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Abstract Sweat losses in team sports can be significant

due to repeated bursts of high-intensity activity, as well as

the large body size of athletes, equipment and uniform

requirements, and environmental heat stress often present

during training and competition. In this paper we aimed to:

(1) describe sweat losses and fluid balance changes

reported in team sport athletes, (2) review the literature

assessing the impact of hypohydration on cognitive, tech-

nical, and physical performance in sports-specific studies,

(3) briefly review the potential mechanisms by which

hypohydration may impact team sport performance, and (4)

discuss considerations for future directions. Significant

hypohydration (mean body mass loss (BML) [2%) has

been reported most consistently in soccer. Although

American Football, rugby, basketball, tennis, and ice

hockey have reported high sweating rates, fluid balance

disturbances have generally been mild (mean BML\2%),

suggesting that drinking opportunities were sufficient for

most athletes to offset significant fluid losses. The effect of

hydration status on team sport performance has been

studied mostly in soccer, basketball, cricket, and baseball,

with mixed results. Hypohydration typically impaired

performance at higher levels of BML (3–4%) and when the

method of dehydration involved heat stress. Increased

subjective ratings of fatigue and perceived exertion con-

sistently accompanied hypohydration and could explain, in

part, the performance impairments reported in some stud-

ies. More research is needed to develop valid, reliable, and

sensitive sport-specific protocols and should be used in

future studies to determine the effects of hypohydration

and modifying factors (e.g., age, sex, athlete caliber) on

team sport performance.

Key Points

Significant hypohydration ([2% body mass deficit)

has been reported most consistently in soccer.

Although other sports (e.g., American Football, rugby,

basketball, tennis, and ice hockey) have reported high

sweating rates, fluid balance disturbances have

generally been mild, suggesting that drinking

opportunities were sufficient to provide most athletes

with enough fluid to offset significant fluid losses.

The effect of hydration status on team sport

performance has been mixed. However, it seems that

hypohydration is more likely to impair cognition,

technical skill, and physical performance at higher

levels of body mass loss (3–4% difference between

trials) and when the method of dehydration involves

heat stress.

Although exact mechanisms are unclear, increased

subjective ratings of fatigue and perceived exertion

consistently accompany hypohydration in team sport

studies and could explain, in part, the performance

impairments reported in some studies.

1 Introduction

Body water is lost as a consequence of thermoregulatory

sweating, and when fluid intake is insufficient to replace

sweat losses, hypohydration (a body water deficit) occurs.
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Since evaporation of sweat is the primary avenue of heat

loss during exercise, fluid losses and the risk of hypohy-

dration in athletes can be significant. The rate of sweat loss

is directly related to exercise intensity (metabolic heat

production) [1]. Team sports, which are characterized by

intermittent bursts of high-intensity exercise over pro-

longed periods of time (*1–2 h), can elicit heavy sweat

losses [2, 3]. Other factors that are associated with

increased sweating, such as large body mass [4, 5], hot/

humid environments [1], and wearing protective clothing/

equipment [6, 7], are also present in many team sports.

Thus, it is not surprising that some of the highest sweating

rates in athletes have been reported in team sports [3, 8].

However, individual sweating rates vary considerably

[9, 10], as do the fluid intake habits of athletes and the in-

game fluid replacement opportunities across sports [11].

Thus, the level of hypohydration incurred in team sport

athletes can also vary substantially [10, 11]. Many studies

have measured fluid balance in team sport athletes; how-

ever, few have presented a comprehensive summary of the

literature [11]. It would be of interest to compare the levels

of hypohydration incurred across sports to determine in

which team sport(s) hydration education is potentially of

greater concern.

It is well established that hypohydration ([2% body

mass loss; BML) can impair endurance performance,

particularly in hot/humid environments [9, 12]. How-

ever, the impact of hypohydration on an athlete’s per-

formance during team sport competition is less clear.

Performance in many team sports is dependent upon

cognitive function (e.g., attention, decision making,

memory, and reaction time), the execution of sport-

specific technical skills (e.g., shooting, passing, and

dribbling in soccer), and high-intensity physical abilities

(e.g., sprinting, lateral movement, jumping, intermittent

high-intensity running capacity). While studies have

investigated the effect of hypohydration on some of

these aspects of team sport performance, no papers have

reviewed and discussed them collectively. There is a

need to better understand the potential impact of hypo-

hydration on sport-specific performance to help inform

practical recommendations around fluid balance and

team sports performance.

The aims of this paper are to: (1) provide a compilation

of the fluid balance changes observed in team sport athletes

during training and competition, (2) review the literature

assessing the impact of hypohydration on cognitive, tech-

nical, and physical performance in team sports, (3) briefly

discuss the potential mechanisms by which hypohydration

could impact team sport performance, and (4) comment on

current study limitations and considerations for future

directions.

2 Methodological Aspects

2.1 Literature Search Criteria

To locate relevant articles for this review the literature

search was conducted using PubMed and EBSCO data-

bases. Multiple search phrases pertaining to ‘‘fluid bal-

ance’’, ‘‘sweat losses’’, ‘‘sweating rate’’, ‘‘hypohydration’’,

‘‘dehydration’’, ‘‘team sport’’, ‘‘performance’’, ‘‘skill’’,

‘‘cognition’’, ‘‘attention’’, ‘‘vigilance’’, ‘‘decision making’’,

‘‘memory’’, ‘‘reaction time’’, ‘‘intermittent’’, ‘‘high-inten-

sity’’, ‘‘sprint’’, ‘‘jump’’, ‘‘power’’, and ‘‘agility’’ were

used. Other general inclusion criteria included English

language and full-length articles published in peer-re-

viewed journals. Abstracts and unpublished observations

were not included. The search period was through

September 2016. A total of 75 original studies measuring

sweating rate and/or fluid balance (involving ad libitum

drinking, i.e., not controlled by study investigators) in

athletes during training or competition were identified (see

Table 1 for a general summary). The search located 20

original studies measuring the impact of hypohydration on

performance during intermittent high-intensity protocols

and involving team sport athletes as participants (see

Tables 2 and 3 for details on individual studies).

Although racket sports (e.g., tennis) are typically con-

sidered individual sports, they are included in this review

because they are team sports when played in ‘‘doubles’’

competition (a match between two pairs of players) and

because of the intermittent high-intensity physical demands

and technical skill requirements. Sports that require skill

but do not rely heavily upon intermittent bouts of high-

intensity running (e.g., golf) are not discussed here.

Endurance, strength/power, combat, and esthetic sports are

also outside the scope of this review.

2.2 Fluid Balance Terminology

Body fluid balance is primarily a function of an individ-

ual’s fluid intake (i.e., hydration practices) relative to his or

her fluid losses (i.e., sweat) during exercise. The term

‘‘euhydration’’ refers to maintenance of ‘‘normal’’ baseline

body water content, while the terms ‘‘hypohydration’’ and

‘‘hyperhydration’’ refer to body water deficits and excesses

beyond euhydration, respectively. The term ‘‘dehydration’’

is defined as the process of the dynamic loss of body water

or the transition from euhydration to hypohydration. The

simplest method to assess an individual’s acute change in

hydration status (or fluid balance) is to compare his/her

body mass to baseline values [13]. For example, 3%

hypohydration is defined as a water deficit equal to 3%

BML. It is acknowledged that a small portion of body mass
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loss during exercise occurs due to substrate oxidation, that

is, non-water mass loss through expiration of carbon

dioxide. The reader is referred to other papers that discuss

potential errors in hydration assessment methodologies in

greater detail [13, 14]. Importantly, the BML method of

hydration assessment and related terminology have been

used in all relevant studies identified for the aims of this

review and, therefore, will be used throughout the discus-

sion that follows.

3 Fluid Balance in Team Sports

Figure 1 shows a Venn diagram illustrating risk levels for

the development of significant hypohydration ([2% BML).

Intuitively, the factors that elevate risk of hypohydration

are those that increase thermoregulatory sweat loss (hot/

humid environment and high exercise intensity) or limit

fluid replacement (low availability of fluid or opportunity

for drink breaks). Sweating rate and/or fluid balance has

been researched the most in soccer [15–35], followed by

American Football [36–48], tennis [49–58], basketball

[15, 59–66], rugby [67–73], and ice hockey [74–78].

Australian Rules Football [79, 80], cricket [81–83], base-

ball [84, 85], futsal [17], Gaelic Football [86], netball [15],

beach volleyball [87], court volleyball [88], field hockey

[89], badminton [90], and water polo [91] have been

studied to a lesser extent. Table 1 provides a summary of

the findings by sport organized per level of risk for hypo-

hydration according to factors identified in Fig. 1.

In soccer, a broad range in mean sweating rate has been

reported (0.3–2.5 L/h). This is due, in part, to the varied

LIMITED FLUID AVAILABILITY 
OR DRINKING OPPORTUNITY

HOT/HUMID 
ENVIRONMENT

REQUIRES FREQUENT 
HIGH INTENSITY 

EFFORTS

Moderate 
Risk

Moderate 
Risk

Moderate 
Risk

High 
Risk

Fig. 1 Venn diagram showing risk levels for the development of

significant hypohydration ([2% body mass loss). The factors shown

in this diagram elevate risk of hypohydration by increasing sweat loss

(intensity and environment) or limiting fluid replacement. Note that

‘‘hot/humid environment’’ can include wearing protective equipment

(which would create a hot/humid microclimate via encapsulation), as

well as hot/humid ambient conditions. This diagram applies to the

typical duration of team sports practice/competition, which is

generally 1–2 h. In instances of shorter or longer duration, risk level

may decrease or increase, respectively. Various team sports can be

generally classified into low, moderate, and high risk based upon how

the structure/rules of the game impact the three risk factors. However,

on an individual basis, risk of hypohydration may shift to a lower or

higher category depending upon various factors such as drinking

behavior (e.g., cultural/social factors), playing position (e.g., soccer

goalie vs. midfielder, or baseball catcher vs. outfielder), and playing

time (e.g., reserve vs. starter). In addition, for outdoor sports the risk

may shift depending upon time of day and season of the year that

training/competition takes place (i.e., due to differences in temper-

ature/humidity throughout the day/year)
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environmental conditions (5–43 �C) and athlete charac-

teristics, and likely accounts for the considerable variabil-

ity in fluid balance (0.4% body mass gain to 3.5% BML)

across studies. Significant hypohydration ([*2% BML)

has been reported in soccer, particularly in high-caliber

players during match play in the heat [16, 18, 20–22]. The

combination of high sweating rates and infrequent oppor-

tunities to drink can make it difficult to maintain fluid

balance in soccer. Of note, the International Federation of

Association Football recently made a rule change that

allows for water breaks in extreme environmental condi-

tions (wet bulb globe temperature, WBGT[32 �C) to

combat this challenge [92].

High mean sweating rates have been reported in

American Football (0.6–2.9 L/h), with the large body size

of players partially responsible [4, 8, 40, 41], as well as the

equipment/uniform requirements [6, 7]. In addition, all

studies in American Football have been conducted during

preseason training, which typically occurs in warm–hot

summer weather [3]. Despite high sweating rates, the

observed disturbances in fluid balance have generally been

mild [3], with the exception of one study [36] reporting a

mean BML of *2.3–2.4% (SD: 1.1–1.9%) in players

practicing in full pads under high levels of heat stress

(29–32 �C WBGT). Similar results have been reported in

rugby and Australian Football, where high sweating rates

led to significant hypohydration in some [67, 80] but not all

studies [67, 70]. High mean sweating rates have also been

reported in basketball [15, 59, 64, 65], tennis [50, 51, 58],

ice hockey [74–76], and beach volleyball [87]; however,

mean BML was \2%, suggesting that drinking opportu-

nities were sufficient to provide most athletes with enough

fluid to offset sweat losses.

Some studies have tested athletes multiple times to

determine intra-individual variability in sweating rates and

fluid balance. For example, Australian Rules Footballers

exhibited higher sweating rates and accrued greater levels

of hypohydration during high-intensity training and game

simulations (1.1–1.3 L/h and 3.4–3.5% BML) compared

with low-intensity training (0.8 L/h and 2.1% BML) [34].

Similarly, studies in soccer [16, 22] and tennis [58] have

reported that warm–hot conditions elicited higher sweating

rates during match play than cool–temperate environments.

While higher rates of sweat loss can lead to greater body

mass deficits [22, 58], this is not always the case [15, 16].

For example, Mohr et al. [16] found that soccer players

accrued the same level of hypohydration (1.8 and 1.9%

BML, respectively) during indoor (21 �C) and outdoor

(43 �C) match play despite significantly different sweating

rates (1.6 vs. 2.5 L/h, respectively). Taken together, it

seems that the sports or conditions associated with higher

sweating rates are not always associated with the higher

levels of hypohydration. Factors related to fluid availability

(type and amount), drinking opportunities (per the rules

and structure of the game), exercise duration, hydration

education, and personal preferences also play an important

role in determining fluid balance [11].

4 Literature Review of Hypohydration
and Performance

4.1 Cognition

4.1.1 Soccer

Three studies have investigated hypohydration and cogni-

tive performance in soccer [93–95]. Overall, these studies

suggest that fluid restriction has minimal effects on cog-

nition, at least up to 2.5% BML. For instance, Edwards

et al. [94] reported no differences in mental concentration

(number identification test) when male soccer players

drank water (0.7% BML) versus water mouth rinse (2.1%

BML) or fluid restriction (2.4% BML) trials. Similar results

were found in a separate study comparing the effects of

fluid intake (1.4% BML) versus no fluid intake (2.4%

BML) on mental concentration (number identification test)

in male semiprofessional soccer players [95].

Bandelow et al. [93] used a field study approach and

complex data modeling to determine the relative contri-

bution of various factors, including BML, on cognitive

performance in male university soccer players. In this study

two trials were completed; players drank water ad libitum

in the first match and were encouraged to drink a sports

drink and/or water in the second match. Matches were

played in a hot environment (34 �C, 64–65% relative

humidity). Before, at halftime, and after each match the

players completed a battery of cognitive tests, which

included fine motor speed (finger tapping test), visuomotor

reaction time (visual sensitivity test), visuospatial working

memory (Corsi block test), and working memory simple

reaction time (Sternberg test). Bandelow et al. [93] repor-

ted that hypohydration (up to 2.5% BML) impaired

working memory reaction time, but had no effect on any

other measure of cognitive performance. Instead, mainte-

nance of blood glucose (presumably from sports drink

consumption) and core temperature changes played more

important roles in determining speed and accuracy during

the cognitive battery [93].

4.1.2 Basketball

Two basketball studies have tested the impact of hypohy-

dration on cognitive performance, with mixed results

[96, 97]. Hoffman et al. [96] found no differences in visual

reaction time during a hand-eye reaction test (Dynavision
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D2) when female college players drank water versus no

fluid to accrue 2.3% BML. By contrast, the number of

successful attempts during a lower body reactive agility

test (Quick BoardTM) was significantly lower in the no-

fluid trial [96]. In addition, Baker et al. [97] found that

hypohydration was associated with impaired vigilance in

male players. In this study, subjects performed the test of

variables of attention at baseline, after exercise-heat stress

to induce 1–4% hypohydration or maintain euhydration

(i.e., pre-game), and then after a simulated basketball game

(where target levels of BML were maintained). The players

made significantly more errors of omission and commis-

sion and had slower response times (by *6–8%) in the

1–4% BML trials than the euhydration trial [97]. In this

study there were no differences in vigilance between the

graded levels of hypohydration [97].

4.1.3 Field Hockey

The effect of hypohydration on cognitive performance has

been tested in one field hockey study by MacLeod and

Sunderland [98]. On day 1 of this study, elite female field

hockey players underwent 2 h of passive heat stress to

stimulate fluid loss. After completion of this dehydration

phase, subjects’ fluid intake was controlled such that the

following morning (day 2) they were either euhydrated or

2% dehydrated. On day 2, players completed a field hockey

skill test [99] before and after a 1-h intermittent treadmill

protocol in which players drank water ad libitum (main-

tained BML difference between trials). Decision-making

time during the skill test was 7% slower in the 2% hypo-

hydrated versus the euhydration trial, but only before (not

after) the intermittent exercise [98]. Thus the effects of

hypohydration on cognitive performance seem to be

inconsistent in this study [98]. Nonetheless, it is interesting

to note that the study by MacLeod and Sunderland [98] has

been the only one to employ a cognitive test that is sport-

specific as opposed to others (discussed above in the

Sects. 4.1.1 and 4.1.2) that used tests originally designed

for the general population.

4.1.4 Multiple Sports

In a study of college lacrosse and American Football

players, D’Anci et al. [100] compared the effects of no

fluid versus water intake (euhydration) during 60- to

75-min high-intensity practices on performance during a

subsequent cognitive test battery. The players accrued

1.8% BML and 1.2% BML in the no-fluid trials of study 1

and study 2, respectively. Vigilance performance was

impaired by 3–4% when athletes were 1.8% hypohydrated,

but was not impacted by 1.2% hypohydration. None of the

other measures of cognition in the test battery (e.g.,

memory, reaction time, visual perception, math, and map

planning) were affected by hydration status in either study.

4.1.5 Summary

Based on the results of seven studies completed to date, the

impact of hypohydration (most studies involved *1 to

*2.5% BML) on cognitive performance of team sport

athletes is equivocal. In four studies, vigilance, decision-

making time, working-memory reaction time, or reactive

agility were impaired with hypohydration; however, across

all studies no other measure of cognition (e.g., mental

concentration, fine motor speed, visual perception, visuo-

motor reaction time, math) was affected. This inconsis-

tency is likely due in part to the aspects of cognition

measured, types of cognitive tests used, the reliability and

sensitivity of these tests, and other factors related to study

design. Cognitive performance is difficult to measure,

particularly in the context of sports, and very few studies

have employed tests directly relevant to team sports per-

formance. More work is needed to develop and validate

sport-specific cognitive performance assessments.

4.2 Sport-Specific Skills

4.2.1 Basketball

The potential impact of hypohydration on basketball

shooting performance has been assessed in six studies

[60, 63, 96, 101–103]. Most of these studies have investi-

gated *2% hypohydration and found mixed results. For

instance, Hoffman et al. [96, 101] found no impact of fluid

restriction (1.9 and 2.3% BML) versus water intake on

shooting performance by male youth [101] or female col-

lege players [96]. However, it is interesting to note that

field goal percentage decreased by 8.1% (not statistically

significant) from the first to second half in the no-fluid trial,

but was maintained (1.6% increase) when male youth

players were allowed to drink water [101]. Similar results

were found in a study comparing the effects of no fluid

(2.5% BML) versus ad libitum water intake (1.1% BML) in

male youth players; Carvalho et al. [60] found no signifi-

cant differences in shooting performance between condi-

tions, but did report a non-significant 5.8% lower two-point

field goal accuracy with no fluid. In another study with

male youth players, Dougherty et al. [103] reported that 2%

hypohydration was associated with significantly lower

shooting percentage (by 8% combined for all shots) com-

pared with euhydration.

In a descriptive study, Brandenburg and Gaetz [63]

allowed elite female players unlimited access to the drink

of their choice (sports drink and or water) during two

international games. In both games the players accrued up
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to *2.0% BML. The authors reported a significant inverse

relation between BML and field goal percentage

(r = -0.61) in the second game, but no relation in the first

game. While measuring the impact of hydration status on

performance during actual game play increases the eco-

logical validity of this study, the interpretation of results is

limited due to the potential impact of confounding factors

(e.g., concomitant carbohydrate ingestion, additional diet-

ary intake behaviors, and defensive prowess by the

opposing team).

The effects of graded levels of hypohydration on bas-

ketball shooting performance have been tested in one study

of male players. Baker et al. [102] found that, compared

with euhydration, increasing levels of hypohydration

(2–4%) led to a progressive 7–12% decrease in the total

number of shots made during a simulated game. However,

there were no differences in shooting percentage between

trials. In this study, players were allotted a standardized

time to make as many shots as possible during each drill.

Thus, the decrease in shots made with hypohydration were

partially a result of fewer shot attempts due to slower

sprinting and dribbling speeds between shots [102]. Taken

together, the results of the six studies in basketball suggest

that C2% hypohydration can potentially impact shooting

performance, perhaps due to decreasing shooting accuracy

and/or slowing the frequency of shot attempts. Both factors

can impact the total number of points scored, which plays

an important role in dictating the outcome of a basketball

game [104].

4.2.2 Soccer

Three studies [95, 105, 106] have tested the impact of fluid

restriction on soccer-specific skills performed before, dur-

ing, and after a 90-min intermittent protocol (Loughbor-

ough intermittent shuttle running test; LIST [107]). Ali

et al. [106] reported no impact of fluid restriction (2.2%

BML) versus water intake (1.0% BML) on passing per-

formance [108] in female Premier division players. Simi-

larly, Owen et al. [105] found that passing and shooting

skills [108] of male semiprofessional players were unaf-

fected by fluid restriction (2.5% BML) compared with

ad libitum (1.1% BML) or prescribed (0.3% BML) water

intake. By contrast, and also in semiprofessional soccer

players, McGregor et al. [95] found a 5% deterioration in

dribbling skill during the LIST with no fluid ingestion

(2.4% BML) while skill performance was maintained

during the fluid intake trial (1.4% BML). Taken together,

these results suggest that the effect of hypohydration on

soccer performance may be dependent upon the type of

skill measured, albeit more research is needed and, in

particular, with cohorts varying in competitive level.

4.2.3 Cricket

The effect of hypohydration on skill in well-trained

cricket players has been investigated in two studies

[83, 109]. Devlin et al. [109] compared the effects of fluid

restriction (2.8% BML) versus prescribed fluid intake

(0.9% BML) during 1-h intermittent exercise-heat stress

(28 �C) on performance of a subsequent bowling skill

test. Compared with prescribed fluid intake, fluid restric-

tion was associated with a *15–16% impairment in

bowling accuracy, but had no effect on bowling velocity.

Recently, Gamage et al. [83] found that fluid restriction

(3.7% BML) during 2-h cricket training in the heat

(27–33 �C, 66–89% relative humidity) led to a 1–7%

decrease in speed and 14–22% decrease in accuracy of

bowling [110] and throwing [111] tests, whereas perfor-

mance during the cricket skill test was maintained in the

fluid provision trials (0.9% BML) [83].

4.2.4 Field Hockey

One study has investigated the potential effects of previous

day passive heat stress-induced hypohydration on field

hockey skill. MacLeod and Sunderland [98] employed a

test involving dribbling, passing, and shooting at an illu-

minated target after a 60-min intermittent treadmill proto-

col with ad libitum drinking [99] and found no impact of

2% hypohydration versus euhydration on field hockey-

specific skill in elite female players.

4.2.5 Tennis

There are limited data available on the effects of hypohy-

dration on skill performance in racquet sports. One study

has reported no differences in post-match tennis shot

accuracy during a ball machine test when male and female

players drank water (1.1% BML) or no fluid (2.7% BML)

during a 2-h simulated tennis match [112].

4.2.6 Summary

The effect of hypohydration on skill performance seems

to be inconsistent across sports. Studies suggest that

*2–4% hypohydration can impair shooting performance

in basketball and bowling/throwing in cricket. By con-

trast, the balance of studies suggests a minimal impact of

*2–3% hypohydration on skill performance in soccer,

field hockey, and tennis. Like cognition, skill is difficult

to measure, and more work is needed to develop reliable,

valid, and sensitive sport-specific tests to use in future

studies investigating the impact of hypohydration on

skill.
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4.3 Sprinting

4.3.1 Basketball

The impact of hypohydration on sprint performance has

been assessed in three basketball studies [60, 102, 103].

During a simulated basketball game with male players,

increasing levels of hypohydration (2, 3, and 4% BML)

were associated with progressively longer (i.e., sprint per-

formance was decreased) total sprint times (by 7, 8, and

16%, respectively) [102]. In a study of youth male players,

hypohydration (2% BML) led to a significant 6% longer

total and mean sprint time throughout a simulated game

compared with euhydration [103]. However, there was no

effect of fluid restriction (2.5% BML) versus ad libitum

water intake (1.1% BML) on sprint performance after

training in another study of youth male basketball players

[60].

4.3.2 Soccer

Three studies have tested the impact of hypohydration on

15-m sprint performance in soccer players during the LIST

protocol [95, 106, 113]. Ali et al. [106] reported no dif-

ference in mean sprint time between trials in which female

Premier division soccer players drank water (1.0% BML)

or no fluid (2.2% BML) throughout the LIST protocol. In a

similar study design with male university soccer players,

Ali and Williams [113] reported no impact of water

restriction (3.7% BML) versus water ingestion (2.3%

BML) on mean 15-m sprint time. On the other hand,

McGregor et al. [95] found that the mean 15-m sprint time

of male semiprofessional soccer players was significantly

longer in the last 15-min block of the LIST protocol when

fluid was withheld (2.4% BML) versus when allowed to

drink (1.4% BML) during the 90-min LIST.

4.3.3 Batting Sports

Hypohydration and sprint performance in baseball and

cricket have been investigated in two studies [83, 114]. In

college baseball players, hypohydration by 3% BML (in-

duced by previous day exercise-heat stress) was associated

with a significant 3–4% longer mean time to complete

30-m sprints during the latter bouts of an intermittent

sprinting protocol [115] compared with euhydration [114].

In a study of male elite cricketers, Gamage et al. [83] also

found impaired sprinting performance as a result of

hypohydration. Sprint time increased significantly (by

2.2%) when fluid was restricted to 4 ml/kg/h (3.7% BML)

throughout 2 h of cricket training, whereas performance

was maintained from pre- to post-training when 12–15 ml/

kg/h fluid was provided (0.9% BML) [83].

4.3.4 Summary

The effect of hypohydration on sprint performance has

been measured in eight studies across four sports. For

soccer, the balance of the literature suggests that *2–4%

hypohydration is unlikely to impact mean 15-m sprint

performance throughout an entire bout of 90-min inter-

mittent exercise, but may prolong sprint time in the latter

stages (e.g., last 15 min of a 90-min session). Results are

more consistent in basketball and batting sports, with most

studies reporting longer time to complete sprints when

athletes are hypohydrated by *2–4% in basketball or

*3–4% in baseball and cricket. More research is needed to

determine the impact of hypohydration on sprint perfor-

mance in other team sports.

4.4 Sport-Specific Lateral Movements

4.4.1 Basketball

Three studies have employed similar lateral slide drills to

simulate defensive movements in basketball [60, 102, 103].

Baker et al. [102] reported that the time to complete defen-

sive slide drills bymale players throughout a simulated game

was not impacted by 1–2% hypohydration, but was signifi-

cantly longer with 3–4% hypohydration compared with

euhydration. In another study, Dougherty et al. [103] found

that 2% hypohydration was associated with *7% longer

defensive slide times in youth male players throughout a

simulated game. However, Carvalho et al. [60] found that

defensive slide times after training were not different

between fluid restriction (2.5% BML) and ad libitum water

intake (1.1% BML) trials in male youth players.

4.4.2 Summary

The ability to make quick lateral movements is important for

performance in many sports, such as defensive sliding in

basketball, fielding in baseball, or returning a groundstroke

in tennis. However, the effect of hypohydration on perfor-

mance of sport-specific lateral movements has only been

tested in basketball. The mixed results reported in these

studies suggest that the impact of hypohydration, ranging

from *1 to 4% BML across studies, is currently unclear.

More research on sport-specific lateral movement perfor-

mance is needed in basketball and other relevant team sports.

4.5 Vertical Jump Height and Anaerobic Power

4.5.1 Basketball

Four basketball studies have investigated the effects of

hypohydration on jumping performance, including
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maximal jump height [96, 101–103], time to complete a set

number of jumps [102, 103], and peak or mean anaerobic

power during repeated jump tests [96, 101]. These studies

report no impact of hypohydration (*1–4% BML) on

maximal jump height [101–103]. However, Baker et al.

[102] reported significantly longer repeated jump time with

4% hypohydration versus euhydration. In addition, Hoff-

man et al. [101] found that post-game anaerobic power

[116] was 19% lower when fluid was restricted (1.9%

BML) versus when water intake was permitted, although

this difference did not reach statistical significance.

4.5.2 Baseball

One study has measured the effect of graded dehydration

on anaerobic power in college baseball players. In a cross-

over study, Yoshida et al. [85] induced 0.7, 1.7, 2.5, and

3.9% BML in players during a 3.8-h practice in the heat

(29� WBGT) by having them drink to replace 80, 60, 40,

and 20% of fluid losses, respectively. Maximal anaerobic

power during a 10-s cycling test was decreased signifi-

cantly by *13% from pre- to post-exercise with 3.9%

BML, but there was no significant change with the lower

levels of hypohydration.

4.5.3 Tennis

One study has compared the effects of ingesting water

(1.1% BML) or no fluid (2.7% BML) during a 2-h simu-

lated match on maximal jump height and anaerobic power

(Sargent jump test) in male and female tennis players. In

this study, Burke and Ekblom [112] found no change in

performance from pre- to post-practice with either fluid

intake condition.

4.5.4 Summary

Jump height and anaerobic power are critical to perfor-

mance in many team sports; however, only six studies have

measured the potential effects of hypohydration in sport-

specific studies. These studies suggest that hypohydration

is unlikely to have a negative impact on vertical jump

height. However, anaerobic power may be impaired by

hypohydration, especially at higher levels of hypohydration

(*4% BML). In general, these results are in agreement

with recent reviews and meta-analyses on the effect of

hypohydration on jumping ability and anaerobic power

[12, 117]. Nonetheless, more research is needed to under-

stand how hypohydration may impact jump height and

anaerobic power in the context of team sport performance.

Finally, while a recent meta-analysis concluded that *3%

BML may improve body mass-dependent tasks such as

vertical jumping ability [117], this has not been found in

the team sport studies reviewed here. As demonstrated by

Cheuvront et al. [118], the theoretical improvement in

jump height associated with a dehydration-induced body

mass deficit may be offset by an inability to produce the

same degree of contractile force, thus confounding the

interpretation of how hypohydration affects body mass-

dependent tasks.

4.6 Intermittent High Intensity Running Capacity

4.6.1 Soccer

Two studies [94, 105] have employed the Yo–Yo inter-

mittent recovery test [119, 120] to determine the effect of

hypohydration on intermittent running capacity in soccer.

Owen et al. [105] measured performance during the Yo–

Yo test in male semiprofessional soccer players before

and after they completed the LIST protocol. There were

no differences in Yo–Yo performance between trials in

which players drank no fluid (2.5% BML), water ad libi-

tum (1.1% BML), or water to replace *90% of fluid

losses (0.3% BML) during the LIST protocol. By contrast,

in another study, 13–15% less distance was covered

during the Yo–Yo test when male soccer players were

2.1% (water mouth rinse) and 2.4% (no fluid) hypohy-

drated versus when they were allowed water ingestion

(0.7% BML) during 45 min of cycling followed by a

45-min match [94].

4.6.2 Cricket

In a study of male, well-trained bowlers, Devlin et al. [109]

compared the effect of fluid restriction (2.8% BML) versus

prescribed fluid intake (0.5% BML) during 1 h of inter-

mittent exercise-heat stress on subsequent performance of a

maximal multi-stage shuttle run [121]. Intermittent running

capacity was significantly impaired when fluid was

restricted, as the bowlers completed 7.7% fewer shuttles in

the 2.8% BML versus 0.5% BML trial.

4.6.3 Summary

For many team sports, the capacity to sustain high intensity

efforts alternated with rest or lower intensity periods

throughout a game is critical to the success of an athlete.

To date, two out of three studies have found a detrimental

effect of 2–3% hypohydration on intermittent running

capacity. However, more research is needed, particularly

on the sports that are highly dependent upon intermittent

running capacity (e.g., soccer, rugby, field hockey, and

basketball).
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5 Potential Mechanisms and Modifying Factors
for the Effects of Hypohydration
on Performance

5.1 Overview of Physiological Effects

of Hypohydration During Exercise

Because sweat is hypotonic compared with plasma

[122], exercise-induced hypohydration is associated with

an increase in plasma osmolality and a decrease in

plasma volume (i.e., hyperosmotic hypovolemia).

Hypovolemia results in a decrease in stroke volume and

a compensatory increase in heart rate to maintain a given

cardiac output [123–125]. Hypovolemia and hyperos-

molality delay the onset and decrease the sensitivity of

the sweating and skin blood flow responses to hyper-

thermia [126–128], thus increasing heat storage

[125, 129]. Consequently, exercise performance that is

dependent upon the cardiovascular and thermoregulatory

systems, such as aerobic exercise in the heat, can be

impaired by hypohydration [9, 12]. The physiological

mechanisms underlying the effect of hypohydration on

aerobic performance have been well studied (for

reviews, see Sawka et al. [130, 131] and Cheuvront et al.

[132]). By contrast, much less is known about the

potential mechanisms for the detrimental effects of

hypohydration on team sport performance. The next

section summarizes the proposed mechanisms by which

hypohydration could impair cognition, technical skill,

and physical performance related to team sports.

5.2 Cognition

The effect of hypohydration on cognition has been widely

researched. While decrements in cognitive performance

with hypohydration have been reported in some studies of

athletes [97, 98, 100, 133], healthy young adults

[134–138], and military personnel [139, 140], other studies

have found no effect of hypohydration [94, 95, 141–146].

Furthermore, a clear mechanism by which hyperosmolality

or hypovolemia per se would impair cognition is currently

lacking (for a review, see Cheuvront & Kenefick [12]). In

brief, hypohydration has been suggested to mediate

decrements in brain function by decreasing cerebral blood

flow, reducing brain volume, or increasing blood–brain

barrier permeability. However, a consistent effect of

hypohydration on these measures of brain function

[147–153] at the levels of BML typically reported in the

cognition literature (e.g., 1–4% BML in team sport studies)

has not been found.

An alternative explanation, previously described by

Cheuvront and Kenefick [12], is that symptoms of

hypohydration, such as thirst, headache, or negative mood

states (e.g., fatigue), may distract subjects during cognitive

tasks and subsequently impair performance. Moreover,

individual variability in cognitive resiliency (ability to

overcome the stressors of hypohydration) may explain, in

part, the equivocal findings in the cognition literature [12].

For example, Szinnai et al. [145] found that 2.6% BML

induced by water deprivation had no impact on cognitive-

motor function, but significantly increased ratings of per-

ceived effort and concentration necessary for test comple-

tion. Furthermore, Kempton et al. [147] showed that

although mild hypohydration did not impair cognitive

performance or cerebral perfusion, higher levels of neu-

ronal activity (as indicated by a greater increase in the

fronto-parietal blood oxygen-level-dependent response)

were required to perform an executive function task. Thus,

it may be that some individuals are better at increasing

concentration sufficient to overcome symptomologic dis-

tracters of hypohydration and achieve the same level of

performance as that of a euhydrated state [12]. In the team

sport literature reviewed in Sect. 4.1, hypohydration con-

sistently increased ratings of thirst, perceived exertion, and

fatigue, but subsequent effects on cognitive performance

were equivocal.

5.3 Physical Performance

In team sports high-intensity efforts are performed within

the context of intermittent exercise over a prolonged period

of time (1–2 h). Thus, it is plausible that reductions in

aerobic capacity [154–157] or muscle endurance [117, 158]

that have been shown to occur with hypohydration, could

help explain the impaired physical performance (sprinting,

lateral movements, and intermittent running capacity)

reported in studies mimicking the demands of team sports

training/play. In addition, hypohydration has been shown to

result in decreased muscle blood flow [159, 160] and

alterations in skeletal muscle metabolism (increased lac-

tate, muscle glycogenolysis, and carbohydrate oxidation)

[160–163]. However, to date these findings have mostly

been documented in prolonged cycling exercise, which is

likely a result of the difficulty in obtaining invasive phys-

iological measurements in team sport athletes on the field

of play. To our knowledge, only one team sport perfor-

mance study has measured the effect of hydration status on

markers of muscle metabolism. Ali and colleagues [106]

found that blood lactate concentration was significantly

higher (7.2 vs. 3.7 mmol/L) when female soccer players

drank no fluid (2.2% BML) compared with when they

ingested fluid during the 90-min LIST protocol (1.0%

BML). However, in this study, sprint and skill performance

were not impacted by hydration status [106]. It is also
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interesting to note that, in the studies reviewed (Tables 2,

3), performance was no more likely to be impaired in

sports with high aerobic demands (e.g., soccer) than sports

that have more rest opportunities (e.g., basketball) or are

lower intensity (e.g., baseball, cricket). This is somewhat

surprising given the reported detrimental effects of hypo-

hydration on endurance performance [9, 12], but it is likely

that study limitations and various modifying factors play a

role in the discrepancy in these findings (discussed in more

detail in Sect. 5.5).

Another potential mechanism to consider is the hyper-

thermic effect of hypohydration, as some sport-specific

studies have reported higher body core temperatures with

fluid restriction versus fluid intake [94, 102, 103]. Drust

et al. [164] reported that elevated core and muscle tem-

peratures during a 40-min intermittent cycling protocol

were associated with impaired repeated sprint performance.

The authors concluded that the results may be related to the

influence of hyperthermia on central nervous system

function. Central fatigue, as indicated by an impaired

ability to sustain maximal muscle activation during sus-

tained contractions, has been implicated in exercise per-

formance decrements associated with hyperthermia

[165–167]. It is thought that multiple factors (including

core and skin temperature) likely provide afferent inputs

for central nervous system integration and reduce motor

drive to skeletal muscles. The reader is referred to a review

by Nybo et al. [165] for a recent comprehensive discussion

on physiological factors governing hyperthermia-induced

fatigue. It is important to note that while hyperthermia

(increased core temperature) can impair performance dur-

ing prolonged exercise, increased muscle temperature

could enhance certain aspects of physical performance

[168]. In particular, improved sprinting performance has

been reported in soccer [16, 169], perhaps as a result of

improved muscle contractile properties and anaerobic

power [170, 171], in hot versus temperate environments.

However, these changes occur irrespective of hypohydra-

tion, as Mohr and colleagues [16] found faster peak

sprinting speed in hot versus temperate conditions when

players accrued similar levels of BML between trials with

ad libitum fluid intake (1.9 and 1.8%, respectively). As

such, optimal performance strategies may involve both

maintenance of muscle temperature as well as the limita-

tion of excessive hypohydration.

Finally, as with cognition, it is possible that psycho-

logical factors are also involved in hypohydration-in-

duced decrements in physical performance. Negative

mood states and other stressors associated with fluid

restriction may distract athletes from giving their full

effort toward performing the high-intensity exercise task.

In support of this notion, most (10 of 11) team sport

studies that measured subjects’ perceived exertion or

fatigue found that ratings were significantly elevated in

conditions of fluid restriction versus fluid intake (see

Table 3). In addition, there may be some interplay

between familiarization with hypohydration, perceived

exertion, and the effect of hypohydration on perfor-

mance. Although not specific to team sports, Flemming

and James [172] reported some support for this concept

in recreationally active men. In this study, 2.4% BML

impaired 5-km treadmill running performance (by 5.8%)

when subjects were unfamiliar with the hypohydration

protocol. However, there was an attenuation of subjects’

ratings of perceived exertion and the performance

decrement (1.2%) after completion of four familiariza-

tion sessions designed to habituate subjects with the

hypohydration protocol. While these novel data are

interesting, more research is needed before definitive

conclusions can be made regarding the effect of famil-

iarization with hypohydration on ratings of perceived

exertion and performance.

5.4 Sport-Specific Technical Skills

The execution of sport-specific skill is a complex process,

as it is dependent upon several aspects of physical and

cognitive function. For example, a successful shot attempt

during a basketball game requires a combination of fine

motor (ball control) and gross motor (balance and coordi-

nation) skills, physical abilities (power, strength, and

speed), concentration, and decision-making skills, among

other factors. Thus, if hypohydration impairs cognition or

physical performance, either directly through hyperos-

motic/hypovolemia-induced changes in physiological

function or as a byproduct of the distracting symptoms of

hypohydration, then these mechanisms could also account

for impaired execution of technical skills.

Other proposed mechanisms include changes in

vestibular function, as some studies have reported impaired

postural balance (increased body sway) with hypohydration

after exercise [173–176]. However, other studies have

reported no impact of hypohydration on balance control

[133, 141, 177]. Theoretically, balance is more likely to be

impaired when hypohydration is combined with hyper-

thermia [175] or fatigue from previous exercise [173, 174].

However, Seay et al. [177] reported no relation between

standing balance and levels of hypovolemia or hyperos-

molality. As such, a clear physiological mechanism by

which hypohydration could impair postural control has not

yet been identified.

Future studies are needed to elucidate which physio-

logical mechanisms or combination thereof may account

for the detrimental impact of hypohydration on cognition,

technical skill, and physical performance reported in some

studies. For more details on potential mechanisms
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underlying the impact of hypohydration on various aspects

of performance the reader is referred to previous reviews

[12, 130, 132].

5.5 Modifying Factors

Many methodological differences among studies likely

contribute to the inconsistent results reported across the

literature. For example, the subject characteristics (e.g.,

sex, age, caliber of athlete), method of dehydration (e.g.,

passive heat, exercise, or exercise-heat stress), and/or BML

differences between hypohydration and control trials var-

ied considerably among studies. Thus, a relevant question

that follows is: Do certain factors modify the impact of

hypohydration on performance (i.e., are there interaction

effects)? To date, no studies have addressed this question

directly. However, when comparing studies across the lit-

erature (see Table 4) there seems to be no clear pattern

regarding the impact of sex, age, or athlete caliber on the

effects of hypohydration on team sport performance. This

is due in part to the limited data available, as only six

studies have included female subjects

[63, 96, 98, 100, 106, 112] and only three studies have

tested youth athletes [60, 101, 103]. A broad range of

athlete calibers have been tested across studies with

equivocal results within caliber (see Table 4), suggesting

that a particular level of athlete is not more or less likely to

be negatively affected by hypohydration based on the

currently available data in team sports. However, studies

directly comparing team sport athletes with different skill

levels are needed.

As shown in Table 4, one of the factors that does seem

to modify the impact of hypohydration on performance in

team sport athletes is the method of dehydration. When

dehydration was induced via exercise in the heat, subse-

quent performance was usually impaired with respect to

cognition, skill, sprinting, lateral movements, jumping/

power, and intermittent running capacity (the only excep-

tion was jumping performance in one study [103]). By

contrast, when dehydration was induced via exercise alone,

subsequent performance was impaired in B 50% of the

studies within each of the performance categories. This

finding is perhaps not surprising given the well-established

deleterious effect of environmental heat stress and subse-

quent heat strain on aerobic performance

[130, 155, 165, 178] and muscle function [158, 164, 179],

as well as mood states and perceived exertion

[165, 180, 181], which may in turn impact aspects of team

sport performance. It is important to note that the studies

using heat and exercise to induce hypohydration also

involved higher levels of BML. In addition, some of these

studies included a rest period between the dehydrating

exercise/heat protocol and the commencement of

performance drills to allow body core temperature to return

to baseline values [97, 102, 103]. Thus, it could be argued

that hypohydration per se was responsible for the impaired

performance. Nonetheless, in real life it can be difficult to

separate out the effects of hypohydration and heat stress, as

the two are closely linked when training/competing in

warm–hot environments (i.e., exercise in the heat increases

sweat rate thereby magnifying fluid losses) [9].

Another factor related to the method of dehydration is

the timing of body water loss with respect to completion of

the sport-specific protocol and performance tests. Most

studies were designed to determine the effects of dehy-

dration, accrued throughout sport-specific training/play, on

performance. Mixed results were reported with this

methodological approach. By contrast, some studies

established hypohydration in the hours before

[97, 102, 103] or in some cases the day before [98, 114] the

sport-specific tests. A detrimental effect of hypohydration

was reported in all five of these studies (albeit most of these

studies also involved higher levels of hypohydration ([2%

BML) and/or heat stress). This methodological approach

allows for a more systematic investigation of the effects of

hypohydration (e.g., a standard level of BML) and provides

insight on performance effects when athletes begin train-

ing/competition in a hypohydrated state (which may be

applicable for tournaments or back-to-back training ses-

sions). However, it is not applicable to scenarios where

athletes begin exercise in a euhydrated state, and, as such,

impacts on the ecological validity of the study findings. It

would be interesting for future research to directly compare

the effects of previous dehydration versus in-game dehy-

dration on performance.

The level of BML reached in hypohydration trials and

the inclusion of a proper euhydration control trial are other

important factors to consider. In the studies reviewed, most

included a control (fluid intake) trial to compare perfor-

mance against that of hypohydration (i.e., fluid restriction)

trials. However, across studies, varying degrees of BML

accrued during the control trials. That is, some studies

aimed to replace fluid losses and maintain euhydration

(\ 1% BML [9]), while others involved ad libitum intake

or prescribed a fixed volume of fluid intake that resulted in

mild to moderate hypohydration in the control trials. For

example, several studies in soccer dehydrated athletes to

*2–3% BML in the fluid restriction trials, but also accrued

1–2% BML in the fluid intake trials [95, 105, 106, 113]. By

contrast, in most basketball [97, 102, 103], baseball

[85, 114], and cricket [83, 109] studies, subjects main-

tained euhydration (\ 1% BML) in the control trials. The

differences in study design are likely due, in part, to

attempts to implement ecologically valid fluid intake pat-

terns, which reflect differences in drinking opportunities

1974 R. P. Nuccio et al.

123



T
a
b
le

4
M
o
d
if
y
in
g
fa
ct
o
rs

fo
r
th
e
ef
fe
ct

o
f
h
y
p
o
h
y
d
ra
ti
o
n
o
n
p
er
fo
rm

an
ce

in
te
am

sp
o
rt
s
st
u
d
ie
s

S
ex

A
g
e

A
th
le
te

ca
li
b
er

M
al
e

F
em

al
e

Y
o
u
th

A
d
u
lt

R
ec

an
d
/o
r

co
m
p

C
o
ll
eg
e

S
em

ip
ro
,
p
ro
,
an
d
/o
r
el
it
e

C
o
g
n
it
io
n

3
/5

(6
0
%
)

3
/3

(1
0
0
%
)

–
5
/7

(7
1
%
)

1
/2

(5
0
%
)

3
/3

(1
0
0
%
)

1
/2

(5
0
%
)

R
ef
er
en
ce
s

[9
3
–
9
5
,
9
7
,
1
0
0
]

[9
6
,
9
8
,
1
0
0
]

–
[9
3
–
9
8
,
1
0
0
]

[9
4
,
9
7
]

[9
3
,
9
6
,
1
0
0
]

[9
5
,
9
8
]

S
k
il
l

5
/9

(5
6
%
)

1
/5

(2
0
%
)

1
/3

(3
3
%
)

5
/1
0
(5
0
%
)

2
/4

(5
0
%
)

1
/2

(5
0
%
)

3
/7

(4
3
%
)

R
ef
er
en
ce
s

[6
0
,
8
3
,
9
5
,
1
0
1
–
1
0
3
,
1
0
5
,
1
0
9
,
1
1
2
]

[6
3
,
9
6
,
9
8
,
1
0
6
,
1
1
2
]

[6
0
,
1
0
1
,
1
0
3
]

[6
3
,
8
3
,
9
5
,
9
6
,
9
8
,
1
0
2
,
1
0
5
,
1
0
6
,
1
0
9
,
1
1
2
]

[1
0
1
–
1
0
3
,
1
1
2
]

[9
6
,
1
0
9
]

[6
0
,
6
3
,
8
3
,
9
5
,
9
8
,
1
0
5
,
1
0
6
]

S
p
ri
n
t

5
/7

(7
1
%
)

0
/1

(0
%
)

1
/2

(5
0
%
)

4
/6

(6
7
%
)

2
/2

(1
0
0
%
)

1
/2

(5
0
%
)

2
/4

(5
0
%
)

R
ef
er
en
ce
s

[6
0
,
8
3
,
9
5
,
1
0
2
,
1
0
3
,
1
1
3
,
1
1
4
]

[1
0
6
]

[6
0
,
1
0
3
]

[8
3
,
9
5
,
1
0
2
,
1
0
6
,
1
1
3
,
1
1
4
]

[1
0
2
,
1
0
3
]

[1
1
3
,
1
1
4
]

[6
0
,
8
3
,
9
5
,
1
0
6
]

L
at
er
al

m
o
v
em

en
ts

2
/3

(6
7
%
)

–
1
/2

(5
0
%
)

1
/1

(1
0
0
%
)

2
/2

(1
0
0
%
)

–
0
/1

(0
%
)

R
ef
er
en
ce
s

[6
0
,
1
0
2
,
1
0
3
]

–
[6
0
,
1
0
3
]

[1
0
2
]

[1
0
2
,
1
0
3
]

–
[6
0
]

Ju
m
p
in
g
/p
o
w
er

2
/5

(4
0
%
)

0
/2

(0
%
)

0
/2

(0
%
)

2
/4

(5
0
%
)

1
/4

(2
5
%
)

1
/2

(5
0
%
)

–

R
ef
er
en
ce
s

[8
5
,
1
0
1
–
1
0
3
,
1
1
2
]

[9
6
,
1
1
2
]

[1
0
1
,
1
0
3
]

[8
5
,
9
6
,
1
0
2
,
1
1
2
]

[1
0
1
–
1
0
3
,
1
1
2
]

[8
5
,
9
6
]

–

In
te
rm

it
te
n
t
h
ig
h

in
te
n
si
ty

ru
n
n
in
g

ca
p
ac
it
y

2
/3

(6
7
%
)

–
–

2
/3

(6
7
%
)

1
/1

(1
0
0
%
)

1
/1

(1
0
0
%
)

0
/1

(0
%
)

R
ef
er
en
ce
s

[9
4
,
1
0
5
,
1
0
9
]

–
–

[9
4
,
1
0
5
,
1
0
9
]

[9
4
]

[1
0
9
]

[1
0
5
]

M
et
h
o
d
o
f
d
eh
y
d
ra
ti
o
n

B
M
L
d
if
fe
re
n
ce

b
et
w
ee
n
co
n
tr
o
l
(fl
u
id

in
ta
k
e)

an
d
h
y
p
o
(fl
u
id

re
st
ri
ct
io
n
)
tr
ia
ls

P
as
si
v
e
h
ea
t
st
re
ss

E
x
er
ci
se

o
n
ly

E
x
er
ci
se

?
h
ea
t
st
re
ss

1
–
2
%

3
–
4
%

C
o
g
n
it
io
n

1
/1

(1
0
0
%
)

2
/4

(5
0
%
)

2
/2

(1
0
0
%
)

4
/6

(6
7
%
)

1
/1

(1
0
0
%
)

R
ef
er
en
ce
s

[9
8
]

[9
4
–
9
6
,
1
0
0
]

[9
3
,
9
7
]

[9
4
–
9
8
,
1
0
0
]

[9
7
]

S
k
il
l

0
/1

(0
%
)

2
/8

(2
5
%
)

4
/4

(1
0
0
%
)

4
/1
2
(3
3
%
)

2
/2

(1
0
0
%
)

R
ef
er
en
ce
s

[9
8
]

[6
0
,
6
3
,
9
5
,
9
6
,
1
0
1
,
1
0
5
,
1
0
6
,
1
1
2
]

[8
3
,
1
0
2
,
1
0
3
,
1
0
9
]

[6
0
,
6
3
,
9
5
,
9
6
,
9
8
,
1
0
1
–
1
0
3
,
1
0
5
,
1
0
6
,
1
0
9
,
1
1
2
]

[8
3
,
1
0
2
]

S
p
ri
n
t

–
1
/4

(2
5
%
)

4
/4

(1
0
0
%
)

3
/6

(5
0
%
)

3
/3

(1
0
0
%
)

R
ef
er
en
ce
s

–
[6
0
,
9
5
,
1
0
6
,
1
1
3
]

[8
3
,
1
0
2
,
1
0
3
,
1
1
4
]

[6
0
,
9
5
,
1
0
2
,
1
0
3
,
1
0
6
,
1
1
3
]

[8
3
,
1
0
2
,
1
1
4
]

L
at
er
al

m
o
v
em

en
ts

–
0
/1

(0
%
)

2
/2

(1
0
0
%
)

1
/3

(3
3
%
)

1
/1

(1
0
0
%
)

R
ef
er
en
ce
s

–
[6
0
]

[1
0
2
,
1
0
3
]

[6
0
,
1
0
2
,
1
0
3
]

[1
0
2
]

Ju
m
p
in
g
/p
o
w
er

–
0
/3

(0
%
)

2
/3

(6
7
%
)

0
/6

(0
%
)

2
/2

(1
0
0
%
)

R
ef
er
en
ce
s

–
[9
6
,
1
0
1
,
1
1
2
]

[8
5
,
1
0
2
,
1
0
3
]

[8
5
,
9
6
,
1
0
1
–
1
0
3
,
1
1
2
]

[8
5
,
1
0
2
]

In
te
rm

it
te
n
t
h
ig
h
in
te
n
si
ty

ru
n
n
in
g
ca
p
ac
it
y

–
1
/2

(5
0
%
)

1
/1

(1
0
0
%
)

2
/3

(6
7
%
)

–

R
ef
er
en
ce
s

–
[9
4
,
1
0
5
]

[1
0
9
]

[9
4
,
1
0
5
,
1
0
9
]

–

V
al
u
es

ar
e
n
u
m
b
er

o
f
st
u
d
ie
s
re
p
o
rt
in
g
a
d
et
ri
m
en
ta
l
ef
fe
ct

o
f
h
y
p
o
h
y
d
ra
ti
o
n
o
n
p
er
fo
rm

an
ce

o
u
t
o
f
to
ta
l
n
u
m
b
er

o
f
st
u
d
ie
s
w
it
h
th
e
p
er
ce
n
ta
g
e
sh
o
w
n
in

p
ar
en
th
es
is

D
as
h
es

in
d
ic
at
e
n
o
st
u
d
ie
s
av
ai
la
b
le

B
M
L
b
o
d
y
m
as
s
lo
ss
,
C
o
m
p
co
m
p
et
it
iv
e,

H
yp
o
h
y
p
o
h
y
d
ra
ti
o
n
,
P
ro

p
ro
fe
ss
io
n
al
,
R
ec

re
cr
ea
ti
o
n
al
,
S
em

ip
ro

se
m
ip
ro
fe
ss
io
n
al

Fluid Balance and Team Sport Performance 1975

123



across sports. Nonetheless, the inconsistency makes it

difficult to assimilate results across the literature.

For the purpose of this discussion (and Table 4), BML

differences between control trials and hypohydration

trials were calculated for each study. In this regard, most

investigations involved a 1–2% BML difference between

control trials and hypohydration trials. In these studies,

there were mixed results in how hypohydration impacted

cognition, sprinting, lateral movements, and intermittent

running capacity, and no or little effect of hypohydration

on jumping/power and skill. Only five studies involved a

3–4% BML difference between trials, but all found

impaired performance with hypohydration [83, 85, 97,

102, 114]. It is important to note that these studies also

involved exercise in the heat as the method of dehy-

dration, so it is unclear whether the heat stress also

contributed to the performance impairment. Nonetheless,

two out of three studies involving graded levels of

hypohydration (* 1–4% BML) have indicated that

*3–4% BML was more likely to impair performance

than *1–2% BML [85, 97, 102].

Figure 2 shows a Venn diagram illustrating the like-

lihood of team sport performance impairments with

hypohydration. Based on the studies reviewed, decre-

ments in cognitive, technical, or physical performance

seem more likely with higher levels of hypohydration

and heat stress. However, as discussed in Sects. 5 and 6,

other factors may play a role, but currently lack suffi-

cient research in team sports. These include high aerobic

demand, hypohydration at baseline, and individual dif-

ferences in the response to hypohydration (e.g., low

cognitive resiliency).

6 Study Limitations

The potential limitations of individual studies reviewed

in this paper are described in Tables 2 and 3. One of the

most common potential limitations is the inherent diffi-

culty in blinding subjects to the fact that they are

dehydrating (e.g., no fluid or strict fluid restriction)

versus rehydrating (e.g., prescribed or ad libitum fluid

intake) during a given trial. Because the awareness of

being dehydrated may confound performance results,

attempts should be made to disguise experimental con-

ditions. For example, small volumes of fluid should be

provided during dehydration trials and the subjects’ body

mass, fluid intake, and urine volumes should be con-

cealed [182]. Ganio et al. [134] employed similar tech-

niques in a study investigating the effects of mild

HYPOHYDRATION >2% BML

OTHER POSSIBLE 
FACTORS: 

HIGH AEROBIC 
DEMAND, BASELINE 
HYPOHYDRATION, 

AND/OR INDIVIDUAL 
FACTORS

HOT AND/OR HUMID 
ENVIRONMENT

Likely
Very 

Likely

Likely

Likely

Fig. 2 Venn diagram showing

the likelihood of performance

impairment with hypohydration.

Based on the studies reviewed,

the likelihood of performance

impairment seems to increase

with higher levels of

hypohydration and heat stress.

The circle with the dashed line

represents other factors that may

play a role, but require more

research in team sports; these

include high aerobic demand,

hypohydration at baseline, and

individual differences in the

response to hypohydration (e.g.,

low cognitive resiliency). BML

body mass loss
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hypohydration without hyperthermia in men and found

that 1.6% BML decreased vigilance and working mem-

ory and increased tension/anxiety and fatigue. While

these masking techniques can be helpful, it remains

difficult to effectively blind subjects to experimental

conditions when attempting to induce higher levels of

hypohydration (e.g., 3–4%).

Another common study limitation is related to the type

of test used to measure the effect of hypohydration on

performance. Many different tests have been used and, in

some studies, limited information about the test was

reported. Protocols and tests used to measure performance

in team sports should be sport-specific (i.e., mimic the

actual physical demands and skills required of the sport)

and subjects should be familiarized with the methods

prior to the start of experimental trials. The tests should

also be valid, reliable, and sensitive [183]. Of the studies

reviewed, most tests were sport-specific for skill, sprint-

ing, jumping/power, lateral movements, and intermittent

running capacity, but not for cognition (with the excep-

tion of one field hockey study [98]). Most cognitive tests

were, however, valid and reliable standardized tests. The

validity and reliability of skill tests were not reported in

the basketball, tennis, and cricket studies reviewed, but

were reported in the soccer and field hockey studies.

Interestingly, the effect of hypohydration on skill perfor-

mance was mixed whether validity and reliability were

reported or not (see Table 2).

7 Considerations for Future Directions

From the discussion above it is clear that more research is

needed to address several remaining questions regarding

the potential impact of hypohydration on team sport per-

formance. First, valid, reliable, and sensitive sport-specific

protocols should be developed and used in future studies to

ensure that tests are able to detect small but meaningful

differences in performance. In general, valid/reliable sport-

specific tests to measure cognition and skill are currently

limited in most sports.

Most studies have tested the effect of low–moderate

levels of hypohydration on performance. In future studies,

it would be helpful to include higher levels of hypohy-

dration, perhaps in a graded manner. In addition, studies

directly comparing the effect of hypohydration on different

cohorts, such as male versus female, youth versus adults, or

low- versus high-caliber athletes, would be helpful in

determining who may be more susceptible to the detri-

mental effects of hypohydration, from both a physiological

(heat safety) and a performance perspective. In most

studies of the current literature the amount and pattern of

fluid intake is controlled. However, in real life athletes

often drink ad libitum. Thus, more studies should include

an ad libitum fluid intake trial to compare against the

effects of no fluid and prescribed intake to better under-

stand the scenarios in which ad libitum may be sufficient

versus when prescribed intake is warranted to maintain

performance.

For all of the aforementioned research questions, it is

particularly important that future studies focus on the

sports that are associated with a moderate or high risk of

developing significant hypohydration. Some examples of

these sports include soccer, rugby, American Football,

Australian Rules Football, field hockey, ice hockey, and

tennis. By contrast, sports in which sweating rates are

expected to be low and/or fluid replacement opportunities

are adequate (e.g., baseball) probably warrant less inves-

tigation. Still, there may be certain players in low risk

sports that have increased risk of developing hypohydration

due to equipment requirements and/or the physical

demands of the position (e.g., baseball catcher).

8 Conclusion

Significant hypohydration ([2%) has been reported most

consistently in soccer. Although other sports (e.g., American

Football, rugby, basketball, tennis, and ice hockey) have

reported high sweating rates, fluid balance disturbances have

generally been mild, suggesting that drinking opportunities

were sufficient to provide most athletes with enough fluid to

offset losses. The effect of hydration status on team sport

performance has been mixed. However, it seems that hypo-

hydration is more likely to impair cognition, technical skill,

and physical performance at higher levels of BML (3–4%

difference between trials), which are not routinely observed

in team sport athletes. Detriments to performance are also

more likely when the method of dehydration involves heat

stress. Although exact mechanisms are unclear, increased

subjective ratings of fatigue and perceived exertion consis-

tently accompany hypohydration in team sport studies and

could explain, in part, the performance impairments reported

in some studies. More research is needed to develop eco-

logically valid, reliable, and sensitive sport-specific proto-

cols and should be used in future studies to determine the

effects of hypohydration and modifying factors (e.g., age,

sex, athlete caliber) on team sport performance.
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