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FLUCTUATIONS IN THE X-RAY BACKGROUND
P. A. G. Scheuer
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SUMMARY

The fluctuations in the X-ray background at high galactic latitudes give an
upper limit to the counts of extragalactic X-ray sources near the intensity
level corresponding to one source per beam width. The general mathematical
relation between the source counts and the probability distribution of the
resulting contribution to the fluctuations is known, and is here computed for
various extrapolations of the observed source counts to fainter sources. The
observed limits to background fluctuations are consistent with a uniform
distribution of sources in space.

SCIENTIFIC ENVIRONMENT

Various attempts have been made to decide whether the almost isotropic
X-ray background arises from (i) diffuse emission from the intergalactic medium,
(ii) discrete extragalactic sources, or (iii) diffuse emission, or (iv) discrete sources
in a more local region around our Galaxy. The lack of noticeable absorption in
the direction of the Large Magellanic Cloud (McCammon et al. 1971) indicates
that much of the background radiation below 1 keV is local in origin; on the other
hand, high latitude sources have been identified with extragalactic objects of small
redshift, and sources of these types could well contribute an important fraction
of the background above 1 keV (Schwartz & Gursky 1973).

One question which has been raised is whether the angular fluctuations in the
background are consistent with an origin in discrete sources. In its simplest form
the question is:

¢ If the background is due to NN sources per steradian, the fluctuations observed
with a beam of Q steradians are (INQ)~1/2 of the whole. How big do we have to
make N to reduce fluctuations to the observed upper limit?’

However, it was soon realized that this form of the question is relevant only if
all the sources have similar intensities (e.g. sources of comparable luminosities which
flourished only at some well-defined fairly early epoch of the Universe). If we have
a volume distribution of sources rather than a surface distribution, the number of
sources in the intensity range S to S+dS is

N(S) dS = LpP3/28-5/2 48 (1)

for a uniform distribution of p sources per unit volume, each of luminosity 4=P.
Thus the source counts tell us about pP3/2 while the background intensity sets an
upper limit to pPR, where R is the radius of the volume filled with sources (in the
cosmological context, R = (Hubble radius) x (model-dependent factor of order
unity)). If sources of many different X-ray luminosities are present (which is
certainly true) we have to split them up into luminosity classes with luminosities
47P; and densities pj, and replace pP3/2) pP by Xp1 P32, XpiP; respectively. These
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arguments are identical with the arguments which were used to infer a lower limit
to the distances of ‘ typical ’ radio sources in the 1950s, and which were set out
very clearly by Ryle (1958).

Finally, the effective P; and p; for particular kinds of source may be correlated
with distance (or, in the cosmological context, epoch). These evolutionary changes
and geometrical effects of the metric will modify the relation (1) somewhat, and the
evolutionary changes required in the case of radio sources have been discussed in a
voluminous literature over the past decade.

Whenever there is a distribution of intensities which does not rise too much
more rapidly than the relation (1) with decreasing S, the fluctuations are dominated
by sources at a level S such that one or two sources brighter than S occur per beam-
width Q; the very numerous fainter sources may contribute much to the back-
ground but affect the fluctuations very little. Thus, given sufficiently good sensi-
tivity, observations of the background fluctuations tell us something about the
source counts at the level of 1 source/beamwidth. The fluctuations may be due in
part to, say, fluctuations in diffuse emission or absorption, so that really we have
only an upper limit to the fluctuations caused by the discreteness of sources.

To use the observations of fluctuations to best advantage, we first have to solve
a mathematical problem: Given some guessed extrapolation N(S) of the source
counts, what probability distribution of fluctuations do we expect? Once that
problem is solved, we can test whether our guess N(S) is consistent with the
observed fluctuations.* The problem can be solved using the well-known method
of characteristic functions (e.g. Lindley 1969), and has been treated in just this way
for the case of radio sources (Scheuer 1957). The details are a little different, as the
radio interferometer observations required a two-dimensional treatment leading to
Hankel transforms, whereas the pencil-beam X-ray observations require a one-
dimensional addition of contributing intensities, which leads to Fourier transforms
and is thus a little simpler.

THE PROBABILITY DISTRIBUTION OF FLUCTUATIONS

We are interested in the probability distribution of the sum of the intensities
of the sources in solid angle Q. The probability of finding one source in the beam
with intensity S to S+dS is exp (—N(S) dS).(N(S) dS) (Poisson distribution).
If dS is small enough the probabilities of finding 2, 3, . . . such sources, which are
of order dS?, dS3, ..., are negligible, and the probability of finding one such
source is just N(S) dS. This statement requires some refinement in practice, as the
sensitivity of the X-ray telescope is not uniform over the beam; we really want the
probability distribution of the sum of the count rates due to the sources in the beam.
The probability that there is a source in the beam giving count rate x to x+dx is

N')dv = [ N(sim)dsin)didn) dn @

where dQ of solid angle in the beam gives count rate » to 7+ dn for a source which
would give unit count rate at the beam centre (Fig. 1). For the pyramidal beam
defined by a honeycomb structure of the kind used in simple X-ray telescopes, and
a power law N(S) = KS—# for the source counts, dQ oc (1 —n) dn, and

* The converse problem of deducing N(S) from the distribution of fluctuations runs
into real, not merely mathematical, difficulties; this point is discussed in Scheuer (1957).
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Fic. 1. Sketch of the beam shape, illustrating the derivation of equations (2)—(4).

N'(x) = K'a# = KQepx=# (3)
where the effective solid angle of the beam is
Qerr = HB—Z;T) (total solid angle). (4)
We shall also want to consider truncated power laws:
N(S) = { oo (s
KS=#% §>8)

which serve to illustrate the cosmological effects at large redshifts. For these,
equation (2) leads to

, KQeffS()_ﬂ[I +B(I-—x/50)] x<So
N'(x) = - - (6)
KQeffx B x>8 0
The characteristic function of the sum X of the #’s is then
exp (n(w)—n(0)) (7
where n(w) is the characteristic function of x,
o) = [ Nw) eir d (8)
0

(e.g. Scheuer 1957).

For a power law with 2 <8 the total background diverges (Olbers’ paradox),
but so long as < 3 the fluctuations X — (X are not affected by the numerous very
faint sources, and converge. To find the characteristic function for X—<(X> we
multiply (77) by the characteristic function of the -function probability distribution
8(X +<X)) which gives with unit probability a contribution —({X; the result is

CF = exp (n(w)—n(0)—iw{X)) = exp f : N'(x) (et — 1 —jwx) dx (9)
23
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and the probability distribution of D = X—<(X) is its Fourier transform
I
po) = L |

For N(S) = KS#, (2< B <3), expression (9) can be evaluated after integrating
by parts, and turns out to be

exp [KQett(— B)! (—iw)’1] (11);
P(D) can then be expanded in ascending power of D:

" (CF) e~0X do. (10)

1 & (t—1)!sintx Dr
PO = 251 2 (K= B 71 ¢:2)

where t = (r+1)/(B—1).
Expression (9) can also be expressed analytically for power laws with a low flux
density cut-off of the form

N'(x) = K'x (1 —e )M, M = integer

but as the Fourier transform (10) still has to be performed numerically, this is
hardly worth while.

The distribution P(D) of fluctuations has been computed from (12) for power
laws with various B, and the results are shown in Fig. 2. The distribution P(X)
of source background + fluctuations has also been computed for truncated power
laws with B = 2-5 (uniform distribution in Euclidean space up to some finite
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Fic. 2. The probability distribution of count rates when the source counts Sollow power
laws N(S) dS oc S~ dS with B = 23, 2'5 and 2. Each curve encloses unit area and is
asymptotic to S~ for large S.
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distance), using a computer program which performs the operations (8), (7) and
(10) on a distribution of the form (6) by means of a fast Fourier routine, and the
results are shown in Fig. 3. In each case the scales are normalized such that the
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Fi1c. 3. The probability distribution of count rates when the source counts follow truncated
power laws: N(S) oc 825 if §> So, N(S) = o if S<So. Each curve encloses unit area
and is asymptotic to S—2'5 for large S. It is assumed that the beam of the X-ray telescope
is pyramidal (or conical) and each curve is marked with the corresponding total number of
sources per beam area. Whereas in Fig. 2 D = X—{(X) = (count rate) — (mean count rate)
is plotted along the abscissa, in Fig. 3 the whole count rate due to sources is plotted along the
abscissa and the mean X for each curve is marked.

total area under the curve is unity and in the units shown in Fig. 3 the ordinate
approaches (abscissa)~# asymptotically. Each curve in Fig. 3 can be characterized
by the mean number of sources per beam area of the X-ray telescope; as that
number becomes large the curves in Fig. 3 should approximate the curve in Fig. 2
for B = 2-5, except for a displacement in the abscissa, thus providing a check on
the calculations.
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COMPARISON WITH OBSERVED FLUCTUATIONS AND SOURCE COUNTS

The difficult part of the exercise begins here.

The first task is to display on the same scale the computed probability distribu-
tion of fluctuations (fitted at high intensities to the observed source counts) and the
observed fluctuations.

Source counts from the UHURU catalogues have been published by Matilsky
et al. (1973); the only published data on background fluctuations in a similar
energy range are those of Fabian & Sanford (1971) of the MSSL group. In view
of the uncertainties in calibration and the slightly different spectral responses of
the UHURU and MSSL instruments, it seems best to express UHURU source
intensities and MISSL fluctuations each as a fraction of the mean X-ray background
observed with the same instrument. This procedure leads to some error in so far
as the mean source spectrum differs from the background spectrum, and the spec-
tral responses of the instruments differ somewhat, but that error is probably
smaller than other uncertainties at present. The source counts of Matilsky et al.
may be represented by

N(>S) = 30 S-15 steradians—1 (13)
if S is in UHURU counts, and we take the UHURU X-ray background to be
2400 counts per steradian. We take the angular response of Fabian & Sanford’s
instrument to be a square pyramid of side 10°, so that the background received
by it is

2400 x (1/3) x (107/180)2 = 24-37 UHURU counts
and the effective solid angle for sources (equation (4)) is
Qert = 6°96 x 1073 steradians (14)
for B = 2-5. For that solid angle, the source counts are

dN = 30x 15 8725 dSQetr = 0:3133 S72:5dS (S in UHURU counts)  (15)
= 0002605 S~2:5dS (S in units in which background = 1-0)
= S§-25dS (S in units of 0-01893 x background).

The third expression for dN shows that the appropriate unit of S in Fig. 3 is
0-01893 x background = 0-4613 UHURU counts. Fabian & Sanford observed
counts of 2495, 2510, 2468, 2416, 2407, 2379, 2431, 2352, 2370 at nine points in the
sky; the mean is 2425. Of these total counts, 40 per cent is believed to be due to
X-rays and 60 per cent to charged particles (Fabian, private communication), so
that the fluctuations expressed as fractions of the mean X-ray background are
+ 0072, 40088, +0044, —0009, —0019, —0-047, +0°0006, —0-075, —0057.
From counting statistics alone, we must expect a Gaussian scatter with variance
2425; as Fabian & Sanford point out the observed fluctuations are consistent with
the scatter due to counting statistics alone, and only an upper limit to the true
background fluctuations can be given with confidence. The most direct comparison
with models is obtained by convolving the model distributions of Figs 2 or 3 with
the Gaussian distribution due to counting statistics, and that is done in Fig. 4. To
allow for the fact that Fabian & Sanford deliberately chose their observing points
well away from known sources, a rough estimate suggests that we should add ~1
fairly large positive fluctuation to their data.
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The curves in Fig. 4 are almost indistinguishable except for a displacement to
the right, i.e. to a larger background; with these counting statistics the differences
still perceptible in Fig. 3 have gone, and we cannot distinguish between one source
per beamwidth and an indefinitely large number.

The observations of fluctuations are quite consistent with a simple extrapolation
of the source counts to indefinitely small intensities, with the 8 = 2-5 power law
appropriate to a uniform Euclidean universe.

PEDAGOGICAL DIGRESSION

If one knows the fluctuations in the background from observation, one can gain
some advance knowledge of the source counts that will be determined with X-ray
telescopes of better angular resolution in a few years’ time. The information
extends down to the level of intensity where there is about one source per beam
width, and no further; this latter point does not seem to have been generally ap-
preciated among X-ray astronomers and it may therefore be useful to show crudely
but simply why it is true and in what circumstances it might conceivably be false.

Suppose for the moment that N(>S) oc S—1'5; then the sources in one
typical beam have intensities (in decreasing order) of 1 (brightest source in beam):
272/3 (second brightest): 372/8: 4~2/3;: 5-2/3: |, . The mean background (obtained
by adding these intensities) would diverge, were there not some cut-off at very low
intensities, but to obtain the variance one must perform some sort of random walk
with step lengths proportional to 172/8, 2=2/3, 3-2/3  __and the variance of the
resultant is the sum of the squares of the steps:

1743427483748 |~ f xY3dx = 3. (16)
1

Therefore we expect a typical fluctuation to be ~4/3 = 1-7 times the intensity
of the brightest source in a typical beam. Evidently the numerical constant (1-7)
is of the order of 1 and not sensitive to the form of the log N-log S relation so
long as the series corresponding to (16) converges, which happens so long as the
extrapolation of the integral log N-log S relation falls below a line of slope —2-0
(i.e. B<3, a result we found earlier using more precise mathematics). Thus the
fluctuations give no information on sources much below the level of 1 source per
beamwidth unless there is extremely strong cosmological evolution, evolution even
stronger than that required for radio sources.

CONCLUSION

The fluctuations observed by Fabian & Sanford (1971) are consistent with a
5/2 power law extrapolation of the source counts of Matilsky et al. (1973); they
provide no evidence of a cosmological cut-off at the level of 1 source per beam
width (~o-5 UHURU counts). Thus the only evidence of the distances of sources
comes from optical identifications, as discussed by Schwartz & Gursky (1973), and
the extragalactic sources may indeed be responsible for much of the X-ray back-
ground. A larger amount of observational material on fluctuations exists in the
UHURU data, and may well yield a more positive conclusion.

It remains only to advertise that it is a simple matter to use the existing program
to compute probability distributions of fluctuations for other assumed log N-log S
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extrapolations and/or beam shapes (including e.g. data differenced to eliminate
background gradients), and the author hereby offers this service to owners of
relevant X-ray observations.
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