Lipschitz-continuous in the H0-norm uniformly in N , since

‖ΠNh‖H0
N
≤ ‖ΠNh‖H0 ≤ ‖h‖H0

by (6.1) and by the definition of ΠN . Moreover and ψN (h) → ‖h‖H0 as N → ∞
for all h in L2(0, 1) ∩ H0. Since L2(0, 1) ∩ H0 is dense in H0, this concludes the
proof of Proposition 6.3. �

6.3. Proof of Theorem 1.1. In order to prove Theorem 1.1, it is now enough to
notice that by Propositions 5.3, 6.2 and 6.3, Theorems 2.1 and 2.2 apply and yield
the desidered convergence result.
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