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ABSTRACT: An examination of extreme storms across the British Isles over the last 85 years during the boreal autumn

[October, November, December (OND)] and winter [January, February, March (JFM)] shows that large-scale natural

climate variability plays an important role in modulating the intensity and frequency of these events.

Severe storms across the British Isles were most prominent in the 1920s and 1990s in OND, and in the 1920s, 1980s

and 1990s in JFM. There is a significant correlation between JFM severe storminess across the British Isles and both

the Gibraltar–South-West (SW) Iceland and Azores–Iceland indices of the North Atlantic Oscillation (NAO), but this

relationship fluctuates over the 85 years of data. Strongest NAO relationships occur during 1970–1990 and 1940–1960,

with a weaker correlation in the 1920s–1940s, and effectively no correlation in 1950–1970. There is no significant

relationship between the Gibraltar–SW Iceland NAO and severe storms in OND, but a significant correlation exists with

the Azores–Iceland NAO and there is a clear link to a pattern in mean sea level pressure (MSLP) extending from the

tropical Atlantic to higher latitudes of the North Atlantic. El Niño Southern Oscillation (ENSO) influences from the Pacific

Ocean also appear to play a role in modulating OND severe storms over the British Isles. Importantly, severe storms in

OND and JFM seasons respond to different physical mechanisms.

Future work is needed to extend this study back into the late 19th century in order to evaluate fully any changes in

severe storms across the British Isles using a longer instrumental record. This may be best achieved through long historical

surface-observations-only global reanalyses, which can reconstruct tropospheric weather variables using longer instrumental

records of daily to sub-daily MSLP. Copyright  Royal Meteorological Society and Crown Copyright, 2008
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1. Introduction

One area of growing concern in climate science is the

impact that global warming could have through mod-

ulations of the nature and characteristics of naturally

occurring extreme events, such as severe mid-latitude

storms. However, both observational and modelling stud-

ies of historical and future storminess patterns and sce-

narios are divided on the role that global warming has

played, or could play, in changing patterns of mid-latitude

storms (Bijl et al., 1999; Alexandersson et al., 2000;

IPCC, 2001, 2007; Dawson et al., 2002; Barring and Von

Storch, 2004; de Kraker, 2005).

The majority of studies of historical European stormi-

ness are based on anecdotal evidence and historical doc-

umentary observations up to the 18th century, and on

instrumental measurements, such as wind gust charac-

teristics, daily pressure tendencies and geostrophic wind

deduced from triangles of pressure stations. The papers of

* Correspondence to: Rob Allan, Hadley Centre for Climate Change,
Met Office, UK. E-mail: rob.allan@metoffice.gov.uk
† The contribution of R. Allan was written in the course of his
employment at the Met Office, UK and is published with the permission
of the Controller of HMSO and the Queen’s Printer for Scotland‘.

Lamb (1991); Lamb and Frydendahl (1991); Alexanders-

son et al. (1998, 2000); Sweeney (2000); Hickey (2003);

Smits et al. (2005); Jonsson and Hanna (2007) and Hanna

et al. (2008); Matulla et al. (2008) are prime examples

of these various types of studies. These approaches have

provided various measures of storminess down to daily

timescales, but to resolve smaller timescale severe storms

requires sub-daily observations.

In this paper, extreme mean sea level pressure (MSLP)

changes over the British Isles during boreal autumn

[October, November, December (OND)] and winter

[January, February, March (JFM)] have been analysed

since 1920 using newly digitized 3-hourly station data.

Intense storm events occurring on sub-daily timescales

are likely to have significant impact on a densely popu-

lated region such as the British Isles. This work builds on

the study by Alexander et al. (2005) that analysed similar

data since the late 1950s, and was undertaken as part of

an extension of the examination of variability and trends

in severe storms over the last 85 years.

2. Data and methods

Following the work of Alexander et al. (2005), 3-hourly

pressure data for the British Isles were digitized in order

Copyright  Royal Meteorological Society and Crown Copyright, 2008



358 R. ALLAN ET AL.

to extend the severe storms record back before 1957.

The major source of these data, the UK Daily Weather

Reports (DWRs), contain sub-daily data from a wide

range of UK and Irish locations from 1920 (Figure 1).

Until the early 1940s, meteorological data in the DWRs

reveal that many inland stations across the British Isles

did not make 2100 and 0000 GMT observations, and only

coastal station data, often from lighthouses, provided full

3-hourly MSLP coverage (Figure 2). Specific details of

other data problems encountered in this study are given

in Appendix 1, and the potential to extend the 3-hourly

data further back in time is detailed in Appendix 2.

Figure 1 shows the stations used in this study. The red

squares denote locations with data just for 1957–2003,

which were used both in Alexander et al. (2005) and in

this study. Blue squares are additional stations digitized

by this study covering only the period 1920–1960. Black

crosses are station locations with data that extend from

1920 to 2004.

This paper used the same classification for severe

gales in the United Kingdom as in Alexander et al.

(2005). A severe storm event was registered if an

MSLP change of ±10 hPa occurred between the 3-hourly

observations at an individual station. Based on the

distribution, number and spatial structure of severe storm

Figure 1. UK and Irish stations with 3-hourly MSLP data used in this

paper. Red squares: stations for which data for just 1957–2003 were

used in both Alexander et al. (2005) and in this study. Blue squares:

earlier stations available to this study covering the period 1920–1960.

Black crosses: stations for which data for 1957–2003 were used by

Alexander et al. (2005) and for 1920–2004 in this study. Green lines

denote the break-up into northern, central and southern regions of the

British Isles.

Figure 2. UK and Irish stations with full 3-hourly MSLP data from

1920. Red squares: stations having fully digitized 3-hourly MSLP from

1920 used in this study. Blue squares: stations which have all 3-hourly

MSLP from 1920 but which we did not use because they have not been

completely digitized. Green lines denote the break-up into northern,

central and southern regions of the British Isles.

events, Alexander et al. (2005) split the United Kingdom

into the three regions shown in Figure 1 (northern, central

and southern). This procedure was followed here and

extended to include Ireland. Thus, a severe storm passing

the MSLP change criteria in one region of the British

Isles was defined as one third of a storm. As with the

Alexander et al. (2005) study, there had to be at least

two stations in a region registering at least a ±10 hPa

pressure change in 3 h to qualify as a severe storm.

Individual storm events were again registered if events

were separated by a period of at least 12 h, as in

Alexander et al. (2005).

Comparisons of decadal severe storm numbers from

1920 for all available stations in the British Isles and

from only those with full 3-hourly data (Figures 3 and 4)

suggest that a reduced station network results in a

consistent reduction in severe storms numbers. For the

period since 1920, a recent study by Hanna et al. (2008),

looking at 24-h pressure tendencies at specific stations

in the Northern European region back into the mid-

19th century, shows that for OND and JFM seasons at

UK and Irish stations (Aberdeen, Armagh, Valentia and

Jersey/Guernsey) very similar decadal signals to those

given in Figures 3 and 4 are evident.

Links between storminess and precipitation are partic-

ularly pertinent for the United Kingdom, given the recent

severe flooding experiences and concerns about flooding

due to any increases in storminess. There is pressure, not

Copyright  Royal Meteorological Society and Crown Copyright, 2008 Int. J. Climatol. 29: 357–371 (2009)
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Figure 3. Comparison of OND decadal average severe storm numbers for all British Isles stations available (blue) and British Isles stations with

full 3-hourly MSLP coverage. This figure is available in colour online at www.interscience.wiley.com/ijoc

JFM Decadal Average Severe Storms

JFM severe storms - all stns

JFM severe storms - continuous stns

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.8

1.6

1920-1930 1930-1940 1940-1950 1950-1960 1960-1970 1970-1980 1980-1990 1990-2000

Decade

N
u

m
b

e
r 

o
f 
S

to
rm

s

Figure 4. Comparison of JFM decadal average severe storm numbers for all British Isles stations available (blue) and British Isles stations with

full 3-hourly MSLP coverage. This figure is available in colour online at www.interscience.wiley.com/ijoc

just in the United Kingdom, to look at the possibilities of

seasonal to decadal forecasting of storminess that include

its influence on precipitation extremes. Thus, correlations

and their significance are also examined between OND

and JFM severe UK storminess and rainfall across the

European domain. The rainfall data set used is the high

spatial resolution (0.5° latitude × 0.5° longitude) CRU

TS2.1 covering the period January 1901 to December

2002 from the Climatic Research Unit (CRU) at the Uni-

versity of East Anglia (Mitchell and Jones, 2005).

Finally, more insight into the physical mechanisms

driving OND and JFM severe storms was obtained

by using the severe storms results together with the

European and North Atlantic daily to MULtidecadal

climATE variability (EMULATE) mean sea level pressure

(EMSLP) data set (Ansell et al., 2006) and a simulated

annealing technique to ‘cluster’ all days within a season

into sets with similar pressure patterns (Philipp et al.,

2007).

3. Results and discussion

The previous study of the recent 47-year storm dataset

(Alexander et al., 2005) showed an increase in the

number of severe storms in the 1990s in the United

Kingdom, but they concluded that it was not possible

to say with any certainty that this was either indicative

of climatic change or unusual unless it was seen in a

longer-term context. With the addition of 40 years of

data, the current analysis provides a longer database

with which to assess this situation. To update the study

of Alexander et al. (2005), we only analyse OND and

JFM, so do not attempt to look at whether different

break-ups of the boreal autumn and winter seasons,

such as December, January, February, March (DJFM)

or November, December (ND) and January, February

(JF), would have an effect on our results. All correlations

detailed were made using detrended data.

Copyright  Royal Meteorological Society and Crown Copyright, 2008 Int. J. Climatol. 29: 357–371 (2009)

DOI: 10.1002/joc



360 R. ALLAN ET AL.

3.1. OND severe storminess

In general, pronounced inter-annual variations in OND

severe storminess across the British Isles are evident

in Figure 5, with most prominent activity in the 1920s

and 1990s. There is evidence in the literature to support

the 1920s period of a high frequency of severe storms

in OND. Lamb (1991); Lamb and Frydendahl (1991);

Alexandersson et al. (2000); Sweeney (2000); McEwen

(2006); Lozano et al. (2004) and Hanna et al. (2008),

all indicate that the 1920s was a period of markedly

increased westerly winds and storms in autumn across

the British Isles and north-west Europe. Analysis of both

documentary and instrumental data for Dublin (Sweeney,

2000) shows that the 1920s was one of the windiest

periods in the 20th century. This is supported by evidence

for exceptional storminess along the Atlantic coast of

Scotland during the late 1920s in Lozano et al. (2004).

Over the 85 years in this study, the number of

OND severe storms shows no significant correlation

(r = +0.17) with the North Atlantic Oscillation (NAO)

calculated by using the normalized Gibraltar–SW Ice-

land MSLP difference (Jones et al., 1997) (NAOGI)

(Figure 5). However, if an NAO index using the

normalized Azores–Iceland MSLP difference is used

(Koninklljk Nederlands Meteorologisch Instituut KNMI

Explorer http://climexp.knmi.nl/ – van Oldenborgh and

Burgers 2005) (NAOAI) then the correlation with OND

severe storms over the British Isles is r = +0.36, which

is significant at the 99.9% level. Spatial correlations

between severe UK storminess and MSLP, and differ-

ences in MSLP between the highest and lowest decile

of storm frequency in JFM that are examined later in

this paper (Figures 15 and 16), show that the predom-

inate southern centre of action linked to the NAO is

better represented by the Azores than Gibraltar with

regard to a UK regional severe storms index. Of the

other major teleconnection patterns influencing the North

Atlantic-European region, the OND severe storm index

over the British Isles is also significantly correlated with

the East Atlantic (EA) teleconnection pattern (from when

the index begins in 1950) at r = +0.33 (significant at

the 99.9% level) (Barnston and Livezey, 1987). As noted

on the National Oceanic and Atmospheric Administration

NOAA Climate Prediction Center WWW site for the EA

(http://www.cpc.noaa.gov/data/teledoc/ea.shtml):

‘The EA pattern is structurally similar to the NAO,

and consists of a north–south dipole of anomaly centres

spanning the North Atlantic from east to west. The

anomaly centres of the EA pattern are displaced south-

eastward to the approximate nodal lines of the NAO

pattern. For this reason, the EA pattern is often interpreted

as a ‘southward shifted’ NAO pattern. However, the

lower-latitude centre contains a strong subtropical link

in association with modulations in the subtropical ridge

intensity and location. This subtropical link makes the

EA pattern distinct from its NAO counterpart.’

A correlation of the EA teleconnection with HadSLP2

MSLP (Allan and Ansell, 2006) on the KNMI Explorer

WWW site (http://climexp.knmi.nl/) in OND from 1950

to 2004 (not shown) gives a nodal pattern of centres

as described above. Thus, the OND severe storms index

appears to be registering elements of the NAOAI and EA

teleconnections.

The spatial pattern of correlations between OND severe

storm frequency across the British Isles and OND precip-

itation (Mitchell and Jones, 2005) over Europe, and their

statistical significance, are shown in Figure 6(a) and (b)

respectively. As expected, the strongest statistically sig-

nificant correlations (exceeding 99.99% level) are found

over the British Isles, with values of r = +0.4 to +0.5

(16–25% of the rainfall variance) over SW UK and

r = +0.5 to +0.6 (25–36% of the rainfall variance) over

SW Scotland. This suggests that an ability to make pre-

dictions of OND severe storms would also provide infor-

mation on rainfall variability and extremes over these

parts of the United Kingdom. In fact, the area of corre-

lations exceeding the 95% confidence level extends in a

swath from SW Europe through France and the British

Isles, to the Low Countries and the Baltic (Figure 6(b)).

This pattern is a reflection of the mean storm track in

the OND season over the European sector (Wang et al.,

2004, 2006).
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Figure 5. History of severe storm frequency over the British Isles in OND from 1920–2004. The blue trace is the normalized (relative to

1971–2000 period) NAOGI index. Correlation between the normalized Gibraltar–SW Iceland NAOGI and OND severe storms is r = +0.17.
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(a)

(b)

Figure 6. (a) Spatial correlations between OND severe storm frequency over the British Isles and OND CRU TS2.1 precipitation (Mitchell and

Jones, 2005) over Europe. (b) Spatial distributions of levels of statistical significance of correlations.

Changes of severe storminess across the British Isles in

OND are clearly seen on decadal timescales (Figure 7).

The decadal plot highlights clearly the 1920s and 1990s

peaks in severe storms, and a period of general reduction

of major storminess events in between. Thus, extending

the analysis back to 1920 emphasizes the dominance

of natural climatic variability in severe storms across

the British Isles in OND on inter-annual to decadal

timescales.

A further breakdown of the decadal storminess into

its northern, central and southern regional components

across the British Isles (Figure 8) reveals that severe

decadal storminess is almost always dominated by events

in the northern region, which is more under the influence

of the mean seasonal storm track.

3.2. JFM severe storminess

In JFM, severe storms across the British Isles were most

frequent in the 1990s and their frequency is significantly

correlated (r = +0.44, at the 99.99% level) with the

normalized NAOGI index over the full 85 years of the

current data set (Figure 9). A similar correlation (r =

+0.46) is found with the NAOAI. In the Alexander et al.

(2005) study, the 1959–2003 period correlation using

the NAOGI was slightly higher at r = +0.5. However,

a 20-year running correlation analysis of the relation-

ship between the number of severe storms over the

British Isles and the normalized NAOGI index over the

full 1920–2004 data span (not shown) indicates that

the relationship fluctuates between significant correla-

tions of around r = +0.6 (36% of the variance) for

1970–1990 and around r = +0.5 (25% of the vari-

ance) for 1940–1960, and effectively no correlation

in the 1950–1970 epoch. The latter correlation break-

down is coincident with more El Nino Southern Oscil-

lation (ENSO) influence on the North Atlantic-European

domain (not shown). For 1920–1940 the correlation was

around r = +0.2 (4% of the variance). Interestingly,

Copyright  Royal Meteorological Society and Crown Copyright, 2008 Int. J. Climatol. 29: 357–371 (2009)
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OND Decadal Average Severe Storms
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Figure 7. History of OND decadal average severe storm frequency over the British Isles from 1920. This figure is available in colour online at

www.interscience.wiley.com/ijoc
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Figure 8. History of OND decadal average severe storm frequency in northern, central and southern regions of the British Isles from 1920. This

figure is available in colour online at www.interscience.wiley.com/ijoc

there is no significant correlation between the number

of severe storms across the British Isles in OND and in

JFM, whether JFM is taken in the same calendar year or

the following one.

Correlations between JFM severe storm frequency over

the British Isles and JFM precipitation (Mitchell and

Jones, 2005) over the European region in Figure 10(a)

show strongest positive (negative) values over the British

Isles and SW Norway (Portugal and Spain plus Turkey

and the northern margins of the Black Sea). These

relationships are statistically significant above the 99.5%

confidence level (Figure 10(b)), and account for up to

10 and 35% of the variance in rainfall depending on

the region. As for OND, the precipitation correlations in

JFM reflect the NAO dominated pattern of storm tracks

(Wang et al., 2004, 2006). Note that a positive storminess

index is linked with drought and low cloud fraction

(not shown) across the central-eastern Mediterranean

and into the Black Sea region in JFM (Figure 10(a)

and (b)), but not in OND (Figure 6(a) and (b)). This

difference may be due to the very marked and coherent

zonal extent of NAO correlations across the whole

of the North Atlantic-European sector, with the storm

track at a maximum over the northern half of Europe,

in JFM.

The decadal modulation of JFM severe storm fre-

quency is closely matched with the decadal behaviour

of the NAOGI (Figure 11). As in OND, the JFM decadal

pattern shows dominant periods of severe storms in the

1920s and 1990s. However in JFM, the 1990s experi-

enced the largest number of severe storms, with a sec-

ondary peak in the 1980s (Figure 9). Natural variability

is again evident in JFM, and the increasing trend in

severe storms reported by Alexander et al. (2005) since
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Figure 9. History of severe storm frequency over the British Isles (MSLP changes of more than ±10 hPa in 3 h) in JFM from 1920–2004. The

blue trace is the normalized (relative to 1971–2000 period) NAOGI index. Correlation between the normalized Gibraltar–SW Iceland NAOGI

and JFM severe storms is r = +0.44 (this is significant at the 99.99% level, and explains 19% of the variance).
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Figure 10. (a) Spatial correlations between JFM severe storm frequency over the British Isles and JFM CRU TS2.1 precipitation (Mitchell and

Jones, 2005) over Europe. (b) Spatial distributions of levels of statistical significance of correlations.

Copyright  Royal Meteorological Society and Crown Copyright, 2008 Int. J. Climatol. 29: 357–371 (2009)

DOI: 10.1002/joc



364 R. ALLAN ET AL.

the 1960s is again put into perspective by the longer

record in this study.

The regional breakdown of the decadal pattern of

severe storm frequency over the British Isles in JFM in

Figure 12 is similar to that in OND, with the dominance

of severe storms in the northern region. When taken over

the full record in Figure 12, events in the central and

southern regions make an overall similar contribution to

the number of severe storms. However, in recent decades,

the central region’s contribution to the total number

of severe storms has reached the highest value in the

available record.

Thus, the NAO plays a very significant role in mod-

ulating JFM severe storm activity and, as observed by

Alexandersson et al. (2000); Jonsson and Hanna (2007)

and Hanna et al. (2008), multi-decadal climate variability

on large spatial scales plays an important role in mod-

ulating severe storms over the British Isles (and north-

western Europe) during autumn and winter. The strong

NAO modulation provides more of a potential basis for

seasonal to decadal forecasting of severe storms over the

British Isles in JFM than in OND.

3.3. Physical mechanisms underlying variability of

severe storms over the British Isles: OND and JFM

Linearly detrended globally complete sea surface temper-

ature (SST; Rayner et al., 2003) and MSLP (HadSLP2;

Allan and Ansell, 2006) data were used to examine the
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Figure 11. History of JFM decadal average severe storm frequency over the British Isles and decadal average normalized NAOGI from 1920.

This figure is available in colour online at www.interscience.wiley.com/ijoc
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Figure 12. History of JFM decadal average severe storm frequency in northern, central and southern regions of the British Isles from 1920. This

figure is available in colour online at www.interscience.wiley.com/ijoc
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physical mechanisms underlying OND and JFM severe

storms.

In OND, Alexander et al. (2005) reported little link

between the NAOGI and the number of severe storms.

In the extended 1920–2004 data set, an ‘NAO-like’

pattern was found to be significantly correlated with

OND severe storms over the British Isles (above the 99%

correlation significance level of r = ±0.3) (Figure 13).

This correlation pattern is indicative of a ‘Rossby-like’

wave train in MSLP (red arrow in Figure 13), and also

appears in 500-hPa geopotential heights from 1948–2004

(not shown). This pattern is accompanied by a distinct

mid-Atlantic SST anomaly (Figure 13). The core of an

‘El Nino-like’ signal is evident in the tropical Pacific, and

is significant at the 95% level.

The climatic features driving OND severe storms over

the British Isles in Figure 13 are highlighted further if the

spatial patterns of MSLP and SST for years in the highest

decile of storm frequency are compared with years in

the lowest decile of storm frequency during 1920–2004

(Figure 14). This diagram indicates that the ‘Rossby-like’

wave train in MSLP and the SST structure in the North

Atlantic are prominent in the stormiest years in OND over

the British Isles. Interestingly, the ‘El Niño-like’ signal

in the tropical Pacific is strongly highlighted and may

play an important role in storminess across the British

Isles in this season. This Pacific structure is more like the

SST pattern seen during lower frequency quasi-decadal

episodes than the warm tongue extending eastwards

across the equatorial Pacific from South America that

characterizes more ‘classical’ El Nino events. This would

fit with the finding in Meinke et al. (2005) linking the

quasi-decadal ENSO signal to UK and European rainfall

extremes in OND.

When examined spatially over the full 1920–2004

period, the severe storms index in JFM shows the

expected strong relationship with the NAO pattern (large

areas of correlation above r = ±0.3, significant at the

99% level) in MSLP, and also displays a concurrent

relationship with the ‘tripolar’ SST structure over the

North Atlantic (the high latitude and tropical North

Atlantic negative SST parts of the SST tripole are

significant at the 99% level) (Figure 15). A successive

20-year analysis of these spatial correlations (not shown)

(a)

(b)

Figure 13. Correlations between OND severe storm frequency over the British Isles and HadSLP2 MSLP (a) and HadISST (b), 1920–2004.

Only correlations that are significant at, or above, the 95% level are shaded.
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(a)

(b)

Figure 14. (a) OND MSLP (hPa) and (b) SST (°C) for years in the highest decile of storm frequency minus years in the lowest decile of storm

frequency during 1920–2004 over the British Isles.

reveals an NAO MSLP and ‘tripolar’ North Atlantic

SST relationship, which waxes (wanes) as the British

Isles extreme storms index becomes larger (smaller) in

magnitude. These fluctuations are most robust in the

1970–1990 and 1940–1960 periods, with the former

showing the strongest relationships.

If the spatial patterns of JFM MSLP and SST for years

in the highest decile of storm frequency are compared

with years in the lowest decile during 1920–2004, the

link to the NAO is clearly marked (Figure 16). However,

the ‘tripolar’ SST pattern over the North Atlantic area

that is so prominent in Figure 15 is weaker.

Further insight into the drivers of severe storms over

the British Isles since 1920 can be obtained by looking

at synoptic patterns over the Western European region

on days when extreme storm events occur. Philipp et al.

(2007) categorized atmospheric circulation patterns over

Europe using the homogenized daily EMSLP dataset

(Ansell et al., 2006) and simulated annealing to ‘cluster’

all days within a season into sets with similar pressure

patterns. This method yields almost equiprobable pat-

terns, allowing robust statistical analyses of the varying

extent to which each large-scale pattern is associated with

severe storms. In this study, daily clusters were analysed

from this data set for autumn (ND) and winter (JF).

Figure 17 shows the seven commonest daily large-

scale circulation clusters for both seasons defined using

all daily pressure patterns between 1850 and 2003. It

is clear that the most usual pattern in both seasons is

the NAO (cluster 1 in each case). There are similarities

between the patterns in each season although their associ-

ated relative daily frequencies vary, e.g. the fourth most

common cluster in autumn is similar to the sixth most

common cluster in winter. A time series analysis indi-

cated no significant trends in the relative frequency of

each cluster since 1920, although an increase in cluster 2

in winter in the past two decades appears to be unusual

in the context of the longer-term record since 1850 (not

shown).

Using our definition of a severe storm over the British

Isles, the cluster pattern for each event was determined

and timelines of the cluster numbers during each storm

event for both autumn and winter are shown in Figure 18.

In autumn, the NAO (cluster 1) and a Scandinavian-

low/Azores-high ‘EA-like’ pattern (cluster 4) dominate

and, when combined with a third pattern with a low
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(a)

(b)

Figure 15. Correlations between JFM severe storm frequency over the British Isles and HadSLP2 (a) and HadISST (b), 1920–2004. Only

correlations that are significant at, or above, the 95% level are shaded.

centred over Northern Britain (cluster 6), drive over 80%

of severe storm events in the British Isles. In winter, the

NAO pattern (cluster 1) is even more dominant than in

autumn driving over half of the severe storm events alone.

Similar to autumn, an ‘EA-like’ pattern (cluster 6) is the

second most common driver of storm events in winter but

unlike autumn the third most common pattern in winter

has high pressure centred over western Europe (cluster 2).

These three patterns together drive 90% of the storms in

winter. Therefore, although there are similarities between

the daily driving mechanisms in each season with three

large-scale synoptic patterns driving the vast majority of

severe storm events over the British Isles, there does

appear to be some difference in how these patterns are

manifest between the autumn and winter period. Thus

during OND, tropical to mid-latitude North Atlantic and

lesser Pacific ‘ENSO-like’ influences dominate, whereas

NAO influences predominate in JFM.

4. Conclusions

Earlier research on severe storms in the United Kingdom

(Alexander et al., 2005) has been extended to cover the

United Kingdom and Ireland for the period 1920–2004.

This has provided a greater insight into OND and JFM

storminess across the British Isles and the underlying

physical mechanism.

In the OND season, the 1920s period was the most

active for severe storms across the British Isles, with a

secondary peak in the 1990s. This suggests that climatic

variability plays an important role in modulating OND

severe storms. Over the British Isles, severe storms in

OND are significantly correlated with a ‘Rossby-like’

wave train in MSLP linking the tropical Atlantic to

higher latitudes of the North Atlantic, together with a

mid-Atlantic SST anomaly. A significant correlation was

found with the Azores–Iceland NAO (NAOAI), but not

with the Gibraltar–SW Iceland NAO (NAOGI). A weak

overall ‘El Niño-like’ signal in the tropical Pacific Ocean

is evident, but it is pronouncedly in extremely stormy

years. This signal is similar to the lower frequency

quasi-decadal ‘El Niño-like’ pattern linked to UK rainfall

variability.

During JFM, the Alexander et al. (2005) finding that

the 1990s experienced the most severe storm activity

continues to be seen when data are extended to the
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(a)

(b)

Figure 16. (a) JFM MSLP (hPa) and (b) SST (°C) for years in the highest decile of storm frequency minus years in the lowest decile of storm

frequency during 1920–2004 over the British Isles.

1920–2004 timeframe. A simple linear trend analysis

still indicates an increase in severe storm activity

up to the 1990s. However, as in OND, the longer

85-year data set reveals the presence of climatic variabil-

ity modulating severe storm activity across the British

Isles. There is also a significant correlation between JFM

severe storminess over the British Isles and the NAO.

However, the NAO correlation was found to fluctuate

over the 85 years of data with the strongest relationships

(r=+0.6) occurring in 1970–1990 and 1940–1960 (r =

+0.5), a weaker correlation in the 1920s–1940s (r =

+0.2) and effectively no correlation in the 1950–1970

epoch. This changing NAO relationship is highlighted

further in the spatial correlations between JFM severe

storms and global fields of MSLP and SST, which show

the NAO pattern in MSLP and a concurrent (though

less significant) ‘tripolar’ SST structure over the North

Atlantic Ocean.

Several important points can be drawn from this study:

Climatic variability plays an important role in modulat-

ing autumn–winter severe storminess across the British

Isles, and it must be taken into account when attempting

to resolve the influence that climatic change may have

on severe storm activity.

During the JFM season in epochs when the NAO is

most active and robust, some statistical ability to predict

the NAO on a seasonal basis has been shown (Rodwell

and Folland, 2002). Thus it may be possible to predict

severe storminess activity over the British Isles with

some skill using a combination of the above method and

dynamical seasonal forecasting methods (Folland et al.,

2006; Graham et al., 2006).

The results from this study suggest that natural climate

variability will play an important role in future changes in

storminess, and thus could overwhelm any anthropogenic

signal there might be.

Extensions to the network of stations over the British

Isles to facilitate severe storms analyses back into the

later part of the 19th century are likely to be most

effective and revealing if they are part of wider efforts

to use such sub-daily MSLP in historical global surface-

observations-only reanalyses (Compo et al., 2006).
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Figure 17. Simulated annealing cluster patterns calculated from 1850 to 2003 and shown as actual mean sea level pressures (hPa) for ND and

JF seasons. Numbers in brackets indicate the percentage of time in the period that has been associated with each cluster. The colours from blue

to red indicate low to high pressure respectively.

Appendix 1: Data problems in the 1920–1960

digitization

While checking the 3-hourly MSLP data digitized for this

study, it was found that sections in the DWRs covering

‘Corrections and Additions’ to the published data were

only bound into the original books. These observations

were not keyed, because the digitization project only

had access to duplicate copies of the DWRs in the Met

Office Library, which had no ‘Corrections and Additions’

sections in them. This is because removal of the original

manuscripts for digitization from the Met Office Archives

was not permitted. Many remote stations in the north of

the United Kingdom and Ireland appear to have regularly

sent in their data late, and these only appear in the

‘Corrections and Additions’ sections of the DWRs. This

Copyright  Royal Meteorological Society and Crown Copyright, 2008 Int. J. Climatol. 29: 357–371 (2009)

DOI: 10.1002/joc



370 R. ALLAN ET AL.

Figure 18. Timeline representing the synoptic patterns (Figure 17)

calculated from EMSLP (Ansell et al., 2006) associated with severe

storm events in the British Isles for (a) November/December and

(b) January/February. Percentages on the right-hand side represent the

frequency of storms since 1920 occurring during each cluster type.

seems to have particularly affected data for 1919, so the

current study used data from 1920. Future keying of data

in the ‘Corrections and Additions’ sections of the DWRs

would fill gaps in some northern UK and Irish station

records that extend into the 1930s and 1940s. Finally,

an analysis of the DWRs prior to the 1 March 1930

indicated that the published 3-hourly MSLP tendencies

were only half the observed values; this was taken into

account when assembling the final stations series.

Appendix 2: Future extensions of 3-hourly

observations

Sub-daily observations from 1874 were made initially at

seven UK and Irish first-order observatories in the Met

Office network. Sub-daily pressure data for 1874–1886

from these observatories were located in the DWRs and

digitized. However, from 1887 to 1899, only pentad

(5-day) data were published in the DWRs. When sub-

daily data were again published in the DWRs in 1900,

they were initially only from four and then three first-

order observatories (only two, at Kew and Valentia, were

consistently available during this period) and the DWR

records ceased in 1915. These data have yet to be digi-

tized. Subsequent investigations have located registers of

3-hourly MSLP among the ‘Climatological returns’ in the

Met Office Archives for Dungeness (1884–1979), Scilly

Islands (1873–1995), Holyhead (1873–1951) and Spurn

Head (1879–1964). Data in these sources have not been

digitized. In addition, logbooks with potential meteoro-

logical observations for the Point Lynas lighthouse and

telegraph station (1867–1964) on Anglesey are held by

the Anglesey Record Office in Wales, and weather books

for the Low Lighthouse, North Shields (1887–1921) are

in the Tyne and Wear Archives Service in the north of

the United Kingdom.
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