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Abstract 

We study the response of a simple quasi-geostrophic barotropic model of the atmosphere to various 

classes of perturbations affecting its forcing and its dissipation using the formalism of the Ruelle 

response theory. We investigate the geometry of such perturbations by constructing the covariant 

Lyapunov vectors of the unperturbed system and discover in one specific case – orographic forcing 

– a substantial projection of the forcing onto the stable directions of the flow. This results into a 

resonant response shaped as a Rossby-like wave that has no resemblance to the unforced variability 

in the same range of spatial and temporal scales. Such a climatic surprise corresponds to a violation 

of the fluctuation-dissipation theorem, in agreement with the basic tenets of nonequilibrium 

statistical mechanics. The resonance can be attributed to a specific group of rarely visited unstable 

periodic orbits of the unperturbed system. Our results reinforce the idea of using basic methods of 

nonequilibrium statistical mechanics and high-dimensional chaotic dynamical systems to approach 

the problem of understanding climate dynamics. 

 

1. Introduction 

 

Nowadays statistical mechanics and thermodynamics provide a comprehensive picture of the 

properties of equilibrium and near-equilibrium systems
1,2

. On the contrary, our understanding of 

nonequilibrium systems is comparatively poor and limited, despite the wealth of phenomena that 

are possible only far from equilibrium conditions. Advancing our knowledge on nonequilibrium 

systems is one of the great frontiers of contemporary science
3
. Conceptually, one can represent a 

large class of nonequilibrium systems as being in contact with at least two reservoirs having 
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different temperature (and/or chemical potential), with a nonequilibrium steady state emerging after 

transients have died out
4
. The presence of nonequilibrium conditions is essential for sustaining, e.g., 

life or convective motions, through processes allowing for a systematic conversion of energy from 

one form to another one, like a heat engine. Additionally, irreversible processes lead to the 

generation of entropy, which is transferred into the reservoirs
5
. 

The climate is a prototypical example of a nonequilibrium, forced, and dissipative system, 

where the unequal absorption of solar radiation triggers a wealth of processes and feedbacks leading 

to the presence of a variability in the climatic fields covering a large range of scales in space and in 

time
6
. As a result, our ability to observe the climate state is intrinsically limited. It is extremely 

challenging to provide a convincing and comprehensive framework underpinning climate 

variability and able to predict its response to perturbations. This would be great importance for 

reconstructing the climate of the past and predicting its response to forcings such as changes in the 

atmospheric composition, land surface properties, incoming solar radiation, and position of the 

continents
7
.  

An extremely useful point of view on climate is given by thermodynamics: the organized 

motions of the geophysical fluids result from the transformation of available potential into kinetic 

energy, which is eventually dissipated by friction
7,8

. At this regard, one can construct a precise 

analogy between the functioning of the climate system and an imperfect, irreversible engine, 

characterized by the presence of positive correlations between heating patterns and temperature 

anomalies. In turn, the atmospheric winds and the oceanic currents contribute to decreasing the 

temperature and chemical potential (mostly due to inhomogeneity of water vapour – in the 

atmosphere - and salinity – in the ocean)  gradients that fuel such motions: this provides stabilizing 

negative feedbacks that make it possible, together with the global Boltzmann radiative feedback, for 

the climate to reach a steady state
9
. 

In the case of (near) equilibrium systems, one can predict the impact of applying a (weak) 

forcing using the statistics of the unperturbed system through the fluctuation-dissipation theorem 

(FDT), which establishes a dictionary (in the form of linear operators) for translating natural into 

forced fluctuations, and viceversa
10,11

; extensions have been recently proposed for the nonlinear 

case
12

.  

Correspondingly, in order to bypass many of the bottlenecks mentioned above, it is very 

tempting to try to relate climate variability to its response to external forcings. In the case of Axiom 

A systems
13

, it is indeed possible to construct a rigorous response theory, able to describe the 

change in the measure resulting from perturbing the system in terms of the properties of the 

unperturbed measure
14 , 15 , 16

. Nonetheless, in nonequilibrium conditions there is no obvious 

relationship between free and forced fluctuations of the system
17

, as already suggested by Lorenz
18

.  
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Physically, one can interpret such a lack of equivalence as resulting from the fact the natural 

fluctuations explore only the unstable manifold in the tangent space, while the forced fluctuations 

can explore both the stable and unstable directions. Mathematically, this has to do with the fact that 

the invariant measure is smooth only along the unstable directions of the flow. We remark that 

mathematical results strictly valid for Axiom A systems are considered extremely relevant for 

general high dimensional chaotic physical systems because of the chaotic hypothesis
19

.  

In order to bypass the problem of the lack of smoothness of the invariant measure and be 

able to take advantage of the FDT, various points of view have been proposed. In particular, some 

authors consider adding some stochastic forcing to the deterministic dynamics, so to consider the 

impact of unresolved scales
20

; see also discussion in 
21,22

. This gives a rationale for using the FDT 

in the context of the climate models: while on one side there have been successful examples of 

applications of the FDT, predictive power depends substantially on the chosen observable
23,24,25

.   

The ab-initio implementation of the Ruelle response operators is hindered by the presence of 

differing behavior between the terms contributing along the stable and unstable directions of the 

flow
26

. Algorithms based on adjoint methods seem to partially ease these issues
27

. A possible idea 

for improving the convergence of the algorithm relies on projecting the perturbation flow on the 

unstable, neutral and stable covariant Lyapunov vectors
28

(CLVs), which have been recently 

constructed for rather nontrivial geophysical fluid dynamical systems
29 ,30

. Using a different 

approach, based on exploiting some formal properties and taking advantage of a set of test 

simulations, the Ruelle response theory has been shown to provide a considerable degree of 

predictive power in systems ranging from simple low dimensional models
31,32,33

 to very high 

dimensional climate models with hundreds of thousands of degrees of freedom
9,34,35 

. 

An alternative point of view on the problem can also be taken. In the case of Axiom A 

systems, an infinite set of unstable periodic orbits (UPOs) populate densely the attractor, and it is 

possible to evaluate the expectation value of a measurable observable as an average over the various 

UPOs, each taken with a suitable weight. The weights are smaller for more unstable orbits, so that 

the least unstable orbits give the largest contributions, and provide a natural way to reconstruct 

hierarchically the properties of the attractor 
36,37,38

. While intuition seems to suggest that the 

numerics of constructing closed unstable orbits in chaotic systems (especially high-dimensional 

ones) is hopeless, this is indeed not the case: UPOs are used as practical tools for studying, 

interpreting, and reconstructing chaotic dynamical systems of various degrees of complexity, see
39
. 

UPOs have been constructed also in the case of simple yet relevant models of the 

atmosphere
40,41,42

 and provide the framework of potentially addressing a classic problem of climate 

dynamics and dynamical meteorology, i.e. the identification of so-called modes or regimes, whose 

investigation has started through the classic concept of Grosswetterlagen
43

. More comprehensive 
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approaches and definitions have been later given in the 1980s
44,45,46

; see an illuminating discussion 

in 
47

, while in 
48

 one can find many details on how to study and detect such regimes through time 

series analysis. The idea is that the least unstable UPOs might provide the key elements for 

reconstructing and understanding weather and climate regimes, and might be directly related to the 

principal modes of the system found using linear 
48

 and nonlinear 
49

 empirical methods, while 

transitions between the weather regimes could be interpreted as transitions between neighborhoods 

of UPOs
50

. This has crucial relevance in terms of performing extended prediction of the state of the 

climate system. We will address these specific research questions elsewhere. 

The overall goal of this paper is to show the potential of some basic ideas of nonequilibrium 

statistical mechanics and high-dimensional chaotic dynamical systems to approach the problem of 

understanding climate dynamics. Using the mathematical framework of Axiom A dynamical system 

and taking advantage of the Ruelle response theory, we study the change in the statistical and 

dynamical properties of a simple quasi-geostrophic barotropic model
51,52

 of the northern hemisphere 

atmosphere in a strongly chaotic regime, first described in 
40

, resulting from two different kinds of 

perturbations – namely, we shall change the orography, and the boundary layer dissipation of the 

system.  

We anticipate some of the main results for the benefit of the reader. We find a relevant 

example of a case where a fundamental property on nonequilibrium system, i.e. the nonequivalence 

between forced and free motions, is apparent. We discover a resonance occurring in a frequency 

range where the unperturbed system does not have virtually any signal in terms of power spectrum. 

The resonance can be associated via UPOs analysis to an orographically forced Rossby-like wave, 

which corresponds to a set of extremely unstable UPOs. The analysis of CLVs shows that, indeed, a 

substantial part of the signal is associated to perturbed motions forced along the stable direction of 

the flow, so that they cannot be captured within the natural variability of the system. There is, in 

fact, no sign of such a Rossby-like wave within the variability of the unperturbed flow. Such a 

climatic surprise is a clear example in a high-dimensional nonequilibrium system of conditions 

under which the FDT can fail. Indeed, we show that the performance of the FDT in reconstructing 

the response of the system is much worse in the case of perturbations to the orographic forcing than 

in the case of perturbations to the boundary layer friction, where instead the role of the stable 

directions in the tangent space is less prominent. 

The paper is structured as follows. In Sect. 2 we provide a recapitulation of the main 

mathematical concepts relevant for the interpretation of the results presented in this paper, in order 

to make it as self-contained as possible. In Sect. 3 we describe the atmospheric models used in this 

study. In Sect. 4 we present the numerical experiments and describe the results of our investigation. 

In Sect. 5 we give a summary of our main findings and draw our conclusions. Finally, in Appendix 
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A we present a short summary of the statistical tools used for analyzing the outputs of the numerical 

model.  

2. The Mathematical Setting 

2.1 Axiom A Dynamical Systems 

Following the chaotic hypothesis, Axiom A dynamical systems provide a good mathematical 

framework for general chaotic physical systems
19

. We then consider a continuous-time autonomous 

Axiom A dynamical system 𝑥 = 𝑓 𝑥  on a compact manifold ℳ ⊂ ℝ
!, where 𝑥 𝑡 = 𝑆

!
𝑥!, with 

𝑥! = 𝑥 0  initial condition and 𝑆! evolution operator defined for 𝑡 ∈ ℝ!!. Let us define Ω ⊂ℳ as 

the compact attracting invariant set of the dynamical system, so that we define 𝜌 as the associated 

Sinai-Ruelle-Bowen (SRB) measure
13

 with support Ω = 𝑠𝑢𝑝𝑝(𝜌). The SRB measure is rather 

satisfactory in terms of physical intuition as it can be characterized as being the zero-noise limit of 

the invariant measures obtained when adding a small stochastic forcing of vanishing amplitude on 

top of the deterministic dynamics given by  𝑥 = 𝑓 𝑥 .   We have that the dynamical system is 

uniformly hyperbolic for 𝑥 ∈ Ω and is ergodic, so that, for some generic observable  Φ  

𝜌 Φ = Φ ! = 𝜌 𝑑𝑥 Φ 𝑥 = lim
!→!

1

𝑡
𝑑𝜏 Φ 𝑆

!
𝑥

!

!

      (1) 

for almost all (in the Lebesgue sense) initial conditions 𝑥 belonging to the basin of attraction of Ω. 

 

2.2 Lyapunov Exponents and Covariant Lyapunov Vectors 

For Axiom A systems (and, in fact, also for more general ones) it is possible to construct n 

Lyapunov exponents (LEs) λ! ≥ λ!,… ,≥ λ! , which describe the asymptotic behavior of 

infinitesimal perturbations (exponential growth or decay) from a typical background trajectory. See 

a comprehensive treatment in 
53

. As well known, the presence of at least one positive Lyapunov 

exponent indicates that the evolution of the system has sensitive dependence with respect to the 

initial conditions and is taken as one of the possible definitions of chaos. We have that λ!
!

!!! =

𝜌 (𝑑𝑥)∇! ∙ 𝑓(𝑥), i.e. the sum of the Lyapunov exponents is equal to the expectation value of the 

divergence of the flow. Instead, the Kolmogorov-Sinai entropy ℎ!" = λ!!!!!
 measures the rate of 

production of information of the dynamical system and provides a characterization of its limited 

predictability. Axiom A systems describing nonequilibrum, forced and dissipative systems feature a 

negative sum of their Lyapunov exponents, thus implying that the phase space contracts in time. 

Therefore, the n-dimensional Lebesgue measure of Ω vanishes and one can introduce generalized 

notions of (fractal) dimension in order to provide quantitative characterizations of Ω. While the 

theory of Renyi dimensions gives an overarching method to study the geometrical properties of 

strange geometrical objects, the Kaplan-Yorke conjecture says that it is possible to provide a 
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meaningful definition of the fractal dimension of Ω using the spectrum of the Lyapunov exponents 

as follows
53

:  

𝑑!" = 𝑚 +
𝜆!

!

!!!

𝜆!!!
 ≤ 𝑛      (2) 

where 𝑚 is the largest number such that 𝜆!
!

!!! ≥ 0. If the system is not dissipative, we have that 

𝑑!" = 𝑛. Note that for Axiom A systems all of the generalized Renyi dimensions of Ω have the 

same value 
54

. 

It is possible to supplement the notion of LEs with a powerful geometric construction. The 

Covariant Lyapunov Vectors (CLVs) provide a covariant basis 𝑐! 𝑡 , 𝑐! 𝑡 ,… , 𝑐! 𝑡  describing 

the solutions to the following system of linear ordinary differential equations: 

𝑦 = 𝑀 𝑆
!
𝑥 𝑦      (3) 

where 𝑀 𝑦 = ∇!𝑓(𝑦) is the tangent linear. The main property of the basis of CLVs is that setting 

𝑐! 𝑡!  as initial condition for 𝑦 at time 𝑡! in Eq. (3), at time 𝑡! > 𝑡! the solution is parallel to 𝑐! 𝑡! , 

and, in the limit for 𝑡! → ∞, the average rate of growth or decay of its amplitude is the j
th

 LE 𝜆!. 

Therefore, the CLVs provide explicit information about the directions of asymptotic growth and 

decay in the tangent linear space. The CLVs corresponding to positive (negative) LEs span the 

unstable (stable) tangent space. The CLVs corresponding to the vanishing LE is oriented along the 

direction of the flow and spans the neutral direction of the tangent space. Efficient algorithms for 

identifying the CLVs were first determined independently in 
28

 and 
55

 by a suitable combination of 

calculations of the linear spaces constructed when computing the Lyapunov exponents. See a 

comprehensive review in 
56

. 

 

2.3 Response Theory 

Axiom A systems provide a suitable framework for constructing a rigorous response theory, see a 

review in 
16

 for the point of view proposed here and 
57

 for a different approach based on the transfer 

operator formalism. We perturb the evolution equation 𝑥 = 𝑓 𝑥  having invariant measure 𝜌 by 

adding a weak perturbation, so that the new dynamics is described by  

𝑥 = 𝑓 𝑥 + 𝜀𝑋 𝑥 𝑔 𝑡 ,      (4) 

where 𝑋 𝑥  is a smooth vector field defining the pattern of the forcing in the phase space, 𝑔(𝑡) is 

the time modulation of the forcing, and 𝜀 is the small parameter controlling the strength of the 

perturbation. Ruelle showed that the expectation value of a sufficiently smooth observable Φ in the 

forced system can be computed as a perturbative expansion with respect to powers of 𝜀  as 

Φ !,!,! 𝑡 = Φ ! + 𝛿 Φ !,!,! 𝑡 , where 𝛿 Φ !,!,! 𝑡 = 𝜀
!
Φ !,!

!
(𝑡)!!

!!!  is the correction term 

resulting from the perturbation, expressed as a series. In particular, the first term in the series gives 
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the linear response: 

 
Φ !,!

!
(𝑡) = 𝑑𝜎!𝐺𝚽,𝐗

!
𝜎!

!!

!!

𝑔(𝑡 − 𝜎!)      (5) 
 

where 𝐺
𝚽,𝐗

!
𝑡  is the first order Green’s function: 

𝐺
𝚽,𝐗

!
𝜎! = Θ 𝜎! 𝜌 (𝑑𝑥)𝑋(𝑥) ∙ ∇!Φ 𝑆

!!𝑥       (6) 

where, notably, both the averaging described by 𝜌 and the evolution operator 𝑆!  refer to the 

unperturbed dynamics, and Θ is the Heaviside distribution. Note that 𝐺
𝚽,𝐗

!
𝑡  is a causal function, so 

that 𝐺
𝚽,𝐗

!
𝑡 = 0 if 𝑡 < 0. Under standard condition of integrability, by taking the Fourier transform 

of Φ !,!

(!)
(𝑡) we derive 

 Φ !,!

(!)
𝜈 = 𝜒

!,!

!
(𝜈)𝑔(𝜈)      (7) 

 

where the linear susceptibility 𝜒
!,!

!
𝜈 = 𝑑𝑡 𝐺

𝚽,𝐗

!
𝑡  exp [𝑖2𝜋𝜈𝑡]

!

!!
 is the Fourier transform of 

𝐺
𝚽,𝐗

!
𝑡 , and 𝑔 𝜈  is the Fourier transform of 𝑔(𝑡). The susceptibility describes the response of the 

system to forcings at different frequencies. The real and imaginary parts of the function represent 

the in- and out-of-phase response of the system respectively to a sinusoidal forcing at frequency 𝜈. 

Maxima in the absolute value of the susceptibility correspond to resonances of the system. Note that 

the susceptibility 𝜒
!,!

(!)
𝜈  obeys the following identity 58:  

𝜒
!,!

(!)
𝜈 =

𝑖

𝜋
𝑃 𝑑𝜈′

!

!!

𝜒
!,!

(!)
𝜈′

𝜈! − 𝜈
      (8) 

where 𝑃 indicates integration in principal part, and the susceptibility is related to its complex 

conjugate through  𝜒
!,!

!
𝜈 = [𝜒

!,!

!
−𝜈 ]∗. Equation (8) can be recast in terms of conventional 

Kramers-Kronig relations (KK), linking the real and imaginary parts of 𝜒
!,!

(!)
𝜈 , see 17, 32, 59. 

  As discussed in 
16

, since in the case of dissipative systems the SRB measure 𝜌 is absolutely 

continuous with respect to Lebesgue along the unstable directions, but not so along the stable 

directions of the tangent space, one cannot rewrite the Green’s function (6) in the form of a 

fluctuation-dissipation theorem (FDT). This means that forced and free fluctuations are not 

equivalent in a nonequilibrium system, as opposed to the equilibrium case; see discussion in 9, 32. In 

practice, this implies that, taking an observable Φ, the squared modulus of its susceptibility 𝜒
!,!

(!)
𝜈  

might be radically different from the power spectrum of Φ in the unperturbed state.  

If one assumes that the unperturbed invariant measure is Gaussian, so that 𝜌 𝑑𝑥 =

𝜌! exp − 𝑥 − 𝑥 !
!
𝐶
!!

𝑥 − 𝑥 ! /2 𝑑𝑥, where 𝐶 is the covariance matrix, 𝜌! is a normalizing 

factor, and 𝑑𝑥 is the Lebesgue measure in ℝ!, the Green’s function takes the following form: 
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𝐺
𝚽,𝐗

!
𝜎! = Θ 𝜎! 𝜌 𝑑𝑥 ((𝑥 − 𝑥)!𝐶!!𝑋 𝑥 − ∇! ∙ 𝑋 𝑥 )Φ 𝑆

!!𝑥 .      (9) 

The previous expression further simplifies if the forcing is divergence free (and in particular state-

independent), so that ∇! ∙ 𝑋 𝑥 = 0; in this case the classical Kubo-like FDT is recovered. If one 

approximates the unperturbed invariant measure of a system with its Gaussian fit, Eq. (9) can be 

used for estimating the Green’s function using the so-called quasi-Gaussian FDT (qG-FDT) 

approximation. 

 

2.4 Unstable Periodic Orbits 

One of the properties of an Axiom A system is that its attractor is densely populated by unstable 

periodic orbits (UPOs)
37,38,39

, which provide the so-called skeletal dynamics of the system. 

Therefore, one can formally construct the invariant measure 𝜌 of the system by considering the 

following expression for the expectation value of any measurable observable Φ: 

𝜌 Φ = lim
!→!

𝑤
!
!
Φ!!

!!,!!!     

𝑤!!

!!,!!!        
    (10) 

where Π! is the UPOs of prime period 𝑝, Φ!! is the average of the observable Φ taken on the orbit 

Π
!, and w!

!
 is the weight of the UPO Π!, which depends on, among other things, how unstable Π! 

is. A detailed discussion of Eq. (10) can be found in 
39

 and 
60

. The previous expression clarifies that 

a resonance for 𝜈 = 𝜈! in the susceptibility 𝜒
!,!

(!)
(𝜈) may be related to the existence of one or more 

UPOs having period 𝑝 ≈ 1/𝜈!. The analysis of the corresponding UPOs might shed light on the 

resonant mechanisms, compare, e.g., results in 
31

 and 
61

.  

 

3. The Atmospheric  Model 

The goal of this paper is to advance our understanding of the statistical mechanics of climate by 

studying its variability and response to forcings. Since we are testing conceptually non-trivial 

methods, it is necessary to choose a simplified model of the climate. We consider a simple quasi-

geostrophic barotropic model of atmosphere of the northern hemisphere, featuring forcing and 

dissipation. The geophysical fluid dynamical basics behind the quasi-geostrophic approximation, 

the basic features of barotropic flows, and the historical relevance of such a class of models can be 

found in 
51,52

 and will not be discussed here. Despite its simplicity, the model can be tuned in such a 

way to have a high dimensional attractor and statistical characteristics resembling the basic features 

of the observed large scale atmospheric circulation. 

Defining Ψ as the streamfunction, such that the horizontal wind velocity is given by its 

orthogonal (i.e. rotated clockwise by 𝜋 2) gradient as 𝑢, 𝑣 = 𝛻
!
𝛹 (no vertical wind velocity 
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exists in this model), the quasi-geostrophic barotropic model model solves the evolution equation 

for the relative vorticity ∇!𝛹	(∇
! is the Laplacian operator) in the rotating spherical surface  

𝜕∇
!
𝛹

𝜕𝑇
+ 𝐽 𝛹,∇!𝛹 + 𝐿 + 𝐾!𝛨 = −𝛢∇

!
𝛹 +𝛭∇

!
𝛹 + 𝐹!"#                (11) 

Our model takes into account the modifications to the vorticity equations resulting from the 

orographic forcing and the beta effect. These are represented by the terms 𝐾!𝐻	and  𝐿 = 2Ω! sinϑ 

inside the Jacobian operator 𝐽 . , . , where 𝐻 is the orography, 𝐾! = 2Ω!/H!, Ω!  is the Earth 

angular velocity, H! is the standard height of the atmosphere and 𝜗 is the latitude. As dissipative 

terms, we consider the effect of the boundary layer giving an Ekman friction term of the form 

−Α∇
!
Ψ, plus the effect of turbulent diffusion included via the term  Μ∇

!
Ψ;	 the dissipation 

coefficients Α and Μ will be specified later. In order to inject energy into the system, we also 

include a constant forcing 𝐹!"# that provides a severely simplified parametrization of the net effect 

of baroclinic modes and of unresolved small scale barotropic modes. The description of how the 

forcing is constructed comes few paragraphs below.  

We then transform Eq. (11) into dimensionless form using the inverse of the Earth angular 

velocity Ω! and the Earth radius R! as time and length scales, so that 𝑡 and Ψ units are 1/Ω! and 

R!
!/Ω! ,	respectively, and, after applying an inverse Laplacian operator, we obtain:  

∂𝜓

𝜕𝑡
+ (∇!)!!𝐽 𝜓,∇!𝜓 + 𝑙 + 𝑘!ℎ = −α𝜓 + 𝜇∇!𝜓 + 𝑓!"# .                (12) 

Here 𝜓, ℎ, 𝑙, 𝑓!"#  are the dimensionless streamfunction, orography, Coriolis term ( 𝑙 =

2 sinϑ) and external forcing. Next, we project Eq. (12) via standard Galerkin methods using the 

basis of spherical harmonics {𝑌! , 𝑖 = 1. .𝑁!} antisymmetrical with respect to equator (our domain is 

limited to the northern hemisphere) and obtain the finite dimensional approximation of (12). This is 

then implemented as a computer code. We adopt a T21 truncation in Galerkin method with the total 

number of degrees of freedom of the model is 𝑁! = 231. Time integration was obtained with the 

second order middle point scheme with the timestep Δ! = 0.02. The values of the model parameters 

𝛼 =
!

!!

, 𝜇 =
!

!!!!
!
 and 𝑘! =

!!!

!!

 are given in Table 1.  

The orography field ℎ (Fig. 1b) is constructed by projecting the real 1° resolution orography 

onto the T21 antisymmetric spherical harmonic basis. Finally, we construct the external forcing 

following the procedure proposed in 
62

. Let’s first observe that the time-averaging of (12) under 

conditions of steady state allows us to write 𝑓!"#   as 

𝑓!"# = (∇!)!!𝐽 𝜓,∇!𝜓 + 𝑙 + 𝑘!ℎ + α𝜓 − 𝜇∇!𝜓,                                 (13)   

where overbar indicates time averaging. The idea is to use actual atmospheric data in the form of 40 

yrs, winter-only averages of the NCEP/NCAR reanalysis data
63

  for the streamfunction at the 
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300mb level in order to calculate the averages on the right hand side of the above formula. The 

resulting field 𝑓!"#  (Fig. 1a, dimensionless units) is then used as forcing in the model given in Eq. 

(12). This provides a rough yet effective way to force our simple atmospheric system to resemble 

the real winter atmosphere of the northern hemisphere.   

 

Parameter/variable 

 

Symbol Value Scaling factor Nondimensional 

Value 

Earth radius 

Earth angular 

velocity 

Height of the 

atmosphere 

Orography 

normalization 

Coriolis parameter 

Orography 

External forcing 

Stream function 

Eckman friction 

Turbulent diffusion  

Orographic 

coefficient 

𝑅!  

Ω!  

 

H! 

 

Η! 

 

𝐿 = 2Ω! sin ϑ 

𝛨 

𝐹!"#  

𝛹 

𝐴 

𝑀 

𝐾! = 2𝛺!/H! 

 

6.37x10
6
 m 

2𝜋 day
-1

 

 

10
4 
m 

 

10
3
 m 

 

- 

- 

- 

- 

0.04 day
-1

 

1.785x10
10

 m
2
 day

-1
 

8.9x10
-4

 m
-1

 day
-1

 

 

- 

- 

 

- 

 

- 

 

Ω!  

Η! 

Ω!  

Ω!𝑅!
! 

Ω!  

Ω!𝑅!
! 

Ω!/H! 

1 

1 

 

- 

 

- 

 

𝑙 = 2 sin ϑ 

ℎ 

𝑓!"#  

𝜓  

𝛼 = 6.3 ∙ 10
!!

  

𝜇 = 7.0 ∙ 10
!! 

𝑘! = 0.1414 

Table 1. Variables and parameters of the model. 1 day = 8.64x10
4
 s. 

 

With this particular choice of parameters, the model is able to simulate fairly well the 

average state and variability of large scale atmospheric circulation. On Fig. 2 (left column) one can 

see the mean and variance derived from 40 winters of the NCEP/NCAR data for the 300 mb 

streamfunction. Note that we plot the fields using dimensionless units obtained as a result of 

applying a normalization through the factor R!
!/Ω!. The right column of Fig. 2 portrays the same 

statistical properties, yet produced with the T21 model given in Eq. (12). The average state is 

reproduced rather well, as (partly) expected from the way we have constructed the forcing. The 

variability in the model is weaker than in the real data, as a result of neglecting all explicit 

baroclinic processes, but its spatial structure is approximately correct.  

Using the standard approach proposed by Benettin et al. 
64

 (see recent review in 
55

) we have 

calculated the Lyapunov spectrum of the model. We find 28 positive Lyapunov exponents (Fig. 3a). 

The charateristic e-growth  time of the largest Lyapunov exponent 𝜆! is 6 days, which is in rough 

agreements with the expected predictablity of the large scale weather patterns at 300 mb, while the 

Kolmogorov-Sinai entropy ℎ!", given by the sum of the all positive Lyupunov exponents, has a 

value of  about 2 days
-1

. Additionally, the Kaplan-Yorke dimension 𝑑!" is about 65.7. Note that we 

have chosen a rather weak boundary layer friction in the model (compared to, e.g., what used in 
40

) 
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in order to guarantee strong chaoticity in the system: this is crucial for being on the safe side when 

taking into account the Gallavotti-Cohen chaotic hypothesis
19

.  

In Fig. 3b we plot the power spectra of the time series of two relevant global quantities, 

namely the energy ( −𝜅!𝜓!
!!!

!!!
) and the enstrophy ( 𝜅!

!𝜓!
!!!

!!!
) where 𝜅!  is the (negative) 

eigenvalue of the Laplacian operator ∇!  corresponding to the spherical harmonic 𝑌!  (𝜓 𝑡 =

𝜓! 𝑡 𝑌!
!!

!!!
). We note that such power spectra have no distinct features except a broad maximum 

in the low frequency range suggesting lack of specific resonances modulating the chaotic behavior 

on the attractor.	

 

4. Results 

Our goal is to study the response of the model given in Eq. (12) to changes in its parameters  

𝛼, 𝜇, 𝑘! 	and in the amplitude of the external forcing 𝑓!"#. As a first step,	 starting from initial 

conditions of rest, we integrate our model for 10000 days using the reference values of the 

parameters in order to converge to the attractor.  

The most straightforward way to study the model’s response is via an ensemble approach. 

We then integrate our model for additional 3000000 days and chose 15000 equally distant states on 

this trajectory. Such a 15000-member ensemble on the attractor of the model will be used in all of 

our calculations and represents our sampling of the unperturbed measure. Several additional 

experiments with twice as large ensemble have shown that all reported results are stable with 

respect to the ensemble size. We note that the properties of the time-dependent perturbed system 

can be described using the concept of pullback attractor a time dependent geometrical object 

supporting the time-dependent physical measure of the system
 65,66,67

. See 
35

 for a discussion of the 

link between the theory of pullback attractor and response theory. 

Let us apply a perturbation 𝜋 → 𝜋
!
= 𝜋 + 𝑐(𝑡)Δ𝜋 to a parameter 𝜋 of the system in Eq. 

(12), where 𝑐(𝑡) defines the time protocol and Δ𝜋 measures the size of the change. The other 

parameters are, instead, kept fixed. The resulting change in the expectation value of the 

streamfunction of the system is defined as ∆ ψ !,!!!! 𝑡 = ψ !,!!!! 𝑡 − ψ !. Here ∙ !,!!!! 𝑡  

is the average over the ensemble of states for the perturbed system, with reference to the changed 

parameter 𝜋, while ∙ ! is the average unperturbed system.  

In order to compute ∆ ψ !,!!!! 𝑡  we construct 15000 ensemble members where the 

system is perturbed according to 𝜋 → 𝜋 + 𝑐(𝑡)Δ𝜋. In our study we will mainly focus in the linear 

part of the response so that we analyze the following: 

𝜓
!,!,!!

(!)
𝑡 ≈

𝜓 !,!!!! 𝑡 − 𝜓 !,!!!! 𝑡

2
                         (14) 
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As a result, for every 𝑐(𝑡)	we run two ensembles of perturbed system (for positive and negative 

perturbations ±Δ𝜋 and same protocol 𝑐(𝑡)) and estimate the linear component of the response, also 

by taking into consideration different values of the perturbation strength Δπ. Of course, the same 

procedure could be applied to estimate the response of any observable of the system.    

Next, we will discuss the results obtained for the system perturbed by the changes of 𝛼	and 

𝑘!, so that	𝜋 = 𝛼, 𝑘!, thus studying the effect of perturbations to the boundary layer friction and to 

the orography forcing (a change 𝑘! → 𝑘! + 𝑐(𝑡)Δ𝑘! corresponds to a time-dependent rescaling for 

the orography of the form ℎ → ℎ + 𝑐 𝑡 ℎΔ𝑘!/𝑘!). The reason is that, in general, the effects 

produced by the changes in 𝜇 are similar to that of in 𝛼 and the same is true for 𝑘! and amplitude 

of 𝑓!"# .	 It should be pointed out that perturbing either 𝛼	or 𝑘! 	
does not correspond to a simple 

additive forcing, because it produces additional terms – (∆𝛼)𝜓  or (∇!)!!𝐽(𝜓, ∆𝑘! ℎ) on the right 

hand side of Eq. (12), respectively, which have an explicit dependence on the state variable. The 

average effect of the perturbation to the boundary layer friction (orography) is proportional to 

− 𝜓 ! ( (∇!)!!𝐽(𝜓, ℎ) !), and is shown on Fig. 4a (Fig. 4b). 

 

4.1. Extracting the Linear Component of the Response 

Following Eq. (14), a first important issue is to test how linear is the system response to the changes 

of its parameters and to learn how to extract the linear component of the response from the actual 

response to a finite-size perturbation. We show results obtained for perturbations applied to the 

orographic forcing (𝜋 = 𝑘!), but similar conclusions hold for the case of boundary later friction 

(𝜋 = 𝛼), 

The results of the linearity test for perturbations applied to the orography (𝜋 = 𝑘!) are 

shown on the Fig. 5. In the left column we show the ensemble averaged system response at days 18, 

18.8, 19.4, 20 and 20.6 of the streamfunction field to the pulse (acting only one model time step Δ𝜏) 

of the form ∆𝑘! 𝑡 = 0.3𝛿 𝑡 𝑘!/Δ! , where 𝛿(𝑡)  is the Dirac delta distribution; the plotted 

response is divided by 0.3 in order to scale it with the intensity of the forcing. The system’s 

response to a forcing having the same pattern as before but weaker amplitude 

(∆𝑘! 𝑡 = 0.2𝛿 𝑡 𝑘!/Δ!) is shown in the central column of the Fig. 5, where in this case, 

consistently, the field is divided by 0.2. We have also perturbed the system using the protocol 

∆𝑘! 𝑡 = 0.2Θ(𝑡)𝑘!. As it follows from the Green’s function formalism, the ensemble averaged 

linear response to a 𝛿(𝑡) forcing is equal to the time derivative of the system response to a Θ(𝑡) 

protocol forcing (𝑑 . (𝑡) 𝑑𝑡 ≅ ( . 𝑡 + Δ! − . 𝑡 )/Δ!). The result of such a calculation is 

shown in the right column on Fig. 5, where the time derivative of the response to the ∆𝑘! 𝑡 =

0.2Θ(𝑡)𝑘! time protocol is divided by 0.2 for consistency with the two previous cases.  
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Comparing these results one can see that the estimate of the linear part of the ensemble 

averaged response is rather robust, as different ways to evaluate it provide almost indistinguishable  

results, either by considering forcings of different magnitude or different protocols of forcings. The 

most relevant property of the linear response of the model shown in Fig. 5 is the presence of a clear 

quasi-periodic feature with characteristic time scale of 2.6 days. The reasons for this behavior will 

be analyzed later. 

It is important to mention that the linear terms are obtained for relatively strong 

perturbations (e.g. 30% change of the orography), and that we estimate the nonlinear response of 

the system as  ( 𝜓 !,!!!!!!
𝑡 + 𝜓 !,!!!!!!

𝑡 )/2− 𝜓 !, which is, in some of the analyzed 

cases, almost twice as large than the linear one. This fact indicates that it is possible to efficiently 

extract information of the linear response also when strong perturbations are applied. The same 

conclusions hold if we change other system’s parameters.  

 

4.2. Geometry of the Forcings 

As mentioned above, it is crucial to understand the geometrical relationship between the applied 

perturbations and the tangent space of the attractor of the system at any given point along the 

trajectory of the unperturbed system. The best way to address this issue is by calculating the CLVs 

of the system and estimating the angles between the perturbation and CLVs at each point of the 

attractor. When the perturbation is parallel to CLVs corresponding to the positive Lyapunov 

exponents, the system is excited along the smooth part of the attractor, because the invariant 

measure is absolutely continuous along the unstable manifold, see 
16

 for details. Perturbations along 

CLVs corresponding to the negative Lyapunov exponents push the system along the stable 

direction, where the fractal structure of the attractor is apparent
16

. We know that the natural 

fluctuations of the system never explore, by definition, the stable directions. Therefore, one expects 

that occurrence of climatic surprises, in the form of occurrence of forced variability that is almost 

absent in the unperturbed system might result from perturbations having a substantial projection 

along the stable directions. This is a situation where the FDT could be ineffective in predicting the 

response to perturbations from the knowledge of the fluctuations of the unperturbed system. 

We have constructed the CLVs using the Kuptsov and Parliz procedure
68

. We have tested 

the property of the CLV covariance (Eq.3) and have found it to be valid with extremely high 

accuracy (order of 10
-12

 over a period of 50 days). Similarly, the corresponding Lyapunov 

exponents are well separated, suggesting that the algorithm has converged well.  

Next, we study the spatial correlation between each CLV and the perturbation vector in the 

two considered cases (i.e.  – (∆𝛼)𝜓  for perturbations to 𝛼  and  (∇!)!!𝐽 𝜓, ∆𝑘! ℎ  for 
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perturbations to 𝑘!) at every point of 10000-day trajectory (part of the 3000000-day trajectory 

mentioned previously).  

Figure 6 shows the time averaged fraction of the cumulative norm of the applied forcing 

projecting on the CLVs of the system, where the CLVs are ordered from the most unstable to the 

most stable. The first 28 CLVs correspond to the unstable directions, one corresponds to the neutral 

direction of the flow, and the remaining 202 correspond to the stable directions (see Fig. 3a),  

One finds that in the case of perturbations applied to the boundary layer friction the unstable 

directions give the overwhelming contribution to the variance (over 90%). Since the change in the 

boundary layer friction results into a forcing that is proportional to the streamfunction itself, it is 

hardly unexpected that the span of the unstable CLVs can explain most of its variance, see also 

discussion in 
29,30

.  

Our findings are indeed different when considering the orographic forcing, where the 

perturbation projects substantially also on the stable directions of the flow. We can then expect that 

the response of the system to perturbations to the orography might have unexpected features, as 

discussed in detail below.  

 

4.3. Time and Frequency Dependent Linear Response 

We first analyze the properties of the system’s response to changes in the orography determined by 

the perturbation k! → k! + 0.3𝛿 𝑡 k!/Δ!. We investigate the Green’s function 𝐺
!,!!

!
𝑡  and the 

corresponding susceptibility 𝜒
!,!!

!
𝜈  , where the observables Φ we consider are the kinetic energy	

and the enstrophy. We see that in both cases the Green’s function shows pronounced oscillations 

with the period of about 2.6 days; see Fig. 7a and 7b, top frame.  

Let’s try to better understand these quasi-regular fluctuations of the Green’s function by 

looking at the susceptibility. We find a clear evidence for the resonant response hinted at above by 

looking at the susceptibility for the energy and the enstrophy (Fig. 7a and 7b, middle frame) where 

one can see distinct features for frequencies around  0.4 day
-1

. The quality of the data analysis is 

strongly supported by the fact that the real and imaginary parts of the susceptibility obey closely the 

Kramers-Kronig relations corresponding to Eq. (8). 

Most interestingly, the behaviour of the unperturbed model is qualitatively different from 

the scenario given above, as no feature appears at 0.4 day
-1

 in the power spectrum of either the 

energy or the enstrophy (see Fig. 3b). We will explore in a later section the origin of the resonant 

response.  

We can learn an additional interesting piece of information by looking at the suceptibility. 

The static susceptibility (zero frequency response) is negative for the energy, implying that raising 
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the orography leads to a decrease of the energy as a long-term effect, while the opposite holds for 

the enstrophy. This means that higher spatial frequency modes of variability become 

disproportionally populated as a result of an increase of the orography. 

A substantially different system behavior is found when the system is perturbed by changing 

the coefficient of the boundary layer friction, see Fig. 8. There is no manifestation of the new 

resonance found when changing the orography of the system. The Green’s functions for energy and 

enstrophy (top frames in Fig. 8a and Fig. 8b, respectively) decay following approximately an 

exponential behaviour, and, correspondingly, the susceptibilities feature a resonance corresponding 

to planetary wave activity (time scale of about 20 days), which is present also in the natural 

variability of the system, see Fig. 3b and the middle and lower frames in Fig. 8a and Fig. 8b. We 

wish to remark that, as in the case of Fig. 7a and Fig. 7b, the Kramers-Kronig analysis confirms that 

the produced data are extremely accurate. 

Looking at the static susceptibilities, we find, unsurprisingly, negative values for both the 

energy and enstrophy observables, which implies that  increasing the Ekman boundary layer 

coefficient leads to a decrease for both energy and enstrophy.  

 

4.4. Skill of the Fluctuation-Dissipation Theorem in Reproducing the Response 

The presence of a stronger projection of the forcing along the stable manifold in the case of 

orographic forcing vs. in the case of changes in the boundary layer friction suggests that in the 

former case the skill of the FDT in reconstructing the response should be worse. Our unperturbed 

model lives in a regime of strong chaos, so that, following what observed in 
69

, one expects that the 

probability distribution function (PDF) of large-scale climate observables be to a good 

approximation Gaussian. Therefore, it makes sense to use the simple quasi-Gaussian approximation 

when applying the FDT (qG-FDT). This amounts to constructing by best fit of the first and second 

moments an approximate Gaussian model for the invariant measure, and then using the resulting 

fitted distribution in Eq. (9). The estimates obtained via FDT of the Green’s functions describing 

the impact of changing the coefficients 𝛼 and k! for the energy and enstrophy observables are 

shown in Fig. 10. One finds that in all cases there is a considerable difference between the true 

Green functions (see also Fig. 7a-b and Fig. 8a-b) and those derived using the FDT, both on short 

and on long time scales. The agreement is clearly worse in the case of the orographic forcing, as 

anticipated, where the FDT-reconstructed Green’s function is only qualitatively similar to the true 

one. Interestingly, if one applies a truncation to the FDT-reconstructed Green’s function obtained 

through projection on the leading EOFs on the unperturbed system – see 
70

 for a detailed 

explanation of the procedure - the estimate of the Green’s functions is substantially improved. This 

suggests that the FDT provides an imprecise estimate exactly of those contributions to the Green’s 
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function coming from marginal variability modes of the system. This makes sense, as these might 

be though to be disproportionally represented by the stable modes of the flow. The optimal 

performance is obtained using a truncation including 200 EOFs for the case of perturbations to the 

orographic forcing and 90 EOFs in the case of perturbations to the boundary layer friction. Note 

that, obviously, the truncated forcings look very similar to original ones, but the qG-FDT is, 

instead, sensitive to the dimension of EOF basis, the reason being that the EOF truncation gets rid 

effectively of most of the (wrongly estimated) contributions coming from some of the stable 

directions.  

4.5 Resonant Response and Unstable Periodic Orbits 

Another way to describe the response of the system is by looking at its leading variability patterns. 

the analysis of the variability is through the use of the empirical orthogonal functions (EOF) or 

complex EOF (CEOF) decomposition. EOFs are by definition the eigenvectors of the covariance 

matrix of the time series of the variables of the system, so that the leading EOF is the pattern 

describing the largest portion of the overall variabilty of the data. The leading CEOF can be used to 

construct a 2D plane in the phase space where the field of interest has maximum rotational 

variability (see 
71

 for definitions and 
72

 for application example). By comparing the leading CEOFs 

of the response fields with those of the unperturbed model runs one can see whether the response of 

the model has different structure with respect to the model natural variability.  

In the rest of the paper we focus only on the system response to the orographic forcing 

detailed above. Indeed, as demonstrated by the top frame of Fig. 9, the leading CEOFs of the 

response (capturing almost 90% of the variability in a 1-7 day interval) has large scale (wave 

number 2) structure. Further analysis shows that it propagates eastward and could be identified as 

an orographically forced Rossby-like planetary wave. In the same time-scale range, the two leading 

CEOFs of the model (Fig. 9, bottom and middle frames) explaining 40% of the natural variability 

are small scale (mainly projecting on wave numbers 6 to 7) patterns moving from east to west. They 

could be associated with small scale Rossby waves trapped in the subtropical jet. Clearly, the two 

features are entirely different. 

In Fig. 11 we show the time evolution of the PDF anomaly for the streamfunction of the 

model forced by the perturbation in the orography. We portray its projection onto the CEOF1 of the 

response shown in the top panel of Fig. 9. We have estimated the PDF projections using standard 

histograms. We have constructed 20x20 equispaced (along the x- and y-directions) bins and 

computed the occupation numbers (from the ensemble members) for both perturbed and 

unperturbed ensembles. The normalized differences between the occupations numbers (i.e. the PDF 

anomaly) realized in the forced runs and in the control run at times 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 

8.0, 13.2, 18.4, 23.6, 28.8 days are shown in Fig. 10. The result is robust with respect to the way we 
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choose the bins. From Fig. 11 one can see an additional indication of the resonant response of the 

system. The PDF of the perturbed system rotates in the CEOF1 plane around the unperturbed PDF 

of the system with a period of approximately 2.6 days, while its amplitude decays slowly to zero on 

a time scale of about 20 days, which corresponds to the small spectral width of the resonance peak 

shown in Fig. 7.  

In order to to understand the resonant response behaviour, it is not possible, as clear from 

the discussion above, to use the usual argument of a forcing amplifying some prominent feature of 

the natural variability of the system. We have then studied the set of the UPOs of the system 

calculated in 
41

. This set contains a cluster of UPOs having a period close to the 2.6 days. These 

orbits are oriented in the phase space in a direction almost parallel to the CEOF1 of the response. 

All of the UPOs from this cluster are much more unstable than the typical system trajectory, since 

they have 40-50 unstable directions, in contrast with the 28 positive LEs evaluated on the system’s 

attractor, and hence play an absolutey marginal role in determining the natural variability of the 

system. The projections of these orbits on the CEOF1 of the response are shown on Fig. 12 together 

with the projection of an unperturbed trajectory. One can see that these UPOs do not belong to the 

core of the attractor of the system and has visual confirmation of the fact that their neighborhoods 

are only very rarely visited by the system. On the other hand, the orographic forcing acts 

substantially along the stable directions of the attractor and pushes the PDF of the system along the 

region of the phase space dominated by the UPOs described above. When the forcing is halted, the 

PDF of the system PDF rotates along these orbits and relaxes progressively towards the its 

unperturbed position. Summarizing, the cluster of UPOs described here nicely explains why  

a) orographic forcing has a relatively low projection on the unstable directions of the flow; 

b) why it provides an unexpected resonant response; and  

c) why the natural and forced variability of the system have in this case little relation, thus 

showing a violation of FDT-kind arguments. 

The resonant behavior obtained in a case of the orographic forcing could be qualitatively 

explained by the linear Rossby theory, because one of the complex eigenvectors of the linearized 

operator of the model around its average state has a structure very similar to that of the resonant 

response pattern (top frames of Fig. 9). On the other hand, the linear Rossby theory overestimates 

the magnitude of the response by a factor of 3 and cannot predict the existence of regular 

oscillations in the response after 5 days. This is shown on Figs. 10 b) and d), taking into account 

that the qG-FDT holds exactly for the linearized model. 

   

5. Summary and Conclusions 

The main aim of this paper has been to study the response of a quasi-geostrophic barotropic system 
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tuned to represent the winter 300 mb atmosphere of the northern hemisphere to perturbations and to 

provide a dynamical interpretation of the obtained results. This exercise has relevance within the 

overall goal of improving our understanding of how nonequilibrium statistical mechanical systems, 

and, in particular, chaotic geophysical flows, respond to perturbations. The conceptual framework 

for our analysis comes from adopting the chaotic hypothesis by Gallavotti and Cohen, so that we 

use mathematical tools borrowed from the theory of Axiom A dynamical systems.  

 The Ruelle response theory provides us with a clear protocol on how to perform 

perturbation experiments and derive the linear response for any observable of interest. We focus on 

two families of experiments, performed by changing the value of the boundary layer friction and the 

scaling height of the orography, and look at the properties of the average energy and average 

enstrophy, thus investigating two relevant squared norms of clear physical and meteorological 

relevance. Using for each forcing an ensemble comprising of 15000 model runs, we derive accurate 

estimates of the linear Green functions describing the response of the system for each considered 

observable. We note that we have been able to extract information on the linear contribution to the 

response even if we have applied not-so-weak forcings, through a simple yet effective algebraic 

combination of the data giving the response of the system to positive and negative forcings of 

different strength. We have confirmed the quality of the obtained linear terms by testing that the 

susceptibilities corresponding to the Green’s functions obey the Kramers-Kronig relations to a high 

degree of accuracy.  

 The most interesting result we find is that, when considering perturbations to the orographic 

forcing, we discover an intense and surprising resonant feature corresponding to westward 

propagating waves with period of about 2.6 days. Such a feature is virtually absent from the natural 

variability of the unperturbed system: this raises a flag regarding the applicability of the FDT. In 

fact, we discover that the forcing projects significantly on the stable directions of the flow, as 

determined through a geometrical analysis performed with CLVs. This is in excellent agreement 

with the Ruelle theory, which envisages the lack of clear correspondence between natural and 

forced fluctuations exactly in this dynamical scenario. We have verified that the quality of the FDT-

based reconstruction of the Green’s function is better (even if far from perfect) in the case of 

perturbations to the value of the boundary layer friction, while, as anticipated, the procedure 

basically fails when considering the change in the orographic forcing. 

The observed resonance can be explained using a different reconstruction of the invariant 

measure of the unperturbed system. We find that a subset of the system UPOs characterized by 

several large positive LEs is responsible for this behavior. Note that the strong instability of these 

orbits means exactly that their neighborhoods are extremely rarely visited by the unperturbed 

system. This further clarifies the reason for the lack of correspondence between forced and free 
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fluctuations. 

Our results clarify that in a nonlinear chaotic system the information one can derive from the 

analysis of the natural variability is not enough to predict its response to forcings, as surprises are 

possible: in other terms, understanding climate variability and predicting climate change are in 

general two separate, yet related, problems.  

We underline that, following
33

, we have that the susceptibility of the system can be 

reconstructed by applying a random forcing and studying the power spectra of the perturbed and of 

the unperturbed system. What has been found here then suggests that adding a stochastic forcing to 

a model of climate or weather, as done when implementing stochastic parametrizations
73

, might 

lead to unexpected and extremely relevant (or pathological and spurious) responses, if resonances 

are excited. We will investigate this problem in future studies. 

Some of the tools presented here deserve further investigation with the goal of studying 

specific meteo-climatic phenomena. In particular, we wish to use the formalism of UPOs for re-

examining the classic problem of weather and climate regimes in the context of baroclinic models 

(as opposed to barotropic models used elsewhere), in the hope of being able to reach a better 

understanding of the dynamical structures behind blocking events. Taking inspiration from the 

results shown in 
30 

we could then be able to explain better the anomalies in predictability and energy 

processes taking place during blocking events. 
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Figure 1. External forcing (dimensionless units) and orography (km) used in the quasi-geostrophic 

barotropic model of the winter north hemisphere atmosphere. 
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Figure 2. Average streamfunction (B) and standard deviation of the streamfunction (D) of the the 

quasi-geostrophic barotropic model of the winter north hemisphere atmosphere compared to 

NCEP/NCAR reanalysis data used to construct the forcing (streamfunction field at 300mb level) 

((A) and (C).  
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a) 	

b)	 	

Figure 3. a) Spectrum of the Lyapunov exponents of the unperturbed model. b) Power spectra of the 

spatial variance of the total energy (solid line), and of the enstrophy (dashed line) of the 

unperturbed model. The power spectra are normalized with respect to the variance of the 

corresponding time series, so integrating the curves from 0 to infinity gives 1.   
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Figure 4. Average effects of perturbations as additional tendencies in Eq.12. Left – change of the 

Ekman boundary layer coefficient (dimensionless units), right – change of the orography height 

(dimensionless units).   
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Figure 5. Test of the linearity of the response with respect to the forcing magnitude and 

scenario.  Ensemble averaged model response to perturbation to the orography. Left column: Model 

response to perturbation to the orography of the form 𝑘! → 𝑘! + 0.3𝑘!𝛿(𝑡)/Δ! where 𝑘! is the 

background coefficient describing the interaction with orography (responses at days 18, 18.8, 19.4, 

20 and 20.6 are shown, divided by a factor 0.3). Central column: same as for the left column one 

but perturbation is of the form 𝑘! → 𝑘! + 0.2𝑘!𝛿(𝑡)/Δ! (the response is divided a factor 0.2). 

Right: Reconstructed model response to delta-function forcing normalized as for the left column 

derived from actual model response to step-like increase of the orography of the form 𝑘! → 𝑘! +

0.2Θ(𝑡), where Θ is the Heaviside distribution.  
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Figure 6. Fraction of the norm of the applied forcing (y-axis) belonging to the subspace of the first j 

(x-axis) CLVs. Solid line: change in the boundary layer friction. Dashed line:  orography forcing. 

Dotted like: difference between the two curves.      
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a) 	

b) 	

Figure 7. Response of the model to an increase in the orographic forcing. Panel a) Response of the 

total energy. From top to bottom: Green’s function, squared modulus of the susceptibility, and real 

and imaginary part of the susceptibility. In the bottom graph, the black and the red line show the 

real and imaginary part of the susceptibility, respectively. The blue and magenta lines show the 

estimates of the susceptibility obtained using the Kramers-Kronig relations. Panel b) same as a) but 

for the total enstrophy.  
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a) 	

b)	 	

Figure 8. Response of the model to an increase in the boundary layer dissipation. Same as Fig. 8. 

Panel a): Response of the total energy. Panel b) Response of the total enstrophy.   
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Figure 9. Model response to the orography forcing: CEOF1 (real and imaginary parts) of the system 

response (upper row). CEOF1 and CEOF2 of unperturbed system (bottom and middle). A 1-7 day 

bandpass filter has been applied to all data. 
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a) b) 	

c) d) 	

Figure 10. Skill of the FDT in reproducing the response of the system to perturbations. Left panels: 

response to changes in the boundary layer friction. Right panels: response to changes in the 

orography. Upper (lower) panels: Results refer to the total energy (enstrophy). The blue lines give 

the actual response of the system as portrayed in Figs. 7 and 8 (in dimensionless units). The solid 

black lines refer to the FDT-reconstructed response. The dashed lines refer to the FDT 

reconstructed response obtained in the reduced space described in the text.  



	 30	

 

Figure 11. Model response to the orography forcing: time evolution of the PDF anomaly projected 

on the plane of the CEOF1 of the response (Fig. 9 top frames).  X-axis – normalized projection 

value to Re(CEOF1), y-axis – normalized projection value to Im(CEOF1). Positive and negative 

values exceeding 3 ∙ 10!! in absolute value are colored in dark and light grey. Contour lines are -

0.02, -0.005, -0.001, 0.001, 0.005, 0.02.   

  



	 31	

 

 

 

Figure 12. UPOs responsible for the resonant response (black) and model trajectory (grey) projected 

onto the plane of the CEOF1 of the response (formed by the vectors shown in the top frames of Fig. 

9).  X-axis – dimensionless projection value to Re(CEOF1), y-axis – dimensionless  projection 

value to Im(CEOF1). 
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