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Abstract. The stability properties as characterized by

the fluctuations of finite-time Lyapunov exponents around

their mean values are investigated in a three-level quasi-

geostrophic atmospheric model with realistic mean state and

variability. Firstly, the covariance structure of the fluctuation

field is examined. In order to identify dominant patterns of

collective excitation, an empirical orthogonal function (EOF)

analysis of the fluctuation field of all of the finite-time Lya-

punov exponents is performed. The three leading modes are

patterns where the most unstable Lyapunov exponents fluc-

tuate in phase. These modes are virtually independent of the

integration time of the finite-time Lyapunov exponents. Sec-

ondly, large-deviation rate functions are estimated from time

series of finite-time Lyapunov exponents based on the prob-

ability density functions and using the Legendre transform

method. Serial correlation in the time series is properly ac-

counted for. A large-deviation principle can be established

for all of the Lyapunov exponents. Convergence is rather

slow for the most unstable exponent, becomes faster when

going further down in the Lyapunov spectrum, is very fast for

the near-neutral and weakly dissipative modes, and becomes

slow again for the strongly dissipative modes at the end of the

Lyapunov spectrum. The curvature of the rate functions at the

minimum is linked to the corresponding elements of the dif-

fusion matrix. Also, the joint large-deviation rate function for

the first and the second Lyapunov exponent is estimated.

1 Introduction

The atmosphere is a high-dimensional non-linear chaotic dy-

namical system; its time evolution is characterized by sensi-

tivity to initial conditions (Lorenz, 1963; Kalnay, 2003). As a

consequence predictability is limited; small errors in the ini-

tial states progressively grow under the time evolution until

the forecast eventually becomes useless, that is, it is indistin-

guishable from the invariant measure or climatology of the

system. Understanding the structure of this inherent instabil-

ity is key to improve forecasts at all timescales.

Sensitivity to initial conditions and perturbation growth in

non-linear dynamical systems are often quantified using Lya-

punov exponents (LEs; e.g. Eckmann and Ruelle, 1985; Ott,

2002; Pikovsky and Politi, 2016). They describe the asymp-

totic growth or decay of infinitesimal perturbations. A system

is chaotic if it has at least one positive Lyapunov exponent.

However, the predictability properties may vary substantially

across state space. Finite-time (or local) Lyapunov exponents

(FTLEs) allow a characterization of the stability of a partic-

ular initial state with respect to a predefined prediction hori-

zon.

LEs have been calculated for various geophysical fluid

systems, ranging from highly truncated atmospheric mod-

els (Legras and Ghil, 1985), to intermediate-complexity at-

mospheric models (Vannitsem and Nicolis, 1997; Schubert

and Lucarini, 2015) and coupled atmosphere–ocean models

(Vannitsem and Lucarini, 2016). A review has been pub-

lished recently by Vannitsem (2017). Models tuned to real-

istic conditions were found to possess quite a large number

of positive LEs corresponding to a high-dimensional chaotic

attractor.
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The present paper investigates the fluctuations of FTLEs

in an intermediate-complexity atmospheric model with real-

istic mean state and variability. It focuses on two aspects that

have found little attention in the context of geophysical fluid

systems thus far. Firstly, the covariance structure of the fluc-

tuation field of the FTLEs is studied by means of a princi-

pal component (PC) or empirical orthogonal function (EOF)

analysis (Kuptsov and Politi, 2011). Secondly, we look at the

large-deviation behaviour of the FTLEs (Kuptsov and Politi,

2011; Laffargue et al., 2013; Johnson and Meneveau, 2015).

A large-deviation principle links the FTLEs at long integra-

tion times to the global LEs by providing a universal law for

the probability density of fluctuations of the FTLEs around

the mean value. It can be expected to hold for Axiom A dy-

namical systems and, invoking the chaotic hypothesis, also

for certain types of non-Axiom A systems. In particular, a

large-deviation law allows one to determine the probability

of very stable or very unstable atmospheric states.

The paper is organized as follows: in Sect. 2 the atmo-

spheric model is described; the methodology, which consists

of calculating LEs, the multivariate fluctuation analysis and

the large-deviation theory, is outlined in Sects. 3, 4 and 5;

the results are presented and discussed in Sect. 6; and some

conclusions are drawn in Sect. 7.

2 The atmospheric model

A quasi-geostrophic (QG) three-level model on the sphere,

formulated in pressure coordinates, is used here as dynami-

cal framework. The model is identical to that introduced by

Kwasniok (2007) except for the horizontal resolution and the

coefficient of hyperviscosity. A very similar model was intro-

duced by Marshall and Molteni (1993). The dynamical equa-

tions are as follows:

∂qi

∂t
+ J (9i,qi) = Di + Si, i = 1,2,3, (1)

where 9i and qi are the stream function and the potential

vorticity at level i, respectively, and J denotes the Jacobian

operator on the sphere. All variables are non-dimensional us-

ing the radius of the Earth as the unit of length and the inverse

of the angular velocity of the Earth as the unit of time. The

three pressure levels are located at 250, 500 and 750 hPa. Po-

tential vorticity and the stream function are related by

q1 = ∇291 − R−2
1,2(91 − 92) + f (2)

q2 = ∇292 + R−2
1,2(91 − 92) − R−2

2,3(92 − 93) + f (3)

q3 = ∇293 + R−2
2,3(92 − 93) + f + f0h, (4)

where ∇ is the horizontal gradient operator, and f is

the Coriolis parameter. The Rossby deformation radii R1,2

and R2,3 have dimensional values of 575 and 375 km,

respectively. The function h = h(λ,µ) represents a non-

dimensional topography which is related to the actual dimen-

sional topography of the Earth h∗ = h∗(λ,µ) by h = h∗/H ,

where H is a scale height set to 8 km, and f0 is the Corio-

lis parameter at an average geographic latitude taken to be

45◦ N.

The dissipative terms are given as follows:

D1 = τ−1
N R−2

1,2(91 − 92) − kH∇8q̂1 (5)

D2 = − τ−1
N R−2

1,2(91 − 92) + τ−1
N R−2

2,3(92 − 93)

− kH∇8q̂2 (6)

D3 = −τ−1
N R−2

2,3(92 − 93) − τ−1
E ∇293 − kH∇8q̂3. (7)

They are Newtonian temperature relaxation with a radiative

timescale of τN = 25 d, Ekman damping on the lowest level

with a spin-down timescale of τE = 1.5 d, and a strongly

scale-selective horizontal diffusion of vorticity and temper-

ature. The q̂i is the time-dependent part of the potential vor-

ticity at level i, that is to say q̂i = qi −f −δi3f0h. The coeffi-

cient of horizontal diffusion kH = τ−1
H [nm(nm+1)]−4 is such

that harmonics of total wave-number nm = 21 are damped at

a timescale of τH = 1.5 d. The terms Si = Si(λ,µ) are dia-

batic sources of potential vorticity which are independent of

time but spatially varying.

The model is considered on the Northern Hemisphere. The

boundary condition of no meridional flow, vi(λ,0) = 0, that

is to say vanishing stream function, 9i(λ,0) = 0, is applied

at the Equator on all three model levels. The horizontal dis-

cretization is spectral, triangularly truncated at total wave-

number nm = 21. The number of degrees of freedom is 231

for each level and N = 693 in total. The model is integrated

in time using the third-order Adams–Bashforth scheme with

a constant step size of 1 h.

The variables of the QG model are listed in Table 1; the

model parameters are listed in Table 2 with their dimensional

and non-dimensional values.

In order to get a model behaviour close to that of the

real atmosphere, the forcing terms Si are determined from

the European Centre for Medium-Range Weather Forecasts

(ECMWF) reanalysis data by requiring that when comput-

ing potential vorticity tendencies for a large number of ob-

served atmospheric fields, the average of these tendencies

must be zero (Roads, 1987); this is done in order for the en-

semble of reanalysis data states to be representative of a sta-

tistically stable long-term behaviour of the QG model. The

timescale of horizontal diffusion τH is determined such that

the slope of the kinetic energy spectrum at the truncation

level in the model matches that in the reanalysis data. See

Kwasniok (2007) for details on the parameter tuning proce-

dure. The QG model exhibits a remarkably realistic mean

state and variability pattern of stream function and potential

vorticity in a long-term integration (see Table 3).

3 Lyapunov exponents

We consider a non-linear autonomous dynamical system

with state vector x = (x1, . . .,xN )T governed by the evolu-
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Table 1. Variables and fields in the QG model and their non-dimensionalization with the Earth’s radius a = 6.371 × 106 m and the angular

velocity of the Earth � = 7.292 × 10−5 s−1.

Symbol Description Unit Non-dimensionalization

t Time s �−1

λ (0 ≤ λ < 2π) Longitude (eastward)

φ (0 ≤ φ ≤ π/2) Latitude

µ = sinφ (0 ≤ µ ≤ 1) Sine of latitude

9i Stream function at level i m2 s−1 a2�

qi Potential vorticity at level i s−1 �

q̂i Time-dependent part of potential vorticity at level i s−1 �

f = 2µ Coriolis parameter s−1 �

h Topography of the Earth m H

Si Diabatic forcing at level i s−2 �2

ui = −
√

1 − µ2 (∂9i/∂µ) Zonal velocity (eastward) ms−1 a�

vi = (1/
√

1 − µ2) (∂9i/∂λ) Meridional velocity (northward) ms−1 a�

Table 2. Parameters in the QG model.

Symbol Description Dimensional value Non-dimensional value

R1,2 Rossby deformation radius between levels 1 and 2 575 km 9.025 × 10−2

R2,3 Rossby deformation radius between levels 2 and 3 375 km 5.886 × 10−2

τN Timescale of temperature relaxation 25 d 50π

τE Timescale of Ekman damping 1.5 d 3π

τH Timescale of horizontal diffusion at wave-number 21 1.5 d 3π

f0 Coriolis parameter at 45◦ N 1.031 × 10−4 s−1
√

2

H Scale height 8 km

Table 3. Pattern correlation of various fields in the QG model with

the corresponding fields in ECMWF reanalysis data.

Level 〈9i〉
√

〈9 ′
i
2〉

√

〈q̂ ′
i
2〉

250 hPa 0.99 0.99 0.97

500 hPa 0.99 0.99 0.98

750 hPa 0.96 0.97 0.94

tion equations

dx

dt
= f (x). (8)

The linearized dynamics of a small perturbation δx are given

as

d

dt
δx = ∂f

∂x
δx. (9)

The propagation of the perturbation between time t0 with ini-

tial state x0 = x(t0) and time t (t > t0) can be written as

δx(t) = M(x0, t − t0)δx(t0), (10)

where M is the resolvent matrix. If the system is ergodic,

then according to the theorem by Oseledets (1968) the limit

S = lim
t→∞

(

MTM
)

1
2(t−t0) (11)

exists and is the same for almost all initial conditions x0. The

(global) LEs are defined as

λj = logωj , j = 1, . . .,N, (12)

where {ωj }Nj=1 are the positive eigenvalues of the matrix S.

The set of all LEs, usually presented in non-increasing order,

is called the “Lyapunov spectrum”. The LEs are independent

of the norm.

In order to characterize perturbation growth or decay over

a finite integration time τ the FTLEs 3
(τ )
j (x0) are intro-

duced. There are three different definitions of FTLEs. One

can compute them by making reference to the backward, for-

ward or covariant Lyapunov vectors – see e.g. Kuptsov and

Parlitz (2012) for a review. In the limit of large integration

time τ , which is the main focus of the present study, all of the

three definitions become more and more equivalent (Kuptsov

and Politi, 2011; Pazó et al., 2013). Here, we refer to the

backward FTLEs as they are easiest to compute. They are

calculated using the standard algorithm based on the Gram–

Schmidt orthogonalization (Shimada and Nagashima, 1979;
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Benettin et al., 1980). An ensemble of N linearly indepen-

dent perturbations is initialized and integrated forward in

time along with the non-linear model trajectory. A transient

period is discarded for the trajectory to settle on the attrac-

tor of the system and for the perturbations to converge to

the backward Lyapunov vectors. Then, after every integration

time interval 1τ the perturbations are re-orthonormalized us-

ing a QR-decomposition performed via the Gram–Schmidt

procedure. The FTLEs are obtained as

3
(1τ)
j (xα) = 3

(1τ)
j,α = 1

1τ
logRjj (tα, tα+1),

α = 0, . . .,L − 1, (13)

where Rjj (tα, tα+1) are the diagonal elements of the upper

triangular matrix R in the QR-decomposition resulting from

the integration between times tα and tα+1. We have tα = t0 +
α1τ and xα = x(tα). The FTLEs 3

(τ )
j for larger integration

times τ = n1τ are obtained by averaging over n consecutive

values of 3
(1τ)
j :

3
(τ )
j,α = 1

n

n−1
∑

i=0

3
(1τ)
j,α+i, α = 0, . . .,L − 1. (14)

For all integration times τ , we keep time series of FTLEs of

the same length L, {3(τ )
j,α}L−1

α=0 , characterizing the stability of

the states {xα}L−1
α=0 over the time horizon τ .

The FTLEs depend on the scalar product chosen in the

Gram–Schmidt orthogonalization procedure. Here, we use

the total energy scalar product with its associated total energy

norm (Ehrendorfer, 2000; Kwasniok, 2007). The dependence

of the FTLEs on the norm becomes increasingly weaker in

the limit of large integration time τ .

The FTLEs are related to the global LEs by

lim
τ→∞

3
(τ )
j (x0) = λj (15)

for almost all initial states x0 and

〈

3
(τ )
j

〉

= λj (16)

for all τ , where 〈·〉 denotes an ensemble average over the

attractor of the system which for ergodic systems can be es-

timated as a mean over a long time series.

4 Multivariate fluctuation analysis

The vector of global Lyapunov exponents is defined as

λ = (λ1, . . .,λN )T and the fluctuation field as 3(τ ) − λ =
(

3
(τ )
1 − λ1, . . .,3

(τ )
N − λN

)T
. We study the correlations be-

tween the fluctuations of the FTLEs; to do this, preferred

patterns of collective excitation are extracted. A canonical

approach is a principal component (PC) or empirical orthog-

onal function (EOF) analysis based on the scaled covariance

matrix D(τ ) defined as

D(τ ) =
〈

(

3(τ ) − λ
)(

3(τ ) − λ
)T
〉

τ

= τ

L

L−1
∑

α=0

(

3(τ )
α − λ

)(

3(τ )
α − λ

)T
. (17)

In the limit of large integration time τ we expect convergence

to the diffusion matrix D (Kuptsov and Politi, 2011; Pikovsky

and Politi, 2016):

D = lim
τ→∞

D(τ ). (18)

The eigenvalues and eigenvectors of the symmetric, positive

definite matrix D(τ ) are calculated:

D(τ )e
(τ )
j = ν

(τ )
j e

(τ )
j . (19)

The eigenvalues {ν(τ )
j }Nj=1 are arranged in non-increasing or-

der. The eigenvectors form an orthonormal system:

e
(τ )
j · e(τ )

k =
N
∑

i=1

e
(τ )
j,i e

(τ )
k,i = δjk. (20)

The fluctuation field of the FTLEs is expanded as

3(τ )
α − λ =

N
∑

j=1

y
(τ )
j,αe

(τ )
j (21)

with y
(τ )
j,α = e

(τ )
j · (3(τ )

α − λ). The principal components

{y(τ )
j }Nj=1 are uncorrelated and their variance is given by the

corresponding eigenvalue:

〈

y
(τ )
j y

(τ )
k

〉

= 1

L

L−1
∑

α=0

y
(τ )
j,αy

(τ )
k,α = ν

(τ )
j δjk. (22)

The steepness or complexity of the eigenvalue spectrum is

characterized by the fraction of variance explained by the

principal component y
(τ )
j given as

r
(τ )
j =

ν
(τ )
j

∑N
k=1ν

(τ )
k

(23)

and the cumulative fraction of variance given as

c
(τ )
j =

∑j

k=1ν
(τ )
k

∑N
k=1ν

(τ )
k

. (24)

As a possible further step, one may try to link the covari-

ance structure of the FTLEs with investigations of the angles

between the covariant Lyapunov vectors and the degree of

entanglement and interaction of the various unstable and sta-

ble directions in tangent space (Yang et al., 2009). This is

related to the hyperbolicity and the inertial manifold of the

system.
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5 Large-deviation theory for FTLEs

Large-deviation theory (Kifer, 1990; Touchette, 2009) is a

powerful approach from statistical physics for estimating the

probability of rare events with many applications. It has re-

cently been applied to the behaviour of FTLEs at long in-

tegration times (Kuptsov and Politi, 2011; Laffargue et al.,

2013; Johnson and Meneveau, 2015). In the following, large-

deviation theory is briefly described in the form in which it

is used in the present study.

5.1 Univariate theory

For a sequence of n identically distributed but not necessarily

independent random variables, {Xi}ni=1, the sample mean

An = 1

n

n
∑

i=1

Xi (25)

is an unbiased estimator of and converges to the true mean,

〈X〉, as n → ∞. According to the Gärtner–Ellis theorem

(Touchette, 2009), if the scaled cumulant generating function

(SCGF)

γ (θ) = lim
n→∞

1

n
log

〈

enθAn

〉

(26)

exists and is differentiable everywhere, then An follows a

large-deviation principle,

p(An = z) ∼ exp[−nI (z)], (27)

where the large-deviation rate function I (z) is independent of

n and given as the Legendre–Fenchel transform of the SCGF:

I (z) = sup
θ∈R

[θz − γ (θ)]. (28)

The rate function I (z) is non-negative and strictly convex.

It has a unique zero and minimum at z∗ = 〈X〉, that is to say

I (〈X〉) = 0 and I ′(〈X〉) = 0. The curvature of the rate func-

tion at the minimum is given as (Touchette, 2009)

I ′′(〈X〉) = 1

lim
n→∞

n〈(An − 〈An〉)2〉 . (29)

In view of Eq. (14), FTLEs immediately lend themselves

to large-deviation theory. For large integration time τ , one

would expect the probability density of the FTLE 3
(τ )
j to

follow a large-deviation principle,

p
(

3
(τ )
j = z

)

∼ exp[−τIj (z)], (30)

where the large-deviation rate function Ij (z) is independent

of τ and given as

Ij (z) = sup
θ∈R

[θz − γj (θ)] (31)

with the SCGF

γj (θ) = lim
τ→∞

1

τ
log

〈

e
τθ3

(τ )
j

〉

. (32)

Introducing θ ′ = τθ and then dropping the prime again we

get

Ij (z) = lim
τ→∞

1

τ
sup
θ∈R

[

θz − log

〈

e
θ3

(τ )
j

〉]

. (33)

We expect convergence of the rate function Ij (z) as soon as

the integration time τ is large enough for consecutive values

of 3
(τ )
j taken over non-overlapping integration time inter-

vals, 3
(τ )
j,α and 3

(τ )
j,α+n, to be independent. This is actually

an application of the block averaging method (Rohwer et al.,

2015). Note, however, that convergence of the rate function

at a particular value of τ here does not guarantee that the

probability density function is already in the large-deviation

limit at that value of τ .

The rate function Ij (z) has a unique zero and minimum at

z∗ = λj , that is to say Ij (λj ) = 0 and I ′
j (λj ) = 0. The cur-

vature of the rate function at the minimum is linked to the

diffusion matrix D as

I ′′
j (λj ) = 1

lim
τ→∞

〈

(

3
(τ )
j − λj

)2
〉

τ

= D−1
j,j . (34)

A second-order Taylor expansion of the rate function in the

vicinity of λj ,

Ij (z) ≈ 1

2
I ′′
j (λj )(z − λj )

2, (35)

corresponds to a Gaussian probability density with mean λj

and variance Dj,j/τ , recovering the central limit theorem

(CLT) as a limit case of large-deviation theory.

5.2 Estimating the rate function

There are two ways of estimating the rate functions Ij (z)

from data: via the probability density function (cf., Eq. 30)

or via the Legendre transform (cf., Eq. 33).

5.2.1 Probability density function approach

By inverting Eq. (30) we have

Ij (z) = − lim
τ→∞

1

τ
log p

(

3
(τ )
j = z

)

. (36)

We take a maximum likelihood approach for estimating the

rate function. The probability density of 3
(τ )
j is modelled as

p
(

3
(τ )
j = z

)

= 1

Z
(τ )
j

exp
[

−U
(τ )
j (z)

]

(37)

www.nonlin-processes-geophys.net/26/195/2019/ Nonlin. Processes Geophys., 26, 195–209, 2019
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with normalization constant

Z
(τ )
j =

∞
∫

−∞

exp
[

−U
(τ )
j (z)

]

dz. (38)

The potential function U
(τ )
j (z) is expanded into a polynomial

basis in standardized variables:

U
(τ )
j (z) =

M
∑

i=1

β
(τ )
i

(

z − λj

σ
(τ )
j

)i

. (39)

Here σ
(τ )
j is the standard deviation of the FTLE 3

(τ )
j :

σ
(τ )
j =

〈

(

3
(τ )
j − λj

)2
〉1/2

=
[

1

L

L−1
∑

α=0

(

3
(τ )
j,α − λj

)2
]1/2

. (40)

The parameter M determines the complexity of the model. In

order to have a normalizable probability density, we need M

to be even and β
(τ )
M > 0. The expansion coefficients {β(τ )

i }Mi=1

are determined by maximizing the likelihood function of the

data {3(τ )
j,α}L−1

α=0 . This is a convex optimization problem with

a unique maximum which is numerically stable to solve.

Model selection is performed with the Bayesian information

criterion.

The estimate of the rate function is given as

Ij (z) = lim
τ→∞

1

τ

[

U
(τ )
j (z) − U

(τ )
j (z∗)

]

, (41)

where z∗ denotes the position of the minimum of the poten-

tial function U
(τ )
j (z). Note that, for finite τ , we do not nec-

essarily have z∗ = λj as the mode of the probability density

of 3
(τ )
j may be different from its mean if the distribution is

skewed; however, we always have z∗ → λj as τ → ∞. One

would now estimate Ij (z) from the probability density func-

tion of 3
(τ )
j for various large values of τ and look for con-

vergence.

The maximum likelihood method tends to provide very

smooth and convex rate functions although convexity is not

strictly guaranteed. It clearly improves on earlier work (e.g.

Johnson and Meneveau, 2015) using histogram or kernel

density estimates for the probability density and treating the

normalization constant only in the Gaussian approximation.

5.2.2 Legendre transform approach

Alternatively, the rate functions Ij (z) can be determined

by numerically implementing the Legendre transform of

Eq. (33) (Rohwer et al., 2015) with the moment generating

function estimated by the sample mean over the time series:

〈

e
θ3

(τ )
j

〉

= 1

L

L−1
∑

α=0

e
θ3

(τ )
j,α . (42)

For each z, this is a convex optimization problem with a

unique solution, if a solution exists. Rate functions obtained

via the Legendre transform method are guaranteed to be

strictly convex with a unique zero and minimum at z∗ = λj .

Rate function estimates from the Legendre transform

method converge as soon as τ = n1τ is large enough for suc-

cessive values of 3
(τ )
j over non-overlapping integration time

intervals, 3
(τ )
j,α and 3

(τ )
j,α+n, to be independent. However, this

gives no indication of whether or not the probability den-

sity function is actually already in the large-deviation limit.

Therefore, here we consider both rate function estimates side

by side.

5.3 Estimating the diffusion coefficients

The diffusion coefficients Dj,j can be obtained from both

rate function estimates as the inverse of the curvature at

the minimum (cf., Eq. 34). They can also be estimated

directly from the time series of the FTLEs according to

Eq. (17). It can be shown that the estimates from the Leg-

endre transform-based rate function and from the time se-

ries are always the same; any differences just stem from the

error of the finite-difference approximation of the curvature

as the Legendre transform is not available in closed form.

For a Gaussian probability density model, that is M = 2 in

Eq. (39), the diffusion coefficient estimates from the proba-

bility density-based rate function and from the time series are

exactly the same; otherwise they are different.

5.4 Multivariate theory

The large-deviation analysis can be extended to a multivari-

ate approach (Kuptsov and Politi, 2011; Johnson and Mene-

veau, 2015). Let 3(τ ) now denote the column vector of any

K-dimensional subset of the N FTLEs and λ the correspond-

ing vector of global LEs. We have 1 ≤ K ≤ N , where K = N

corresponds to the full system and K = 1 recovers the uni-

variate analysis. For large integration time τ , the joint prob-

ability density function of the K FTLEs would then follow a

large-deviation principle,

p
(

3(τ ) = z
)

∼ exp[−τI (z)], (43)

where the joint large-deviation rate function I (z) is indepen-

dent of τ and given as the multivariate Legendre–Fenchel

transform

I (z) = lim
τ→∞

1

τ
sup

θ∈RK

[

θTz − log
〈

eθT3(τ )
〉]

. (44)

The joint rate function I (z) is non-negative and strictly

convex. It has a unique zero and minimum at z∗ = λ, that is

to say I (λ) = 0 and ∂I/∂zj = 0 at z = λ. The Hessian ma-

trix of the joint rate function at the minimum is linked to the

diffusion matrix D as

∂2I

∂zj∂zk

∣

∣

∣

∣

z=λ

= Qj,k = (D−1)j,k, (45)
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where D denotes the K ×K part of the diffusion matrix cor-

responding to the K retained FTLEs. A second-order Taylor

expansion of the joint rate function in the vicinity of λ,

I (z) ≈ 1

2
(z − λ)TQ(z − λ), (46)

corresponds to a multivariate Gaussian probability density

with mean λ and covariance matrix (τQ)−1, recovering the

central limit theorem (CLT).

5.5 Estimating the joint rate function

There are again two ways of estimating the joint rate func-

tion from the time series of FTLEs: via the probability den-

sity function (cf., Eq. 43) or via the Legendre transform (cf.,

Eq. 44).

5.5.1 Probability density function approach

By inverting Eq. (43) we get

I (z) = − lim
τ→∞

1

τ
logp

(

3(τ ) = z
)

. (47)

The probability density of 3(τ ) is modelled as

p
(

3(τ ) = z
)

= 1

Z(τ )
exp

[

−U (τ )(z)
]

(48)

with normalization constant

Z(τ ) =
∫

RK

exp
[

−U (τ )(z)
]

dKz. (49)

The potential function U (τ )(z) is expanded into suitable

multinomial basis functions as

U (τ )(z) =
J
∑

i=1

β
(τ )
i φi(z) (50)

subject to appropriate conditions to ensure a normalizable

probability density. The expansion coefficients {β(τ )
i }Ji=1 are

determined from the time series of the FTLEs {3(τ )
α }L−1

α=0 via

maximum likelihood which is a convex optimization prob-

lem with a unique solution.

The estimate of the joint rate function is

I (z) = lim
τ→∞

1

τ

[

U (τ )(z) − U (τ )(z∗)
]

, (51)

where z∗ denotes the position of the minimum of the po-

tential function U (τ )(z) which for finite τ is not necessarily

equal to λ.

5.5.2 Legendre transform approach

Alternatively, the joint rate function I (z) can be determined

via the multivariate Legendre transform of Eq. (44) with the

moment generating function estimated as the sample mean

over the time series:

〈

eθT3(τ )
〉

= 1

L

L−1
∑

α=0

eθT3
(τ )
α . (52)

Again, this is a convex optimization problem and rate func-

tions obtained from the Legendre transform method are guar-

anteed to be strictly convex with a unique zero and minimum

at z∗ = λ.

5.6 Estimating the diffusion matrix

The diffusion matrix D (or the part of it corresponding to

the K considered FTLEs) can be obtained from both joint

rate function estimates as the inverse of the Hessian matrix

at the minimum (cf., Eq. 45). It can also be estimated directly

from the time series of the FTLEs as given in Eq. (17). The

estimates from the Legendre transform-based joint rate func-

tion and from the time series are always the same, apart from

errors in the finite-difference approximation of the second

derivatives. The diffusion matrix estimates from the proba-

bility density-based joint rate function and from the time se-

ries are the same if the model in Eq. (50) is a multivariate

Gaussian probability density; otherwise they are different.

The different methods for estimating the rate function and

the diffusion matrix in the univariate and the multivariate

case are summarized in Tables 4 and 5.

In high-dimensional systems it is usually too ambitious a

task to determine I (z) beyond the Gaussian approximation

for the full system. Here, we restrict ourselves to the bivariate

case K = 2.

6 Results

6.1 Lyapunov exponents

Time series of FTLEs of the QG model of length L = 25000

with a basic integration time 1τ = 1 d are generated as de-

scribed in Sect. 3. The (global) LEs are calculated as

λj = 1

L

L−1
∑

α=0

3
(1τ)
j,α . (53)

Figure 1 displays the Lyapunov spectrum of the QG

model. There are 91 positive LEs. The largest LE is estimated

as λ1 = 0.342 d−1, corresponding to an e-folding time of per-

turbation growth of 2.9 d which appears to be realistic for the

real atmosphere. The spectrum starts off quite steep and then

flattens at the near-zero exponents. For example, there are

69 LEs between 0.05 and −0.05 d−1. The spectrum becomes

steeper again at the trailing very stable exponents. Overall,

there is a continuous spectrum of timescales with no clear

timescale separation. This is in accordance with previous re-

sults for QG models (Vannitsem and Nicolis, 1997; Schubert
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Table 4. Methods for estimating the rate function.

Probability density Legendre transform

Univariate Ij (z) = lim
τ→∞

1
τ

[

U
(τ )
j

(z) − U
(τ )
j

(z∗)
]

Ij (z) = lim
τ→∞

1
τ sup

θ∈R

[

θz − log

(

1
L

∑L−1
α=0

e
θ3

(τ )
j,α

)]

Multivariate I (z) = lim
τ→∞

1
τ

[

U (τ )(z) − U (τ )(z∗)
]

I (z) = lim
τ→∞

1
τ sup

θ∈RK

[

θTz − log
(

1
L

∑L−1
α=0

eθT3
(τ )
α

)]

Table 5. Methods for estimating the diffusion matrix.

Probability density Legendre transform Time series

Univariate D−1
j,j

= I ′′
j
(z∗) D−1

j,j
= I ′′

j
(λj ) Dj,j = lim

τ→∞
τ
L

∑L−1
α=0

(

3
(τ )
j,α

− λj

)2

Multivariate (D−1)j,k = ∂2I
∂zj ∂zk

∣

∣

∣

z=z∗ (D−1)j,k = ∂2I
∂zj ∂zk

∣

∣

∣

z=λ
Dj,k = lim

τ→∞
τ
L

∑L−1
α=0

(

3
(τ )
j,α

− λj

)(

3
(τ )
k,α

− λk

)

Figure 1. (a) Lyapunov spectrum of the QG model. (b) Close-up

of (a).

and Lucarini, 2015) and is probably because QG equations

are scale-filtered equations.

Figure 2 shows the standard deviation σ
(τ )
j of the fluctu-

ations of the FTLEs around their mean values (Eq. 40). The

standard deviation monotonically decreases with increasing

integration time τ for all exponents. The fluctuations are

largest for the leading LEs and then quickly decrease. They

increase again towards the end of the Lyapunov spectrum

with a particularly sharp increase for the most stable expo-

nents at the very end of the spectrum. This is in line with sim-

ilar findings in simple spatially extended systems (Kuptsov

and Politi, 2011; Pazó et al., 2013) as well as in a QG

atmosphere–ocean model (Vannitsem and Lucarini, 2016).

The scaled standard deviation σ
(τ )
j τ 1/2 shows clear con-

vergence for all of the exponents at τ = 10–15 d, that is to

say the scaled variance converges to the diagonal elements

Dj,j of the diffusion matrix D. Convergence is reached at

about τ = 10 d for almost all of the exponents; it is particu-

larly fast for the near-neutral and the weakly dissipative ex-

ponents where it is already reached at τ = 5–10 d.

There is a kink-like feature at j ≈ 125, separating regions

with different slopes of the standard deviation. It is possible

that this is linked to a distinction of the covariant Lyapunov

vectors into interacting “physical modes” and hyperbolically

separated “isolated modes” (Yang et al., 2009). But this cer-

tainly needs further investigation.

6.2 Multivariate fluctuation analysis

Figure 3 shows the explained variance and the cumulative

explained variance of the principal components of the scaled

Lyapunov fluctuations. There are three leading modes, then

the eigenvalue spectrum sharply flattens off. The fraction of

variance explained by the leading modes increases with in-

creasing integration time τ . Going from τ = 1 to τ = 20 d,

the variance explained by the first principal component in-

creases from just below 5 % to more than 12 %, and the vari-

ance explained by the second principal component increases

from about 2 % to more than 4 %. However, due to the flat-

ness of the bulk of the eigenvalue spectrum, even in the dif-

fusion limit a substantial number of modes is necessary to

explain large parts of the fluctuation variance. The eigen-

value spectrum is still not fully converged at τ = 20 d. It is
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Figure 2. (a) Standard deviation σ
(τ )
j

of the FTLEs. (b) Close-up of (a). (c) Scaled standard deviation σ
(τ )
j

τ1/2 of the FTLEs. (d) Close-up

of (c).

Figure 3. (a) Variance of the principal components of the finite-time Lyapunov fluctuations. (b) Fraction of variance. (c) Cumulative fraction

of variance. (d) Close-up of (c).
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Figure 4. (a) First, (b) second and (c) third normalized empirical

orthogonal function (EOF) of the finite-time Lyapunov fluctuations

(cf., Eq. 20).

not completely clear what the reason for this is. There may

be some indication that the off-diagonal elements of the dif-

fusion matrix converge slightly more slowly than the diago-

nal elements. But there is probably also a finite sample size

effect. With increasing τ , the time series of the FTLEs con-

tain less and less uncorrelated information and fail to fully

sample the high-dimensional covariance matrix which leads

to an overestimation of the variance of the leading principal

components.

In Fig. 4 the three leading EOFs are displayed. The modes

are largely independent of the integration time τ and have

converged at about τ = 10 d. The first EOF shows a pattern

where all of the leading FTLEs fluctuate in phase. This in-

corporates all of the positive exponents and extends to the

weakly dissipative ones. Then there is some negative corre-

lation with the dissipative exponents in the second half of the

Figure 5. Correlation of the FTLEs 3
(τ )
j

and 3
(τ )
k

for (a) τ = 1 d

and (b) τ = 15 d.

Lyapunov spectrum. In the second EOF, the leading FTLEs

again fluctuate in phase; here, this encompasses about the

first 40 exponents. Then there is some negative correlation

with the weakly dissipative exponents and substantial pos-

itive correlation with the strongly dissipative exponents at

the end of the Lyapunov spectrum. The third EOF has the

very stable exponents at the end of the spectrum fluctuating

in phase and the most unstable exponents fluctuating in phase

with each other, out of phase with the dissipative ones.

Complementary to the EOF analysis, Fig. 5 shows the cor-

relation of selected FTLEs with each of the other FTLEs for

τ = 1 and τ = 15 d. The pattern of the correlations is the

same for both integration times but the amplitudes are very

low for τ = 1 d and build up at larger integration times. This

is in line with the results from the EOF analysis. The FTLEs

have predominantly positive correlations with neighbouring

exponents; these are strongest for the most unstable and the

most stable exponents and weaker in between. There are also

some relatively weak long-range correlations across the Lya-

punov spectrum.
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Figure 6. Order of the model for the probability density function of

the FTLE 3
(τ )
j

.

6.3 Large-deviation analysis

6.3.1 One-dimensional approach

We now investigate whether the fluctuations of the FTLEs

obey a large deviation principle. As representative examples

we look at the first and the fifth exponent as two strongly

unstable modes, at the zero exponent, at a weakly dissi-

pative exponent and at the smallest, most stable exponent.

The large-deviation rate function is estimated as described

in Sect. 5 from the probability density function and via the

Legendre transform for various values of τ . The correspond-

ing element Dj,j of the diffusion matrix is calculated from

the curvature of the two estimates of the rate function and

directly from the time series of the FTLEs.

To model the probability density of the FTLEs two dif-

ferent choices for the potential function in Eq. (39) are

considered here: M = 2, this is to say a Gaussian prob-

ability density, and M = 4, a fourth-order polynomial. In

view of the high degree of correlation in the time series

of the FTLEs, particularly for large τ , model selection

is performed here as follows. For τ = n1τ , the time se-

ries of the FTLEs, {3(τ )
j,α}L−1

α=0 , are sub-sampled into n dis-

joint time series with non-overlapping integration time inter-

vals, {3(τ )
j,m,3

(τ )
j,m+n,3

(τ )
j,m+2n, . . .}, for m = 0, . . .,n−1. The

length of the sub-sampled time series is the largest integer L′

such that m + (L′ − 1)n ≤ L − 1. The two probability den-

sity models are fitted separately on the n sub-sampled time

series and model selection is based on the average Bayesian

information criterion. Then the selected model is fitted on the

whole time series.

Figure 6 displays the order of the model for the probability

density of the selected FTLEs as a function of the integra-

tion time τ . The leading unstable exponents exhibit strong

non-Gaussianity. For the first exponent, it is detectable up to

τ = 35 d; for the fifth exponent, it is less pronounced and vis-

ible only up to τ = 12 d. The zero exponent shows only very

mild non-Gaussianity which is visible for τ = 1 and τ = 2 d.

The weakly dissipative exponent has Gaussian behaviour at

all values of τ . The smallest, strongly dissipative exponent

again displays marked deviations from Gaussianity; these are

Figure 7. (a) Large-deviation rate function of the first FTLE. (b) El-

ement D1,1 of the diffusion matrix.

even more pronounced than those for the first exponent and

detectable up to an integration time as large as τ = 49 d. For

the first and the last exponent, at small integration times τ

it may be possible to even switch to the higher-order model

M = 6 but this is not our concern here.

Figure 7 shows the results of the large-deviation analysis

for the first FTLE. Convergence to a large-deviation princi-

ple is observed. At τ = 10 d and even visible at τ = 20 d the

maximum of the probability density is still shifted away from

the mean; nevertheless, some convergence among the proba-

bility density-based estimates of the rate function is reached

at about τ = 20 d. The Legendre transform-based estimates

already give a consistent picture from τ = 10 d. Good con-

vergence is also observed for the corresponding element of

the diffusion matrix.

For the fifth FTLE, a similar picture can be seen (Fig. 8)

but convergence is markedly faster than for the first FTLE.

The probability density-based estimates are very consistent

from τ = 10–15 d; note that the model for the probability

density jumps from fourth-order to Gaussian for the higher

values of τ . The Legendre transform already gives close

agreement for the rate function from τ = 5 d.
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Figure 8. (a) Large-deviation rate function of the fifth FTLE. (b) El-

ement D5,5 of the diffusion matrix.

For the zero exponent (Fig. 9), convergence is again

markedly faster than for both positive exponents. A large-

deviation principle can already be established from about

τ = 10 d, and the two different estimates of the rate function

are close together. The estimates of the diffusion coefficient

all coincide.

For the fully Gaussian 200th FTLE (Fig. 10), convergence

is even faster. A large-deviation principle is valid from τ =
5 d and all of the estimates of the rate function are in almost

perfect agreement. The estimates of the diffusion coefficient

show corresponding behaviour.

For the smallest, most dissipative exponent (Fig. 11), the

convergence to a large-deviation principle is very slow, even

slower than for the first, most unstable exponent. A large-

deviation principle is valid from about τ = 30 d, and the Leg-

endre transform method gives reliable estimates of the rate

function from τ = 10 to 20 d. Also, the convergence of the

diffusion coefficient is markedly slow. The estimate from the

non-Gaussian probability density is initially too low and con-

verges at about τ = 25 d.

The different speeds of convergence to a large-deviation

principle for the different FTLEs can be understood from

the degrees of serial correlation and non-Gaussianity of the

Figure 9. (a) Large-deviation rate function of the 92th FTLE.

(b) Element D92,92 of the diffusion matrix.

Table 6. Correlation length l
(1τ)
j

of the time series of the FTLE

3
(1τ)
j

with 1τ = 1 d.

j 1 5 92 200 693

l
(1τ)
j

2.07 2.10 1.61 1.38 3.25

FTLEs. The correlation length of the FTLE 3
(τ )
j is defined

as

l
(τ )
j = 1 + 2

∞
∑

i=1

ρ
(τ )
j,i , (54)

where ρ
(τ )
j,i is the autocorrelation of the FTLE 3

(τ )
j at

lag i. Note that a lag of 1 here refers to two consecu-

tive but non-overlapping integration time intervals of length

τ , that is to say ρ
(τ )
j,i is the autocorrelation at lag i of

the sub-sampled time series of 3
(τ )
j as introduced above

for the model selection of the probability density model,

{3(τ )
j,m,3

(τ )
j,m+n,3

(τ )
j,m+2n, . . .}, for m = 0,1, . . .,n − 1. There

are n of these which can be used to generate n estimates of
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Figure 10. (a) Large-deviation rate function of the 200th FTLE.

(b) Element D200,200 of the diffusion matrix.

l
(τ )
j and then take the average. The definition of the corre-

lation length of Eq. (54) occurs naturally in the formulation

of the CLT for dependent random variables (e.g. Billings-

ley, 1995) under the assumption of a Markov process that

is sufficiently mixing. Now consider two integration times

τ1 = n11τ and τ2 = n21τ with n1 ≤ n2 and n′ = n2/n1 be-

ing an integer for simplicity; one could consider a continu-

ous integration time τ in the limit 1τ → 0. The variances of

3
(τ1)
j and 3

(τ2)
j are linked as

[

σ
(τ2)
j

]2
=
[

σ
(τ1)
j

]2
l
(τ1)
j /n′, and

the two estimates of the diffusion coefficient, as calculated

from the time series or the Legendre transform, are linked as

D
(τ2)
j,j = D

(τ1)
j,j l

(τ1)
j . This holds in the limit n′ → ∞, otherwise

l
(τ1)
j needs to be replaced with a counterpart that takes only

a finite number of lags into account and also contains some

correction terms. Convergence to a large-deviation principle

is limited by serial correlation of the FTLEs. Convergence to

the diffusion limit, that is to the Gaussian approximation of

the large-deviation regime, can certainly not be expected be-

fore the serial correlations have decayed, that is to say when

l
(τ )
j ≈ 1. If the distribution of the FTLEs is Gaussian or close

to Gaussian the large-deviation limit is equivalent to the dif-

Figure 11. (a) Large-deviation rate function of the 693th FTLE.

(b) Element D693,693 of the diffusion matrix.

fusion limit and convergence occurs immediately after cor-

relation decay; otherwise it is further delayed, generally the

longer the delay the larger the departure from Gaussianity.

Table 6 gives the correlation length of the selected FTLEs

3
(1τ)
j at the basic integration time 1τ = 1 d. Note that l

(1τ)
j

does not allow one to directly calculate the value of τ at

which convergence to a large-deviation principle occurs but

it gives an impression of the timescales of temporal correla-

tion and how they differ for the different FTLEs. Overall,

temporal correlation is not very pronounced for all of the

FTLEs, but the correlation length varies by a factor of 2.35

from the shortest to the longest. The rapid convergence to a

large-deviation principle for the zero and weakly dissipative

exponents is in line with their short correlation length and

almost Gaussian distribution. For the first and the last expo-

nent convergence is delayed beyond what is expected from

the somewhat larger correlation length due to the strong non-

Gaussianity .

6.3.2 Two-dimensional approach

As an example of a multivariate large-deviation analysis,

Fig. 12 shows the joint large-deviation rate function of the
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Figure 12. Joint large-deviation rate function of the first two FTLEs as estimated from the joint probability density for (a) τ = 10 d, (b) τ =
15 d and (c) τ = 25 d; and with the Legendre transform for (d) τ = 10 d, (e) τ = 15 d and (f) τ = 25 d. Black dots indicate the global LEs

(λ1,λ2); and red dots in panels (a), (b) and (c) indicate the maximum of the joint probability density. (g) Elements D1,1 (solid), D2,2

(dashed) and D1,2 (dotted) of the diffusion matrix as estimated from the curvature of the probability density-based rate function (cyan), from

the curvature of the Legendre transform-based rate function (magenta) and from the time series of the FTLEs (black).

first two FTLEs, 31 and 32. The estimates of the diffusion

coefficients D1,1, D2,2 and D1,2 are also shown. The poten-

tial function for the joint probability density is chosen as

U (τ )(z1,z2) =
M
∑

i=1

i
∑

j=0

β
(τ )
i,j

(

z1 − λ1

σ
(τ )
1

)i−j(

z2 − λ2

σ
(τ )
2

)j

,

(55)

where the order of the model is fixed a priori at M = 4.

The joint rate function displays markedly non-Gaussian be-

haviour and some dependence between 3
(τ )
1 and 3

(τ )
2 . Con-

vergence to a large-deviation principle is mainly reached at

τ = 15 d, as can be seen from the probability density-based

estimates of the joint rate function. The estimates from the

Legendre transform are in agreement and already indicate the

joint rate function at τ = 10 d. The elements of the diffusion

matrix are well estimated overall with detailed convergence

being somewhat slow in accordance with the univariate anal-

ysis for the first FTLE. The estimate of the off-diagonal ele-

ment D1,2 is particularly good.

7 Conclusions

The statistical properties of the fluctuations of FTLEs were

investigated in a three-level quasi-geostrophic atmospheric

model with realistic mean state and variability. The Lya-

punov spectrum of the model has almost 100 positive LEs

and displays no clear timescale separation.

A principal component analysis of the fluctuations of the

FTLEs around their mean values was performed. The scaled

covariance matrix of the fluctuations is converged to the lim-

iting diffusion matrix at about τ = 15 d. There are substantial

correlations among the different FTLEs. The first three em-

pirical orthogonal functions are patterns where the leading

positive FTLEs fluctuate together in phase. These modes are

largely independent of the integration time τ .

A large-deviation principle can be established for all of

the FTLEs. The convergence to the large-deviation limit is

slightly slow for the most unstable and the most stable FTLEs

and very fast in between. Convergence to the diffusion limit,

that is to the Gaussian approximation of the large-deviation

regime, is generally faster. Also a joint large-deviation rate

function for the first and the second FTLE was successfully

estimated beyond the Gaussian approximation. Good corre-

spondence was found between the curvature of the rate func-

tions at the minimum and the corresponding elements of the

diffusion matrix.
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Two different methods for estimating the large-deviation

rate functions from the data were discussed: an approach

via the probability density function and an approach using

the Legendre transform. The Legendre transform method ap-

pears to be generally superior for finding the rate function

as (i) convergence occurs at a smaller value of the integra-

tion time τ where more independent data are available and

(ii) it yields diffusion coefficients fully consistent with their

direct estimation from the data. Nevertheless, both methods

should be considered side by side as the probability density

approach allows one to monitor if/when the probability den-

sity function has actually reached the large-deviation regime.
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