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Linear statistics of random eigenvalues

I Let A be a random matrix with eigenvalues λ1, . . . , λn.

I Let f be any function on R and let W =
∑n

i=1 f (λi ). This is called
a “linear statistic of the eigenvalues of A”.

I Important in theory and applications.

I Theorem (Sinai & Soshnikov ’98): If A is symmetric and the entries
of A are i.i.d. with mean 0 and variance 1/n, then under some
further assumptions,

I Var(W ) converges to a positive limit σ2 as n→∞.
I Moreover, W − E(W ) converges in law to N(0, σ2).

I Proved using the method of moments.
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Linear statistics contd.

I Similar results hold for Wishart matrices (Jonsson ’82, Bai &
Silverstein ’04), random unitary matrices (Diaconis & Evans ’01),
beta ensembles (Johansson ’98), Ginibre ensemble (Rider & Virág
’06), Hankel matrices (Basor & Chen ’05), band matrices (Anderson
& Zeitouni ’06), etc.

I The proofs are rather difficult and each case needs its own proof.

I Is it possible to devise a soft and unified method of proof? The
present work is an attempt in that direction.
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‘Second order Poincaré inequality’

I Suppose X = (X1, . . . ,Xn) is a vector of independent random
variables, and g(X) is a function of X.

I The Poincaré inequality tells us that if X1, . . . ,Xn are i.i.d. standard
gaussians, then

Var(g(X)) ≤
n∑

i=1

E
(
∂g

∂xi

)2

.

So, smallness of ∇g =⇒ small variance of g(X).

I Is it possible that if the Hessian

∇2g :=

(
∂2g

∂xi∂xj

)
1≤i,j≤n

is ‘small’ in some sense, then g(X) is approximately gaussian?

I This is what we introduce as the notion of a second order Poincaré
inequality.
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Some evidence

I Suppose B is an n × n real symmetric matrix, and

g(x) = xtBx.

I Let X = (X1, . . . ,Xn) be a vector of i.i.d. standard gaussian r.v.

I When is g(X) approximately gaussian?

I If λ1, λ2, . . . , λn are the eigenvalues of B with eigenvectors
u1, . . . ,un, then

g(X) =
n∑

i=1

λiY
2
i ,

where Yi = ut
i X.

I Y1, . . . ,Yn are again i.i.d. standard gaussian.

I This seems to suggest that g(X) is approximately gaussian if and
only if ‘no eigenvalue dominates in the sum’.

I Indeed, g(X) is approximately gaussian if and only if
maxi λ

2
i �

∑n
i=1 λ

2
i .
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Evidence contd...

I Now ∇2g(x) ≡ 2B, where ∇2g denotes the Hessian matrix of g .

I Thus, ‖∇2g(X)‖ = 2 maxi |λi |.
I Again,

Var(g(X)) = 2
n∑

i=1

λ2
i .

I For general g , is it possible that gaussianity of g(X) holds whenever

typical value of ‖∇2g(X)‖2 � Var(g(X))?

I What we have in mind...

vector X→ matrix A(X)→ linear statistic
∑

i f (λi ) =: g(X).
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Towards a general theorem: Stein’s method

I If Z ∼ N(0, 1), then E(ϕ(Z )Z ) = E(ϕ′(Z )) for all ϕ.

I Stein’s idea: If E(ϕ(W )W ) ≈ E(ϕ′(W )) for many ϕ’s, then W is
approximately N(0, 1).

I Many variants, e.g.
I Exchangeable pairs (Stein)
I Zero bias couplings (Goldstein & Reinert)
I Size bias couplings (Goldstein & Rinott)
I Generator approach (Barbour)
I Dependency graphs (Baldi & Rinott; Arratia, Goldstein, & Gordon)

I Common complaint: Hard to apply to problems that are not
tailor-made for Stein’s method.
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Duality between normal approximation and concentration

I Define

Sp(W ) := sup{|E(ϕ(W )W − ϕ′(W ))| : ‖ϕ′(W )‖p ≤ 1}.

I From Stein’s lemma: dTV (W ,Z ) ≤ 2Sp(W ) for every p > 1.
(Recall: dTV (X ,Y ) = supA |P(X ∈ A)− P(Y ∈ A)|.)

Theorem
If W has mean zero, unit variance, and density ρ, then

Sp(W ) = ‖h(W )− Eh(W )‖q,

where

h(x) =

∫∞
x

yρ(y)dy

ρ(x)
,

and 1
p + 1

q = 1.

I This shows that approximate normality of W = concentration of
h(W ).

I Proof is based on Lp-Lq duality from functional analysis.
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Idea

I Concentration problems, unlike normal approximation problems, are
transferable via conditional expectation. That is, if we can write

h(W ) = E(T |W ),

where T is a an explicit object arising from the given problem, then

‖h(W )− Eh(W )‖q ≤ ‖T − ET‖q.
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The key lemma

Lemma
Suppose W = f (X1, . . . ,Xn), where Xi ’s are i.i.d. N(0, 1), and f is
smooth. Assume E(W ) = 0 and E(W 2) = 1. Let Z be a vector of n
i.i.d. standard gaussians and define T : Rn → R as

T (x) :=
n∑

i=1

∂f

∂xi
(x)

∫ 1

0

1

2
√

t
E
(
∂f

∂xi
(
√

tx +
√

1− tZ)

)
dt.

Then h(W ) = E(T (X1, . . . ,Xn) |W ).

(Recall: This implies that dTV (W ,N(0, 1)) ≤ 2
√

Var(h(W )).)
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Sketch of proof

I For 0 ≤ t ≤ 1, let Xt =
√

tX +
√

1− tZ. Then

E(ϕ(W )W ) = E(ϕ(W )(f (X1)− f (X0)))

= E
(
ϕ(W )

∫ 1

0

d

dt
f (Xt)dt

)
.

I Note that

d

dt
f (Xt) =

n∑
i=1

(
Xi

2
√

t
− Zi

2
√

1− t

)
∂

∂xi
f (Xt).

I Applying integration-by-parts, we can now get

E(ϕ(W )W ) = E
(
ϕ′(W )

n∑
i=1

∫ 1

0

1

2
√

t

∂f

∂xi
(X)

∂f

∂xi
(Xt)dt

)
= E(ϕ′(W )T (X)).

I Since h is characterized by E(ϕ(W )W ) = E(ϕ′(W )h(W )), this
shows that h(W ) = E(T |W ).
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Simple examples

f (X1, . . . ,Xn) T (X1, . . . ,Xn)

∑n
i=1 Xi√

n
1

∑n
i=1 X 2

i − n√
2n

∑n
i=1 X 2

i

n

∑n
i=1 XiXi+1√

n

1

2n

n∑
i=2

(Xi−1 + Xi+1)2 +
X 2

1 + X 2
n+1

2n
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How does one bound Var(T ) in general?

I Answer: By the gaussian Poincaré inequality. If X = (X1, . . . ,Xn)
is a vector of i.i.d. N(0, 1) r.v., and T : Rn → R is absolutely
continuous, then

Var(T (X)) ≤ E‖∇T (X)‖2.

(Recall: ∇T = (∂T/∂x1, . . . , ∂T/∂xn) is the gradient of T .)
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A second order Poincaré inequality

Theorem
Let X = (X1, . . . ,Xn) be a vector of i.i.d. standard gaussian random
variables. Take any g ∈ C 2(Rn) and let ∇g and ∇2g denote the gradient
and Hessian of g. Let

κ1 = (E‖∇g(X)‖4)1/4, and

κ2 = (E‖∇2g(X)‖4)1/4.

Suppose W = g(X) has a finite fourth moment and let σ2 = Var(W ).
Let Z be a normal random variable having the same mean and variance
as W . Then

dTV (W ,Z ) ≤ 2
√

5κ1κ2

σ2
.

Remark: Think of κ1 and κ2 as the typical sizes of ‖∇g‖ and ‖∇2g‖.
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An example

I Consider the function

g(x) =
n−2∑
i=1

xixi+1xi+2,

and let W = g(X).

I Easily, we have

κ1 ∼ typical size of ‖∇g‖ = O(
√

n),

and
κ2 ∼ typical size of ‖∇2g‖ = O(1).

I Again, σ2 = Var(W ) ≥ Cn for some positive constant C .

I Thus, if Z ∼ N(0, σ2), then

dTV (W ,Z ) ≤ 2
√

5κ1κ2

σ2
≤ const.√

n
.
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Application to random matrices

I General plan:

vector X→ matrix A(X)→ linear statistic
∑

i f (λi ) =: g(X).

Use previous theorem to prove CLT for g(X).

I I have worked out the details for:

1. Wigner matrices.
2. Wishart matrices.
3. Double Wishart matrices.
4. Gaussian matrices with arbitrary correlation structure.
5. Gaussian Toeplitz matrices.

I Convergence rates are also obtained. For example, for Wigner
matrices, the TV rate of convergence is n−1 for gaussian and n−1/2

for non-gaussian.

I The result for Toeplitz matrices is new. However, there are no
formulas for the limiting variance.

I Details of computations are not presentable in a seminar.
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A special class of distributions

I Let L(c1, c2) be the class of probability measures on R that arise as
laws random variables like u(Z ), where Z ∼ N(0, 1) and u ∈ C 2(R)
satisfies

|u′(x)| ≤ c1 and |u′′(x)| ≤ c2.
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A general ‘tool’ for linear statistics

I Let n be a fixed positive integer and I be a finite indexing set.

I For each i , j , we have a C 2 map aij : RI → C.

I For each x ∈ RI, let

A(x) = (aij(x))1≤i,j≤n.

I Let f be an analytic function on the real line.

I Let g(x) = Re Tr[f (A(x))].
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Measuring the size of the derivatives of g

I First, let

R = {α ∈ CI :
∑

u∈I|αu|2 = 1} and

S = {β ∈ Cn×n :
∑n

i,j=1|βij |2 = 1}.

I Next, define three functions

γ0(x) := sup
u∈I,‖B‖=1

∣∣∣∣Tr

(
B
∂A

∂xu

)∣∣∣∣,
γ1(x) := sup

α∈R,β∈S

∣∣∣∣∑
u∈I

n∑
i,j=1

αuβij
∂aij

∂xu

∣∣∣∣, and

γ2(x) := sup
α,α′∈R,β∈S

∣∣∣∣ ∑
u,v∈I

n∑
i,j=1

αuα
′
vβij

∂2aij

∂xu∂xv

∣∣∣∣.
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Measuring derivatives contd...

I Let f (z) =
∑∞

m=0 bmzm be an entire function.

I Let

f1(z) =
∞∑

m=1

m|bm|zm−1 and f2(z) =
∞∑

m=2

m(m − 1)|bm|zm−2.

I Let a(x) = f1(‖A(x)‖) and b(x) = f2(‖A(x)‖).

I Define three more functions

η0(x) = γ0(x)a(x),

η1(x) = γ1(x)a(x)
√

n, and

η2(x) = γ2(x)a(x)
√

n + γ1(x)2b(x).
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The end product

I Let X = (Xu)u∈I be independent r.v. in L(c1, c2).

I Let

κ0 = (E(η0(X)2η1(X)2))1/2,

κ1 = (Eη1(X)4)1/4, and

κ2 = (Eη2(X)4)1/4.

Theorem
Let W = g(X) = Re Tr[f (A(X))]. Suppose W has finite fourth moment
and let σ2 = Var(W ). Let Z be a gaussian r.v. with the same mean and
variance as W . Then

dTV (W ,Z ) ≤ 2
√

5(c1c2κ0 + c3
1κ1κ2)

σ2
.
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Summarizing...

I The general theorem gives a way of proving CLTs for linear statistics
of random matrices that are expressible as functions of independent
random variables.

I Works by bounding first and second order derivatives.

I Gives total variation error bounds.

I Main weakness: Need a priori lower bound for the variance of the
linear statistic.

I Other problems: (i) Hard to apply to matrices that are not easily
expressible as functions of independent random variables, e.g.
random orthogonal and unitary matrices. (ii) Restrictions on the
distributions of the entries.

I Paper available on arxiv at the URL
http://arxiv.org/abs/0705.1224
(To appear in PTRF.)
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