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ABSTRACT

To provide a theoretical basis for stochastic parameterization of cumulus convection, the equilibrium
fluctuations of a field of cumulus clouds under homogeneous large-scale forcing are derived statistically,
using the Gibbs canonical ensemble from statistical mechanics. In the limit of noninteracting convective
cells, the statistics of these convective fluctuations can be written in terms of the large-scale, externally
constrained properties of the system. Using this framework, the probability density function of individual
cloud mass fluxes is shown to be exponential. An analytical expression for the distribution function of total
mass flux over a region of given size is also derived, and the variance of this distribution is found to be
inversely related to the mean number of clouds in the ensemble. In a companion paper, these theoretical
predictions are tested against cloud resolving model data.

1. Introduction

The parameterization of cumulus convection in nu-
merical models of the atmosphere is usually based upon
a local equilibrium hypothesis, where it is assumed that
the average properties of the (unresolved) convection
within each grid box can be determined solely in terms
of large-scale (resolved) conditions. In particular, the
heating, moistening, and momentum sources of the
convection are functions of the temperature, moisture
content, and other model variables in the relevant col-
umn (Ooyama 1971; Arakawa and Schubert 1974;
Gregory and Miller 1989; Tiedke 1989; Emanuel 1991).
This assumption can only be exactly true in the limit of
averaging over an infinite number of clouds. For a re-
gion of finite size, the average convective properties
will fluctuate around the equilibrium average, depend-
ing on how many clouds happen to be in the region at
any given moment.

Deviations from equilibrium are important for at
least three reasons. First, subgrid-scale convective fluc-
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tuations are a significant source of variability for the
larger-scale climate (Lin and Neelin 2000). Second,
quantitative precipitation forecasting often requires
predictions for very small regions (e.g., river catch-
ments), which are only probabilistically related to the
larger-scale flow that is observed and forecast (Fritsch
et al. 1998). Finally, convective variability is a signifi-
cant source of model error in deterministic numerical
weather prediction models and can influence the spread
of ensemble forecasts (Buizza et al. 1999; Palmer 2001).

It is therefore an important task to characterize con-
vective variability. In particular, one would hope to pre-
dict the statistics of the convective fluctuations in terms
of the same large-scale properties that determine the
mean behavior. This paper attempts to provide such a
characterization using standard methods from statisti-
cal physics for describing fluctuations about an equilib-
rium. The second part of this study will describe tests of
the theoretical predictions using a cloud resolving
model.

Before attempting an equilibrium fluctuation theory,
it is important to distinguish the convective variability
due to local fluctuations in an equilibrium situation
from variability that occurs when the convection is not
in equilibrium at all. If the forcing for convection is
varying on time and space scales similar to convective
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motions themselves, the convection will not have the
opportunity to reach equilibrium, and it will not be
possible to distinguish the variability of the forcing
from the intrinsic variability of the convection. For
equilibrium, the forcing must be sufficiently slowly
varying in space that it can be considered uniform over
a region large enough to contain many clouds. It must
be sufficiently slowly varying in time that the convec-
tion has time to adjust to changes in its environment. In
fact, these two requirements are closely related, since it
appears that the adjustment time is linearly propor-
tional to the cloud spacing (Cohen and Craig 2004). In
this paper, only the equilibrium situation will be con-
sidered; attention will be focused on the spatial vari-
ability that occurs within a finite-sized region such as
the grid box of a numerical model. Cohen and Craig
(2004) suggest that for reasonable variations in convec-
tive forcing, the convective ensemble is in a linear re-
sponse regime, in which case it may be possible to gen-
eralize the results here to at least some nonequilibrium
situations.

The statistical characterization of small-scale vari-
ability in turbulent flows can be a very complex task,
even for the simple case of homogeneous turbulence
(Lesieur 1997). But moist atmospheric convection has a
useful simplification that is not found in most turbulent
systems. The fraction of the atmosphere occupied by
active convective motions is small (Bjerknes 1938;
Bretherton 1988; Cotton and Anthes 1989) and, in the
absence of convective organization, it may be a reason-
able hypothesis to regard convection as composed of
isolated entities that interact with each other only
through the mean flow. This is analogous to the “ideal”
assumption for an ideal gas, where the gas is presumed
to be composed of particles whose statistical properties
are determined by the energy and particle number of
the whole system, and not influenced significantly by
the details of how the molecules interact locally in col-
lisions (Landau and Lifshitz 1968). This idealized
model of convection will lead to a statistical descrip-
tion, along the lines of the phenomenological descrip-
tions of Cho (1978) or Randall and Huffman (1980), but
based on a small number of physically motivated as-
sumptions. The underlying physical model suggests that
the predictions will apply best to situations of weakly
forced, unorganized convection, and provides estimates
of the range of spatial scales where the predictions
should apply.

Section 2 of the paper discusses the assumptions un-
derlying the development in more detail, and attempts
to identify the physical parameters that will form the
basis of the theory. The main results are derived in
sections 3 and 4, which present probability density func-
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tions for the mass flux of a single cloud and the total
mass flux over a region of given size, respectively. Sec-
tion 5 presents a discussion of the implications of the
results, and methods for testing the predictions.

2. Assumptions and constraints

In this section, the assumptions underlying the statis-
tical derivations of the subsequent sections are dis-
cussed. An attempt will be made to provide physical
motivation for each statement, but these cannot be re-
garded as compelling arguments. Indeed, other self-
consistent theories could be constructed using different
sets of assumptions. The particular choices made here
can only be assessed by testing the conclusions derived
from them.

a. Large-scale constraints on the convective
ensemble

We take, as a starting point, a conventional mass flux
picture of the relationship between an ensemble of con-
vective clouds and its environment (Ooyama 1971;
Gregory 1997). The atmosphere is rendered unstable to
moist convection on the large-scale through some com-
bination of radiative cooling, large-scale ascent that
produces adiabatic cooling, and surface fluxes of heat
and moisture. The convection, consisting of moist up-
drafts and downdrafts, acts to reduce the instability by
a net transport of mass upward. Some or all of this mass
descends between the convective updrafts, warming the
atmosphere by adiabatic compression, and thus tending
to restore stability. If the area occupied by the convec-
tive updrafts and downdrafts is small and reevaporation
of precipitation is ignored, it can be shown that the net
convective mass flux at equilibrium is constrained by
the need to produce subsidence warming equal to the
large-scale cooling that forces the convection (Gregory
and Miller 1989). We therefore assume that the mean
convective mass flux over the area of interest at some
arbitrary height, (M) (in units of kg s~') is constrained
by the large-scale flow. The angle brackets denote an
ensemble mean over all possible realizations of the con-
vection consistent with the large-scale forcing condi-
tions. The calculation of the mean convective mass flux
at cloud-base level is a standard part of mass flux cu-
mulus parameterizations.

The variability of equilibrium convection results
from the fact that the mean mass flux, (M), is divided up
among a number of finite-sized clouds. A given region
may contain various numbers of clouds of various sizes,
although the total mass flux must approach the average,
(M), if the region is very large. It is thus necessary to
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characterize the degree to which the convection is bro-
ken up, with some measure of the typical number of
clouds or their typical size. The size of a convective
cloud is likely to be determined by properties local to
that cloud—the initial perturbation that triggers it, and
the mixing processes that accompany its development.
We therefore take as a second fundamental parameter
describing the convective ensemble the mean mass flux
per cloud, (m) (kg s~'). Some evidence for this is pro-
vided by the cumulus ensemble simulations of Robe
and Emanuel (1996) that show the convective vertical
velocity to be almost independent of the large-scale
forcing and mean convective mass flux. This invariance
of the mass flux to the forcing has also been noted by
Cohen (2001). A potential alternative to using the in-
stantaneous cloud mass flux would be to assume a con-
stant total mass flux integrated over the lifetime of a
cloud. This would yield the same results if the mass flux
were constant over the life of the cloud, or if all clouds
followed the same well-defined life cycle. In principle,
the time-integrated mass flux is more appealing since it
is independent of the time evolution of the cloud; how-
ever, it is much harder to calculate in practice, and
therefore is not used here.

b. Scale separation

We assume that a scale separation exists in time and
space between variations in the large-scale forcing and
in the convective ensemble. In particular, it is assumed
that it is possible to define a region that is small enough
in space that the forcing of convection does not vary
significantly over the region, and yet large enough to
contain many clouds (Yanai et al. 1973; Arakawa and
Schubert 1974). This assumption implies that the aver-
age quantities, (M) and (m), which characterize the con-
vective ensemble, are well defined. We further assume
that the forcing varies sufficiently slowly in time that
the convection has time to reach and remain close to
equilibrium. This implies that (M) and (m) can be de-
termined solely in terms of the large-scale forcing.

c. Weak interactions

If the convective clouds are sufficiently separated it
may be reasonable to ignore the interactions of a cloud
with its immediate neighbors. The cloud will feel only
an aggregate change to its environment resulting from
the effects of all the other clouds. In other words, the
clouds will interact only through their effects on the
large-scale state of the atmosphere. Consistent with this
approximation, the extent of individual clouds is ig-
nored and the clouds are assumed to be pointlike. This
is reasonable only if attention is restricted to regions
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FIG. 1. Division of a mass flux interval into two clouds with
mass fluxes M, and M,.

large compared to the cloud size. The noninteraction
idealization implies that any aspect of the convective
variability can be described in terms of the mean prop-
erties of the ensemble; that is, (M) and (m). For ex-
ample, the mean number of clouds in the area of inter-
est is given by (N) = (M)/(m).

d. Equal a priori probabilities

A final assumption, key to all of equilibrium statisti-
cal mechanics, is the postulate of equal a priori prob-
abilities. We assume that clouds are equally likely to
occur in any location and with any mass flux, subject
only to the constraints described above, namely that the
mean mass flux, (M), and the mean mass flux per cloud,
(m), are as required by the large-scale forcing. This as-
sumption cannot be justified, except by its success in the
statistical description of many natural phenomena.

3. Probability distribution of mass flux per cloud

In this section, the distribution of individual cloud
mass fluxes is described in terms of the mean mass flux
per cloud, (i), which is assumed to be independent of
the forcing. Since we assume that the clouds are non-
interacting and thus independent of their neighbors, we
do not need to consider the spatial locations of the
clouds in this calculation. The derivation here is formu-
lated in terms of stochastic processes, but the resulting
exponential probability distribution of cloud mass
fluxes is the well-known Boltzmann distribution, ob-
tained from the statistical mechanics of the canonical
ensemble (see the appendix).

To compute how the mass flux in a given region is
distributed among the individual clouds, we consider
the following construction. The total mass flux is rep-
resented as a line, with the mass fluxes of the individual
clouds corresponding to intervals on the line (Fig. 1).
For example, the distance from the origin to the divid-
ing point M, is the mass flux of one cloud, and the
distance from M, to the next point M, is the mass flux
of a second cloud. The fixed mean mass flux per cloud
can be written inversely as a constraint on the mean
number of clouds per unit mass flux:

v 1
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or equivalently the number of dividing points per unit
length. The number of clouds contributing to a given
mass flux M is a random variable, whose distribution,
pa(n) is given by the probability that the number of
dividing points that fall into an interval of length M,
N((0, M]), is equal to n (the round bracket indicates
that the endpoint 0 is not included in the interval, while
the square bracket indicates that the endpoint M is in-
cluded). Since the mass fluxes of the individual clouds
are assumed to be uncorrelated, the distribution, p,,(n),
can be described by the Poisson point process:

(AM)" e ™M
Pa(n) = Prob{N(0, M]) = n} = ————

n=0,1,..., )

for

with rate parameter A = (1/(m)).

From Eq. (2) it can be shown that the distribution of
interval lengths between points is governed by an ex-
ponential distribution, and hence that the mass flux of
individual clouds is exponentially distributed. This re-
sult will be demonstrated here for a mass flux interval
containing exactly two clouds, but can easily be ex-
tended to a longer interval containing any number of
clouds.

Consider an interval of mass flux, subdivided into
two clouds with individual mass fluxes in the range m;
to m; + dm, and m, to m, + dm,, as shown in Fig. 1.
The joint probability density function for m; and m, can
be written as a product of the probabilities of exactly
one dividing point (M, or M,, respectively) occurring in
each of the intervals (m,, m; + dm;] and (m,, m, +
dm,] (Taylor and Karlin 1994), that is,

Pmy, Mz(mh my)dmdm;, = Prob{N(([0, m,]) = 0}

X Prob{N((m,, m, + dm,]) = 1}

X Prob{N((m, + dm,, m; + dm, + m,]) = 0}

X Prob{N((m, + dm, + m,,m; + dm; + m, + dm,]) = 1}.

)
Using Eq. (2), this can be rewritten as

Py, (M, my)dm,dm, = (eixml)(ei)\mz)()\dm167)\dm1)

X (Admye *m2), 4)
Upon dividing both sides of (4) by (dm,)(dm,), and
taking the limit as dm,, dm, — 0, it is found that

Py, (s mo) = (e (he ™M), )

Finally, using the fact that individual clouds are inde-
pendent, the probability distribution of mass flux per
cloud can be written in general form as

1 —m/(m)
p(m)ydm =-—e dm. (6)

(m)
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This result is analogous to the Boltzmann distribution,
with (m) playing the role of temperature.

Since the mean number of clouds contributing to the
total mass flux is (N), the average number of clouds in
the region that possess a mass flux between m and m +
dm is

dn(m) = (N)p(m)dm = % e ™M dm. (7)
This final equation is in a form suitable for verification
against observations or numerical model data.

4. Probability distribution of total mass flux

a. Probability density function

The probability distribution of the total mass flux of
the cloud ensemble in a given region of finite size,
p(M), can be derived by combining the distribution of
individual mass fluxes from (6) with the distribution of
cloud number in the region. The weak interaction as-
sumption implies that the locations of the clouds are
uncorrelated, and thus the number of clouds is gov-
erned by a Poisson distribution:

(Ny'e ™

o n=0,1,.... (8)

pn(n) = for
It is most straightforward to consider firstly the situa-
tion where the number of clouds in the ensemble is
fixed to be exactly N. In this situation, the probability
density function for the total mass flux of the ensemble,
p™ (M), can be calculated as an N-fold convolution

over p(m) (Taylor and Karlin 1994); that is,

pM(M) = f

This gives, on recursive substitution of (6) into (9)

M

pTM = wp(u) du. ©))
0

1 1 \V
Ny — - N—1,—M/m)
p (M) N-1) <<m>> MY e . (10)
Next, in order to relax the assumption of fixed N, we
sum over (10) for all values of N = n, weighted by the
probability of there being exactly n clouds, py(n), from
(8); that is,

(n)
p"(M)pyn) for M=1
p(M) =1y n=1

pyn=0)=e N for M=0.

(11)

Here, p(M) has a discrete component, corresponding to
the case when there are no clouds in the region; that is,
n = 0and M = 0, and a continuous distribution when M
= 1, or equivalently n = 1.
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FIG. 2. Theoretical probability distributions of total mass flux, p(M): (a) (N) = 68; (b) (N) = 5; (m) = 10" kg s~ ! for both curves.

For n = 1, then, we find by substituting Eqs. (10) and  b. Fluctuations in total mass flux

(8) into (11):

<N> n—1
sty = S (<m>M>
( ) nl(n —1)! °

n=1

(12)

The summation in Eq. (12) is of standard form, and can
be written as

oo

>

n=1

n—1

X
nl(n—1)!

_LeVx )
Vx

where ,(x) is the modified Bessel function of order 1.
Hence, for our cloud system, the probability distri-
bution of total mass flux is given by

p(M) = <<N>>1/2e(N>M1/2€M/<m)Il< IEN; )

(m)
(14)
This expression is valid for a convective ensemble con-
taining any number of clouds (greater than zero). As
discussed further in section 5, a version of this formula
has been presented in a related context by Rodriguez-
ITturbe et al. (1987).

The form of this distribution is not easily recogniz-
able, and so the shape of p(M) is plotted in Figs. 2a,b
for two different values of (N), corresponding to a small
region ((N) = 5) and a region containing a large num-
ber of clouds ({(N) = 68). In accordance with the central
limit theorem, the distribution becomes more Gaussian
as (N) increases, and the variance decreases corre-
spondingly. The shape is reminiscent of a Poisson dis-
tribution, which would have been the solution if all
clouds were constrained to have the same fixed mass
flux.

(13)

The variance of the total convective mass flux in a
region can be calculated from the distribution calcu-
lated in the previous section; however, it can also be
obtained directly from the initial assumptions in a way
that gives some physical insight into the factors control-
ling the variability. The total mass flux of an arbitrary
n-cloud system can be written as

n
E m,
i=1

where m, is the mass flux of an individual cloud. Here,
the probability distribution of each m; is identical [given
by Eq. (6)], and the clouds are assumed to evolve in-
dependently of one another. Now, defining the prob-
ability distribution of the number of particles in the
general case as p(n), the theory of random sums can be
invoked to provide predictions for the mean and vari-
ance of M(n) in terms of (m) and (N) [the derivation is
straightforward and is given in Taylor and Karlin
(1994)]. Specifically, for the assumed random, Poisson
distribution of cloud number [Eq. (8)], the predictions
are

M(n) = (15)

(M) = (N)(m), (16)
in agreement with Eq. (1), and
((3M)?) = 2AN)m)”. (17)

Equation (17) can be normalized by the mean mass
flux, to give

_ 2
Sy

This final expression is simply a mathematical state-
ment of the intuitive result that the variance scales in-

((6Mm))
(My”

(18)
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versely with the number of clouds in the ensemble.
However, it is exactly 2 times the variance that would
have been obtained if all clouds had the same mass flux,
showing that the random positions of clouds and their
random mass flux make equal contributions to the total
mass flux variance.

5. Discussion

a. Meaning of parameters

Expressions have been derived in this paper for the
distribution of mass flux carried by individual clouds
and of the total convective mass flux over a region of
finite size, for a convecting atmosphere in equilibrium
with the large-scale forcing. Two parameters are re-
quired, the mean convective mass flux, (M), and the
mean mass flux per cloud, {(m). As noted previously,
(M) is determined by the requirement that the convec-
tion balance the large-scale forcing when averaged over
a large region, and is provided, for example, by the
closure in a mass flux convection scheme. The only new
parameter that would be required to introduce this de-
scription of variability in a parameterization would be
(m).

The second parameter, (m), is not necessarily a func-
tion of the large-scale forcing. Some results (Robe and
Emanuel 1996; Cohen 2001) suggest that it may even be
independent of the forcing; that is, that the response to
a change in forcing is to change the number of clouds,
rather than the properties of the individual clouds.
Consistent with this Xu et al. (2005) found, in a com-
parison of satellite-derived cloud properties between El
Niflo and La Nifa regimes, that the frequency of cloud
occurrence changed; while many other statistics, such as
the frequency distribution of cloud optical depths, did
not change. This insensitivity to large-scale forcing
would indicate that the mass flux of an individual cloud
is related to the initial perturbation that triggers it and
the entrainment processes that modify its mass flux
over time. For example it could be expected that the
mass fluxes of tropical and midlatitude clouds would be
different (Xu and Randall 2001). At present there can
be little certainty about how (m) is determined since the
crucial processes are not observed in sufficient detail,
nor resolved in most numerical simulations. However,
the key role that this parameter plays in determining
the overall convective variability makes it an important
candidate for future research.

b. Interpretation of mass flux variability

The variability of convective mass flux in a given
region will be small if the number of clouds is large; that
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is, if the size of the region is large in comparison to the
typical cloud separation distance. Thus, a necessary
condition for convection in a finite region, such as a grid
box in a numerical model, to be in equilibrium with the
average forcing over that region is that the region size
Ax be larger than the mean cloud spacing, L =
(AKNN)Y? = ((m)y AKKM))'"?, where A is the size of area
containing on average (N) clouds. It is interesting to
note that, since (m) appears to be independent of the
forcing, L is inversely related to (M). Where convection
is strongly forced, there are more clouds to average
over and less convective variability in a region of a
given size. An equilibrium convective parameterization
will be most accurate where it is most needed.

An estimate of the magnitude of convective variabil-
ity can easily be obtained from typical values of (m) and
(M). For a purely radiative—convective equilibrium, la-
tent heat release must balance radiative cooling S. If the
rate of latent heating is estimated crudely as the con-
vective mass flux multiplied by a typical water vapor
mass mixing ratio, g, we obtain

D

W= S, (19)

where [, is the latent heat of condensation. Values of
S=250Wm Zand g = 10 g kg ! give (M)/A = 1072
kg s~' m~2 Estimating (m) for a deep convective cloud
with a 10 ms™' vertical velocity and a size of 1 km?
gives (m) = 107 kg s~ '. The characteristic cloud spacing
is then approximately L = 30 km. The normalized stan-
dard deviation of convective variability in a square re-
gion with side Ax is [from Eq. (18)]

oM =27 L (20)

M Ax’
which gives a value of only 0.4 if Ax = 100 km, a typical
resolution for a global model, but 2.1 for Ax = 20 km,
a typical mesoscale model resolution. In regions of sub-
stantial mean ascent the convective forcing will be
larger and the variability smaller: for example an in-
crease in forcing by a factor of 4 will reduce the vari-
ability to half the radiative—convective value. For com-
parison, in the stochastic parameterization scheme of
Buizza et al. (1999), the optimum value of random per-
turbation applied to the equilibrium tendency was
found to be in the range 0.5 to 1.5, for a 10° X 10°
region. This introduces a magnitude of variability that
is larger than would be predicted from the statistical
theory, but is perhaps reasonable for situations in which
convective organization is prevalent.
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c. Experimental validation

A comparison of the distributions found in this work
with observations is essential, but difficult for two rea-
sons. First, sufficient data is needed to define the mass
flux distribution, especially for the largest clouds where
the various distribution functions that have been pro-
posed (discussed below) show their greatest differ-
ences. This is particularly difficult since, as indicated
above, the parameters of the distribution function de-
pend upon the forcing of convection, so that data must
be stratified or rescaled according to the environmental
conditions. Second, the constrained variable in the
theory, convective mass flux, is difficult to observe di-
rectly. Comparisons of the predictions for mass flux to
observations of other quantities such as radar reflectiv-
ity or visible cloud size are unlikely to be quantitative,
and may even show qualitative differences due to the
complex interactions of dynamics and microphysics that
produce the observed patterns. The existing observa-
tions will be reviewed briefly below. An alternative way
of testing the theory is to use simulated data from a
cloud resolving model; this is the subject of Part II of
this work (Cohen and Craig 2006, hereafter Part II).

Direct observations of the mass flux of cumulus
clouds have been made by Jorgensen and Lemone
(1989), although their data was not sufficiently repre-
sentative to determine if the distribution was exponen-
tial. Exponential distributions of cloud size using imag-
ery from aircraft or satellite have been reported by a
number of authors (Plank 1969; Hozumi et al. 1982;
Astin and Latter 1998), while in other studies that are
based on radar reflectivity, data have been fitted to a
lognormal distribution (Lopez 1978; Lopez et al. 1984).
In this case, however, the difference between lognormal
and exponential distributions may be unclear, since re-
flectivity will not reflect the population of small clouds
that contain few precipitation particles. Finally, many
analyses, particularly more recent work, have shown
power-law distributions of cloud size, usually with a
scale break (e.g., Cahalan and Joseph 1989; Sengupta et
al. 1990; Nair et al. 1998). This may result from nonideal
behavior in the mass flux, but may also result from the
different processes that affect cloud size. In particular,
clouds persist and spread even after the convective up-
draft weakens, and are thus more likely than the up-
drafts themselves to interact and merge with their
neighbors. This merging may lead to percolation and
the emergence of power-law scaling (Stauffer and
Ahorony 1992). It is interesting that some of the
“young” cloud fields studied by Sengupta et al. (1990)
and Nair et al. (1998) show distributions that are not far
from exponential, while the more mature cloud fields
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are clearly fit by a power law. It may be that the visible
cloud size more closely represents the mass flux of a
cloud early in its life cycle.

The spatial distribution of clouds, assumed to be ran-
dom in this paper, and the corresponding distribution
function for mass flux can also be compared to obser-
vations. The results here are inconclusive since random
distributions (Nair et al. 1998), spatial regularity
(Ramirez et al. 1990; Nair et al. 1998), and clustering of
clouds (Cahalan and Joseph 1989; Sengupta et al. 1990)
have all been observed. The behavior is presumably
sensitive to the environment where the clouds are form-
ing, but it is not clear what specific factors are respon-
sible for a particular behavior.

A better proxy for mass flux than cloud area might be
precipitation, which is directly related to the column-
integrated latent heating. The spatial distribution of
precipitation has been extensively studied in the hydro-
logical literature (Gupta and Waymire 1979; Kavvas
and Delleur 1981; Eagleson 1978), and one study in
particular is especially relevant to the work presented
here. Rodriguez-Iturbe et al. (1987) obtained a theoret-
ical cumulative rainfall probability distribution exactly
analogous to Eq. (14), and compared this prediction
against monthly precipitation data from Denver, Colo-
rado, collected over a time span of 28 yr. The agree-
ment was poor. However, this comparison assumed
constant values of (M) and (N) throughout the observ-
ing periods, whereas in reality these quantities vary sig-
nificantly as a function of large-scale forcing conditions.
To provide a quantitative validation of the theoretical
distribution, therefore, would require a more sophisti-
cated approach, such as rescaling the data by the chang-
ing mean total mass flux value, (M) (assuming a con-
stant value of (m)), to produce a single probability dis-
tribution. It would seem useful to revisit this analysis,
incorporating the influence of the environment, as in-
dicated above.

APPENDIX

The Analogy with the Ideal Gas

It is interesting to compare the conceptual model of
convective activity presented in this work with the ideal
gas model, which to some extent motivated it. An ideal
gas is assumed to be a system of particles that satisfy the
following assumptions. First, there is a scale separation
that allows one to consider a large number of particles
with well-defined averages. Additionally, the gas sys-
tem is assumed to be in equilibrium, and the particles
are assumed to be weakly interacting, so that their sta-
tistics are functions of the mean properties of the sys-
tem. Finally, all states of the system consistent with
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these assumptions are assumed to be equally probable.
Real gases tend to show ideal behavior only in the low-
density limit; when particles are closely packed, inter-
actions become significant and nonideal behavior is ob-
served.

The large-scale constraints that the system of par-
ticles must satisfy are to some extent analogous to those
of the convective system. In particular, the requirement
that energy, E, is conserved (or conserved in the mean
for a system in contact with a large reservoir of heat
with fixed temperature) corresponds to the require-
ment that convective mass flux, (M), is constrained in
the mean. This is equivalent to regarding the system
(convection in a given region) as a small part of a much
larger system (an infinite convection atmosphere over
which the convective mass flux is exactly constrained.
The set of all possible states of the smaller system is
termed the canonical ensemble (Chandler 1987). The
temperature, 7, of the gas is related to the mean energy
per degree of freedom for the system, and is thus analo-
gous to the mean mass flux per cloud, (m). A measure
of the disorder of the system is given by the entropy,
which can be defined as S = dE/9T. The corresponding
quantity for the convective system is d(M)/a{(m), equal
to (M)/(my) if (m) is independent of the large-scale forc-
ing. This can be understood physically by noting that
(N) = (M){m) is the mean number of clouds in the
region. A larger entropy, or more disordered state, oc-
curs when the mean mass flux, (M), is divided up among
a large number of small clouds, rather than a small
number of large clouds. Note that (M) and (N) are ex-
tensive variables, like £ and S in the gas system, and are
thus proportional to the size of the system, while (m),
like the temperature of the gas, is an intensive quantity,
independent of system size.

There are, however, several aspects of the ideal gas
that are not reflected in the convection problem.
Firstly, the number of particles in a gas is fixed, while
there is no similar constraint on the number of clouds.
In this sense the problem is more analogous to a photon
gas than a gas composed of atoms or molecules (Chan-
dler 1987). Furthermore for an ideal gas, energy is re-
quired to reduce the volume (pressure work). There is
no analogous term in the convective problem described
here. Finally, there is, of course, no quantization of
convective mass flux.
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