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Abstract

We consider the totally asymmetric simple exclusion process on a ring with flat

and step initial conditions. We assume that the size of the ring and the number

of particles tend to infinity proportionally and evaluate the fluctuations of tagged

particles and currents. The crossover from the KPZ dynamics to the equilibrium

dynamics occurs when the time is proportional to the 3/2 power of the ring size.

We compute the limiting distributions in this relaxation time scale. The analysis

is based on an explicit formula of the finite-time one-point distribution obtained

from the coordinate Bethe ansatz method. © 2017 Wiley Periodicals, Inc.

1 Introduction

Consider interacting particle systems in one dimension in the KPZ universality

class such as the asymmetric simple exclusion processes. The one-point fluctua-

tions (of the location of a particle or the integrated current at a site, say) in large

time t are of order t1=3 if the system size is infinite and converge typically to the

Tracy-Widom distributions. These are proved for the totally asymmetric simple

exclusion process (TASEP), the asymmetric simple exclusion process (ASEP), and

a few other related integrable models for a few choices of initial conditions (see,

for example, [1, 11, 22, 39]; see also [14] for a survey). On the other hand, if the

system size is finite, then the system eventually reaches an equilibrium and hence

the one-point fluctuations follow the t1=2 scale and the Gaussian distribution. In

this paper we assume that the system size L grows with time t and consider the

crossover regime from the KPZ dynamics to the equilibrium dynamics. In the KPZ

regime, the spatial correlations are of order t2=3. Hence if the system size L is of

order t2=3, then all of the particles in the system are correlated. This suggests that

the transition, or the relaxation, occurs when t D O.L3=2/ [12, 16, 20, 21, 24, 30].

We focus on one particular model: the TASEP on a ring. A ring of size L is

identified as ZL D Z=L, which can be represented by the set f0; 1; : : : ; L � 1g.

The point L is identified with 0. We assume that there are N particles, and they

travel to the right following the usual TASEP rules, but a particle at site L � 1 can

jump to the right if the site 0 is empty, and once it jumps, then it moves to the site 0.
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The TASEP on a ring is equivalent to the periodic TASEP. In the periodic TASEP,

the particles are on Z such that if a particle is at site i , then there are particles at sites

i C nL for all n 2 Z, and if a particle at site i jumps to the right, then the particles

at sites i C nL, n 2 Z, all jump to the right. A particle in the TASEP on a ring

is in correspondence with infinitely many particles of the periodic TASEP, each of

which encodes a winding number around the ring of the particle on the ring. We

also note that if we only consider the particles in one period in the periodic TASEP,

then their dynamics are equivalent to the TASEP in the configuration space

(1.1) XN .L/ WD f.x1; x2; : : : ; xN / 2 Z
N W x1 < x2 < � � � < xN < x1 C Lg:

The difference is that there are N particles in the TASEP in XN .L/ while the

periodic TASEP has infinitely many particles. We use three systems, the TASEP

on a ring, the periodic TASEP, and the TASEP in XN .L/, interchangeably and

make comments only if a distinction is needed.

As for the initial conditions, we consider the flat and step initial conditions.

The number of particles in the ring of size L is denoted by N where N < L.

We consider the limit as N; L ! 1 proportionally and time t D O.L3=2/, and

prove limit theorems for the fluctuations of the location of a tagged particle in the

periodic TASEP and also the integrated current of a fixed site. We show that the

order of the fluctuations is still t1=3 as in the KPZ universality class but the limiting

distributions are changed, which we compute explicitly. The limiting distributions

depend continuously on the rescaled time parameter � , which is proportional to

tL�3=2.

For the step initial condition, the limiting distribution depends on one more pa-

rameter. Due to the ring geometry, the rightmost particle eventually meets up with

the leftmost particle, which is in a high-density profile due to the step initial condi-

tion, and therefore there is a shock. The shock travels with speed 1�2� on average

where � D N=L is the average density of particles, while the particles travel with

speed asymptotically equal to 1 � � on average. Hence due to the ring geometry,

a particle meets up with the shock once every O.L/ time. For t � L3=2, the

fluctuations of the number of jumps by a particle are distributed asymptotically as

the GUE Tracy-Widom distribution FGUE, as in the L D 1 case, if the particle

is away from the shock. However, if the particle is at the same location as the

shock at the same time, the fluctuations are given by .FGUE/2. (To be precise, for

t D O.L/, they are given by FGUE.x/FGUE.cx/ for some positive constant c that

depends on t=L. For L � t � L3=2, the constant c is 1.) The change from FGUE

to .FGUE/2 at the shock is a similar phenomenon to the anomalous shock fluctua-

tions studied by Ferrari and Nejjar [17] for the TASEP on the infinite lattice Z (see

also Section 2 below.). In the relaxation time scale t D O.L3=2/, the effect of the

shock becomes continuous in the following sense. If we introduce a parameter 

to measure the scaled distance of a tagged particle to the shock, or equivalently

the scaled time until the next encounter with the shock, then the fluctuations of the
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location of a tagged particle converge to a two-parameter family of limiting distri-

butions depending continuously on � and  . The limiting distribution for the flat

initial condition in the relaxation time scale, on the other hand, depends only on � .

In order to prove the asymptotic result, we first obtain an explicit formula for

the finite-time distribution function for the location of a particle in the TASEP in

XN .L/ by using the coordinate Bethe ansatz method [7, 21, 36, 38]. Namely, we

first solve the Kolmogorov equation explicitly and obtain the transition probability

by solving the free evolution equation with appropriate boundary conditions and

initial condition. The condition xN < x1 C L gives an extra boundary condition

compared with the TASEP on Z. We then sum over all but one particle to obtain a

formula for the finite-time distribution function for one particle for general initial

condition. This formula can be further simplified for the flat and the step initial

conditions that are suitable for asymptotic analysis. The final formula for the finite-

time distribution functions is given in terms of an integral involving a Fredholm

determinant on a finite discrete set (see Section 7 below). If we take L; N ! 1
while fixing t and the other parameters, the discrete set becomes a continuous

contour, and we recover the Fredholm determinant formulas for the TASEP on Z

for the step and flat initial conditions [9, 11, 22].

We only discuss the relaxation time scale in this paper. The results for sub-

relaxation time scale, t � L3=2, are discussed in a separate paper [3], and those

for super-relaxation time scale, t � L3=2, will appear in an upcoming paper.

The TASEP on a ring was studied in several physics papers. The relaxation time

scale t D O.L3=2/ was first studied by Gwa and Spohn [21]. They considered

the eigenvalues of the generator of the system using the Bethe ansatz method, and

argued through numerics that the spectral gap is of order L�3=2. This can be in-

terpreted as an indication that the relaxation scale is t D O.L3=2/. The spectral

gap was further studied in [18, 19]. The method of [21] was extended by Der-

rida and Lebowitz [16] to compute the large deviations for the total current by

all particles in the super-relaxation scale t � L3=2 (see also [15, 37] for surveys).

The finite-time transition probabilities for general initial conditions were computed

by Priezzhev [29] by adapting the coordinate Bethe ansatz of Schütz [36] for the

TASEP on Z. The result was given in terms of a certain series, and it was further

refined in [27]. A different approach to finding the transition probability was also

presented in [28]. However, the asymptotic results for currents and particle loca-

tions in the relaxation time scale were not obtained from the finite-time transition

probability formulas. Some other heuristic arguments and nonrigorous asymptotic

results can be found in [12, 20, 24, 30].

More recently, Prolhac studied the bulk Bethe eigenvalues, not only the spectral

gap, in detail in the thermodynamic limit [31], and also in the scale L�3=2, the

same scale as the spectral gap [32, 33]. Using these calculations, and assuming

that (a) the eigenfunctions obtained in [31–33] form a complete basis and (b) all

the eigenstates of order L�3=2 are generated from excitations at a finite distance
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from the stationary eigenstate, he computed the limiting distributions for the cur-

rent fluctuations in the relaxation time scale [34]. The assumptions are not proved

and the analysis of [34] is not rigorous. (The completeness is proved, however,

for discrete-time TASEP [28] and also for ASEP for generic asymmetric hopping

rate 0 < p < 1
2

[13].) Prolhac obtained the results for flat, step, and stationary

initial conditions when L D 2N . In this paper, we consider the flat and step initial

conditions for more general L and N , and obtain rigorous limit theorems for the

tagged particles and the currents. The stationary initial condition can also be stud-

ied by the method in this paper, and it is discussed in a separate paper [25]. Even

though our paper also uses the Bethe ansatz method, the approach is different: Pro-

lhac computed the eigenfunctions of the generator and diagonalized the generator

while we compute the transition probabilities using coordinate Bethe ansatz and

compute the finite-time one-point distribution explicitly. The formulas of the lim-

iting distributions obtained in this paper and Prolhac’s share many similar features

(compare (4.2) and (4.10) below with equation (10) of [34]), and the numerical

plots show that the functions do agree. However, it is still yet to be checked that

these functions are indeed the same. We point out that our work was done inde-

pendently from and at the same time as Prolhac’s paper; we had obtained all the

algebraic results and the asymptotic results for the step conditions by the time when

Prolhac’s paper appeared.

Before we present the main results, we discuss a heuristic argument about the

relaxation time scale in terms of a periodic directed last passage percolation in

Section 2. However, the materials in Section 2 are not used in the rest of the

paper. The main asymptotic results of this paper are presented in Section 3, and

the limiting distributions are described in Section 4. The finite-time formulas are

given in Section 5 for the transition probability and in Section 6 for the one-point

distribution function for general initial conditions, respectively. The last formula is

further simplified in Section 7 for the flat and step initial conditions. In Section 8,

we analyze the formulas in Section 7 asymptotically and prove the main theorems

in Section 3. Some technical lemmas for the asymptotic analysis are proved in

Section 9. Finally, Theorem 3.5 for the current for the step initial condition is

proved in Section 10.

2 Periodic DLPP

There is a natural map between the TASEP and the directed last passage perco-

lation (DLPP) model (see, for example, [22]). We do not use this correspondence

in the rest of the paper. However, the DLPP model provides a heuristic way to

understand the relaxation time scale t D O.L3=2/ and the fluctuations, and we

discuss them in this section. Some of the following arguments, especially for the

limit theorems for the sub-relaxation time scale, can be proved rigorously. See [3]

for more details.
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DLPP models are defined by the weights w.p/ on the lattice points p 2 Z
2. We

assume that the weights are independent exponential random variables of mean 1.

For two points c and p in Z
2 where c is to the left of and below p, the point-to-

point last passage energy from c to p is defined as Gc.p/ WD max� E.�/, where

the maximum is taken over the weakly up/right paths � from c to p, and the energy

of path � is defined by E.�/ WD
P

q2� w.q/. Note that Gc.p/ has the same

distribution as G0.p � c/ by translation. We use the notation p D .p1; p2/ ! 1
to mean p1 ! 1 and p2 ! 1. A fundamental result for the point-to-point

last-passage energy for the exponential weights is that [22]

(2.1)
G0.p/ � d.p/

s.p/
) �GUE

in distribution as p ! 1 where �GUE is a GUE Tracy-Widom random variable

and the term d.p/ is given by

(2.2) d.p/ D .
p

p1 C p
p2/2; p D .p1; p2/;

which implies that d.p/ D O.jpj/. The other term s.p/ satisfies O.jpj1=3/, im-

plying that the “shape fluctuations” of G0.p/ are of order O.jpj1=3/. Moreover,

the maximal path � for G0.p/ is concentrated about the straight line from 0 to p

within the order O.jpj2=3/ [2, 6, 23]. We call this deviation of the maximal path

from the straight line the transversal fluctuations.

Now consider the periodic TASEP. In the map between the TASEP and the

DLPP, the weight w.p/ for DLPP at p D .p1; p2/ represents the time for the

particle p2 to make a jump from site p1 � p2 to p1 � p2 C 1 once it becomes

empty. Hence the DLPP corresponding to the periodic TASEP has the periodic

structure

(2.3) w.p/ D w.q/ if p � q D .L � N; �N /.

The initial condition for the periodic TASEP is mapped to a boundary condition for

the periodic DLPP. Among the two initial conditions, we consider the step initial

condition for the periodic TASEP in detail since it gives a richer structure. Assume

that the initial condition of the periodic TASEP is of type

: : : ; 1; 1; 1; 0; 0
„ ƒ‚ …

L

; 1; 1; 1; 0; 0
„ ƒ‚ …

L

; 1; 1; 1; 0; 0
„ ƒ‚ …

L

; : : :

in which N consecutive particles are followed by L � N empty sites. Then the

boundary of the DLPP model is of staircase shape as shown in Figure 2.1. The

weights are 0 to the left of this boundary. The nonzero weights satisfy the peri-

odic structure (2.3), or otherwise are independent exponential random variables of

mean 1. See Figure 2.1.

Let H.p/ denote the last passage energy to the lattice point p (from any point

on the boundary). Then H.p/ is related to the current of the periodic TASEP: If

we set the corner c1 in Figure 2.1 as the point .1; 1/, then the xi .t/ � xi .0/ > j if

and only if H.j; N � i C 1/ < t for 1 � i � N . We now assume that N; L ! 1
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Figure 2.1. A part of the periodic DLPP

with step initial condition for L D 7,

N D 3. The blocks with the same num-

ber are identical copies of each other. On

the other hand, the blocks with different

numbers are independent.

L-N

c

p

3 4 5 6

2 3 4 5

1 2 3 4

|p|
2/3

N

Figure 2.2. The maximal path stays

within the dashed lines with high prob-

ability. Note that the parts of the two

blocks with number 2 within the dashed

lines do not overlap if we translate one

block to another. Therefore the weights

in the dashed lines are independent.

proportionally and consider H.p/ as p ! 1. The limit p ! 1 is closely related

to the limit as time t ! 1 for the periodic TASEP.

Due to the boundary shape, we see that H.p/ D maxc Hc.p/ where Hc.p/

denotes the point-to-point last passage energy from c to p in the periodic DLPP

and the maximum is taken over all bottom-left corners c of the boundary stair-

case. See Figure 2.1. Consider a corner c. Note that jp � cj D O.jpj/. Due

to the periodicity of the weights, Hc.p/ is different from Gc.p/ for which all

weights are independent. However, the transversal fluctuation for Gc.p/ has or-

der O.jp � cj2=3/ D O.jpj2=3/, and if L � jpj2=3, then the weights in the

O.jpj2=3/-neighborhood of the straight line from c to p for the periodic DLPP are

independent. See Figure 2.2. This suggests that Hc.p/ � Gc.p/ if L � jpj2=3,

and hence H.p/ � maxc Gc.p/. From (2.2), it is direct to check that the set

x D .x1; x2/ 2 R
2
C satisfying d.x/ � r is a strict convex set for every r > 0.

This implies that, due to the geometry of the staircase boundary, maxc d.p � c/ is

attained either at a single corner or at two corners. See Figure 2.3. The thick diag-

onal curves in Figure 2.3 are the set of points p at which maxc d.p � c/ is attained

at two corners. Explicitly, they are the curves given by .
p

x � c1 C p
y � c2/2 D

.
p

x � c0
1 C

p

y � c0
2/2 where c D .c1; c2/ and c0 D .c0

1; c0
2/ are neighboring

corners. These curves are asymptotically straight lines of slope .�=.1 � �//2. In

the periodic TASEP, these curves correspond to the trajectory of the shocks in the

space-time coordinate system. We call these curves the shock curves for the peri-

odic DLPP.

If maxc d.p � c/ is attained at a single corner c0, then H.p/ � Gc0
.p/. More-

over, it is easy to check from (2.2) that for a neighboring corner c, d.p � c0/ �
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Figure 2.3. The thick diagonal curves are

the shock curves. They are only asymp-

totically straight lines. In the left pic-

ture, p is not on the shock curve and

d.p�c/ > d.p�c0/. In the right picture,

p is on the shock curve and d.p � c/ D
d.p � c0/.

Figure 2.4. For jpj D O.L3=2/, H.p/ D
maxc Hc.p/ is a maximum of correlated

random variables Hc.p/. The fluctua-

tions depend on the relative distance of p

to the shock curves.

d.p � c/ D O.L2=jpj/, which is greater than the order jpj1=3 of the shape fluc-

tuations of Gc0
.p/ if L � jpj2=3. Hence our heuristic argument implies that

H.p/ � d.p � c0/ C s.p � c0/�GUE when L � jpj2=3.

On the other hand, if maxc d.p � c/ is attained at two corners, then H.p/ is

the maximum of two essentially independent random variables and hence we find

H.p/ � d.p � c0/ C s.p � c0/�GUE2 where �GUE2 is the maximum of two

independent GUE Tracy-Widom random variables with different variances.

The above heuristic argument is made under the assumption that jpj2=3 � L,

which corresponds to the condition L � t2=3 in terms of the periodic TASEP. It is

possible to make the above argument rigorous. See [3] for more details.

Now for jpj2=3 D O.L/, it is no longer true that Hc.p/ � Gc.p/ for each c

since the maximal path is not necessarily concentrated in a domain where the

weights are independent. This also implies that Hc.p/ and Hc0.p/ for neighboring

corners c; c0 are not essentially independent. Moreover, even if maxc d.p � c/ is

attained at a single corner c0, we have d.p � c0/ � d.p � c/ D O.L2=jpj/ D
O.jpj1=3/ for a neighboring corner c, and this is the same order of the shape fluc-

tuations of Gc0
.p/. Hence we expect that H.p/ D maxc Hc.p/ results from the

contribution from an O.1/-number of the corners c near c0. Furthermore, the fluc-

tuation of H.p/ depends on the relative location of p from the shock curves: see

Figure 2.4. Indeed, the main result of this paper in the next section (written for the

periodic TASEP) shows that the fluctuations of H.p/ depend on two parameters in

the limit p D O.L3=2/ ! 1. The first one is p=L3=2, which corresponds to �

in the main theorems and measures the location of p in the .1; 1/-direction: If this

parameter is larger, then the maximal path deviates more and the correlation be-

tween Hc.p/ and Hc0.p/ is stronger. The second parameter is the relative distance

of p to the shock curves, which corresponds to the parameter  � 1
2

in the main

theorem and measures the location of p in the .1; �1/-direction. From Figure 2.4,

the distribution should be symmetric under  ! � and  !  C 1.
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For the flat initial condition, there are no shock curves and there is no depen-

dence on  . The fluctuation depends only on � .

3 Limit Theorems

Now we present our main asymptotic results.

3.1 Tagged Particle for the Flat Case

We consider the TASEP on a ring of size L with N particles. The particles jump

to the right. Fix d 2 Z�2. Let L and N be integers and satisfy dN D L. Assume

that the particles are located initially at

(3.1) xj .0/ D jd; j D 1; 2; : : : ; N:

Hence d denotes the initial distance between two neighboring particles. We extend

the TASEP on a ring to the periodic TASEP on Z by setting

(3.2) xj .t/ WD xj CN .t/ C L; j 2 Z:

We also denote by

(3.3) � D N

L
D 1

d

the average density of particles. Then we have the following limit theorem in the

relaxation scale.

THEOREM 3.1. Fix d 2 Z�2 and set � D 1=d . Consider L 2 dZ and set

N D �L D L=d . Set

(3.4) t D �
p

�.1 � �/
L3=2

where � 2 R>0 is a fixed constant denoting the rescaled time. Then the periodic

TASEP associated to the TASEP on a ring of size L with the flat initial condi-

tion (3.1) satisfies, for an arbitrary sequence k D kL satisfying 1 � kL � N ,

(3.5) lim
L!1

P

�
.xk.t/ � xk.0// � .1 � �/t

��1=3.1 � �/2=3t1=3
� �x

�

D F1.�1=3xI �/; x 2 R:

Here F1.xI �/ is the distribution function defined in (4.2) below.

In terms of the TASEP on a ring, xk.t/ � xk.0/ in (3.5) represents the number

of jumps the particle with index k made through time t .

The scaling in (3.5) is the same as the sub-relaxation time scale and also as the

TASEP on Z. See, for example, (1.3) of [11] for the � D 1
2

case (there is a small

typo in [11]; the inequality should be reversed).

Remark 3.2. Theorem 3.1 holds for any fixed � 2 fd�1 W d D 2; 3; : : : g. However,

by applying the duality of particles and empty sites in the periodic TASEP, it is easy

to check that the theorem also holds for � 2 f1 � d�1 W d D 2; 3; : : : g.
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3.2 Current for the Flat Case

Let Ji .t/ denote the number of particles that had passed the interval .i; i C1/, or

the (time-integrated) current at site i . Due to the flat initial condition, it is enough

to consider the current at one site, say at i D 0.

THEOREM 3.3. Fix d 2 Z�2 and let � be either d�1 or 1�d�1. Consider L 2 dZ

and set N D �L. Set

(3.6) t D �
p

�.1 � �/
L3=2;

where � is a fixed positive number. Then for the TASEP on the ring of size L with

flat initial condition of average density �,

(3.7) lim
L!1

P

�
J0.t/ � �.1 � �/t

�2=3.1 � �/2=3t1=3
� �x

�

D F1.�1=3xI �/; x 2 R:

Here the flat initial condition means (3.1) when � � 1
2

. For � > 1
2

, it means that

initially the sites jd , j D 1; 2; : : : ; N , are empty and the other L � N sites are

occupied by particles.

For � 2 fd�1 W d D 2; 3; : : : g, the above result follows immediately from

Theorem 3.1 by using the simple relation

(3.8) P .xk.t/ � `L C 1/ D P .J0.t/ � `N � k C 1/

for all 1 � k � N and ` D 0; 1; : : : : The result for � 2 f1 � d�1 W d D 2; 3; : : : g
follows by noting that J0.t/ is symmetric under the change of the particles to the

empty sites.

3.3 Tagged Particle for the Step Case

Consider the TASEP on a ring of size L with the step initial condition

(3.9) xj .0/ D �N C j; j D 1; 2; : : : ; N:

Here we represent the ring as f�N C 1; �N C 2; : : : ; L � N g. We define the

periodic TASEP by setting xj .t/ D xj CN .t/ C L, j 2 Z, as before.

The notation Œy� denotes the largest integer that is less than or equal to y.

THEOREM 3.4. Fix two constants c1 and c2 satisfying 0 < c1 < c2 < 1 and set

(3.10) B.c1; c2/ WD
˚

.N; L/ 2 Z
2
�1 W c1L � N � c2L

	

:

Let .Nn; Ln/ be an increasing sequence of points in B.c1; c2/ that tends to infinity,

i.e., Nn ! 1, Ln ! 1 as n ! 1. Set

�n WD Nn=Ln;(3.11)

which satisfies �n 2 Œc1; c2� by the definition of B.c1; c2/. Fix  2 R and let n be

a sequence of real numbers satisfying

(3.12) n WD  C O
�

L�1=2
n

�

:
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Set

tn D Ln

�n

�
�
p

�np
1 � �n

L1=2
n

�

C Ln

�n
n C Ln

�n

�

1 � kn

Nn

�

(3.13)

where � 2 R>0 is a fixed constant. Then the periodic TASEP associated to the

TASEP on a ring of size Ln with the step initial condition (3.9) satisfies, for an

arbitrary sequence of integers kn satisfying 1 � kn � Nn,

(3.14) limn!1 P

�

.xkn .tn/�xkn .0//�.1��n/tnC.1��n/Ln.1�kn=Nn/

�
�1=3
n .1��n/2=3t

1=3
n

� �x

�

D F2.�1=3xI �; /;

for every fixed x 2 R. Here F2.xI �; / is the distribution function defined in (4.10)

below. It satisfies F2.xI �; / D F2.xI �;  C 1/ and F2.xI �; �/ D F2.xI �; /.

The term .1 � �n/Ln.1 � kn=Nn/ D ��1
n .1 � �n/.Nn � kn/ in (3.14) is due to

the delay of the start time of the particle indexed by kn: the particle with smaller

index starts to jump (due to the initial traffic jam) at a later time, and hence the

number of jumps, xkn
.tn/ � xkn

.0/, through the same time tn is smaller, as we see

in (3.14).

The scaling (3.13) of time has the following interpretation. The shocks for

the periodic TASEP with step initial condition are generated at a certain time,

maxfLn=4�n; Ln=4.1 � �n/g on average, and then move with speed 1 � 2�n on

average to the right. This can be seen either from the periodic DLPP in Section 2 or

by solving the Burgers equation. On the other hand, the particles move to the right

with a speed that is asymptotically equal to 1 � �n on average, which can be seen,

for example, from the leading term .1 � �n/tn in (3.14). Since the relative speed of

a particle to the shocks is �n, a particle has encountered the shocks �ntn=Ln times

on average after time tn. Let us write (3.13) as

�ntn

Ln
D

�
�
p

�np
1 � �n

L1=2
n

�

C n C 1 � kn

Nn
;(3.15)

and consider its integer part and the fractional part. The above theorem shows that

the limit is the same if n is shifted by integers. Hence we may take n so that

n C 1 � kn=Nn 2 .�1
2
; 1

2
�. Then

�
�
p

�np
1 � �n

L1=2
n

�

is the integer part of (3.15), and it represents the number of encounters with shocks

by time tn. This depends on � but not on n. The fractional part n C 1 � kn=Nn,

on the other hand, represents the relative time remaining until the next encounter

with a shock. Here the term 1�kn=Nn is again due to the time delay by the particle

indexed by kn.
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3.4 Current for the Step Case

THEOREM 3.5. Fix two constants c1 and c2 satisfying 0 < c1 < c2 < 1, and

let .Nn; Ln/ be an increasing sequence of points in B.c1; c2/ that tends to infinity.

Set �n WD Nn=Ln. Then the TASEP on a ring of size Ln with step initial condi-

tion (3.9) satisfies the following results where � 2 R>0,  2 R, and x 2 R are

fixed constants.

(a) Suppose �n D 1
2

C O.L�1
n /. Let

(3.16) mn D ŒLn�;  2 .�1
2
; 1

2
�

and set

(3.17) tn D 2�L3=2
n :

Then we have

(3.18) lim
n!1

P

�
Jmn

.tn/ � tn=4 C jmnj=2

�
2=3
n .1 � �n/2=3t

1=3
n

� �x

�

D F2.�1=3xI �; /:

(b) Suppose j�n � 1=2j D jNn=Ln � 1=2j � c for a constant c > 0 for all n.

Let mn be an arbitrary sequence of integers satisfying �Nn C 1 � mn �
Ln � Nn, and set

(3.19) tn D Ln

j1 � 2�nj

� j1 � 2�nj�
p

�n.1 � �n/
L1=2

n

�

� Ln

1 � 2�n
C mn

1 � 2�n

for  2 R. Then we have

(3.20) lim
n!1

P

�
Jmn

.tn/ � �n.1 � �n/tn C jmnj=2 � .1 � 2�n/mn=2

�
2=3
n .1 � �n/2=3t

1=3
n

� �x

�

D F2.�1=3xI �; /:

The proof is given in Section 10.

In the above, we have a different parametrization of time from (3.13). This is

because the site is fixed, and hence the shock, which travels with speed 1 � 2�n,

arrives at the given site once every Ln=j1 � 2�nj units of time on average if �n ¤
1
2

. If �n D 1
2

, the shock stays at the same site for all time on average.

4 The Limiting Distribution Functions

In this section we describe the limiting distribution functions that appeared in

the main theorems in the previous section. Throughout the paper, log denotes the

usual logarithm function with branch cut R�0. Let Lis.´/ be the polylogarithm

function. It is defined by Lis.´/ WD
P1

kD1
´k

ks for j´j < 1, s 2 C, and has an

analytical continuation

(4.1) Lis.´/ D ´

�.s/

Z 1

0

xs�1

ex � ´
dx; ´ 2 C n R�1;
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Figure 4.1. Picture of S´;left (points with negative real part) and S´;right (points with

positive real part) when ´ D 0:5ei.

if Re.s/ > 0.

4.1 The Flat Case

The limiting distribution for the flat case is defined by, for � > 0,

(4.2) F1.xI �/ D
I

exA1.´/C�A2.´/CA3.´/CB.´/ det
�

I � K
.1/
´

� d´

2� i´
; x 2 R:

The contour of integration is any simple closed contour in j´j < 1 that contains the

origin inside. The terms involved in the formula are defined as follows.

Set

(4.3)

A1.´/ WD � 1p
2�

Li3=2.´/; A2.´/ WD � 1p
2�

Li5=2.´/;

A3.´/ WD �1

4
log.1 � ´/;

and

(4.4) B.´/ WD 1

4�

Z ´

0

.Li1=2.y//2

y
dy:

The integral for B.´/ is taken over any curve in C n R�1. These four functions are

analytic in ´ 2 C n R�1.

The operator K
.1/
´ acts on `2.S´;left/ where S´;left is the discrete set defined by

(4.5) S´;left D f� 2 C W e��2=2 D ´; Re.�/ < 0g:
See Figure 4.1 for a picture. It is easy to check that S´;left is contained in the sector

arg.�/ 2 .3�=4; 5�=4/ in the complex plane and has the asymptotes arg.�/ D
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˙i3�=4. In order to define the kernel of the operator K
.1/
´ , we first introduce the

function

(4.6)
‰´.�I x; �/ WD �1

3
��3 C x� � 1p

2�

Z �

�1
Li1=2.e�!2=2/d!;

arg.�/ 2 .3�=4; 5�=4/:

Here �1 denotes �1 C i0 and the integration is taken along a contour from �1
to � , which lies in the sector arg.w/ 2 .3�=4; 5�=4/. Note that e�!2=2 … R�1

for w in this sector, and hence Li1=2.e�!2=2/ is defined for such w. Also, note

that from the definition of the polylogarithm function, Li1=2.s/ D O.s/ as s ! 0.

Therefore, the integral in (4.6) is convergent. We finally define the kernel of K
.1/
´

by

K
.1/
´ .�1; �2/ D K

.1/
´ .�1; �2I x; �/

D e‰´.�1Ix;�/C‰´.�2Ix;�/

�1.�1 C �2/
; �1; �2 2 S´;left:

(4.7)

To show that K
.1/
´ is a bounded operator and its Fredholm determinant is well-

defined for j´j < 1, it is enough check that e‰´.�Ix;�/ ! 0 exponentially fast as

j�j ! 1 on the set S´;left. Since the asymptotes of the set S´;left are the lines

arg.�/ D ˙i3�=4, we see that Re.�1
3
��3 C x�/ ! �1 like a cubic polynomial

in the limit. On the other hand, the integral term in the formula of ‰´.�I x; �/ is of

order O.��1/ since

(4.8) � 1p
2�

Z �

�1
Li1=2.e�!2=2/d! D

Z

Re.!/D0

log
�

1 � ´e!2=2
�

! � �

d!

2� i
; � 2 S´;left:

Here and in the rest of this paper, the orientation for the line Re.!/ D 0 in the

integral
R

Re.!/D0 is from 0 � 1i to 0 C 1i. The above identity (4.8) can be

checked by using the power series expansions of the integrands and noting that

1p
2�

Z u

�1
e�!2=2 d! D

Z

Re.!/D0

e.�u2C!2/=2

! � u

d!

2� i

for all u satisfying arg.u/ 2 .3�=4; 5�=4/. It is also easy to see that the Fredholm

determinant det.I � K
.1/
´ / is uniformly bounded for all ´ in a compact subset of

j´j < 1, and it is analytic in j´j < 1 since the set S´;left depends on ´ analytically.

We therefore conclude that F1.xI �/ in (4.2) is well-defined and is independent of

the choice of the contour.

As mentioned in Section 1, the distribution function F1.xI �/ agrees well with

Prolhac’s formula (10) in [34] if we evaluate the functions numerically. However,

the rigorous proof that they are the same is still missing.
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Figure 4.2. Top: The three dashed curves are the density functions of F1.�1=3xI �/ for

� D 1; 0:5; 0:1 from left to right. The solid curve is the density function of FGOE.22=3x/.

Bottom: The dashed curves are the density functions of F1.�� C �1=4
p

2
�1=2xI �/ for

� D 0:1; 0:5; 2:5 from left to right. The solid curve is the standard Gaussian density

function.

The function F1.xI �/ satisfies the following properties:

(a) For each � > 0, F1.xI �/ is a distribution function. It is also a continuous

function of � > 0.

The only nontrivial part is to show that F1.xI �/ ! 0 as x ! �1, and this can

be proved by comparing the periodic TASEP with the TASEP on Z and using the

known properties for the latter. A proof for the stationary initial condition is given

in the appendix of [25]. The flat and step initial condition cases are similar.

In addition, a formal calculation using the explicit formula of F1 indicates that

the following is true:

(b) For each x 2 R, lim�!0 F1.�1=3xI �/ D FGOE.22=3x/.

(c) For each x 2 R,

(4.9) lim
�!1

F1

�

�� C �1=4

p
2

�1=2xI �

�

D 1p
2�

Z x

�1
e�y2=2 dy:

These are consistent with the cases of the sub-relaxation scale t � L3=2 and the

super-relaxation scale t � L3=2. These properties will be discussed in a later

paper [4]. See Figure 4.2.

The one-parameter family of distribution functions, F1.�1=3xI �/, interpolates

FGOE and the Gaussian distribution function. There are other examples of such

families of distribution functions in different contexts such as the DLPP model

with a symmetry [5] and the spiked random matrix models [8, 26]. However, the

distribution functions F1.�1=3xI �/ seem to be new.
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4.2 The Step Case

The limiting distribution function for the step case is defined by, for � > 0 and

 2 R,

(4.10) F2.xI �; / D
I

exA1.´/C�A2.´/C2B.´/ det
�

I � K
.2/
´

� d´

2� i´
; x 2 R:

The integral is over any simple closed contour in j´j < 1 that contains the origin

inside. The functions A1.´/, A2.´/, and B.´/ are same as the flat case. The

operator K
.2/
´ acts on the same space `2.S´;left/ as in the flat case, and its kernel is

given by

K
.2/
´ .�1; �2/ D K

.2/
´ .�1; �2I x; �; /

D
X

�2S´;left

eˆ´.�1Ix;�/Cˆ´.�Ix;�/C 
2

.�2
1 ��2/

�1�.�1 C �/.� C �2/

(4.11)

for all �1; �2 2 S´;left; where

(4.12) ˆ´.�I x; �/ D �1

3
��3 C x� �

r

2

�

Z �

�1
Li1=2.e�!2=2/d!; � 2 S´;left:

The function ˆ´.�I x; �/ is the same as the function ‰´.�I x; �/ for the flat case

except that the coefficient of the integral part is doubled. As before, the operator

and its Fredholm determinant are well-defined. The function F2.xI �; / is well-

defined as well and is independent of the contour.

The function F2.xI �; / satisfies the following properties:

(a) For fixed � and  , F2.xI �; / is a distribution function. It is a continuous

function of � > 0 and  2 R.

(b) F2.xI �; / is periodic in  : F2.xI �; / D F2.xI �;  C 1/.

(c) F2.xI �; / D F2.xI �; �/.

Property (a) is similar to the flat case. For properties (b) and (c), note that  appears

only as e

2

.�2
1 ��2/ in K

.2/
´ in the formula of F2.xI �; /. Since e��2

1 =2 D ´ and

e��2=2 D ´ for �1 2 S´;left and � 2 S´;right, we obtain property (b). On the other

hand, property (c) follows by observing that K
.2/
´ is the product of two operators

and then using the identity det.I � AB/ D det.I � BA/.

It is believed that the following additional properties hold. See Figure 4.3.

(d) For each fixed x 2 R and  2 R,

(4.13) lim
�!0

F2

�

�1=3x � 2

4�
I �; 

�

D

8

<̂

:̂

FGUE.x/; �1

2
<  <

1

2
;

.FGUE.x//2;  D 1

2
;

where FGUE is the Tracy-Widom GUE distribution.
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Figure 4.3. Top: The dashed curves are the density functions of F2.�1=3x � 2

4�
I �; / for

fixed � D 0:1 and three different values of  D 0:2; 0:4; 0:5 from left to right. There are

two solid curves. They are the density functions of FGUE.x/ (left) and FGUE.x/2 (right).

Bottom: The dashed curves are the density functions of F2.�� C �1=4
p

2
�1=2xI �; / for

fixed  D 0:2 and three values of � D 0:05; 0:25; 1 from left to right. The solid curve is

the standard Gaussian density function.

(e) For each fixed x 2 R and  2 R,

(4.14) lim
�!1

F2

�

�� C �1=4

p
2

x�1=2I �; 

�

D 1p
2�

Z x

�1
e�y2=2 dy:

The limit .FGUE/2 in (4.13) when  D 1
2

C Z is due to the fact that in the large

sub-relaxation time scale L � t � L3=2, the limiting distribution is .FGUE/2 if

the tagged particle and the shock are at the same location (see Section 2).

5 Transition Probability for TASEP in XN .L/

As mentioned in the Introduction, if we only consider the particles in one period

in the periodic TASEP, their dynamics are equivalent to the dynamics of the TASEP

(with N particles) in the configuration space

(5.1) XN .L/ D f.x1; x2; : : : ; xN / 2 Z
N W x1 < x2 < � � � < xN < x1 C Lg:

In this section we compute the transition probability for the TASEP in XN .L/ ex-

plicitly for general initial condition. As in [35, 36, 38], we solve the Kolmogorov

equation by solving the free evolution equation with appropriate boundary condi-

tions, which arise from the noncolliding conditions in the Kolmogorov equation

and an initial condition. The change of the TASEP on Z to the TASEP in the con-

figuration space XN .L/ is an additional noncolliding condition xN < x1 C L.
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This results in an extra boundary condition for the free evolution equation and in-

troduces a new feature to the solution.

Let PY .X I t /, for X; Y 2 XN .L/, denote the transition probability that the

configuration at time t is X given that the initial configuration is Y . We have the

following result.

PROPOSITION 5.1. For ´ 2 C, define the polynomial of degree L,

(5.2) q´.w/ D wN .w C 1/L�N � ´L;

and denote the set of the roots by

(5.3) R´ D fw 2 C W q´.w/ D 0g:
Then, for X D .x1; x2; : : : ; xN / 2 XN .L/ and Y D .y1; y2; : : : ; yN / 2 XN .L/,

(5.4) PY .X I t / D
I

det

�
1

L

X

w2R´

wj �iC1.w C 1/�xi Cyj Ci�j etw

w C �

�N

i;j D1

d´

2� i´
:

The integral is over any simple closed contour in j´j > 0 that contains 0 inside and

� WD N=L.

Let us check that the integral does not depend on the contour. Since q´.0/ D
q´.�1/ D �´L ¤ 0, the points 0 and �1 are not in the set R´ for every ´ ¤ 0.

Moreover, for j´j ¤ ��.1 � �/1��, we see that �� … R´. Therefore, the entries in

the determinant in (5.4) are well-defined for ´ ¤ 0 satisfying j´j ¤ ��.1 � �/1��.

Note that since q0
´.w/ D L.w C �/wN �1.w C 1/L�N �1, all roots of q´.w/ are

simple for ´ ¤ 0 satisfying j´j ¤ ��.1��/1��. Hence R´ consists of L points for

such ´. We now show that the entries in the determinant have analytic continuations

across j´j D ��.1 � �/1��. The entries are of form

(5.5)
1

L

X

w2R´

w�N C1.w C 1/�LCN C1F.w/

w C �
D

X

w2R´

F.w/

q 0́ .w/

where

(5.6) F.w/ WD wj �iCN .w C 1/�xi Cyj Ci�j CL�N �1etw :

The function F.w/ is analytic for w 2 C n f�1g since j � i C N � 0 for all

1 � i; j � N . Since w D �1 is not a zero of q´.w/ for every ´ ¤ 0, we obtain by

the residue theorem

(5.7)
X

w2R´

F.w/

q 0́ .w/
D

I

jwC1jDR

F.w/

q´.w/

dw

2� i
�

I

jwC1jD�

F.w/

q´.w/

dw

2� i

where R is large and � is small so that all roots of q´.w/ lie inside the annulus

� < jw C 1j < R. Since we may take R arbitrarily large and � arbitrarily small,

we find that the right-hand side of (5.7) is analytic in j´j > 0. Therefore the
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entries in the determinant in (5.4) have analytic continuations in j´j > 0, and the

formula (5.4) does not depend on the contour.

Remark 5.2. The formula (5.4) is reduced to the transition probability for the usual

TASEP on Z if L � xN �y1C2. In this case, �xi Cyj Ci�j CL�N �1 � 0 for all

i; j , and hence F.w/ in (5.6) above is entire. Thus, the integral over jw C 1j D �

in (5.7) is 0. On the other hand, the first integral is, for a fixed R, analytic for

j´j � r since as ´ ! 0, the roots of q´.w/ converge to 0 and �1. Here r is any

fixed positive constant such that rL � maxjwC1jDR jwN .wC1/L�N j. Thus by the

residue theorem the integral over ´ in (5.4) is the same as the integrand evaluated

at ´ D 0, and hence (5.4) becomes

(5.8) det

�I

jwjDR

wj �i .w C 1/�xi Cyj Ci�j �1etw dw

2� i

�N

i;j D1

:

After the change of variables w C 1 D 1=� , we find that (5.4) becomes

(5.9) det

�I

j�jD�0
.1 � �/j �i�xi �yj et.��1�1/ d�

2� i�

�N

i;j D1

:

This is same as the formula for the transition probability of the TASEP on Z ob-

tained in [36, 38].

PROOF OF PROPOSITION 5.1. For an N -tuple X D .x1; x2; : : : ; xN / 2 Z
N ,

set

Xi D .x1; x2; : : : ; xi�1; xi � 1; xiC1; : : : ; xN /; 1 � i � N:

The transition probability PY .X I t / is the solution to the Kolmogorov equation

(5.10)
d

dt
PY .X I t / D

N
X

iD1

.PY .Xi I t / � PY .X I t //ıXi 2XN .L/

with the initial condition PY .X I 0/ D ıY .X/.

Following the idea of Schütz, and Tracy and Widom, we consider the function

u.X I t / on Z
N � R�0 (instead of XN .L/ � R�0) satisfying the new equations

(called the free evolution equation)

(5.11)
d

dt
u.X I t / D

N
X

iD1

.u.Xi I t / � u.X I t //; X 2 Z
N ;

together with the boundary conditions

(5.12) u.x1; : : : ; xi�1; xi�1 C 1; xiC1; : : : ; xN I t / D
u.x1; : : : ; xi�1; xi�1; xiC1; : : : ; xN I t /

for i D 2; 3; : : : ; N , and

(5.13) u.x1; x2; : : : ; xN �1; x1 C L � 1I t / D
u.x1 � 1; x2; : : : ; xN �1; xN D x1 C L � 1I t /;
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and the initial condition

(5.14) u.X I 0/ D ıY .X/ when X; Y 2 XN .L/:

Then PY .X I t / D u.X I t / for X; Y 2 XN .L/. The change from the TASEP on Z

to the TASEP in XN .L/ is the extra boundary condition (5.13).

We now show that the solution is given by

(5.15) u.X I t / WD
I

j´jDr

det

�
1

L

X

w2R´

fij .xi /

w C �

�N

i;j D1

d´

2� i´
;

where

(5.16) fij .xi / WD wj �iC1.w C 1/�xi Cyj Ci�j etw :

Here we suppress the dependence on w, t , and yj . We need to check that (5.15)

satisfies (a) the free evolution equation (5.11), (b) the boundary conditions (5.12),

(c) the boundary condition (5.13), and (d) the initial condition (5.14).

(a) To show that (5.15) satisfies the free evolution equation (5.11), it is enough

to show that the determinant satisfies the same equation. The derivative of

the determinant in t is equal to the sum of N determinants of the matrices,

each of which is obtained by taking the derivative of one of the rows. But

(5.17)
d

dt
fij .xi / D wfij .xi / D ..w C 1/ � 1/fij .xi / D fij .xi � 1/ � fij .xi /:

Hence we find that (5.11) is satisfied.

(b) To prove (5.12), we replace xi by xi�1 C 1 and add the .i � 1/th row to the

i th row. But

fij .xi�1 C 1/ C fi�1;j .xi�1/ D 1

w C 1
fij .xi�1/ C w

w C 1
fij .xi�1/

D fij .xi�1/:

(5.18)

This implies (5.12).

(c) To prove (5.13), we set xN D x1 C L � 1, and we multiply the N th row

by ´L and add it to the first row. But since ´L D wN .w C 1/L�N for all

w 2 R´,

´LfNj .x1 C L � 1/ C f1j .x1/

D wN .w C 1/L�N fNj .x1 C L � 1/ C f1j .x1/

D f1j .x1 � 1/:

(5.19)

Hence (5.13) is satisfied.

(d) It remains to check the initial condition (5.14), i.e., for X; Y 2 XN .L/

(5.20)

I

j´jDr

det

�
1

L

X

w2R´

wj �iC1.w C 1/�xi Cyj Ci�j

w C �

�N

i;j D1

d´

2� i´
D ıY .X/:



766 J. BAIK AND Z. LIU

By (5.7), the entries of the determinant are
I

jwC1jDR

F.w/

q´.w/

dw

2� i
�

I

jwC1jD�

F.w/

q´.w/

dw

2� i

where

F.w/ D wj �iCN .w C 1/�xi Cyj Ci�j CL�N �1etw :

Here R is large and � is small so that all roots of

q´.w/ D wN .w C 1/L�N � ´L

lie inside the annulus � < jw C 1j < R. Writing

wN .w C 1/L�N

q´.w/
D

8

ˆ̂

<̂

ˆ̂

:̂

1 C ´L w�N .w C 1/�LCN

1 � ´Lw�N .w C 1/�LCN
for jw C 1j D R;

�´�L wN .w C 1/L�N

1 � ´�LwN .w C 1/L�N
for jw C 1j D �;

the left-hand side of (5.20) can be expressed as
I

j´jDr

det

� I

jwC1jDR

wj �i .w C 1/�xi Cyj Ci�j �1 dw

2� i

C ´LE1.i; j / C ´�LE2.i; j /

�N

i;j D1

d´

2� i´

(5.21)

where

E1.i; j / D
I

jwC1jDR

wj �i�N .w C 1/�xi Cyj Ci�j �LCN �1

1 � ´Lw�N .w C 1/�LCN

dw

2� i

and

(5.22) E2.i; j / D
I

jwC1jD�

wj �iCN .w C 1/�xi Cyj Ci�j CL�N �1

1 � ´�LwN .w C 1/L�N

dw

2� i
:

Note that X; Y 2 XN .L/ implies

xN � L C i � xi � xN � N C i; yN � L C j � yj � yN � N C j;

for i; j D 1; 2; : : : ; N . Now we use these inequalities to simplify (5.21).

We consider two cases separetely.

Case 1. Assume that xN � yN . Then

�xi C yj C i � j � L C N � 1 � �xN C yN � 1 � �1:

Also note that j � i � N � �1. These two inequalities imply that

E1.i; j / D O.R�1/ as R ! 1. Since E1.i; j / is independent of R
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for all R > R0 for some R0 D R0.j´j/, we find that E1.i; j / D 0 for all

1 � i; j � N and all large enough R. Hence we find that (5.21) becomes

(5.23)

I

j´jDr

det

�I

jwjDR

wj �i .w C 1/�xi Cyj Ci�j �1 dw

2� i

C ´�LE2.i; j /

�N

i;j D1

d´

2� i´

D det

�I

jwjDR

wj �i .w C 1/�xi Cyj Ci�j �1 dw

2� i

�N

i;j D1

where in the second equation we take

j´j D r ! C1 and ´�LE2.i; j / ! 0:

We now note that (5.23) is exactly the initial condition for the TASEP on Z

(see (5.8) and (5.9) when t D 0). Hence it is equal to ıY .X/.

Case 2. Assume that xN < yN . Then

�xi C yj C i � j C L � N � 1 � yN � xN � 1 � 0:

Here the integrand of (5.22) is analytic at �1, and hence E2.i; j / D 0. On

the other hand, as j´j D r ! 0, ´LE1.i; j / ! 0. Hence (5.21) becomes

I

j´jDr

det

�I

jwjDR

wj �i .w C 1/�xi Cyj Ci�j �1 dw

2� i

C ´LE1.i; j /

�N

i;j D1

d´

2� i´

D det

�I

jwjDR

wj �i .w C 1/�xi Cyj Ci�j �1 dw

2� i

�N

i;j D1

:

This is equal to ıY .X/ as discussed in the first case.

Hence the initial condition (5.20) is satisfied. �

6 One-Point Distribution for TASEP in XN .L/

with the General Initial Condition

We now derive a formula for the distribution function of a tagged particle from

the transition probability for an arbitrary initial condition.

PROPOSITION 6.1. Let Y D .y1; y2; : : : ; yN / 2 XN .L/ be the initial config-

uration of the TASEP in XN .L/. Let X.t/ D .x1.t/; .x2.t/; : : : ; xk.t// be the
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configuration at time t . For every 1 � k � N ,

(6.1) PY .xk.t/ � a/ D .�1/.k�1/.N C1/

2� i

�
I

det

�
1

L

X

w2R´

wj �iC1�k.w C 1/yj �j �aCkC1etw

w C �

�N

i;j D1

d´

´1�.k�1/L

for every integer a. The integral is over any simple closed contour in j´j > 0 that

contains 0 inside. The set R´ is same as in Proposition 5.1, and � D N=L.

We prove Proposition 6.1 using the following lemma, whose proof is given after

the proof of the proposition.

LEMMA 6.2. Let wj 2 R´ for j D 1; 2; : : : ; N . Then, for every integer a,

(6.2)
X

X2XN .L/
xkDa

det
�

w�i
j .wj C 1/�xi Ci

�N

i;j D1
D

.�1/.k�1/.N C1/´.k�1/L

�

1 �
N
Y

j D1

.wj C 1/�1

�

�
N
Y

j D1

w�k
j .wj C 1/�aCkC1 det

�

w�i
j

�N

i;j D1
:

PROOF OF PROPOSITION 6.1. Lemma 6.2 implies that for wj 2 R´, j D
1; 2; : : : ; N ,

(6.3)
X

X2XN .L/
xkDa

det
�

w�i
j .wj C 1/�xi Ci

�N

i;j D1
D f .a/ � f .a C 1/

where

(6.4) f .a/ D .�1/.k�1/.N C1/´.k�1/L
N
Y

j D1

w�k
j .wj C1/�aCkC1 det

�

w�i
j

�N

i;j D1
:

If jwj C 1j > 1 for all j D 1; 2; : : : ; N , then f .a/ ! 0 as a ! C1, and hence

by telescoping series, we obtain

X

X2XN .L/
xk�a

det
�

w�i
j .wj C 1/�xi Ci

�N

i;j D1
D f .a/:

(6.5)
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Now since PY .xk.t/ � a/ D
P

X2XN .L/
xk�a

PY .X I t /, we find from (5.4) that

(6.6)

PY .xk.t/ � a/

D
X

X2XN .L/
xk�a

I

det

�
1

L

X

w2R´

wj �iC1.w C 1/�xi Cyj Ci�j etw

w C �

�N

i;j D1

d´

2� i´

D
I

X

w1;:::;wN 2R´

X

X2XN .L/
xk�a

det
�

w�i
j .wj C 1/�xi Ci

�N

i;j D1

�
N
Y

j D1

w
j C1
j .wj C 1/yj �j etwj

L.wj C �/

d´

2� i´
:

By Rouché’s theorem, the equation wN .w C 1/L�N � ´L D 0 has no zeros in

jw C 1j � 1 if j´j is large enough. Thus we can find a contour large enough so that

jw C 1j > 1 for all w 2 R´ for ´ on the contour, and apply (6.5) to obtain

(6.7)

PY .xk � aI t / D .�1/.k�1/.N C1/

2� i

�
I

X

w1;:::;wN 2R´

N
Y

j D1

w
j C1�k
j .wj C 1/yj �j �aCkC1etwj

L.wj C �/

� det
�

w�i
j

�N

i;j D1

d´

´1�.k�1/L
:

After simplifying the integrand by using the linearity of the determinant on col-

umns, we find

(6.8)

PY .xk � aI t /

D .�1/.k�1/.N C1/

2� i

�
I

det

�
1

L

X

w2R´

wj �iC1�k.w C 1/yj �j �aCkC1etw

w C �

�N

i;j D1

d´

´1�.k�1/L
:

The last formula again does not depend on the contour (cf. (5.7)), and we obtain

the proposition. �

Now we prove Lemma 6.2.

PROOF OF LEMMA 6.2. Set

A.0/.i; j / D
(

w�i
j .wj C 1/�xi Ci for i ¤ k;

w�k
j .wj C 1/�aCk for i D k:

This is the .i; j /th entry of the determinant on the left-hand side of (6.2) after we set

xk D a. We proceed by taking the sum of the determinant of A.0/ in the following
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order: xkC1; xkC2; : : : ; xN ; x1; x2; : : : xk�1. The summation domain is

a < xkC1 < xkC2 < � � � < xN < x1 C L

< x2 C L < � � � < xk�1 C L < a C L:
(6.9)

First fix x1; x2; : : : ; xk and xkC2; xkC3; : : : ; xN , and take the sum over xkC1 D
a C 1; a C 2; : : : ; xkC2 � 1. Since xkC1 is present only on the .k C 1/th row, it is

enough to consider the .k C 1/th row:

xkC2�1
X

xkC1DaC1

A.0/.k C 1; j /

D
xkC2�1

X

xkC1DaC1

w�k�1
j .wj C 1/�xkC1CkC1

D w�k�2
j .wj C 1/�aCkC1 � w�k�2

j .wj C 1/�xkC2CkC2

D w�k�2
j .wj C 1/�aCkC1 � A.0/.k C 2; j /

for j D 1; 2; : : : ; N . By adding the .k C 2/th row to the .k C 1/th row, we find that

xkC2�1
X

xkC1DxkC1

detŒA.0/.i; j /�Ni;j D1 D detŒA.1/.i; j /�Ni;j D1

where

A.1/.i; j / D
(

w�k�2
j .wj C 1/�aCkC1 for i D k C 1;

A.0/.i; j for i ¤ k C 1:

Note that the entries of A.1/ in row k and k C 1 contain a while that in row i ¤
k; k C 1 contain only xi . Similarly, summing over xkC2 D a C 2; : : : ; xkC3 � 1,

we have

xkC3�1
X

xkC2DaC2

A.1/.k C 2; j / D w�k�3
j .wj C 1/�aCkC1 � A.1/.k C 3; j /

for j D 1; 2; : : : ; N , and we find that

xkC3�1
X

xkC2DaC2

xkC2�1
X

xkC1DaC1

detŒA.0/.i; j /�Ni;j D1 D detŒA.2/.i; j /�Ni;j D1

where

A.2/.i; j / D
(

w�i�1
j .wj C 1/�aCkC1 for i D k C 1; k C 2;

A.0/.i; j / for i ¤ k C 1; k C 2:
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We repeat this process to sum over xkC1; xkC2; : : : ; xN , and then x1; x2; : : : ; xk�1,

and find that
X

X2XN .L/
xkDa

detŒA.0/.i; j /�Ni;j D1 D detŒA.N �1/.i; j /�Ni;j D1

where

A.N �1/.i; j / D

8

ˆ̂
<

ˆ̂
:

w�i�1
j .wj C 1/�aCkCL�N C1 if 1 � i � k � 1;

A.0/.i; j / D w�k
j .wj C 1/�aCk if i D k;

w�i�1
j .wj C 1/�aCkC1 if k C 1 � i � N:

Note the difference of the formula for i � k � 1 and for i � k C 1. This is due to

the summation condition (6.9).

Now since the kth row satisfies

A.N �1/.k; j / D w�k�1
j .wj C 1/�aCkC1 � w�k�1

j .wj C 1/�aCk;

we have

(6.10) detŒA.N �1/.i; j /�Ni;j D1 D detŒA.N /.i; j /�Ni;j D1 � detŒ zA.N /.i; j /�Ni;j D1;

where

A.N /.i; j / D
(

w�i�1
j .wj C 1/�aCkCL�N C1 if 1 � i � k � 1;

w�i�1
j .wj C 1/�aCkC1 if k � i � N;

and

zA.N /.i; j / D

8

<̂

:̂

w�i�1
j .wj C 1/�aCkCL�N C1 if 1 � i � k � 1;

w�i�1
j .wj C 1/�aCk if i D k;

w�i�1
j .wj C 1/�aCkC1 if k C 1 � i � N:

So far we did not use the condition that wj 2 R´. We now use this condition to

simplify (6.10). For wj 2 R´, we have wN
j .wj C 1/L�N D ´L, and hence

w�i�1
j .wj C1/�aCkCL�N C1 D w�i�1�N

j .wj C1/�aCkC1´L; 1 � i � k �1:

After row exchanges we obtain, setting # WD .k � 1/.N � k C 1/,

(6.11) detŒA.N /.i; j /�Ni;j D1 D .�1/#´.k�1/L det
�

w�i�k
j .wj C1/�aCkC1

�N

i;j D1
:

Similarly,

detŒ zA.N /.i; j /�Ni;j D1 D .�1/#´.k�1/L det
�

w�i�k
j .wj C 1/�aCkC1�ıi .1/

�N

i;j D1

where ı is the delta function. Noting the factorization of the matrix as

�

w�i�k
j .wj C 1/�aCkC1�ıi .k/

�N

i;j D1
D

�

ıi .j / C ıi .j C 1/
�N

i;j D1

�

w�i�k
j .wj C 1/�aCk

�N

i;j D1
;



772 J. BAIK AND Z. LIU

we find that

(6.12) detŒ zA.N /.i; j /�Ni;j D1 D .�1/#´.k�1/L det
�

w�i�k
j .wj C 1/�aCk

�N

i;j D1
:

We can evaluate the determinants in (6.11) and (6.12) in terms of Vandermonde

determinants, and from this we obtain (6.2). �

Remark 6.3. If we take L large enough in the formula (6.1), we recover a formula

for TASEP on Z. More precisely, assume that

L � maxfa � yk; .a � y1 C 1 � k/=2g C N if k � 2

and L � a � y1 C N if k D 1. Then it is possible to show that formula (6.1)

becomes

(6.13) det

�I

jwjDR

wj �i�1.w C 1/yj �j �aCketw dw

2� i

�N

i;j Dk

:

This is the probability that the kth particle is located on the right of or exactly at

site a for the TASEP on Z with initial configuration Y D .y1; y2; : : : ; yN /. See,

for example, [35] for the formula when Y is the step initial condition.

7 Simplification of the One-Point Distribution

for Flat and Step Initial Conditions

The formula (6.1) we obtained in Proposition 6.1 is not easy to analyze asymp-

totically. In this section, we simplify the formula for the flat and step initial condi-

tions, which are well suited for asymptotic analysis.

Before we state the results, we first discuss the set

(7.1) R´ D fw 2 C W q´.w/ D 0g where q´.w/ D wN .w C 1/L�N � ´L,

introduced in (5.3). This is a discrete subset of

(7.2) † WD fw 2 C W jwj�jw C 1j1�� D j´jg:
It is straightforward to check that for ´ satisfying

(7.3) 0 < j´j < r0 WD ��.1 � �/1��;

the set † consists of two nonintersecting simple closed contours, which enclose

�1 and 0, respectively. Indeed, if we fix � and write w D r 0ei� , it is easy to check

that jwj�jw C 1j1�� is increasing as a function of r 0 in the interval r 0 2 Œ0; �� and

is equal to 0 when r 0 D 0.1 Similarly, if we write w C 1 D r 00ei� , jwj�jw C 1j1��

1 For all r 0 < �, we have

d

dr 0

�

� log r 0 C 1 � �

2
log

�

.1 C r 0 cos �/2 C r 02 sin2 �
�
�

D

.� � r 0/.1 � r 0/ C 2r 0.1 C �/ cos2 �
2

r 0.1 C r 02 C 2r 0 cos �/
> 0:
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Figure 7.1. Illustration of †left (the left

contour), †right (the right contour), R´;left

(the points on the left contour), and

R´;right (the points on the right contour)

with L D 24, N D 8, and ´ D 0:5e� i=27.

Note that � D 8
24

D 1
3

, and the two

contours are on either side of the line

Re.w/ D �� D � 1
3

.

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 7.2. Illustration of †left, †right,

R´;left, and R´;right with L D 24, N D 8,

and ´ D r0e� i=27 D 22=3

3
e� i=27. Note

that the contours intersect at w D �� D
� 1

3
.

is increasing as a function of r 00 in the interval r 00 2 Œ0; 1 � �� and is equal to 0

when r 00 D 0. From this we find that when j´j is small enough, † consists of

two contours, one containing 0 inside and the other �1 inside. As j´j ! 0, these

contours shrink to the points �1 and 0, respectively. As j´j increases from 0 to r0,

these two contours become larger but do not intersect, and when j´j D r0, they

intersect at w D ��. We can also check that for j´j < r0, the two disjoint contours

are in the half-planes Re.w/ < �� and Re.w/ > ��, respectively. Let us denote

them by †left and †right, respectively. Thus, for 0 < j´j < r0, the set R´ is the

union of two disjoint sets, R´ D R´;left [ R´;right, where

R´;left WD R´ \ fw 2 C W Re.w/ < ��g;
R´;right WD R´ \ fw 2 C W Re.w/ > ��g:(7.4)

Note that when ´ D 0, L � N roots of q´.w/ are at w D �1 and N roots are at

w D 0. Since the roots, after appropriate labeling, are continuous functions of ´,

the set R´;left consists of L � N points, and the set R´;right consists of N points.

See Figure 7.1. As a comparison, see Figure 7.2 for a case when j´j D r0.

We also define two monic polynomials of degree L � N and N ,

(7.5) q´;left.w/ WD
Y

u2R´;left

.w � u/; q´;right.w/ WD
Y

v2R´;right

.w � v/:

Note that q´;left.w/q´;right.w/ D q´.w/.

7.1 Flat Initial Condition

Fix an integer d � 2. We consider the TASEP in XN .L/ with the flat initial

condition where

(7.6) L D Nd:
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The average density of the particles is denoted by � D N=L D 1=d .

We assume that 0 < j´j < r0 as in (7.3). The set R´;left consists of L � N D
.d � 1/N points and the set R´;right consists of N points. Note that the union

R´ D R´;left [ R´;right is the set of the roots of the polynomial

q´.w/ D wN .w C 1/L�N � ´L D .w.w C 1/d�1/N � ´dN ;

which is the same as the union of N sets

Dk D fw 2 C W w.w C 1/d�1 D ´d e2� ik=N g; k D 0; 1; : : : ; N � 1;

of d elements. For each k, there are d roots of the equation w.w C 1/d�1 D
´d e2� ik=N , and it is easy to check that one of them satisfies Re.w/ > �� and

hence is in R´;right, and the remaining d � 1 roots satisfy Re.w/ < �� and hence

are in R´;left. This defines a .d � 1/-to-1 map from R´;left to R´;right. Therefore,

for any u 2 R´;left, the set

(7.7) V.u/ WD
˚

v 2 R´;right W v.v C 1/d�1 D u.u C 1/d�1
	

consists of one point.

For ´ satisfying (7.3), define the function

(7.8) C
.1/
N .´/ WD

Q

v2R´;right
.v C 1/�aCkdCL�N �d=2C1.d.v C �//�1=2etv

Q

v2R´;right

Q

u2R´;left

p
v � u

;

where
p

w is the usual square root function with branch cut R<0, and wn=2 D
.
p

w/n for all n 2 Z. Also, define the operator K
.1/
´ acting on `2.R´;left/ by the

kernel

(7.9) K.1/
´ .u; u0/ D f1.u/

.u � v0/f1.v0/
; u; u0 2 R´;left;

where v0 is the unique element in V.u0/, and the function f1 W R´ ! C is defined

by

(7.10) f1.w/ WD

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

q´;right.w/w�N �kC2.w C 1/�aCkC��1

etw

w C �
; w 2 R´;left;

q0
´;right.w/w�N �kC2.w C 1/�aCkC��1

etw

w C �
; w 2 R´;right:

THEOREM 7.1. Fix an integer d � 2. Consider the TASEP in XN .L/ where

L D Nd with the flat initial condition

(7.11) .x1.0/; x2.0/; : : : ; xN .0// D .d; 2d; : : : ; Nd/ 2 XN .L/:

Then for every k 2 f1; 2; : : : ; N g, t > 0, and integer a,

(7.12) P .xk.t/ � a/ D
I

C
.1/
N .´/ � det

�

I C K.1/
´

� d´

2� i´
;
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where the contour is over any simple closed contour that contains 0 and lies in the

annulus 0 < j´j < r0 WD ��.1 � �/1��.

PROOF. When yj D xj .0/ D jd , j D 1; 2; : : : ; N , (6.1) becomes, after re-

ordering the rows i 7! N � i C 1,

P .xk.t/ � a/ D
C1

2� i

I

det
h X

w2R´

wi�1.w.w C 1/d�1/j �1 zf1.w/
iN

i;j D1

d´

´1�.k�1/L
;

where

C1 D .�1/.k�1/.N C1/CN.N �1/=2

LN

and

zf1.w/ WD w�N �kC2.w C 1/�aCkCd etw

w C �
; w 2 R´:

By the Cauchy-Binet/Andreief formula,

(7.13)

P .xk.t/ � a/

D C1

2� iN Š

�
I

X

w1;:::;wN 2R´

Y

1�i<j �N

.wi � wj /
�

wi .wi C 1/d�1 � wj .wj C 1/d�1
�

�
N
Y

j D1

zf1.wj /
d´

´1�.k�1/L
:

Since the summand contains the factors wi .wi C1/d�1 �wj .wj C1/d�1, we only

need to consider the cases when wj .wj C 1/d�1 are all distinct. We now take the

contour to be in 0 < j´j < ��.1 � �/1��. Let us denote the elements of R´;right as

R´;right D fv1; v2; : : : ; vN g, and define

(7.14) U.vj / D
˚

u 2 R´;left W u.u C 1/d�1 D vj .vj C 1/d�1
	

for each vj 2 R´;right, j D 1; 2; : : : ; N . The set U.vj / consists of d � 1 elements

(see the discussion above (7.7)). By the symmetry of the integrand in (7.13), we

may replace the sum by N Š times the sum of the terms with

(7.15) wj 2 fvj g [ U.vj /; j D 1; 2; : : : ; N:
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Hence,

P .xk � aI t /

D C1

2� i

I

j´jDr

Y

1�i<j �N

�

vi .vi C 1/d�1 � vj .vj C 1/d�1
�

�
X

wj 2fvj g[U.vj /
j D1;2;:::;N

Y

1�i<j �N

.wi � wj /

N
Y

j D1

zf1.wj /
d´

´1�.k�1/L
:

(7.16)

Now we reassemble the terms with respect to the number of roots chosen from

R´;left. Suppose I is the index set such that wi 2 U.vi / for i 2 I and wj D vj

for j 2 J D f1; 2; : : : ; N g n I . For notational convenience we write wi D ui for

i 2 I ; hence ui 2 U.vi /. Then

(7.17)
Y

1�i<j �N

.wi � wj / D

.�1/n.I;J /
Y

i<i0
i;i02I

.ui � ui 0/
Y

j <j 0
j;j 02J

.vj � vj 0/
Y

i2I;j 2J

.ui � vj /

where n.I; J / is the number of pairs .i; j / 2 I � J such that i > j . We now

express (7.17) in such a way that the indices of the products are only chosen from I .

Recall the function q´;right.w/ D
Q

v2R´;right
.w � v/ defined in (7.5). We can

directly check that

Y

i2I;j 2J

.ui � vj / D
Q

i2I q´;right.ui /
Q

i2I

Q

i 02I .ui � vi 0/
(7.18)

and
Y

j <j 0
j;j 02J

.vj � vj 0/

D
.�1/n.I;J /

Q

1�i<j �N .vi � vj /
Q

i<i0
i;i02I

.vi � vi 0/
Q

i2I;j 2J .vi � vj /

D
.�1/n.I;J /CjI j.jI j�1/=2

Q

1�i<j �N .vi � vj /
Q

i<i0
i;i02I

.vi � vi 0/
Q

i2I q0
´;right.vi /

:

(7.19)

Combining (7.17), (7.18), and (7.19), and using

N
Y

j D1

zf1.wj / D
Y

i2I

zf1.ui /
Y

j 2J

zf1.vj /;
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we obtain

Y

1�i<j �N

.wi � wj /

N
Y

j D1

zf1.wj /

D .�1/jI j.jI j�1/=2
N
Y

j D1

zf1.vj /
Y

1�i<j �N

.vi � vj /

�
Y

i2I

zf1.ui /q´;right.ui /

zf1.vi /q
0
´;right.vi /

Q

i<i0
i;i02I

.ui � ui 0/.vi � vi 0/
Q

i2I

Q

i 02I .ui � vi 0/

D
N
Y

j D1

zf1.vj /
Y

1�i<j �N

.vi � vj /
Y

i2I

zf1.ui /q´;right.ui /

zf1.vi /q
0
´;right.vi /

det

�
1

ui � vi 0

�

i;i 02I

where in the last equation we applied the Cauchy identity

(7.20) det

�
1

xi C yj

�l

i;j D1

D
Q

1�i<j �l.xi � xj /.yi � yj /
Q

1�i;j �l.xi C yj /
:

For w 2 R´;left, f1.w/ D zf1.w/q´;right.w/, and for w 2 R´;right, f1.w/ D
zf1.w/q0

´;right.w/. Therefore we obtain

(7.21)
Y

1�i<j �N

.wi � wj /

N
Y

j D1

zf1.wj / D

N
Y

j D1

zf1.vj /
Y

1�i<j �N

.vi � vj / det
�

K.1/
´ .ui ; ui 0/

�

i;i 02I
:

Taking the sum over all subsets I of f1; 2; : : : ; N g we find

(7.22)
X

wj 2fvj g[U.vj /
j D1;2;:::;N

Y

1�i<j �N

.wi � wj /

N
Y

j D1

zf1.wj / D

N
Y

j D1

zf1.vj /
Y

1�i<j �N

.vi � vj / det
�

I C K.1/
´

�

:
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Plugging this into (7.16) and comparing the result with (7.12), it remains to show

that

C
.1/
N .´/ D C1´.k�1/L

N
Y

j D1

zf1.vj /

�
Y

1�i<j �N

.vi � vj /
�

vi .vi C 1/d�1 � vj .vj C 1/d�1
�

:

(7.23)

From the formula of C1 and zf1, the right-hand side of (7.23) is

.�1/.k�1/.N C1/´.k�1/L
N
Y

j D1

q0
´;right.vj /v�N �kC2

j .vj C 1/�aCkCd etvj

L.vj C �/

�
Y

1�i<j �N

vi .vi C 1/d�1 � vj .vj C 1/d�1

vi � vj
:

(7.24)

Now we simplify this expression.

First, noting that q´;right.w/q´;left.w/ D q´.w/ D wN .w C 1/L�N � ´L, we

find

q0
´;right.v/ D

q0
´.v/

q´;left.v/

D LvN �1.v C 1/L�N �1.v C �/

q´;left.v/
for v 2 R´;right,

(7.25)

because q´;right.v/ D 0 for such v.

Second, we then use the fact that vj .vj C 1/d�1 are the roots of the equation

wN � ´L D 0, obtaining

(7.26)

N
Y

j D1

vj .vj C 1/d�1 D .�1/N C1´L:

And third, we have, for i ¤ j ,

(7.27)
vi .vi C 1/d�1 � vj .vj C 1/d�1

vi � vj
D

Y

u2U.vj /

.vi � u/

since both sides are monic polynomials of vi of degree d � 1 whose roots are the

elements of U.vj /. Since the left-hand side of (7.25) is symmetric in i and j , we

obtain an identity

(7.28)
Y

u2U.vj /

.vi � u/ D
Y

u2U.vi /

.vj � u/:
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We claim that

(7.29)
Y

i<j

Y

u2U.vj /

p
vi � u D

Y

i<j

Y

u2U.vi /

p
vj � u:

Indeed, noting that vj 2 R´;left and hence Re.vj / > �� while any u 2 U.vi / �
R´;left satisfies Re.u/ < ��, we find that both sides of (7.29) are analytic in ´ for

j´j < r0 D ��.1 � �/.1��/. In addition, both sides converge to 1 as ´ ! 0 since

when ´ D 0, vj D 0 and U.vj / D f�1g. Since the square of the two sides are the

same due to (7.28), we obtain (7.29). Now from (7.27) and (7.29), we find

(7.30)
Y

1�i<j �N

vi .vi C 1/d�1 � vj .vj C 1/d�1

vi � vj
D

Y

v2R´;right

Y

u2R´;rightnU.v/

p
v � u:

Finally, we have, for all v 2 R´;right,

(7.31)
Y

u2U.v/

.v � u/ D d.v C �/.v C 1/d�2

since U.v/ [ fvg is the set of all the roots of w.w C 1/d�1 D v.v C 1/d�1. By

using an argument similar to (7.29), we have

(7.32)
Y

u2U.v/

p
v � u D

p

d.v C �/.
p

v C 1/d�2:

By using (7.26), (7.25), (7.30), and (7.32) we find that (7.24) is equal to

N
Y

j D1

.vj C 1/�aCkdCL�N etvi

q´;left.vj /

Q

v2R´;right

Q

u2R´;right

p
v � u

Q

v2R´;right

p

d.v C �/.
p

v C 1/d�2
:

Since q´;left.vj / D
Q

u2R´;left
.vj � u/ by definition, we find that the above expres-

sion is same as C
.1/
N .´/. �

Remark 7.2. If we fix all other parameters and take L D dN ! 1, the TASEP on

a ring of size L with flat initial condition converges to the TASEP on Z with flat

periodic initial condition

: : : ; 1; 0; 0; 0
„ ƒ‚ …

d

; 1; 0; 0; 0
„ ƒ‚ …

d

; : : : :

It is possible to show that in this limit, the formula (7.12) becomes

(7.33) PZ;flat.xk.t/ � a/ D det.I C K.1//

where K.1/ is the operator defined on the space L2.†left; du=2� i/ with kernel

(7.34) K.1/.u; u0/ D .u C 1/�aCkd etu

.v0 C 1/�aCkd etv0
1

u � v0 :
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Here v0 D v0.u0/ 2 †right is uniquely determined, for given u0 2 †left, from

the equation u0.u0 C 1/d�1 D v0.v0 C 1/d�1. The contours †left and †right, re-

spectively, are the parts of the contour ju.u C 1/d�1j D r for any fixed 0 <

r < �.1 � �/d�1 satisfying Re.u/ < �� and Re.u/ > � where � D 1=d .

The contour †left is oriented counterclockwise. By the analyticity, we may de-

form †left to any small, simple, closed counterclockwise contour containing the

point �1 inside. Writing 1
u�v0 D �

P1
xD0

.uC1/x

.v0C1/xC1 , we see that K.1/.u; u0/ D
�

P

y2Z<a
A.u; y/B.y; u0/ where A.u; y/ D .uC1/�yCkd�1etu and B.y; u0/ D

.v0 C 1/y�kd e�tv0
. Using the identity det.I � AB/ D det.I � BA/, we find that

PZ;flat.xk.t/ � a/ D det.I � L.1// for the kernel

(7.35) L.1/.x; y/ D
I

.v C 1/x�kd

.u C 1/y�kdC1
et.u�v/ du

2� i
; x; y 2 Z<a;

where the contour is any small enough simple, closed counterclockwise contour

containing the point �1 inside and v D v.u/ is, for given u on the contour, the

unique point v in Re.v/ > �� satisfying the equation v.vC1/d�1 D u.uC1/d�1.

When d D 2, v D �u � 1 and (7.35) becomes

(7.36) L.1/.x; y/ D
I

.�u/x�2k

.u C 1/y�2kC1
et.2uC1/ du

2� i
; x; y 2 Z<a:

This is the same kernel as the one in theorem 2.2 (with n1 D n2 D �k and the

change of variables u D �v � 1) of [11] for the TASEP on Z with period d D 2

flat initial condition. For period d flat initial condition, a kernel similar to (7.35) is

obtained for the discrete-time TASEP on Z in [10].

Remark 7.3. We assumed that L D dN for the flat initial condition such as

1; 0; 0; 1; 0; 0
„ ƒ‚ …

L

:

More general flat conditions may have L D `m and N D nm for integers ` > n

and m. For example,

1; 1; 1; 0; 0; 1; 1; 1; 0; 0
„ ƒ‚ …

L

corresponds to the case with ` D 5, n D 3, and m D 2. In this general case, the

.d � 1/-to-1 map from R´;left to R´;right described above equation (7.7) becomes

an .` � n/-to-n map. This makes the computation complicated, and we do not

have a result for the general flat initial conditions. The situation is the same for the

TASEP on Z: the L D dN case was computed in [10,11], but the general case has

not yet been obtained.
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7.2 Step Initial Condition

We now consider the step initial condition. In this case L > N are arbitrary

positive integers and we do not assume that L=N is an integer.

For ´ satisfying (7.3), 0 < j´j < r0, define the function

(7.37) C
.2/
N .´/ D

Q

u2R´;left
.�u/k�1

Q

v2R´;right
.v C 1/�aCL�2N Cketv

Q

u2R´;left

Q

v2R´;right
.v � u/

and the operator K
.2/
´ acting on `2.R´;left/ with kernel

(7.38) K.2/
´ .u; u0/ D f2.u/

X

v2R´;right

1

.u � v/.u0 � v/f2.v/
; u; u0 2 R´;left;

where f2 W R´ ! C is defined by

(7.39) f2.w/ WD

8

ˆ̂

<̂

ˆ̂

:̂

.q´;right.w//2w�N �kC2.w C 1/�a�N CkC1etw

w C �
; w 2 R´;left;

.q0
´;right.w//2w�N �kC2.w C 1/�a�N CkC1etw

w C �
; w 2 R´;right:

THEOREM 7.4. Consider the TASEP in XN .L/ with the step initial condition

(7.40) .x1.0/; x2.0/; : : : ; xN .0// D .�N C 1; �N C 2; : : : ; 0/ 2 XN .L/:

Then for every k 2 f1; 2; : : : ; N g, t > 0, and integer a,

(7.41) P .xk.t/ � a/ D
I

C
.2/
N .´/ � det

�

I C K.2/
´

� d´

2� i´
;

where the contour is over any simple closed contour that contains 0 and lies in the

annulus 0 < j´j < r0 WD ��.1 � �/1��.

PROOF. The proof is similar to that of Theorem 7.1, but there are two main

differences. One is the structure of the Vandermonde determinant in the formula

due to a different initial condition. The other is that we do not have the .d � 1/-to-

1 correspondence between the R´;left and R´;right since L=N is not necessarily an

integer. We use a duality between “particles” and “holes” for the step case.

Setting yj D xj .0/ D �N C j , the equation (6.1) becomes

(7.42) P .xk.t/ � a/ D C2

2� i

I

det
h X

w2R´

wiCj �2 zf2.w/
iN

i;j D1

d´

´1�.k�1/L
;

where

(7.43) C2 D .�1/.k�1/.N C1/CN.N �1/=2

LN

and

(7.44) zf2.w/ WD w�N �kC2.w C 1/�a�N CkC1etw

w C �
; w 2 R´:
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From the Caucy-Binnet/Andreief formula, we have

(7.45) det
h X

w2R´

wiCj �2 zf2.w/
iN

i;j D1
D

1

N Š

X

w1;:::;wN 2R´

Y

1�i<j �N

.wi � wj /2
N
Y

j D1

zf2.wj /:

By considering how many of the points w1; w2; : : : ; wN are in R´;left or R´;right,

we find that (7.45) is the same as

(7.46)

N
X

lD0

1

lŠ.N � l/Š

X

w1;:::;wl 2R´;left

wlC1;:::;wN 2R´;right

Y

1�i<j �N

.wi � wj /2
N
Y

j D1

zf2.wj /:

Note that we may assume in the sum that w1; w2; : : : ; wN are all distinct since the

summand is 0 otherwise. Consider a term in the above sum. Fix l distinct points

w1; w2; : : : ; wl in R´;left and N � l distinct points wlC1; wlC2; : : : ; wN in R´;right.

Observe that since jR´;rightj D N , there are l points v1; v2; : : : ; vl in R´;right so that

the union of fv1; v2; : : : ; vlg [ fwlC1; wlC2; : : : ; wN g D R´;right. We may think

of wlC1; wlC2; : : : ; wN as “particles” and v1; v2; : : : ; vl as “holes” on the nodes

R´;right. We now express the sum in (7.46) in terms of l points w1; w2; : : : ; wl in

R´;left and l points v1; v2; : : : ; vl in R´;right. Note that all .N � l/Š permutations of

wlC1; wlC2; : : : ; wN give rise to the same set of holes. Also note that the l holes

can be labeled in lŠ different ways. Hence (7.46) becomes

(7.47)

N
X

lD0

1

.lŠ/2

X

w1;:::;wl 2R´;left

v1;:::;vl 2R´;right

Y

1�i<j �N

.wi � wj /2
N
Y

j D1

zf2.wj /

where we assume that v1; v2; : : : ; vl are distinct, and wlC1; wlC2; : : : ; wN are any

points such that fv1; v2; : : : ; vlg [ fwlC1; wlC2; : : : ; wN g D R´;right. Note that

(7.48)
Y

1�i<j �N

.wi � wj /2 D

Y

1�i<j �l

.wi � wj /2
Y

lC1�i<j �N

.wi � wj /2
l

Y

iD1

N
Y

j DlC1

.wi � wj /2:

Similarly to (7.18) and (7.19), we also have

Y

lC1�i<j �N

.wi � wj /2 D .�1/N.N �1/=2

Q

v2R´;right
q0

´;right.v/
Ql

iD1.q0
´;right.vi //2

Y

1�i<j �l

.vi � vj /2
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and

(7.49)

l
Y

iD1

N
Y

j DlC1

.wi � wj /2 D
Ql

iD1.q´;right.wi //
2

Ql
iD1

Ql
j D1.wi � vj /2

:

Therefore, (7.48) is equal to

(7.50) .�1/N.N �1/=2

Q

1�i<j �l.wi � wj /2.vi � vj /2

Ql
iD1

Ql
j D1.wi � vj /2

l
Y

iD1

q2
´;right.wi /

.q0
´;right.vi //2

Y

v2R´;right

q0
´;right.v/:

Note that f2.w/ defined in (7.39) is given by f2.w/ D q2
´;right.w/ zf2.w/ for

w 2 Rz;left and f2.w/ D q0
´;right.w/2 zf2.w/ for w 2 R´;right. We have

(7.51)
Y

1�i<j �N

.wi � wj /2
N
Y

j D1

zf2.wj / D

.�1/N.N �1/=2

Q

1�i<j �l.wi � wj /2.vi � vj /2

Ql
iD1

Ql
j D1.wi � vj /2

�
l

Y

iD1

f2.wi /

f2.vi /

Y

v2R´;right

. zf2.v/q0
´;right.v//:

We fix w1; w2; : : : ; wi and take the sum over all possible v1; v2; : : : ; vl in R´;right.

Using the Cauchy determinant identity (7.20), we find

X

v1;:::;vl 2R´;right

Q

1�i<j �l.wi � wj /2.vi � vj /2

Ql
iD1

Ql
j D1.wi � vj /2

l
Y

iD1

f2.wi /

f2.vi /

D
X

v1;:::;vl 2R´;right

det

�
f2.wi /

wi � vj

�l

i;j D1

det

�
f2.vi /

�1

wj � vi

�l

i;j D1

D lŠ � det

�
X

v2R´;right

f2.wi /f2.v/�1

.wi � v/.wj � v/

�l

i;j D1

D lŠ � det
�

K.2/
´ .wi ; wj /

�l

i;j D1
:

(7.52)

Plugging (7.51) and (7.52) into (7.47) and then checking (7.42), we obtain

P .xk � aI t /

D C2.�1/N.N �1/=2

2� i

�
I

j´jDr

Y

v2R´;right

. zf2.v/q0
´;right.v// � det.I C K.2/

´ /
d´

´1�.k�1/L
:

(7.53)
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Comparing this and (7.41), it remains to show

(7.54) C2.�1/N.N �1/=2´.k�1/L
Y

v2R´;right

. zf2.v/q0
´;right.v// D C

.2/
N .´/:

This equation, after inserting (7.43), (7.44), and (7.37), is equivalent to

.�1/.k�1/.LC1/´.k�1/L
Y

v2R´;right

�

q0
´;right.v/

Y

u2R´;left

.v � u/
�

D
Y

u2R´;left

uk�1
Y

v2R´;right

L.v C �/vN Ck�2.v C 1/L�N �1:
(7.55)

Using (7.25), this equation is further reduced to

(7.56) .�1/.k�1/.LC1/´.k�1/L D
Y

u2R´;left

uk�1
Y

v2R´;right

vk�1;

which follows easily by noting that R´;left [ R´;right is the set of the roots of

wN .w C 1/L�N � ´L D 0, and hence

wN .w C 1/L�N � ´L D
Y

u2R´;left

.w � u/
Y

v2R´;right

.u � v/: �

Remark 7.5. If we replace k by N �k and let L and N go to infinity (proportionally,

for a technical reason), the formula (7.41) becomes the one-point distribution for

TASEP on Z with step initial condition. Denoting by zxk the kth particle from the

right, we find

(7.57) PZ;step.zxk.t/ � a/ D det.I C K.2//

where K.2/ is an operator on L2.��1; du=2� i/ with kernel

(7.58) K.2/.u; u0/ D
I

�0

uk.u C 1/�a�kC1etu

vk.v C 1/�a�kC1etv.u � v/.u0 � v/

dv

2� i
:

The contour �0 is any simple closed contour with the point 0 inside but the point

�1 outside, and ��1 is any simple closed contour with �1 inside and 0 outside.

We assume that �0 and ��1 do not intersect. Writing

.v C 1/a

.u C 1/a
D .v � u/

X

n<a

.v C 1/n

.u C 1/nC1

and using the identity det.I C AB/ D det.I C BA/, we can see that this is equiv-

alent to the formula, for example, in proposition 3.4 in [9] with a.t/ D t and

b.t/ D 0.
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8 Proofs of Theorems 3.1 and 3.4

In this section, we prove Theorems 3.1 and 3.4 by computing the limits of the

formulas (7.12) and (7.41) at the relaxation scale. These formulas are of form

(8.1)

I

C
.i/
N .z/ � det

�

I C K.i/
z

� dz

2� iz
; i D 1; 2;

where we used the variable z instead of ´, and the contour is any simple closed

contour in the annulus 0 < jzj < r0 WD ��.1 � �/1�� that contains the point 0

inside. It turns out that we need to scale the contour in such a way that jzj ! r0 at

a particular rate in order to make both terms C
.i/
N .z/ and det.I C K

.i/
z / converge.

The correct scaling is the following: we set

(8.2) zL D .�1/N
r

L
0 ´:

The integral involves the sets (7.4):

Rz D fw 2 C W wN .w C 1/L�N � zL D 0g;
Rz;left D Rz \ fw 2 C W Re.w/ < ��g;

Rz;right D Rz \ fw 2 C W Re.w/ > ��g;
(8.3)

and these sets are invariant under the change z to zei2�=L. From this we find that

the integrand in (8.1) is invariant under the same change, and hence (8.1) is equal

to

(8.4)

I

C
.i/
N .z/ � det

�

I C K.i/
z

� d´

2� i´
; i D 1; 2;

where for ´, z D z.´/ is any number determined by (8.2). The contour is any

simple closed contour that contains 0 and lies in the annulus 0 < j´j < 1. We

compute the limits of C
.i/
N .z/ and det.I C K

.i/
z / under the condition (8.2) for each

fixed ´ satisfying 0 < j´j < 1 where other parameters are adjusted according to

the flat and step initial conditions.

In order to make the notation simpler, we will suppress the subscript n in Nn,

Ln, and �n for the step case and write N , L, and � instead, unless there would

be any confusion. Now we consider the asymptotics of (8.4) as L; N ! 1 (or

equivalently, n ! 1 in the step case). Some parts in the formula are the same

for i D 1 (flat) and i D 2 (step), and we will consider the asymptotics of these

parts first and then consider the remaining parts separately for i D 1; 2. Among

the large parameters L and N (and n), we use N to express the error terms.

We first consider the sets Rz;left and Rz;right in the large-N limit. Under the

scale (8.2), we have jzj ! r0, and then these two sets become close at the point

w D �� (see Figure 7.2 when jzj D r0). As Figure 7.2 suggests, the spacings

between the neighboring points of Rz;left and Rz;right are of order O.N �1/ (since

there are O.N / points on a contour of finite size), but the spacings of the points

near the special point �� are larger. Indeed, it is possible to check that the spacings
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near �� are of order O.N �1=2/. We first show that, assuming (8.2),

(8.5)
N 1=2

�
p

1 � �
.Rz;left C �/ � S´;left

for the points near ��, where the set S´;left is defined in (4.5):

(8.6) S´;left D f� W e��2=2 D ´; Re.�/ < 0g:
There is also a similar statement for Rz;right. The precise statement is given in the

following lemma, whose proof is postponed to Section 9.1.

LEMMA 8.1. Let ´ be a fixed number satisfying 0 < j´j < 1, and let � be a real

constant satisfying 0 < � < 1
2

. Set zL D .�1/N
r

L
0 ´ where r0 D ��.1 � �/1��.

Define the map MN;left from Rz;left \ fw W jw C �j � �
p

1 � �N �=4�1=2g to S´;left

by

(8.7) MN;left.w/ D �;

where � 2 S´;left and

ˇ
ˇ
ˇ
ˇ
� � N 1=2.w C �/

�
p

1 � �

ˇ
ˇ
ˇ
ˇ

� N 3�=4�1=2 log N:

Then for large enough N we have the following:

(a) MN;left is well-defined.

(b) MN;left is injective.

(c) The following relations hold:

(8.8) S
.N �=4�1/
´;left � I.MN;left/ � S

.N �=4C1/
´;left ;

whereI.MN;left/ WD MN;left.Rz;left\fw W jwC�j � �
p

1 � �N �=4�1=2g/,
the image of the map MN;left, and S

.c/
´;left WD S´;left \ f� W j�j � cg for all

c > 0.

If we define the mapping MN;right in the same way but replace Rz;left and S´;left by

Rz;right and S´;right, respectively, the same results hold for MN;right.

In the next lemma, we consider the products
Y

u2Rz;left

.w � u/;
Y

v2Rz;right

.w � v/;
Y

v2Rz;right

Y

u2Rz;left

.v � u/;
(8.9)

in the large-N limit. These factors appear in both C
.i/
N .z/ and K

.i/
z (see (7.5)). The

limits are given in terms of the functions

hleft.�; ´/ WD � 1p
2�

Z ��

�1
Li1=2.´e.�2�y2/=2/dy; Re.�/ � 0;(8.10)

and

hright.�; ´/ WD � 1p
2�

Z �

�1
Li1=2.´e.�2�y2/=2/dy; Re.�/ � 0;(8.11)
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where the integral contour from �1 to �� is taken to be .�1; Re.��/�[ŒRe.��/;

���. Along such a contour j´e.�2�y2/=2j < 1, and hence Li1=2.´e.�2�y2/=2/ is

well-defined. Furthermore, note Li1=2.!/ � ! as ! ! 0. Thus the integrals are

well-defined. We remark that

(8.12) hleft.�; ´/ D hright.��; ´/ for Re.�/ > 0.

We also note that for � 2 S´;left, we have e��2=2 D ´, and hence

hright.�; ´/ D � 1p
2�

Z �

�1
Li1=2.e�y2=2/dy for such �;

which is the integral in the definition of ‰´.�I x; �/ in (4.6) and also ˆ´.�I x; �/

in (4.12), up to a constant factor.

LEMMA 8.2. Suppose z, ´, and � satisfy the conditions in Lemma 8.1.

(a) For complex number � , set wN D wN .�/ D ��C�
p

1 � � �N �1=2. Then

(8.13)
Y

u2Rz;left

p
wN � u D .

p

wN C 1/L�N e
1
2
hleft.�;´/.1 C O.N ��1=2//

for each fixed � 2 C satisfying Re � � 0, and

(8.14)
Y

v2Rz;right

p
v � wN D .

p�wN /N e
1
2
hright.�;´/.1 C O.N ��1=2//

for each fixed � 2 C satisfying Re � � 0. Moreover, for every w 2 C

that is an O.1/-distance away from †left [ †right for all n (note that the

contours depend on n), we have

(8.15)

Y

u2Rz;left

p
w � u D .

p
w C 1/L�N .1 C O.N ��1=2//; if Re.w/ > ��;

Y

v2Rz;right

p
v � w D .

p
�w/N .1 C O.N ��1=2//; if Re.w/ < ��;

as N ! 1.

(b) Fix c > 0. The estimate (8.13) in (a) holds uniformly for j�j � N �=4

satisfying Re � � c after we change the error term to

(8.16) O.N ��1=2 log N /:

The estimate (8.14) also holds uniformly for j�j � N �=4 satisfying Re � �
�c after the same change of the error term.

(c) For large enough N , we have

(8.17)

Q

u2Rz;left
.
p

�u/N
Q

v2Rz;right
.
p

v C 1/L�N

Q

v2Rz;right

Q

u2Rz;left

p
v � u

D eB.´/.1 C O.N ��1=2//

where B.´/ D 1
4�

R ´
0

.Li1=2.y//2

y
dy is defined in (4.4).
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We point out that throughout the section, all error terms O.�/ depend only on

j´j, not the argument of ´.

The proof of Lemma 8.2 is given in Section 9.2.

8.1 Flat Initial Condition

We prove Theorem 3.1. Note that in this flat initial condition we always assume

that � D d�1 for some fixed d 2 Z�2.

We apply Theorem 7.1 with

(8.18)

k D kN ; t D 1

�2
p

1 � �
�N 3=2;

a D .1 � �/t C kN d � x��1=3.1 � �/2=3t1=3

D .1 � �/t C kN d �
p

1 � �

�
�1=3xN 1=2;

where 1 � kN � N , and � 2 R>0 and x 2 R are both fixed constants. Here we

assume that a 2 Z. However, the argument still goes through if a is not an integer

except that the error term in Lemma 8.3 should be replaced by O.N ��1=2/ due to

the O.1/ perturbation on a. This change does not affect the proof.

Asymptotics of C
.1/

N
.z/

Recall the definition of C
.1/
N .z/ in (7.8) and rewrite it as the product of three

terms

C
.1/
N;1.z/ D

Q

u2Rz;left
.
p

�u/N
Q

v2Rz;right
.
p

v C 1/L�N

Q

v2Rz;right

Q

u2Rz;left

p
v � u

;

C
.1/
N;2.z/ D 1

Q

v2Rz;right

p

d.v C �/.
p

v C 1/d�2
;

C
.1/
N;3.z/ D

Y

u2Rz;left

.
p

�u/�N
Y

v2Rz;right

.
p

v C 1/L�N �2aC2k��1

etv:

(8.19)

Using Lemma 8.2 (c), we find that

(8.20) C
.1/
N;1.z/ D eB.´/.1 C O.N ��1=2//

where � 2 .0; 1
2
/ is an arbitrary constant defined at the beginning of Lemma 8.1.

On the other hand, by using (8.14) with � D 0 (and hence wN D ��) and (8.15)

with w D �1, we obtain

(8.21) C
.1/
N;2.z/ D e� 1

2
hright.0;´/.1 C O.N ��1=2//:

We can directly check that hright.0; ´/ D 1
2

log.1 � ´/ D �2A3.´/ (see (4.3)).

Hence we find

(8.22) C
.1/
N;2.z/ D eA3.´/.1 C O.N ��1=2//:
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Finally, we have the following result for C
.1/
N;3.z/. Its proof is given in Sec-

tion 9.3.

LEMMA 8.3. Suppose z, ´, and � satisfy the same conditions in Lemma 8.1, and a,

t , and k satisfy (8.18). Then for large enough N , we have

(8.23) C
.1/
N;3.z/ D e�1=3xA1.´/C�A2.´/.1 C O.N 2��1//:

Combining this with (8.20) and (8.22), we obtain the asymptotics of C
.1/
N .z/:

(8.24) C
.1/
N .z/ D e�1=3xA1.´/C�A2.´/CA3.´/CB.´/.1 C O.N ��1=2//;

where Ai .´/ and B.´/ are defined in (4.3) and (4.4).

Asymptotics of det.I C K
.1/
z /

Recall that

(8.25) K.1/
z .u; u0/ D f1.u/

f1.v0/.u � v0/

where v0 2 Rz;right is uniquely determined from u0 2 Rz;left by the equation

(8.26) u0.u0 C 1/d�1 D v0.v0 C 1/d�1;

and the function f1 is given by

(8.27) f1.w/ D

8

ˆ̂

<̂

ˆ̂

:̂

zg1.w/qz;right.w/

.w C �/wN
; w 2 Rz;left;

zg1.w/q0
z;right.w/

.w C �/wN
; w 2 Rz;right;

with zg1.w/ WD w�kC2.w C 1/�aCkC��1

etw . Using (8.26), the Fredholm deter-

minant of K
.1/
z is equal to det.I C zK.1/

z / where

zK.1/
z .u; u0/ D h1.u/

h1.v0/.u � v0/

with

(8.28) h1.w/ D

8

ˆ̂

<̂

ˆ̂

:̂

g1.w/qz;right.w/

.w C �/wN
; w 2 Rz;left;

g1.w/q0
z;right.w/

.w C �/wN
; w 2 Rz;right;

and

(8.29) g1.w/ D zg1.w/wkCŒ�N 3=2=
p

1���.w C 1/.d�1/.kCŒ�N 3=2=
p

1���/

zg1.��/.��/kCŒ�N 3=2=
p

1���.�� C 1/.d�1/.kCŒ�N 3=2=
p

1���/
:

The proof of the following lemma is given in Section 9.4.

LEMMA 8.4. Let 0 < � < 1
2

be a fixed constant. We have the following estimates:
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(a) For u 2 Rz;left satisfying ju C �j � �
p

1 � � N �=4�1=2,

(8.30) h1.u/ D N 1=2

�
p

1 � ��
ehright.�;´/� 1

3
��3C�1=3x�.1 C O.N ��1=2 log N //

where � D N 1=2.uC�/

�
p

1��
and hright.�; ´/ is defined in (8.11). The error term

O.N ��1=2 log N / does not depend on u or � .

(b) For v 2 Rz;right satisfying jv C �j � �
p

1 � �N �=4�1=2,

(8.31)
1

h1.v/
D ��2.1 � �/

N
ehleft.�;´/C 1

3
��3��1=3x� .1 C O.N ��1=2 log N //

where � D N 1=2.vC�/

�
p

1��
and hleft.�; ´/ is defined in (8.10). The error term

O.N ��1=2 log N / does not depend on v or �.

(c) For w 2 Rz satisfying jw C �j � �
p

1 � �N �=4�1=2,

(8.32) h1.w/ D O.e�CN 3�=4

/; w 2 Rz;left;

and

(8.33)
1

h1.w/
D O.e�CN 3�=4

/; w 2 Rz;right:

Here both error terms O.e�CN 3�=4

/ are independent of w.

Lemma 8.4 implies that

(8.34) zK.1/
z .u; u0/ D

� ehright.�;´/Chleft.�;´/� 1
3

��3C�1=3x�C 1
3

��3��1=3x�

�.� � �/
.1 C O.N ��1=2 log N //

for all u; u0 2 Rz;left satisfying ju C �j; ju0 C �j � �
p

1 � �N �=4, where

� WD N 1=2.u C �/

�
p

1 � �
and � WD N 1=2.v0 C �/

�
p

1 � �

with v0 2 Rz;right defined by u0.u0 C 1/d�1 D v0.v0 C 1/d�1. Note that � D
��CO.N 3�=4�1=2/ where � WD N 1=2.u0C�/

�
p

1��
since ju0 C�j � �

p
1 � �N �=4. This

implies, by using hleft.�; ´/ D hright.��; ´/ from (8.12), that (8.34) equals

(8.35) zK.1/
z .u; u0/ D

� ehright.�;´/Chright.�;´/� 1
3

��3C�1=3x�� 1
3

��3C�1=3x�

�.� C �/
.1 C O.N ��1=2 log N //:

On the other hand, we also have zK.1/
z .u; u0/ D O.e�CN 3�=4

/ when ju C �j �
�
p

1 � �N �=4 or ju0 C �j � �
p

1 � �N �=4. Hence, together with Lemma 8.1,
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which claims that the f� W �� C �
p

1 � ��N �1=2 2 Rz;leftg \ f� W j�j � N �=4g
converge to the set S´;left, we expect that

(8.36) lim
N !1

det
�

I C zK.1/
z

�

D det
�

I � K
.1/
´

�

where K
.1/
´ is the operator defined on S´;left with kernel

(8.37) K
.1/
´ .�; �/ D ehright.�;´/Chright.�;´/� 1

3
��3C�1=3x�� 1

3
��3C�1=3x�

�.� C �/
:

Since e��2=2 D ´ for � 2 S´;left, we have

hright.�; ´/ D � 1p
2�

Z �

�1
Li1=2.e�y2=2/dy for such �;

and hence the kernel K
.1/
´ is the same as (4.7) with x replaced by �1=3x.

In order to complete the proof of (8.36), it is enough to prove the following two

lemmas.

LEMMA 8.5. For every integer l , we have

(8.38) lim
N !1

Tr
�� zK.1/

z

�l� D Tr
��

�K
.1/
´

�l�
:

LEMMA 8.6. There exists a constant C that does not depend on ´ such that for all

l 2 Z�1 we have

(8.39)
X

w1;:::;wl 2Rz;left

ˇ
ˇdet

� zK.1/
z .wi ; wj /

�l

i;j D1

ˇ
ˇ � C l :

Assuming that Lemma 8.5 is true, we have

lim
N !1

X

w1;:::;wl 2Rz;left

det
� zK.1/

z .wi ; wj /
�l

i;j D1
D
X

�1;:::;�l 2S´;left

det
�

�K
.1/
´ .�i ; �j /

�l

i;j D1

for any fixed l . Then by applying Lemma 8.6 and the dominated convergence

theorem, we obtain (8.36).

It remains to prove Lemmas 8.5 and 8.6.

PROOF OF LEMMA 8.5. We only prove the lemma when l D 1; the case when

l > 1 is similar. Fix � such that 0 < � < 2=5. The upper bound 2=5 is related

to the number of terms in the summation (see (8.41) and (8.45) below) and hence

needs to be modified accordingly if l > 1.

Note that Lemma 8.1 implies that for any u 2 Rz;left satisfying ju C �j �
�
p

1 � �N �=4, there exists a unique � D M.u/ 2 S´;left such that
ˇ
ˇ
ˇ
ˇ
� � N 1=2.u C �/

�
p

1 � �

ˇ
ˇ
ˇ
ˇ

� N 3�=4�1=2:
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We have

(8.40)
ˇ
ˇK

.1/
´ .�; �/

ˇ
ˇ;

ˇ
ˇ
ˇ
ˇ

d

d�
K

.1/
´ .�; �/

ˇ
ˇ
ˇ
ˇ

� C;

uniformly for all � satisfying dist.�; S´;left/ � N 3�=4�1=2 log N ; this follows from

the exponential decay of the kernel along the S´;left. Here dist.w; A/ denotes the

distance from point w to set A. Thus we obtain

(8.41)

ˇ
ˇ
ˇ
ˇ

X

u2Rz;left

juC�j��
p

1��N �=4

K
.1/
´

�
N 1=2.u C �/

�
p

1 � �
;
N 1=2.u C �/

�
p

1 � �

�

�
X

�2I.MN;left/

K
.1/
´ .�; �/

ˇ
ˇ
ˇ
ˇ

� CN 3�=4�1=2jI.MN;left/j;
where I.MN;left/ is the image of the mapping MN;left defined in Lemma 8.1. By

using the upper bound of I.MN;left/ in Lemma 8.1(c), all the points in I.MN;left/

satisfy j�j � N �=4 C 1. Thus we have jI.MN;left/j � CN �=2. The lower bound of

I.MN;left/ in the same lemma also implies limN !1 I.MN;left/ D S´;left. Since

(8.42)
X

�2S´;left

ˇ
ˇK

.1/
´ .�; �/

ˇ
ˇ � C;

we obtain

(8.43)
X

u2Rz;left

juC�j��
p

1��N �=4

K
.1/
´

�
N 1=2.u C �/

�
p

1 � �
;
N 1=2.u C �/

�
p

1 � �

�

!

X

�2S´;left

K
.1/
´ .�; �/

where we also used the upper bound of �, which gives 5�=4 � 1=2 < 0.

Now for each u D �� C �
p

1 � �� 2 Rz;left satisfying j�j � N �=4, by applying

Lemma 8.4(a) and (b) we have

(8.44) zK.1/
z .u; u/ D

� K
.1/
´

�
N 1=2.u C �/

�
p

1 � �
;
N 1=2.u C �/

�
p

1 � �

�

.1 C O.N ��1=2 log N //

where the error term O.N ��1=2 log N / is independent of u. Therefore we have

(8.45)

ˇ
ˇ
ˇ
ˇ

X

u2Rz;left

juC�j��
p

1��N �=4

zK.1/
z .u; u/ C

X

u2Rz;left

juC�j��
p

1��N �=4

K
.1/
´

�
N 1=2.u C �/

�
p

1 � �
;
N 1=2.u C �/

�
p

1 � �

�ˇ
ˇ
ˇ
ˇ

� CN 5�=4�1=2 log N:

The last estimate we need is

(8.46)

ˇ
ˇ
ˇ
ˇ

X

u2Rz;left

zK.1/
z .u; u/ �

X

u2Rz;left

juC�j��
p

1��N �=4

zK.1/
z .u; u/

ˇ
ˇ
ˇ
ˇ

� CLe�CN 3�=4

;



TASEP ON A RING 793

which follows from Lemma 8.4(c) and the fact that there are at most L � N points

in the summation. By combining (8.43), (8.45), and (8.46), we have

�(8.47) lim
N !1

X

u2Rz;left

zK.1/
z .u; u/ D �

X

�2S´;left

K
.1/
´ .�; �/:

PROOF OF LEMMA 8.6. First we have the following inequality:

(8.48)
X

u2Rz;left

s
X

u02Rz;left

j zK.1/
z .u; u0/j2 � C

where C is a constant that is independent of ´. This follows from the fact that the

left-hand side converges to

(8.49)
X

�2S´;left

s
X

�02S´;left

jK.1/
´ .�; � 0/j2

as N ! 1, which can be shown by using Lemma 8.4. Since the argument of this

convergence is almost the same as the proof of Lemma 8.5, we omit the details.

The above limit is bounded and hence (8.48) holds.

Now we prove the lemma. By Hadamard’s inequality, we have

ˇ
ˇdet

� zK.1/
z .wi ; wj /

�l

i;j D1

ˇ
ˇ �

l
Y

iD1

s
X

1�j �l

ˇ
ˇ zK.1/

z .wi ; wj /
ˇ
ˇ
2

�
l

Y

iD1

s
X

u02Rz;left

ˇ
ˇ zK.1/

z .wi ; u0/
ˇ
ˇ
2

(8.50)

for all distinct w1; w2; : : : ; wl 2 Rz;left. As a result,

X

w1;:::;wl 2Rz;left

ˇ
ˇdet

� zK.1/
z .wi ; wj /

�l

i;j D1

ˇ
ˇ

�
X

w1;:::;wl 2Rz;left

l
Y

iD1

s
X

u02Rz;left

ˇ
ˇ zK.1/

z .wi ; u0/
ˇ
ˇ
2

D
�

X

u2Rz;left

s
X

u02Rz;left

ˇ
ˇ zK.1/

z .u; u0/
ˇ
ˇ
2
�l

;

(8.51)

and (8.39) follows immediately. �

PROOF OF THEOREM 3.1. In summary, under the scaling (8.18), we have (8.24)

and (8.36). These two imply that (8.1) with i D 1 converges to F1.�1=3xI �/,

where F1.xI �/ is defined in (4.2). This proves Theorem 3.1. �
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8.2 Step Initial Condition

We now prove Theorem 3.4.

We apply Theorem 7.4 with

�n D Nn=Ln;

tn D Nn

�2
n

�
�p

1 � �n

N 1=2
n

�

C 1

�2
n

nNn C 1

�2
n

.Nn � kn/;
(8.52)

and

an D .1 � �n/tn � ��1
n .Nn � kn/ � ��1=3

n .1 � �n/2=3xt1=3
n ;(8.53)

where �n 2 .c1; c2/ with fixed constants c1; c2 satisfying 0 < c1 < c2 < 1, and

n D  C O.N
�1=2
n / for fixed  2 R. As we mentioned before, we suppress

the subscript n for notational convenience, but we still write n to distinguish it

from  , which is a fixed constant.

We also assume a D an given in (8.53) is an integer so that Theorem 7.4 applies.

Asymptotics of C
.2/

N
.z/

Recall the definition of C
.2/
N .z/ in (7.37) and rewrite it as the product of the two

terms

C
.2/
N;1.z/ D

Q

u2Rz;left
.�u/N

Q

v2Rz;right
.v C 1/L�N

Q

u2Rz;left

Q

v2Rz;right
.v � u/

;

C
.2/
N;2.z/ D

Y

u2Rz;left

.�u/k�N �1
Y

v2Rz;right

.v C 1/�a�N Cketv:

(8.54)

By applying Lemma 8.2(c), we have

(8.55) C
.2/
N;1.z/ D e2B.´/.1 C O.N ��1=2//:

On the other hand, for C
.2/
N;2.z/, we have the following result, which is analogous

to Lemma 8.3.

LEMMA 8.7. Suppose z, ´, and � satisfy the same conditions in Lemma 8.1, and

a; t satisfy (8.52) and (8.53) with 1 � k � N . Then for large enough N , we have

(8.56) C
.2/
N;2.z/ D e�1=3xA1.´/C�A2.´/.1 C O.N ��1=2//:

Combining this lemma with (8.55) we obtain

(8.57) C
.2/
N .z/ D e�1=3xA1.´/C�A2.´/C2B.´/.1 C O.N ��1=2//:
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Asymptotics of det.I C K
.2/
z /

Recall that

(8.58) K.2/
z .u; u0/ D f2.u/

X

v2Rz;right

1

.u � v/.u0 � v/f2.v/
; u; u0 2 Rz;left;

where f2 is given by

(8.59) f2.w/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

zg2.w/.qz;right.w//2

.w C �/w2N
; w 2 Rz;left;

zg2.w/.q0
z;right.w//2

.w C �/w2N
; w 2 Rz;right;

with zg2.w/ WD wN �kC2.w C 1/�a�N CkC1etw . Note that wN .w C 1/L�N D zL

for all w 2 Rz. Thus the Fredholm determinant of K
.2/
z is equal to det.I C zK.2/

z /

where

(8.60) zK.2/
z .u; u0/ D h2.u/

X

v2Rz;right

1

.u � v/.u0 � v/h2.v/
; u; u0 2 Rz;left;

where

(8.61) h2.w/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

g2.w/.qz;right.w//2

.w C �/w2N
; w 2 Rz;left;

g2.w/.q0
z;right.w//2

.w C �/w2N
; w 2 Rz;right;

with

(8.62) g2.w/ WD zg2.w/w
N

�
�p
1��

N 1=2
�

.w C 1/
.L�N /

h
�p
1��

N 1=2
i

zg2.��/.��/
N

h
�p
1��

N 1=2

i

.1 � �/
.L�N /

h
�p
1��

N 1=2

i :

Similarly to Lemma 8.4, we have the following asymptotics for h2.w/. See

Section 9 for the proof.

LEMMA 8.8. Let 0 < � < 1
2

be a fixed constant.

(a) When u 2 Rz;left and ju C �j � �
p

1 � �N �=4�1=2, we have

(8.63) h2.u/ D N 1=2

�
p

1 � ��
e2hright.�;´/� 1

3
��3C�1=3x�C 1

2
�2

.1 C O.N ��1=2 log N //;

where � D N 1=2.uC�/

�
p

1��
and hright is defined in (8.11). The error term

O.N ��1=2 log N / is independent of u and �.

(b) When v 2 Rz;right and jv C �j � �
p

1 � �N �=4�1=2, we have

(8.64)
1

h2.v/
D �3.1 � �/3=2

�N 3=2
e2hleft.�;´/C 1

3
��3��1=3x�� 1

2
�2

.1 C O.N ��1=2 log N //;
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where � D N 1=2.vC�/

�
p

1��
and hleft is defined in (8.10). The error term

O.N ��1=2 log N / is independent of v and �.

(c) When w 2 Rz and jw C �j � �
p

1 � �N �=4�1=2, we have

h2.w/ D O.e�CN 3�=4

/; w 2 Rz;left;(8.65)

1

h2.w/
D O.e�CN 3�=4

/; w 2 Rz;right:(8.66)

Here both error terms O.e�CN 3�=4

/ are independent of w.

From Lemma 8.8 and Lemma 8.1, we expect, as in the flat case, that

(8.67) lim
N !1

det
�

I C zK.2/
z

�

D det
�

I � K
.2/
´

�

where K
.2/
´ is an operator defined on S´;left with kernel

(8.68) K
.2/
´ .�1; �2/ D

X

�2S´;left

eˆ´.�1I�1=3x;�/Cˆ´.�I�1=3x;�/C 1
2

.�2
1 ��2/

�1�.�1 C �/.�2 C �/

and

ˆ´.�I �1=3x; �/ D �1

3
��3 C �1=3x�

�
r

2

�

Z �

�1
Li1=2.e�!2=2/d!; � 2 S´;left;

(8.69)

is defined in (4.12). The rigorous proof is similar to that of (8.36), and we omit the

details.

Proof of Theorem 3.4

In summary, under the scaling (8.52) and (8.53), we have (8.57) and (8.67).

These imply that (8.1) with i D 2 converges to F2.�1=3xI �; /, where F2.xI �; /

is defined in (4.10). This proves Theorem 3.4.

9 Proofs of Lemmas 8.1, 8.2, 8.3, 8.4, 8.7, and 8.8

9.1 Proof of Lemma 8.1

We prove the results for MN;left. The proof for MN;right is similar.

(a) Let w be an arbitrary point in the domain of MN;left. We first show that

there exists a � in S´;left satisfying
ˇ
ˇ
ˇ
ˇ
� � N 1=2.w C �/

�
p

1 � �

ˇ
ˇ
ˇ
ˇ

� N 3�=4�1=2 log N

when N is sufficiently large. Write w WD ��C�
p

1 � ��N �1=2 where j�j � N �=4

and Re � < 0. Since w 2 Rz;left, it satisfies qz.w/ D 0 and hence we have

.�� C �
p

1 � ��N �1=2/N .1 � � C �
p

1 � ��N �1=2/L�N D zL D .�1/N
r

L
0 ´:
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Since r0 D ��.1 � �/1��, r
L
0 D �N .1 � �/L�N and

(9.1) .1 �
p

1 � ��N �1=2/N

�

1 C �p
1 � �

�N �1=2

�L�N

D ´:

When �N �1=2 is small and N is large, the Taylor expansion yields that

(9.2) e��2=2CEN .�/ D ´

where EN .�/ is the error term satisfying EN .�/ D O.�3N �1=2/. Note that

(9.3) EN .�/ D O.N 3�=4�1=2/ uniformly for j�j � N �=4,

hence uniformly for w in the domain of MN;left. The above calculation implies

that �2=2 � EN .�/ D � logj´j C i� for some � 2 R. Note that since ´ is a

constant satisfying 0 < j´j < 1, we have Re.� logj´j/ > 0, and hence there is a

constant c > 0 such that Re � < �c for all � satisfying (9.2) and j�j � N �=4. Now

let � be the point satisfying Re � < 0 and �2=2 D � logj´j C i� . Then � 2 S´;left

and �2=2 � EN .�/ D �2=2, which implies that j�2 � �2j D O.N 3�=4�1=2/. Note

that Re � � �c for some (possibly different) constant c > 0. Hence j� C �j �
jRe.� C �/j � c for a positive constant uniformly for � and � . There we find that

j� � �j D O.N 3�=4�1=2/. This proves the existence of �.

We now show the uniqueness of such �. Suppose that there are two different

points � and � 0 in S´;left satisfying j� � �j; j� 0 � �j � N 3�=4�1=2 log N . From the

fact that e��2=2 D e��02=2 we have j�2 � � 02j � 4� . On the other hand,

j� � � 0j � j� � �j C j� 0 � �j � 2N 3�=4�1=2 log N

and

j� C � 0j � j� � �j C j� 0 � �j C 2j�j � 3N �=4:

These two estimates imply that j�2 � � 02j � 6N ��1=2 log N . This contradicts the

previous lower bound 4� . Thus for sufficiently large N , there is a unique � 2 S´;left

satisfying j� � �j � N 3�=4�1=2 log N . The map MN;left is thus well-defined.

(b) We now show that MN;left is injective. If w WD �� C �
p

1 � ��N �1=2 and

w0 WD �� C �
p

1 � ��0N �1=2 are two different points in the domain, then � D
MN;left.w/ and � 0 D MN;left.w

0/ are different. Note that j�j; j�0j � N �=4. Since

w and w0 are solutions of the polynomial equation wN .1 � w/L�N D .�1/L
r

L
0 ´,

by noting (9.1) and (9.2) in (a), we find that

(9.4) ��2=2 C EN .�/ D log j´j C i�1; �.�0/2=2 C EN .�0/ D log j´j C i�2;

for some real numbers �1 and �2 such that j�1 � �2j � 2� . Now j�2 � .� 0/2j �
j�2 � .�0/2j � j�2 � �2j � j.� 0/2 � .�0/2j. Since j� � �j � N 3�=4�1=2 log N by the

definition of � (see (8.7)), and we have j�j; j�j � N �=4, we find that j�2 � �2j D
O.N ��1=2 log N /. We have the same estimate for j.� 0/2 � .�0/2j. On the other

hand, from (9.4), j�2�.�0/2j � 4� �2jEN .�/j�2jEN .�0/j � 4� �O.N 3�=4�1=2/
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from (9.3). Therefore, we see that j�2 � .� 0/2j � 4� � O.N ��1=2 log N /. Taking

N ! 1, we find that �2 and .� 0/2 are different, and hence � and � 0 are different.

(c) The definition of MN;left already gives

I.MN;left/ � S
N �=4CN 3�=4�1=2 log N
´;left � SN �=4C1

´;left

for sufficiently large N . To prove the other inclusion property, it is enough to show

that for every � 2 SN �=4�1
´;left , there exists � satisfying j� � �j � N 3�=4�1=2 log N

and (9.1). Indeed, if such � exists, then w WD �� C �
p

1 � ��N �1=2 lies in

Rz;left \ fw W jw C �j � �
p

1 � �N �=4�1=2g since

j�j � j� � �j C j�j � N �=4 � 1 C N 3�=4�1=2 log N � N �=4

and (8.7) is satisfied. Now, in order to show that there is such an �, it is enough to

show that, by using e��2=2 D ´ and taking the logarithm of (9.1), the function

P.�/ WD N log.1 �
p

1 � ��N �1=2/

C N.��1 � 1/ log

�

1 C �p
1 � �

�N �1=2

�

C �2

2

(9.5)

has a zero inside the disk j� � �j � N 3�=4�1=2 log N . Since �N �1=2 is small,

we have (see (9.2)) P.�/ D ��2=2 C EN .�/ C �2=2 for � in the disk. The

function Q.�/ D ��2=2 C �2=2 clearly has a zero in the disk and jQ.�/j D
j� � �jj� C �j=2 � cN 3�=4�1=2 log N on the circle j� � �j D N 3�=4�1=2 log N .

Here we used that Re � � �c for some positive constant c and hence � satisfies the

same bound for a different constant. Since jEN .�/j � O.N 3�=4�1=2/ (see (9.3)),

we find that jEN .�/j < jQ.�/j on the circle, and hence by Rouché’s theorem, we

find that P.�/ has a zero in the disk. This proves SN �=4�1
´;left � I.MN;left/.

9.2 Proof of Lemma 8.2

We use the following simple identities in the proof.

LEMMA 9.1. Let †left;out be a simple closed contour in the left half-plane Re ´ �
�� that encloses †left D fu W juj�ju C 1j1�� D jzj; Re u < ��g inside so that

†left;out encloses all points in Rz;left inside. Then for every function p.´/ that is

analytic inside †left;out and is continuous up to the boundary,

X

u2Rz;left

p.u/ D .L � N /p.�1/ C LzL

I

†left;out

p.u/.u C �/

u.u C 1/qz.u/

du

2� i
;(9.6)

where qz.u/ D uN .u C 1/L�N � zL. Similarly, let †right;out be a simple closed

contour in the left half-plane Re ´ � �� enclosing †right D fu W juj�ju C 1j1�� D
jzj; Re u > ��g so that †right;out encloses all points in Rz;right. Then for every
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function p.´/ that is analytic inside †right;out and is continuous up to the boundary,

X

v2Rz;right

p.v/ D Np.0/ C LzL

I

†right;out

p.v/.v C �/

v.v C 1/qz.v/

dv

2� i
:(9.7)

In particular, when p.´/ D 1, we find that

0 D
I

†left;out

u C �

u.u C 1/qz.u/

du

2� i
and 0 D

I

†right;out

v C �

v.v C 1/qz.v/

dv

2� i
:(9.8)

PROOF. Note that
q0

z.w/

qz.w/
D

�
N
w

C L�N
wC1

�qz.w/CzL

q´.w/
D L.wC�/

w.wC1/

�

1C zL

qz.w/

�

. Hence

by the residue theorem,

X

u2Rz;left

p.u/ D
I

†left;out

p.u/q0
z.u/

qz.u/

du

2� i

D L

I

†left;out

p.u/.u C �/

u.u C 1/

du

2� i
C LzL

I

†left;out

p.u/.u C �/

u.u C 1/qz.u/

du

2� i
:

�

We now prove Lemma 8.2.

(a) Applying the identity (9.6) to the function p.u/ D log.wN � u/ and using

(9.8), we obtain
X

u2Rz;left

log.wN � u/ D .L � N / log.wN C 1/ C IN(9.9)

where

IN WD LzL

I

†left;out

log

�
N 1=2.wN � u/

�
p

1 � �

�
u C �

u.u C 1/qz.u/

du

2� i
:(9.10)

It is now enough to prove that if Re � � 0, then

(9.11) IN D hleft.´; �/.1 C O.N ��1=2//:

For this purpose, let

(9.12) �a D � � a�
p

1 � �N �1=2

for some real constant a satisfying a2=2 < � logj´j and a < Re �. By Lemma 8.1,

we can deform the contour †left;out to ��a C iR:

IN D LzL

Z ��aCi1

��a�i1
log

�
N 1=2.wN � u/

�
p

1 � �

�
u C �

u.u C 1/qz.u/

du

2� i
:(9.13)

We then split the integral into two parts, jIm uj � �
p

1 � �N �=3�1=2 and jIm uj �
�
p

1 � �N �=3�1=2 where � is the fixed parameter satisfying 0 < � < 1
2

as defined
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in Lemma 8.1, and estimate them separately. For the first part, note that if uC� !
0 as N ! 1, then

qz.u/ D uN .1 C u/L�N � .��/N .1 � �/L�N ´

D .��/N .1 � �/L�N

��

1 � u C �

�

�N �

1 C u C �

1 � �

�L�N

� ´

�

D zL

´

�

e
� 1

2�2.1��/
N.uC�/2CO.N.uC�/3/ � ´

�

(9.14)

since N=L D �. Hence by changing the variables u D �� C �
p

1 � ��N �1=2 we

get that the first part of (9.13) for jIm uj � �
p

1 � �N �=3�1=2 is equal to

(9.15) � ´

Z aCiN �=3

a�iN �=3

log.� � �/
�

e��2=2 � ´
.1 C O.N ��1=2//

d�

2� i
D

� ´

Z aCi1

a�i1
log.� � �/

�

e��2=2 � ´

d�

2� i
.1 C O.N ��1=2//:

To compute the second part, recall that r
L
0 D �N .1 � �/L�N and note that for

u D ��a C iy with jyj � �
p

1 � �N �=3�1=2,
ˇ
ˇ
ˇ
ˇ

uN .u C 1/L�N

r
L
0

ˇ
ˇ
ˇ
ˇ

D �N
a .1 � �a/

L�N

�N .1 � �/L�N

�

1 C y2

�2
a

�N=2�

1 C y2

.1 � �a/2

�.L�N /=2

� C1

�

1 C y2

�2
a

�N=2�

1 C y2

.1 � �a/2

�.L�N /=2

� C1eC2N 2�=3

y2

(9.16)

for some positive constants C1 and C2. Since the last bound in the above estimate

is �2 for all large enough N , we find that

(9.17)

ˇ
ˇ
ˇ
ˇ

qz.u/

zL

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

uN .u C 1/L�N

zL
� 1

ˇ
ˇ
ˇ
ˇ

� 1

2
C1eC2N 2�=3

y2

for the same u. Also, since

wN � u D .� � a/N �1=2�
p

1 � � C iy and Re.� � a/ > 0;

we find that jwN � uj � CN �1=2 C jyj � 2jyj for all large enough N and

jwN � uj � Re.� � a/N �1=2�
p

1 � � � CN �1=2, and hence there is a constant

C3 such that

(9.18) jlog.wN � u/j � 1

2
log N C C3 C logjyj
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for all large enough N . Also, noting the trivial bound ju C �j � ju.u C 1/j for

such u, the absolute value of the second part of the integral of (9.13) satisfying

jIm uj � �
p

1 � �N �=3�1=2 is bounded above by

C4L1=2e�C2N 2�=3

Z

y2RIjyj�N �=3

log N C C5 C logjyj
y2

dy(9.19)

for some positive constants C4; C5. This is bounded by C 0e�CN 2�=3

for some posi-

tive constants C; C 0. By combining (9.9), (9.13), (9.15), and (9.19), and comparing

the result with (8.13), it remains to show that

(9.20) hleft.�; ´/ D �´

Z aCi1

a�i1

� log.� � �/

e��2=2 � ´

d�

2� i
;

i.e.,

(9.21) � 1p
2�

Z ��

�1
Li1=2.´e.�2�y2/=2/dy D �´

Z aCi1

a�i1

� log.� � �/

e��2=2 � ´

d�

2� i
:

To prove (9.21), it is sufficient to show that the coefficient of ´j matches on both

sides for all j � 1. Therefore (9.21) is reduced to the following identity (after

absorbing
p

j into � and y):

(9.22)
1p
2�

es2=2

Z �s

�1
e�x2=2 dx D

Z

Re.�/Dc<Re.s/

� log.s � �/e�2=2 d�

2� i
:

Note that the right-hand side of (9.22), after integration by parts, equals

(9.23)

Z

Re.�/Dc<Re.s/

e�2=2

s � �

d�

2� i
;

which is the integral representation of the Faddeeva function and hence matches

the left-hand side of (9.22).

We finished the proof of (8.13). The proofs of (8.14) and (8.15) are similar.

(b) Consider the estimates (9.15) and (9.19) in the proof of (a). We set a D 0.

Note that in the proof of (a), we chose a so that a < Re � , and this condition is

satisfied since we assume that Re � � c > 0. Equation (9.15) remains the same:

� ´

Z iN �=3

�iN �=3

log.� � �/
�

e��2=2 � ´
.1 C O.N ��1=2//

d�

2� i
:(9.24)

Since c � j� � �j � 2N �=3, we find that the above is equal to

hleft.�; ´/ C O.N ��1=2 log N /:(9.25)

On the other hand, (9.18) is unchanged since CN �1=2 � jwN � uj � 2jyj for all

large enough N as before. The other case is similar.
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(c) We first find an integral representation of the logarithm of the left-hand side.

By using (9.7) with p.v/ D log.v � u/,

X

v2Rz;right

u2Rz;left

log.v � u/ D
X

u2Rz;left

�

N log.�u/ C LzL

I

†right;out

.v C �/ log.v � u/

v.v C 1/qz.v/

dv

2� i

�

:

Exchanging the sum and the integral, applying (9.6) with p.u/ D log.v � u/, and

then using the residue theorem, the above becomes

(9.26)

X

v2Rz;right

u2Rz;left

log.v � u/

D N
X

u2Rz;left

log.�u/ C .L � N /
X

v2Rz;right

log.v C 1/

C L2z2L

I

†right;out

.v C �/

v.v C 1/qz.v/

�I

†left;out

.u C �/ log.v � u/

u.u C 1/qz.u/

du

2� i

�
dv

2� i
:

Hence (8.17) is obtained if we prove that the last double integral term is equal to

�2B.´/.1 C O.N ��1=2//. By using (9.8) and replacing the contours to vertical

lines, it is enough to prove that

L2z2L

“

log

�
N 1=2.v � u/

�
p

1 � �

�
.v C �/.u C �/

v.v C 1/qz.v/u.u C 1/qz.u/

du

2� i

dv

2� i

D 2B.´/.1 C O.N ��1=2//

where the contours are appropriate vertical lines, which we choose as follows.

Note that the sign is changed since we orient the vertical lines from bottom to

top. Fix two real numbers a < b in the interval .�
p

� log j´j;
p

� log j´j/. We

take the line �� C a�
p

1 � �N �1=2 C iR as the contour for u and the line �� C
b�

p
1 � �N �1=2 C iR as the contour for v. The double integral is similar to the

integral (9.13) considered in (b). We estimate the double integral similarly as in

the proof of (b). We change the variables as u D �� C �
p

1 � ��N �1=2 and

v D �� C �
p

1 � ��N �1=2 and split the integral into two parts: the part in the

region f.�; �/ W j�j � N �=3; j�j � N �=3g and the part in the region f.�; �/ W j�j �
N �=3 or j�j � N �=3g. As in (b), it is easy to check (see (9.14)) that the integral for

first part is equal to

´2

“
�� log.� � �/

.e��2=2 � ´/.e��2=2 � ´/

d�

2� i

d�

2� i
.1 C O.N ��1=2//:

Here the contours for � and � are Re.�/ D a and Re.�/ D b, respectively. The

second part is O.e�CN 2�=3

/. We skip the details here since the analysis is an easy

modification of the estimate (9.19).
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Now it remains to prove

(9.27) 2B.´/ D ´2

“
�� log.� � �/

.e��2=2 � ´/.e��2=2 � ´/

d�

2� i

d�

2� i
I

i.e., to prove the identity

(9.28)
1

2�

Z ´

0

.Li1=2.y//2

y
dy D ´2

“
�� log.� � �/

.e��2=2 � ´/.e��2=2 � ´/

d�

2� i

d�

2� i
:

By comparing the coefficient of ´kCl on both sides, it is sufficient to show

(9.29)
1

2�.k C l/
p

kl
D

“

�� log.� � �/e.k�2Cl�2/=2 d�

2� i

d�

2� i

for all k; l � 1. In fact, after integrating by parts (with respect to d� and d�), we

have

.k C l/

“

�� log.� � �/e.k�2Cl�2/=2 d�

2� i

d�

2� i

D
“

�

� � �
e.k�2Cl�2/=2 d�

2� i

d�

2� i
C

“
�

� � �
e.k�2Cl�2/=2 d�

2� i

d�

2� i

D
“

e.k�2Cl�2/=2 d�

2� i

d�

2� i
D 1

2�
p

kl
:

(9.30)

9.3 Proofs of Lemmas 8.3 and 8.7

First consider Lemma 8.3. From the definition, log.C
.1/
N;3.z// is equal to

(9.31) �N

2

X

u2Rz;left

log.�u/ C
X

v2Rz;right

��
L � N

2
� a C k��1

�

log.v C 1/ C tv

�

plus an integer times 2� i. Using (9.6) with p.u/ D log.�u/, using (9.7) twice with

p.v/ D log.v C 1/ and p.v/ D v, using (9.8), and then changing the contours to

a common vertical line, we find that

� N

2

X

u2Rz;left

log.�u/ C
X

v2Rz;right

��
L � N

2
� a C k��1

�

log.v C 1/ C tv

�

D LzL

Z ��Ci1

���i1
.G1.w/ � G1.��//

.w C �/

w.w C 1/qz.w/

dw

2� i
;

where

(9.32) G1.w/ D �N

2
log.�w/ C

�

�L � N

2
C a � k��1

�

log.w C 1/ � tw:

Note that the part of the integral involving G1.��/ is 0 due to (9.8) and hence it is

free to add it here. We change the variables as w D �� C �
p

1 � ��N �1=2. As

in the proof of Lemma 8.2(a), we split the integral into two parts: j�j � N �=4 and

j�j � N �=4 where 0 < � < 1
2

is a fixed real number. The second part is almost the
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same as the case of Lemma 8.2(a), and we obtain the estimate O.e�CN �=2

/. We

do not provide the details. However, the analysis of the first part is more delicate

and requires higher-order expansions and the symmetry of the integrand.

A tedious calculation using Taylor expansion and (8.18) shows that for w D
�� C ı with ı D O.N �=4�1=2/,

G1.w/ � G1.��/

D G0
1.��/ı C 1

2
G00

1.��/ı2 C 1

6
G000.��/ı3

C E 0
1N 3=2ı4 C O.N 3=2ı5/

D ��1=3xN 1=2

�
p

1 � �
ı C N

4�2.1 � �/

�

1 � 2p
1 � �

�N 1=2

�

ı2

C �N 3=2

3�2.1 � �/5=2
ı3 C E 00

1 N 1=2ı2 C E 00
2 Nı3 C E 00

3 N 3=2ı4

C O.N 5�=4�1/

(9.33)

where E 0
1, E 00

1 , E 00
2 , and E 00

3 are independent of ı and all bounded uniformly on N .

Hence we find that for w D �� C �
p

1 � ��N �1=2 with j�j � N �=4,

G1.w/ � G1.��/

D � �

2
p

1 � �
�2N 1=2 C

�

��1=3x� C 1

4
�2 C ��

3.1 � �/
�3

�

C E1N �1=2�2 C E2N �1=2�3 C E3N �1=2�4 C O.N 5�=4�1/

(9.34)

where Ei is independent of � and uniformly on N for all i D 1; 2; 3. A careful

calculation shows that E2 D 1�2�

6
p

1��
, which is the only Ei term that makes a

nonzero contribution to the O.N �1=2/ in the integral (9.38).

We also have, after calculating the next order term in (9.14), for ´ D �� C ı

with ı 2 iR,

qz.w/ D zL

´

�

e
� 1

2�2.1��/
Nı2C 2��1

3�3.1��/2 Nı3CE 0
4Nı4CO.Nı5/ � ´

�

:(9.35)

Hence for w D �� C �
p

1 � ��N �1=2 with � 2 iR satisfying j�j � N �=4,

qz.w/

zL
D 1

´
e

� 1
2

�2C 2��1

3
p

1��
�3N �1=2CE 00

4 �4N �1CO.N 5�=4�3=2/ � 1

D e��2=2 � ´

´

�

1 C 2� � 1

3
p

1 � �

e��2=2

e��2=2 � ´
�3N �1=2

C E4�4N �1 C O.N 5�=4�3=2/

�

:

(9.36)
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It is easy to check that for the same w,

L.w C �/

w.w C 1/
D � 1

�
p

1 � �
�N 1=2

�

1 C 1 � 2�p
1 � �

�N �1=2

C E5�2N �1 C O.N 3�=4�3=2/

�

:

(9.37)

We now evaluate the first part of the integral using the above estimates. Noting

that the integration domain is symmetric about the origin and hence the integral of

an odd function is 0, we obtain
Z ��Ci�

p
1��N �=4

���i�
p

1��N �=4

.G1.w/ � G1.��//
L.w C �/zL

w.w C 1/qz.w/

dw

2� i

D
Z iN �=4

�iN �=4

�

�1=3x�2 C .3 � 8�/�

6.1 � �/
�4

�
´

e��2=2 � ´

d�

2� i

C .1 � 2�/�

6.1 � �/

Z iN �=4

�iN �=4

´e��2=2

.e��2=2 � ´/2
�6 d�

2� i
C O.N 2��1/:

(9.38)

Here the error term would be O.N 3�=2�1=2/ if we estimated natively. However,

using the symmetry of the domain, the leading error term is given by

(9.39)

N �1=2

Z iN �=4

�iN �=4

�

� 1

12

1 � 2�p
1 � �

´e��2=2

.e��2=2 � ´/2
�6 � 1

4

1 � 2�p
1 � �

´

e��2=2 � ´
�4

� E2
´

e��2=2 � ´
�4

�
d�

2� i

D �N �1=2 1 � 2�

12
p

1 � �

�
´

e��2=2 � ´
�5

�ˇ
ˇ
ˇ
ˇ

iN �=4

�iN �=4

D O.e�CN �=2

/;

where we used the formula of E2 and an integration by parts.

After integrating by parts the last integral, we find that (9.38) is equal to

Z iN �=4

�iN �=4

�

�1=3x�2 � 1

3
��4

�
´

e��2=2 � ´

d�

2� i
C O.N 2��1/:(9.40)

A direct calculation shows that

(9.41)

Z

Re.�/D0

�2 ´

e��2=2 � ´

d�

2� i
D � 1p

2�
Li3=2.´/ D A1.´/

and

(9.42)

Z

Re.�/D0

�4 ´

e��2=2 � ´

d�

2� i
D 3p

2�
Li5=2.´/ D �3A2.´/:

Thus the lemma is proved.

The proof of Lemma 8.7 is similar. The only difference is that if we define

(9.43) G2.w/ D .k � N � 1/ log.�w/ C .a C N � k/ log.w C 1/ � tw;



806 J. BAIK AND Z. LIU

we should have

G2.w/ � G2.��/

D �1

2
�2

�
�p

1 � �
N 1=2

�

C
�

��1=3x� � 1

2
�2 C ��

3.1 � �/
�3

�

C error terms;

(9.44)

which replaces the G1.w/ estimate in (9.33). Other estimates are the same. We

omit the details. In the final formula, the error term is slightly different from

Lemma 8.3. This is due to the O.1/ perturbations of the coefficient and the in-

teger part appeared in t .

9.4 Proofs of Lemmas 8.4 and 8.8

Consider Lemma 8.4 first.

(a) By using Lemma 8.2(b), we find that

qz;right.u/

uN
D ehright.´;�/.1 C O.N ��1=2 log N //

uniformly in j�j � N �=4. Thus we only need to show

(9.45) g1.u/ D e� 1
3

��3C�1=3x�.1 C O.N ��1=2 log N //

for all u 2 Rz;left such that ju C �j � �
p

1 � �N �=4�1=2.

By taking the logarithm, it is sufficient to show that

t .u C �/ C
�

2 C
�

�N 3=2

p
1 � �

��

log

�
u

��

�

C
�

.d � 1/

�

k C
�

�N 3=2

p
1 � �

��

C k C ��1 � a

�

log

�
u C 1

1 � �

�

D �1

3
��3 C �1=3x� C O.N ��1=2 log N /;

(9.46)

which is further reduced to, after inserting (8.18) and also dropping the O.1/ con-

stants 2 and ��1 and the notation Œ�� in the coefficients that only give an O.N �=4�1=2/

error,

1

�2
p

1 � �
�N 3=2.u C �/ C �N 3=2

p
1 � �

log

�
u

��

�

C
�

�.1 � �/3=2

�2
�N 3=2 C

p
1 � �

�
�1=3xN 1=2

�

log

�
u C 1

1 � �

�

D �1

3
��3 C �1=3x� C O.N ��1=2 log N /:

(9.47)
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Similarly to (9.34) (without the Ej terms), this equation can be checked directly

by using Taylor expansions. We omit the details here. This completes the proof of

Lemma 8.4(a).

(b) The proof is the same as part (a) except for the part q0
z;right.v/=vN , where

we use the identity (see (7.25))

(9.48)
q0

z;right.v/

vN
D vL�N

qz;left.v/

L.v C �/

v.v C 1/

and then apply Lemma 8.2(b). This proves Lemma 8.4(b).

(c) Suppose that u 2 Rz;left and satisfies ju C �j � �
p

1 � �N �=4�1=2. We first

estimate the following term:

(9.49) g1.u/ D
�

u

��

�j �2�
u C 1

1 � �

�j.d�1/�aC.kC1/d

et.uC�/

where j D Œ�N 3=2=
p

1 � ��. We have the following claim.

Claim. Let � be the contour juj�ju C 1j1�� D constant. Let c be a real constant

such that 0 < c � 1 � �. Then the function ju C 1j�ceRe u increases as Re u

increases and u stays on � , u 2 � . For c > 1 � �, the same holds for the part of �

such that ju C �j2 � �.c � 1 C �/.

PROOF OF CLAIM. Write u D x C iy, x; y 2 R. Since juj�ju C 1j1�� is a

constant, we have
�

�x

x2 C y2
C .1 � �/.x C 1/

.x C 1/2 C y2

�

dx

C
�

�y

x2 C y2
C .1 � �/y

.x C 1/2 C y2

�

dy D 0:

(9.50)

Now

d log.ju C 1j�ceRe u/ D
�

1 � c.x C 1/

.x C 1/2 C y2

�

dx � cy

.x C 1/2 C y2
dy:

Inserting (9.50), we can remove the dy-term and find, after direct calculations, that

d

dx
log.ju C 1j�ceRe u/ D.x C �/2 C �.1 � � � c/ C y2

x2 C 2�x C � C y2
:

It is easy to check that the derivative is nonnegative under the conditions of the

claim. �

Taking the absolute value of (9.49), and noting that jujjuC1j.1��/=� is a constant

since u 2 Rz;left (recall that N=L D � D d�1), we find, after substituting (8.18),

that the absolute value of (9.49) is

C ju C 1j3d�2ju C 1j�.1��/tC�1=3x
p

1��

�
N 1=2

et Re u
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for some constant C > 0. Since Rz;left is bounded, ju C 1j3d�2 is bounded. On

the other hand, since tN �1 D O.N 1=2/, the above is bounded by

(9.51) C.ju C 1j�.1��/CO.N �1/eRe u/t

for a different constant C . Applying the claim with c D .1��/CO.N �1/, we find

that for u 2 Rz;left satisfying ju C �j � �
p

1 � �N �=4�1=2, (9.51) is the largest

when ju C �j D �
p

1 � �N �=4�1=2. Hence the absolute value of (9.49) for the

same range of u is bounded above by the value when juC�j D �
p

1 � �N �=4�1=2.

Now for u 2 Rz;left with ju C �j D �
p

1 � �N �=4�1=2, we had proved the as-

ymptotic formula (9.45). Noting that � here is given by � D N 1=2.uC�/

�
p

1��
. Then

j�j D N �=4, and it is also easy to check that Re.�3/ > 0 since u 2 Rz;left and u is

close to ��: see Figure 4.1 for the limiting curve of Rz. Hence we find that (9.49)

is bounded by O.e�CN 3�=4

/.

We now consider the term qz;right.u/=uN in (8.28). We apply (9.7) to p.v/ D
log.�u C v/, where the branch cut is defined as before, i.e., along the nonpositive

real axis so that p.v/ is analytic for v such that Re.v/ > ��, in particular, for v

inside †right;out. Then

(9.52)
X

v2Rz;right

log.�u C v/ � .L � N / log.�u/ D

� LzL

Z ��Ci1

���i1
log

�
u � w

u C �

�
.w C �/

w.w C 1/qz.w/

dw

2� i

where the minus sign in front of the integral is due to the orientation change

when we deform the contour from †right;out to �� C iR. Similar to the proof

of Lemma 8.2(a), we split the integration contour into two parts,

jIm wj � �
p

1 � �N �=5�1=2 and jIm wj � �
p

1 � �N �=5�1=2:

In order to evaluate the first part, we set � D .u C �/N 1=2=�
p

1 � �. Then j�j �
N �=4. We change the variables � D .w C �/N 1=2=�

p
1 � �. For this first part, we

have j�j � N �=5, and hence (9.36) and (9.37) can be applied. Then the first part is

equal to

Z iN �=5

�iN �=5

log

�

1 � �

�

�
�´

e��2=2 � ´
.1 C O.N 3�=5�1=2//

d�

2� i

where the error term is uniform in �. Since j�j=j�j � N ��=20, we may apply Tay-

lor’s theorem to the logarithm and find that the above integral is of order O.1=j�j/
and hence is bounded by O.N ��=4/. On the other hand, in the second part, we

use the same change of variables � D .w C �/N 1=2=�
p

1 � � and the integral
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becomes

(9.53) � �.1 � �/

�Z �iN �=5

�i1
C

Z i1

iN �=5

�

log

�
w � u

u C �

�
zL

qz.w/

�

w.w C 1/

d�

2� i

where w D w.�/ D �� C
p

1 � ��N �1=2.

We now estimate the integrand. First we need a lower bound for jRe.u/ C �j.
Since Rz;left is contained in the contour †left D fu W juN .u C 1/L�N j D jzjLg, we

will find the lower bound for u 2 †left satisfying ju C �j � �
p

1 � �N �=4�1=2.

It is now straightforward to check that the contour †left intersects any vertical line

Re u D constant at most twice. In addition, we know from Lemma 8.1 that the part

of Rz;left in ju C �j � �
p

1 � �N �=4�1=2 converges, after a rescaling, to a part of

S´;left. From this and the estimates in Lemma 8.1, we can see that the part of the

contour †left satisfying ju C �j � �
p

1 � �N �=4�1=2 is on the left of the vertical

line Re ´ D �� with distance at least CN �=4�1=2 for some positive constant C .

Hence for u 2 †left satisfying ju C �j � N �=4�1=2, we have jRe.u/ C �j �
CN �=4�1=2. This fact together with the trivial bound juj � C imply

(9.54) CN �=4�1=2 �
ˇ
ˇ
ˇ
ˇ

u � w

u C �

ˇ
ˇ
ˇ
ˇ

� jw C �j C C

CN �=4�1=2

for all w satisfying Re w D ��. Thus we find

(9.55)

ˇ
ˇ
ˇ
ˇ
log

�
u � w

u C �

�ˇ
ˇ
ˇ
ˇ

� C logjw C �j C C log N � C log j�j C C log N:

We also recall the estimate we did in (9.17), which gives

(9.56)

ˇ
ˇ
ˇ
ˇ

zL

qz.w/

ˇ
ˇ
ˇ
ˇ

� Ce�CN 2�=5 j�j�2:

Note that the exponent here is slightly different from that of (9.17) since we have

a different � here. By plugging in both estimates (9.55) and (9.56) and also the

trivial bound jw.w C 1/j � C in (9.53), we get an upper bounded e�CN 2�=5

of

(9.53). Together with the bound for the integral on the first part of the contour, we

immediately obtain that

(9.57)
qz;right.u/

uL�N
D O.eCN ��=4

/:

Combining this and the bound of (9.49) we obtained before, and the trivial

bound ju C �j�1 � CN 1=2��=4, we have (8.32). The case of Rz;right is similar.

This proves Lemma 8.4(c). We thus complete the proof of Lemma 8.4.

The proof of Lemma 8.8 is similar. For (a), note that

(9.58) N log

�
u

��

�

C .L � N / log

�
u C 1

�� C 1

�

D

� �2

2
C 2� � 1

3
p

1 � �
�3N �1=2 C error terms:
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This implies

(9.59)

�
�p

1 � �
N 1=2

��

N log

�
u

��

�

C .L � N / log

�
u C 1

�� C 1

��

D

� 1

2
�2

�
�p

1 � �
N 1=2

�

C 2� � 1

3.1 � �/
��3 C error terms:

Also note that

(9.60)
zg2.u/

zg2.��/
D e�G2.u/CG2.��/Cerror terms

where G2 is the function defined in (9.43). By combining (9.44), (9.59), and (9.60),

we obtain

(9.61) g2.w/ D e� 1
3

��3C�1=3x�C 1
2

�2Cerror term:

Then we apply Lemma 8.2(a) and obtain (8.63). The rest of the arguments are

similar to those of Lemma 8.4. We omit the details.

10 Proof of Theorem 3.5

This theorem follows easily from Theorem 3.4. We only prove part (b). Part (a)

is similar and easier.

To simplify notation, we omit the subscript n except for n.

We write t defined in (3.19) as

(10.1) t D N

�2

�
�p

1 � �
N 1=2

�

C 1

�2
nN C 1

�2
.N � k/;

where k D kn is an integer sequence such that 1 � k � N and n is a sequence

given by

(10.2) n D  C j C x�2=3.1 � �/2=3t1=3N �1 C �N �1 C �N �1

with some integer j D jn and an error term � D �n satisfying 0 � � < 1.

Note that j and � are uniquely determined from equation (10.1). Furthermore, by

comparing (3.19) and (10.1), we see that j is uniformly bounded, and

(10.3) n D  C j C O.N �1=2/:

Note the following equivalence between the particle location (in the periodic

TASEP) and the time-integrated current:

(10.4) xk.t/ � iL C m C 1 ” Jm.t/ � iN C .N C 1 � k/ C m�m�0

for all i � 1 and all k such that xk.0/ � iL C m.

It is easy to check that

xk.0/ C .1 � �/t � ��1.1 � �/.N � k/

� x��1=3.1 � �/2=3t1=3 D iL C m C 1 C ���1
(10.5)
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with the integer i given by

(10.6) i D sgn.1 � 2�/

� j1 � 2�j�
p

�.1 � �/
L1=2

�

C
�

�p
1 � �

N 1=2

�

C j:

Theorem 3.4 implies that

lim
L!1

P .xk.t/ � iL C m C 1/ D F2.�1=3xI �;  C j /

D F2.�1=3xI �; /:
(10.7)

Therefore, by the equivalence relation (10.4), we obtain

(10.8) lim
L!1

P .Jm.t/ � iN C .N C 1 � k/ C m�m�0/ D F2.�1=3xI �; /:

It remains to show that

(10.9) iN C .N C 1 � k/ C m�m�0 D
�.1 � �/t � jmj=2 C .1 � 2�/m=2 � �2=3.1 � �/2=3xt1=3 C O.1/:

(More precisely, O.1/ is equal to 1����.) This follows by multiplying both sides

of (10.5) by �.

Acknowledgments. We would like to thank Ivan Corwin, Percy Deift, Peter

Miller, and Sylvain Prolhac for useful discussions and communications, and Jun

Lai for his help with plotting the limiting distributions. Jinho Baik was supported

in part by National Science Foundation Grant DMS1361782. Part of this research

was done during our visits to the Kavli Institute of Theoretical Physics and was

also supported in part by National Science Foundation Grant PHY11-25915.

Bibliography

[1] Amir, G.; Corwin, I.; Quastel, J. Probability distribution of the free energy of the continuum

directed random polymer in 1+1 dimensions. Comm. Pure Appl. Math. 64 (2011), no. 4, 466–

537. doi:10.1002/cpa.20347

[2] Baik, J.; Deift, P.; McLaughlin, K. T-R; Miller, P.; Zhou, X. Optimal tail estimates for directed

last passage site percolation with geometric random variables. Adv. Theor. Math. Phys. 5 (2001),

no. 6, 1207–1250. doi:10.4310/ATMP.2001.v5.n6.a7

[3] Baik, J.; Liu, Z. TASEP on a ring in sub-relaxation time scale. J. Stat. Phys. 165 (2016), no. 6,

1051–1085. doi:10.1007/s10955-016-1665-y

[4] Baik, J., Liu, Z. Properties of the limiting distributions of periodic TASEP in relaxation time

scale. In preparation.

[5] Baik, J.; Rains, E. M. The asymptotics of monotone subsequences of involutions. Duke Math. J.

109 (2001), no. 2, 205–281. doi:10.1215/S0012-7094-01-10921-6

[6] Basu, R.; Sidoravicius, V.; Sly, A. Last passage percolation with a defect line and the solution

of the slow bond problem. Preprint, 2014. arXiv:1408.3464 [math.PR]

[7] Bethe, H. Zur theorie der metalle. I. Eigenwerte und eigenfunktionen der linearen atomkette.

Z. Phys. 71 (1931), 205–226.

[8] Bloemendal, A.; Virág, B. Limits of spiked random matrices I. Probab. Theory Related Fields

156 (2013), no. 3-4, 795–825. doi:10.1007/s00440-012-0443-2

http://dx.doi.org/doi:10.1002/cpa.20347
http://dx.doi.org/doi:10.4310/ATMP.2001.v5.n6.a7
http://dx.doi.org/doi:10.1007/s10955-016-1665-y
http://dx.doi.org/doi:10.1215/S0012-7094-01-10921-6
http://arxiv.org/abs/1408.3464
http://dx.doi.org/doi:10.1007/s00440-012-0443-2


812 J. BAIK AND Z. LIU

[9] Borodin, A.; Ferrari, P. L. Large time asymptotics of growth models on space-like paths. I.

PushASEP. Electron. J. Probab. 13 (2008), no. 50, 1380–1418. doi:10.1214/EJP.v13-541

[10] Borodin, A.; Ferrari, P. L.; Prähofer, M. Fluctuations in the discrete TASEP with periodic initial

configurations and the Airy1 process. Int. Math. Res. Pap. IMRP (2007), no. 1, Art. ID rpm002,

47 pp.

[11] Borodin, A.; Ferrari, P. L.; Prähofer, M.; Sasamoto, T. Fluctuation properties of the TASEP with

periodic initial configuration. J. Stat. Phys. 129 (2007), no. 5-6, 1055–1080.

[12] Brankov, J. G.; Papoyan, V. V.; Poghosyan, V. S.; Priezzhev, V. B. The totally asymmetric

exclusion process on a ring: Exact relaxation dynamics and associated model of clustering

transition. Phys. A 368 (2006), no. 8, 471–480. doi:10.1016/j.physa.2005.12.023

[13] Brattain, E.; Norman, D.; Saenz, A. The completeness of the bethe ansatz for the periodic ASEP.

Preprint, 2015. arXiv:1511.03762 [math-ph]

[14] Corwin, I. The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory

Appl. 1 (2012), no. 1, 1130001, 76 pp. doi:10.1142/S2010326311300014

[15] Derrida, B. Non-equilibrium steady states: fluctuations and large deviations of the density and

of the current. J. Stat. Mech. Theory Exp. (2007), no. 7, P07023, 45 pp. (electronic).

[16] Derrida, B.; Lebowitz, J. L. Exact large deviation function in the asymmetric exclusion process.

Phys. Rev. Lett. 80 (1998), no. 2, 209–213. doi:10.1103/PhysRevLett.80.209

[17] Ferrari, P. L.; Nejjar, P. Anomalous shock fluctuations in TASEP and last passage percolation

models. Probab. Theory Related Fields 161 (2015), no. 1-2, 61–109. doi:10.1007/s00440-013-

0544-6

[18] Golinelli, O.; Mallick, K. Bethe ansatz calculation of the spectral gap of the asymmetric exclu-

sion process. J. Phys. A 37 (2004), no. 10, 3321–3331. doi:10.1088/0305-4470/37/10/001

[19] Golinelli, O.; Mallick, K. Spectral gap of the totally asymmetric exclusion process at arbitrary

filling. J. Phys. A 38 (2005), no. 7, 1419–1425. doi:10.1088/0305-4470/38/7/001

[20] Gupta, S.; Majumdar, S. N.; Godrèche, C.; Barma, M. Tagged particle correlations in the asym-

metric simple exclusion process: finite-size effects. Phys. Rev. E (3) 76 (2007), no. 2, 021112,

17 pp. doi:10.1103/PhysRevE.76.021112

[21] Gwa, L.-H.; Spohn, H. Bethe solution for the dynamical-scaling exponent of the noisy Burgers

equation. Phys. Rev. A 46 (1992), no. 2, 844–854. doi:10.1103/PhysRevA.46.844

[22] Johansson, K. Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000), no. 2,

437–476. doi:10.1007/s002200050027

[23] Johansson, K. Transversal fluctuations for increasing subsequences on the plane. Probab. The-

ory Related Fields 116 (2000), no. 4, 445–456. doi:10.1007/s004400050258

[24] Lee, D. S.; Kim, D. Universal fluctuation of the average height in the early-time regime of one-

dimensional Kardar-Parisi-Zhang-type growth. J. Stat. Mech. Theory Exp. 2006 (2006), no. 8,

P08014. doi:10.1088/1742-5468/2006/08/P08014

[25] Liu, Z. Height fluctuations of stationary TASEP on a ring in relaxation time scale. Preprint,

2016. arXiv:1610.04601 [math.PR]

[26] Mo, M. Y. Rank 1 real Wishart spiked model. Comm. Pure Appl. Math. 65 (2012), no. 11,

1528–1638. doi:10.1002/cpa.21415

[27] Poghosyan, V. S.; Priezzhev, V. B. Determinant solution for the TASEP with particle-dependent

hopping probabilities on a ring. Markov Process. Related Fields 14 (2008), no. 2, 233–254.

[28] Povolotsky, A. M.; Priezzhev, V. B. Determinant solution for the totally asymmetric exclusion

process with parallel update. II. Ring geometry. J. Stat. Mech. Theory Exp. 2007 (2007), no. 8,

P08018, 27 pp. (electronic).

[29] Priezzhev, V. Exact nonstationary probabilities in the asymmetric exclusion process on a ring.

Phys. Rev. Lett. 91 (2003), no. 5, 050601. doi:10.1103/PhysRevLett.91.050601

[30] Proeme, A.; Blythe, R. A.; Evans, M. R. Dynamical transition in the open-boundary totally

asymmetric exclusion process. J. Phys. A 44 (2011), no. 3, 035003, 23 pp. doi:10.1088/1751-

8113/44/3/035003

http://dx.doi.org/doi:10.1214/EJP.v13-541
http://dx.doi.org/doi:10.1016/j.physa.2005.12.023
http://arxiv.org/abs/1511.03762
http://dx.doi.org/doi:10.1142/S2010326311300014
http://dx.doi.org/doi:10.1103/PhysRevLett.80.209
http://dx.doi.org/doi:10.1007/s00440-013-0544-6
http://dx.doi.org/doi:10.1007/s00440-013-0544-6
http://dx.doi.org/doi:10.1088/0305-4470/37/10/001
http://dx.doi.org/doi:10.1088/0305-4470/38/7/001
http://dx.doi.org/doi:10.1103/PhysRevE.76.021112
http://dx.doi.org/doi:10.1103/PhysRevA.46.844
http://dx.doi.org/doi:10.1007/s002200050027
http://dx.doi.org/doi:10.1007/s004400050258
http://dx.doi.org/doi:10.1088/1742-5468/2006/08/P08014
http://arxiv.org/abs/1610.04601
http://dx.doi.org/doi:10.1002/cpa.21415
http://dx.doi.org/doi:10.1103/PhysRevLett.91.050601
http://dx.doi.org/doi:10.1088/1751-8113/44/3/035003
http://dx.doi.org/doi:10.1088/1751-8113/44/3/035003


TASEP ON A RING 813

[31] Prolhac, S. Spectrum of the totally asymmetric simple exclusion process on a periodic lat-

tice—bulk eigenvalues. J. Phys. A 46 (2013), no. 41, 415001, 36 pp. doi:10.1088/1751-

8113/46/41/415001

[32] Prolhac, S. Spectrum of the totally asymmetric simple exclusion process on a periodic

lattice-first excited states. J. Phys. A 47 (2014), no. 37, 375001, 29 pp. doi:10.1088/1751-

8113/47/37/375001

[33] Prolhac, S. Asymptotics for the norm of Bethe eigenstates in the periodic totally asymmetric

exclusion process. J. Stat. Phys. 160 (2015), no. 4, 926–964. doi:10.1007/s10955-015-1230-0

[34] Prolhac, S. Finite-time fluctuations for the totally asymmetric exclusion process. Phys. Rev.

Lett. 116 (2016), no. 9, 090601. doi:10.1103/PhysRevLett.116.090601

[35] Rákos, A.; Schütz, G. M. Current distribution and random matrix ensembles for an in-

tegrable asymmetric fragmentation process. J. Stat. Phys. 118 (2005), no. 3-4, 511–530.

doi:10.1007/s10955-004-8819-z

[36] Schütz, G. M. Exact solution of the master equation for the asymmetric exclusion process.

J. Statist. Phys. 88 (1997), no. 1-2, 427–445. doi:10.1007/BF02508478

[37] Touchette, H. The large deviation approach to statistical mechanics. Phys. Rep. 478 (2009),

no. 1-3, 1–69. doi:10.1016/j.physrep.2009.05.002

[38] Tracy, C. A.; Widom, H. Integral formulas for the asymmetric simple exclusion process. Comm.

Math. Phys. 279 (2008), no. 3, 815–844. doi:10.1007/s00220-008-0443-3

[39] Tracy, C. A.; Widom, H. Asymptotics in ASEP with step initial condition. Comm. Math. Phys.

290 (2009), no. 1, 129–154. doi:10.1007/s00220-009-0761-0

JINHO BAIK

University of Michigan

Department of Mathematics

Ann Arbor, MI 48109

USA

E-mail: baik@umich.edu

ZHIPENG LIU

Courant Institute

251 Mercer St.

New York, NY 10012

USA

E-mail: zhipengliumath@

gmail.com

Received May 2016.

http://dx.doi.org/doi:10.1088/1751-8113/46/41/415001
http://dx.doi.org/doi:10.1088/1751-8113/46/41/415001
http://dx.doi.org/doi:10.1088/1751-8113/47/37/375001
http://dx.doi.org/doi:10.1088/1751-8113/47/37/375001
http://dx.doi.org/doi:10.1007/s10955-015-1230-0
http://dx.doi.org/doi:10.1103/PhysRevLett.116.090601
http://dx.doi.org/doi:10.1007/s10955-004-8819-z
http://dx.doi.org/doi:10.1007/BF02508478
http://dx.doi.org/doi:10.1016/j.physrep.2009.05.002
http://dx.doi.org/doi:10.1007/s00220-008-0443-3
http://dx.doi.org/doi:10.1007/s00220-009-0761-0
mailto:baik@umich.edu
mailto:zhipengliumath@\gmail.com

	1. Introduction
	2. Periodic DLPP
	3. Limit Theorems
	4. The Limiting Distribution Functions
	5. Transition Probability for TASEP in X_N(L)
	6. One-Point Distribution for TASEP in  with the General Initial Condition
	7. Simplification of the One-Point Distribution for Flat and Step Initial Conditions
	8. Proofs of Theorems 3.1 and 3.4
	9. Proofs of Lemmas 8.1, 8.2, 8.3, 8.4, 8.7, and 8.8
	10. Proof of Theorem 3.5
	Bibliography

