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We report that the power driving gravity and capillary wave turbulence in a statistically stationary
regime displays fluctuations much stronger than its mean value. We show that its probability density
function (PDF) has a most probable value close to zero and involves two asymmetric roughly exponential
tails. We understand the qualitative features of the PDF using a simple Langevin-type model.
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When a dissipative system is driven in a statistically
stationary regime by an external forcing, a given amount
of power per unit mass, �, is transferred from the driving
device to the system and is ultimately dissipated. In fully
developed turbulence, a flow is driven at large scales, and
nonlinear interactions transfer kinetic energy toward small
scales where viscous dissipation takes place. In the inter-
mediate range of scales (the inertial range), the key role of
the energy flux � has been first understood by Kolmogorov
[1]. Using dimensional arguments, he derived the law
E�k� / �2=3k�5=3 for the energy density E�k� as a function
of the wave number k. Kolmogorov type spectra have been
derived analytically in wave turbulence, i.e., in various
systems involving an ensemble of weakly interacting non-
linear waves (see for instance [2] for a review). In all cases,
it has been assumed that � is a given constant parameter.
However, it should be kept in mind that � is not an input
parameter in most experiments or simulations of dissipa-
tive systems. Its value is not externally controlled but
determined by the impedance of the system. In addition,
as we have already shown for a variety of different dis-
sipative systems [3–5], the energy flux or related global
quantities strongly fluctuate in time although being aver-
aged in space on the whole system or on its boundaries.
These fluctuations should not be confused with small scale
intermittency which occurs in fully developed turbulence.
The later is related to the spotness of dissipation in space
[6], and its description does not involve a time dependent �.

Here, we study the fluctuations of the injected power in
wave turbulence. Gravity-capillary waves are generated on
a fluid layer by low frequency random vibrations of a wave
maker. By measuring the applied force on the wave maker
and its velocity, we determine the instantaneous power I�t�
injected into the fluid. We observe that it strongly fluctu-
ates. Its most probable value is 0. rms fluctuations �I up to
several times the mean value hIi are observed, and the
probability density function (PDF) of I displays roughly
exponential tails for both positive and negative values of I.
These negative values correspond to events for which the
random wave field gives back energy to the driving device.
We show how fluctuations of the injected power depend on

the system size and on the mean dissipation, and we study
their statistical properties.

The experimental setup, described in [7], consists of a
rectangular plastic vessel, with lateral dimensions 57� 50
or 20� 20 cm2, filled with water or mercury (density 13.6
times larger than water) up to a height, h � 1:8 or 2.3 cm.
Surface waves are generated by the horizontal motion of a
rectangular (L�H cm2) plunging plastic wave maker
driven by an electromagnetic vibration exciter. We take
1:2< L< 25 cm and H � 3:5 cm. The wave maker is
driven with random noise excitation below 4 or 6 Hz.

The power injected into the wave field by the wave
maker is determined as follows. The velocity V�t� of the
wave maker is measured using a coil placed on the top of
the vibration exciter. The voltage induced by the moving
permanent magnet of the vibration exciter is proportional
to V�t�. The force FA�t� applied by the vibration exciter on
the wave maker is measured by a piezoresistive force
transducer (FGP 10 daN). The time recordings of V�t�
and FA�t� together with their PDFs are displayed in
Fig. 1. Both V�t� and FA�t� are Gaussian with zero mean
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FIG. 1 (color online). Time recordings of the velocity of the
wave maker and the force applied to the wave maker by the
vibration exciter. The fluid is mercury, with h � 23 mm. Both
PDFs are Gaussian (dashed lines) with zero mean value.
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value. For a given excitation bandwidth, the rms value �V
of the velocity fluctuations of the wave maker is propor-
tional to the driving voltage U applied to the electromag-
netic shaker and does not depend on the fluid density �. On
the contrary, the standard deviation �FA of the force ap-
plied to the wave maker is decreased by the density ratio
(� 13) when mercury is replaced by water. We have
checked that �FA / �SP�V where SP � Lh is the im-
mersed area of the wave maker. This linear behavior has
been measured on one decade up to �FA � 2 N and �V �
0:1 m=s.

When the wave maker inertia is negligible, the power
I�t� injected into the fluid is roughly given by FA�t�V�t�
(see below). The time recording of I�t� is shown in the inset
of Fig. 2. Contrary to the velocity or the force, the injected
power consists of strong intermittent bursts. Although the
forcing is statistically stationary, there are quiescent peri-
ods with a small amount of injected power interrupted by
bursts where I�t� can take both positive and negative
values. The PDFs of I=hIi are displayed in Fig. 2. They
show that the most probable value of I is zero and display
two asymmetric exponential tails (or stretched exponential
in the smaller container). We observe that events with
I�t�< 0, i.e., for which the wave field gives back energy
to the wave maker, occur with a fairly high probability. The
standard deviation �I of the injected power is much larger
than its mean value hIi, and rare events with amplitude up
to 7� are also detected. Typical values obtained when
�V � 0:05 m=s are �FA � 1 N, hIi � 30 mW, �I �
100 mW for mercury. Our measurements also show that
�I / hIi � c�SP�2

V , where c has the dimension of a ve-
locity (c� 0:5 m=s and slightly increases when the con-
tainer size is increased).

We also observe in Fig. 2 that the probability of negative
events strongly decreases when the container size is in-
creased whereas the positive fluctuations are less affected.

This shows that the backscattering of the energy flux from
the wave field to the driving device is related to the waves
reflected by the boundary that can, from time to time, drive
the wave maker in phase with its motion. We note that we
have less statistics for the negative tail of the PDF when the
size of the container is increased.

We recall that the statistical properties of the fluctuations
of the surface height have been studied in [7]: they involve
a large distribution of amplitude fluctuations. Their fre-
quency spectrum is broad band and can be fitted by two
power laws in the gravity and capillary regimes. The power
law exponent in the capillary range is in agreement with
theoretical predictions. The one in the gravity range de-
pends on the forcing, as also shown in [8]. The scaling of
the spectrum with respect to the mean energy flux hIi is
different from the theoretical prediction both in the gravity
and capillary ranges. These discrepancies can be ascribed
to finite size effects [7,8].

We first emphasize the bias that can result from the
system inertia when one tries a direct measurement of
the fluctuations of injected power. The equation of motion
of the wave maker is

 M _V � FA�t� � FR�t�; (1)

where M is the mass of the wave maker and FR�t� is the
force due to the fluid motion ( _V � dV=dt). The power
injected into the fluid by the wave maker is I�t� �
�FR�t�V�t�. When M _V is not negligible, I�t� generally
differs fromFA�t�V�t�which is experimentally determined.
This obviously does not affect the mean value hIi but may
lead to wrong estimates of fluctuations. Using an acceler-
ometer, we have checked that M _V is negligible compared
to FA when the working fluid is mercury. This is shown is
Fig. 3 (left) where the PDF of FAV and FRV � �FA �
M _V�V is compared. On the contrary, inertia cannot be
neglected for experiments in water for which an error as
large as 1 order of magnitude can be made on the proba-
bility of rare events if one uses FAV to estimate I (right).
Thus, the correction due toM _V has been taken into account
in water experiments. There exist only a few previous
direct measurements of injected power in turbulent flows,
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FIG. 2 (color online). PDF of I�t�=hIi for mercury: container
size 57� 50 cm2 (grey) and 20� 20 cm2 (black) (h � 18 mm).
Dashed lines are the related predictions from Eq. (4) without
fitting parameter. Inset: time recording of I�t�.
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FIG. 3 (color online). Effect of the inertia of the wave maker:
PDF of FAV (black) and of �FA �M _V�V (grey) for mercury
(h � 23 mm) (left) and for water (h � 23 mm) (right). Using
FAV to estimate I leads to an error on the standard deviation �I
that is less than 5% for mercury but that reaches 50% for water.
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and those type of inertial bias have never been taken into
account [9].

The PDFs of injected power for the same driving in the
same container for water and mercury are displayed in
Fig. 4. The asymmetry of the PDF is much larger with
mercury. This is related to its larger mean energy flux, i.e.,
mean dissipation, as shown below.

The qualitative features of the PDF of injected power
can be described with the following simple model. Guided
by our experimental observation of the linearity of �FA in
�V , we assume that the force FR due to the fluid can be
roughly approximated by a friction force �M�V where �
is a constant (the inverse of the damping time of the wave
maker). We are aware that a better approximation to the
force due to the fluid should involve both _V and an integral
of V�t0� with an appropriate kernel. Thus, we only claim
here to give a heuristic understanding of the qualitative
properties of the PDF of I. Modelling the forcing with an
Ornstein-Uhlenbeck process, we obtain

 

_V � ��V � F; _F � ��F� �; (2)

where� is the inverse of the correlation time of the applied
force (F � FA=M), and � is a Gaussian white noise with
h��t���t0�i � D��t� t0�. The PDF P�V; F� is the bivariate
normal distribution [10,11]

 P�V; F� �
exp	� 1

2�1�r2�
�V

2

�2
V
� 2rVF

�V�F
� F2

�2
F
�


2��V�F
��������������
1� r2
p ; (3)

with �F �
�������������
D=2�

p
, �V �

������������������������������������
D=	2����� ��


p
, and r ������������������������

�=��� ��
p

. Changing variables (V, F) to (~I � FV �
I=M, F) and integrating over F gives

 P�~I� �
exp	 r~I

�1�r2��V�F



��V�F
��������������
1� r2
p K0

�
j~Ij

�1� r2��V�F

�
; (4)

where K0�X� is the zeroth order modified Bessel function
of the second kind. Using the method of steepest descent,
this predicts exponential tails, P�X� � �1=

�������
jXj

p
� exp�rX�

jXj�, where X � ~I=	�1� r2��V�F
. In addition, we have

h~Ii � D=	2���� ��
 � r�V�F. Thus, (4) is determined
once hIi, �V , and �F have been measured and can be
compared to the experimental PDF without using any
fitting parameter. This is displayed with dashed lines in
Fig. 2. Taking into account the strong approximation made
in the above model, we observe a good agreement in the
larger container. More importantly, this model captures the
qualitative features of the PDF: its maximum for I � 0 and
the asymmetry of the tails that is governed by the parame-
ter r �

�����������������������
�=��� ��

p
� hIi=��V�FA�. For given �V and

�FA , the larger is the mean energy flux, i.e., the dissipation,
the more asymmetric is the PDF. For mercury, direct
determination of r from the measurement of hIi, �V , and
�FA gives r� 0:7 for the large container and r� 0:6 for
the small one, in qualitative agreement with the different
asymmetry of the PDF in Fig. 2. Smaller values of r are
achieved in water for which the dissipation is smaller. The
PDFs are more stretched for water, in particular, in the
smaller container.

We now consider the injected power averaged on a time
interval 	

 I	�t� �
1

	

Z t�	

t
I�t0�dt0: (5)

The PDFs of I	 for 	=	c � 1, 3, 11, and 50, where 	c is the
correlation time of I�t�, are displayed in Fig. 5. They
become more and more peaked around I	 ’ hIi as they
should. However, one needs to average on a rather large
time interval (	� 50	c) in order to get a maximum proba-
bility P�I	� for I	 � hIi (Fig. 5, bottom right). Then, the
probability of negative events become so small that almost
none can be observed. Figure 6 shows that the quantity, 1

	 �

log P�I	=hIi�
P��I	=hIi�

, for different values of 	 that has been pre-
dicted to be linear in I	=hIi when the hypothesis of the

−10 −5 0 5 10
10

−4

10
−3

10
−2

10
−1

10
0

Fluid effect

I / σ
 I

P
D

F
( 

I /
 σ

 I )

FIG. 4 (color online). Effect of fluid properties on the PDF of
the injected power: (gray) mercury; (black): water (h � 18 mm;
20� 20 cm2 container). Solid lines indicate the value of hIi=�I .
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FIG. 5 (color online). PDFs of the injected power I	 averaged
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PRL 100, 064503 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
15 FEBRUARY 2008

064503-3



fluctuation theorem (in particular time reversibility) are
fulfilled [12,13]. As we clearly observe in Fig. 6, this is
not the case in general for dissipative systems. As already
mentioned [4] and studied in details [14], the linear behav-
ior reported in several experiments or numerical simula-
tions results from the too small values of I	=hIi that are
probed when 	� 	c. Large enough values are obtained in
the present experiment, and the expected nonlinear behav-
ior is thus reached. The shape of the curve in Fig. 6 is found
in good agreement with the analytical calculation [15]
performed with a Langevin-type equation with white noise.

Finally, we emphasize that a fluctuating injected power
implies fluctuations of the energy flux at all wave numbers
in the energy cascade from injection to dissipation. In any
system where an energy flux cascades from the injected
power at large scales to dissipation at small scales, one has
for the energy E< for wave numbers smaller than k within
the inertial range, _E< � I�t� ���k; t� � R, where ��k; t�
is the energy flux at k toward large wave numbers. Thus,R
1
0 hR�	�R�0�id	 � 0 in order to prevent the divergence of
hE2

<i. Dimensionally, this implies that �2
�	k does not

depend on k [5], where �� is the standard deviation of
the energy flux and 	k is its correlation time. If this
dimensional scaling is correct, fluctuations of the energy
flux are expected to increase during the cascade from large
to small scales since 	k decreases (for instance, �� / k

1=3

for hydrodynamic turbulence). Such fluctuations have been

found numerically and experimentally in hydrodynamic
turbulence [16]. To which extent, this is related or modified
by small scale intermittency [17] remains an open
question.
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FIG. 6 (color online). Plot of 1
	 log P�I	=hIi�

P��I	=hIi�
for 16< 	=	c < 39

[	=	c � 17 (*), 19.5 ( � ), 22 (�), 25 (�), 28 (pentagram), 30.5
(5), 33.5 (hexagram), 39 (�)]. Langevin model of Ref. [15]: 4�
for � � I	=hIi  1=3 (dashed line) and 7��=4� 3�=2�
�=�4�� for � � 1=3 (solid line) with � � 5 Hz.
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