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ABSTRACT
In this paperwe usejump processdriven StochasticDifferential
Equationsto modelthe interactionsof a setof TCPflows andAc-
tive QueueManagementroutersin a network setting. We show
how theSDEscanbetransformedinto a setof OrdinaryDifferen-
tial Equationswhich canbe easilysolved numerically. Our solu-
tion methodologyscaleswell to a large numberof flows. As an
application,we modelandsolve a systemwhereRED is theAQM
policy. Our resultsshow excellentagreementwith thoseof sim-
ilar networks simulatedusingthe well known ns simulator. Our
modelenablesus to getan in-depthunderstandingof theRED al-
gorithm.Usingthetoolsdevelopedin this paper, we presentacrit-
ical analysisof theRED algorithm.We explain therole playedby
theREDconfigurationparametersonthebehavior of thealgorithm
in a network. We point out a flaw in the RED averagingmecha-
nismwhich we believe is a causeof tuningproblemsfor RED.We
believe thismodeling/solutionmethodologyhasagreatpotentialin
analyzingand understandingvariousnetwork congestioncontrol
algorithms.

1. INTRODUCTION
Activequeuemanagementtechniqueshaverecentlybeenproposed
[8], [3] to to both alleviate somecongestioncontrol problemsfor
IP networks aswell asprovide somenotion of quality of service.
Modelingandanalysisof suchnetworksis importantto understand
their dynamics.While traditionaldiscreteevent simulationswork
well in general,even the mostefficiently codedsimulatorssuffer
from theproblemof scaling.In this paper, we exploit fluid model-
ing to presenta generalmethodologyfor theanalysisof a network
of routerssupportingactive queuemanagementwith TCP flows.
We model the datatraffic as a fluid andspecificallyusePoisson
CounterDrivenStochasticDifferentialEquationsto modelsample�
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pathdescriptionof TCPtraffic. We alsoderive a setof differential
equationsthat describethe AQM policy and the router queueing
process.Next, we develop a numericalschemefor obtainingthe
transientaveragebehavior of a numberof metricsincludingqueue
length,roundtrip timeandTCPflow throughputfrom asetof cou-
pled ordinarydifferentialequationsthat result from our analysis.
Given anAQM policy, we areableto get (expected)transientbe-
havior of networks from our solution. We areableto handlelarge
flows withouta significantincreasein computationalcomplexity.

In orderto illustratetheadvantagesof our technique,we consider
RED[8], oneof themostpopularAQM schemesto addressthecon-
gestioncontrol issues.We show thatour solutiontechniqueyields
predictionsthat matchwell with thoseobtainedwith thens sim-
ulator. We areableto make somecritical commentsaboutRED.
Our modelingandsolutionmethodologyleadto a straightforward
discovery of a critical problemwith the RED averagingmecha-
nism,onewhichwebelievehasnotbeenaddressedelsewhere.Our
schemehassimilaraims,to obtaintransientbehavior by numerical
solutionof a systemof equations,to a heuristicapproachproposed
in [9]. It is however not clearhow andwhy theheuristicswork in
casesreported.

Therestof this paperis organizedasfollows. In Section2, we de-
velopour analyticalmodelanddescribethesolutiontechnique.In
Section3, weconsideranapplicationto our techniquesin asetting
with RED astheAQM policy. We compareour resultswith those
obtainedusingthewell known ns simulatorandmakesomeobser-
vationsaboutRED behavior. Finally, we presentour conclusions
in Section4.

2. MODEL AND ANALYSIS
In [11], wemodeledthebehavior of TCPusingjumpprocessdriven
StochasticDifferentialEquations[2]. The resultsshowed a good
matchbetweenpredictionsfrom this modelandmeasurementsre-
portedin [13]. A deficiency of the model however was that the
packet lossprocesswasindependentof the dataflow. Our model
remediesthis deficiency by modelinga completesystem,in which
lossesandTCPsendingratesarecloselycoupled.Thuswe have a
closedloopcontrolsystem1 giving riseto asetof coupleddifferen-
tial equations.Wewill begin with asinglerouterin Section2.1and
thenshow how the modelandanalysisareextendedto a network
in Section2.2. In Section2.3 we extendthetechniquesto include
TCPtimeouts.Last,we describesomeoptimizationsin thecaseof
identicalTCPflows in Section2.4.�
Suchasystemwasalludedto in [6].



We first considera systemin which there is a single congested
router with a transmissioncapacityof

�
. Associatedwith this

routeris anactivequeuemanagement(AQM) policy thatis charac-
terizedby a packet discardfunction �����	� thattakesasits argument
an estimateof the averagequeuelengthat the router. The queue
lengthof therouteris denotedby 
��
��� , ����� . Theclassicalexam-
pleof anAQM policy is RED[8] for which ������� takestheform

�����	��� �� � ��� ������� ��!#"%$&('*)
+-,/.) +1032 '*) +-,/. �*!54 & �6��!5"/$7����� ��!84 &9 � � !84 & ��� (1)

where ��!#"%$ , �:!54 & , and �	!54 & are configurableparameters.The
dropfunction is depictedin Figure1, showing thediscontinuityat� !54 & .

Figure1: RED drop function

2.1 A singlecongestedrouter
Let ; TCP flows labeled <=� 9 �?>@>A>B; traversethe router. LetC " �
�B� and D " �
��� denotetheTCPwindow sizeandroundtrip time
at time �5�E� , of flow < , <F� 9 �@>A>A>G�B; . Weassumethat D " �
��� takes
theform D " �
�B�-�IH "*J 
��
����K � �L�#�M�ON:<�� 9 �A>@>?>P�B; (2)

WhereH " isafixedpropagationdelayand
��
����K � modelsthequeue-
ing delay.

Last, let Q " �
��� denotethe instantaneousthroughputof TCP-flow <
at time �R�E� .
Our modelis basedon theassumptionthatpacket lossesto flow <
aredescribedby a PoissonprocessST; " �
���BU with time varyingrateV " �
��� . The time varyingnatureof

V " �
�B� is ableto modelthe inde-
pendentmarkingschemescommonlyfound in AQM. Here ; " �
���
denotesthe numberof lossessufferedby flow < . Note that � here
denotesthepoint in timewhentheflow detectslosses,which is dif-
ferentfrom whentheactualdroppingat thequeueoccurs.Hence-
forth, whenthereis no ambiguity, we will omit theargument� . A
shortdescriptionof PoissonCounterDrivenStochasticDifferential
equationsis includedin an Appendixfor completeness.We have

thefollowing equationdescribingthebehavior of thewindow sizeC " �
��� , W C " �
���1�
W �D " ��
O�
�B���YX C " �
�B�Z

W ; " �
�B� (3)

Thismodelstheadditive-increasemultiplicative-decreasebehavior
of TCP. The first term correspondsto the additive increasepart,
which saysthat thewindow sizewill increaseby oneevery round
trip time. The secondterm correspondsto the multiplicative de-
creasepart,which halvesthewindow sizeat the instantof thear-
rival of aloss(

W ; " �
�B�-� 9 ). Wemodelthetraffic asafluid, making
theinstantaneousthroughputQ " �
��� equalto

C " �
�B��KTD " �
�B� . Taking
theexpectation2 of eachsideof theabove equationyields[]\ W C " �
�B�_^`� [ba W �D " ��
O�
�B���dceX [f\ C " �
���

W ; " �
���_^ZW []\ C " ^hg [ba W �D " ��
(� c�X []\ C " ^ V " �
���Z W �
Theabove equationis approximatebecausewe have brokendown[]\ C " �
�B� W ; " �
�B�_^ as

[]\ C " �
�B�_^ []\ W ; " �
���_^ , which assumesindepen-
dencebetweenthe two which is not true, especiallyin propor-
tional marking schemes.However, this approximationdoesnot
changethefundamentalnatureof themultiplicativedecreasemech-
anism,and we are able to captureTCP dynamics. Now

V �
�B� is
the loss indication received by the source. It reachesthe source
approximatelyone round trip delay ( i ) after a packet has been
marked/droppedat the queue. In [14] an exact stochasticdiffer-
ential equationfor TCP with feedbackdelayhasbeenstudied,in
thecontext of fairness.Herewe modelthedelay i asthesolution
to thefollowing equations�L� D���
O�
�:jk��� J �:j�:jh� � X i
In the proportionalmarking schemesemployed in AQMs, mark-
ing/droppingis implementedto distribute the lossesin proportion
to a flows bandwidthshare. Thus, if the throughputof a flow isQf�
� X i	� at the time � X i , the rateof loss indications(

V �
��� ) it
receivesat time � is ���ml�P�
� X i*���:Qn�
� X i	� . Wedenotetheexpected
valueof it by �F�ml�F�
� X i	��� lC " �
� X i*��KdD " �?l
O�
� X i*��� .
Now, returningto ourearlierdifferentialequationequationdescrib-
ing theexpectedwindow size,we haveW []\ C " ^hg

W �D " �?l
d� X lC "Z ���ml�P�
� X i*��� lC " �
� X i	�D " �?l
O�
� X i*���
W ��

W �D " �?l
d� X lC " lC " �
� X i	�Z D " �?l
O�
� X i	��� ���ml�P�
� X i*���
W �

Theapproximationthatwemadein thestepaboveinvolvedmaking
the approximation

[]\ o �����_^5g o � []\ ��^
� . We’ll commentmoreon
this in a latersection.Thus,we have,

W lC "W � � 9D " �?l
(� X lC " lC " �
� X i	�Z D " �?l
O�
� X i	��� �F�ml�F�
� X i	��� (4)

Weassumethattheestimateof theaveragequeuelengthis anexpo-
nentiallyweightedmoving averagebasedonsamplestakenevery pq
Throughoutthis sectionwe representthe expectedvalueof any

variable r by lr



secondsUsinga weight s , ����s � 9 ,�����ut J 9 �vpw�1�x� 9 X s-�v�F�utOp(� J ��s-�v
O�ut�pw� (5)

It is useful to convert this equationinto a differential equation.
Giventheform (5), thenaturalcandidateis

W �W � � yz���
��� J Q{
��
���
Then,in a sampleddatasystem[1], ���
��|A} � � is givenby�F�
� |A} � �-��~T��� )
�m���?'*)���� ���
� | � J � )��3�*�)�� ~T��� )
�m���A'*��� Q W i�
O�
� | �

(6)

Notethatthedifferentialequationmatchesthediscretetimesystem
exactlyat thesamplepoints,andthereis no accumulationof error
as t increases.Comparingthecoefficientsin (6) and(5), weobtain9 X s���~ �	�
or y��b���(��� � 9 X s-�p � X Q
Thus,wehave thefollowing equationdescribingthebehavior of � ,W �W � � ���(� � � 9 X s-�p �F�
�B� X ���d� � � 9 X s-�p 
��
���
As this is a linearequation,takingexpectationof bothsidesyieldsW l�W � � ���(��� � 9 X s-�p l�P�
�B� X ���d��� � 9 X s-�p l
��
��� (7)

Finally, we have thefollowing equationdescribingthebehavior of
 , which is thedifferentialversionof theLindley equationW 
O�
�B�W � � X 9A� � )
� � J��� "/� � C "D " ��
(� (8)

Here,thefirst termmodelsthedecreasein thequeuelength,when
it is greaterthanzero,dueto theservicingof packets. Thesecond
termcorrespondsto theincreasein thequeuelengthdueto thear-
rival of packetsfrom the ; TCPflows. Again,takingexpectations,
we obtain

W l
��
���W � � [x� X 9 � � )
��� � J �� "/� � [ba C "D " ��
w� cg [x� X 9 � � )
��� � J �� "/� � lC "D " �?l
d�
Now for abottleneckedqueue,we’ll have 
O�
�B�5�M� with probability
closeto 1. Thus,we canapproximate

[�� 9 � � )
�u� to obtainW l
��
���W � g X � J �� "/� � lC "D " �?l
(� (9)

We have ; J Z coupledequations(4), (7), and (9) and ; J Z
unknowns, ( l�P�(l
O� lC " ) which canbesolvednumerically. Thesolu-
tion providesan estimateof the averagetransientbehavior of the

system.We getthequeuelength,queueestimateandwindow size
evolutiondirectly, andthosevaluesin turnyield averageroundtrip
delay, averagelossrateetc.

2.2 Extensionto a network
The extensionto the network caseis straightforward. Let � be a
collection of communicationrouters. Eachrouter �x��� hasa
transmissioncapacityof

�#�
bitspersecond.Router� hasanAQM

policy characterizedbyaprobabilitydiscardfunction,� � ��� � � , which
takesasits argument� � , theestimatedaveragequeuelengthof � .
The queuelengthfor router � is 
 � �
��� . Last, let x �
�B� andq �
�B� be
vectorswhosecomponentsaretheestimatedaveragequeuelengths
andqueuelengths,respectively, at time ��� � . Associatedwith
eachrouteris thesamplingperiod p � andaveragingweight s � .
Considera workloadof ; TCPflows labelled <5� 9 �@>A>A>G�B; . Let� " �¡�%¢ "u£ � ��¢ "u£ q �?>A>@>P�u¢ "�£ $ , � be the orderedsetof links (i.e., path)
takenby packetsfrom flow <�� where¢ "u£ ! ��� , ¤6� 9 �A>A>A>G�B¥ " and¥ " is thepathlength.Generalizing(2), theaverageroundtrip time
of session< is approximatedby:D " � q �:�B�-�IH "	J ��T¦w§ , 
 � �
����K �#� (10)

Theroutescanberepresentedby abinarymatrixA wheretherows
representthedifferentflowsandthecolumnsrepresentthedifferent
routers(queues).In otherwords, ¨ "u£ © � 9 if f ¢7�ª� " . We modify
equation(4) to accountfor lossesarriving from eachrouterin the
path. If P � x � is thevectorof lossprobabilitiesat eachnode,then
we definea matrix AP wherewe multiply every columnof the A
matrixby thecorrespondingelementof theP vector. Thecombined
lossseenby aparticularflow < is, then,givenby

9 X¬« � 9 X AP ���	� " �
Thus,(4) is modifiedto
W lC "W � � 9D " �?l
O�
� X i*��� - � lC " lC " �
� X i	�Z D " �?l
��
� X i	��� ��­� 9 X ��®¯� 9 X AP � x � " ������ 9D " �?l
O�
� X i*��� - � lC " lC " �
� X i	�Z D " �?l
��
� X i	��� ��­G°� " �ml�F�
� X i*���

where °� " �ml�	� is the probability of packet lossexperiencedby flow< on its path. Theequationfor theestimatedaveragequeuelength
andthequeuelengthateachnoderemainunchanged.Define ±�² as
thesetof flows throughqueue� . Then

W l
 � �
�B�W � � X 9O³�v´ � )���µ J �" ¦w¶ ´ lC "D " �?l
 � � (11)

In thenetworkedcase,for any queuewhichis abottleneck,
�²��
���#�� with probability closeto 1, and for a non-bottlenecked queue,
 ² �
���·�¸� with probability closeto 0. This is the basisfor the
approximationthat

[f\ 9?�:´ � )�� ^1g 9 ³� ´ . We endup with a systemof
equationswith ; J Z�¹ � ¹ unknownsthatcanbesolvednumerically
to yield thetransientbehavior of thenetwork.

2.3 Modeling Timeouts
To accountfor timeouts,we needto quantifythedivision of losses
into thetwo types,viz. timeout(TO) andtriple duplicateack(TD).
Let º]��»¼� denotethetheprobabilitythatthelossis aTO loss,given
thatthewindow sizeatthetimeof alossis » . Weusethesimplified
function º]��»Y�½�¿¾]À�ÁP� 9 �3ÂwKT»Y� derived in [13], for this purpose.
Intuitively, this expressionfor º is basedon the assumptionthat



all packets in a particularroundareequally likely to be dropped,
with at mostonedropper round. In that case,any oneof the last
3 packets in a round can causea timeout if dropped,hencethe
function ¾]À�ÁG� 9 �BÂ(KT»Y� . Equation(4) canbemodifiedto accountfor
TO lossesresultingin
W lC "W � g 9D " ��
(� J � 9 X º]� lC " ���?� X lC " C " �
� X i	�Z D " �?l
O�
� X i	��� �Tl� " �ml�P�
� X i*���

+ � 9 X lC " � lC " �
� X i	�D " �?l
��
� X i	��� º]� lC " �Tl� " �ml�P�
� X i*���
2.4 Aggregationof identical flows
Thesystemof equationsdescribingthetransientbehavior of a net-
work of TCP flows canbe simplified in the presenceof identical
flows, i.e., thosewith thesamerouteandroundtrip time. This is
doneby representingidenticalflows by a singleclass.Let therebe± classesof flows,wherethe ¢ -th classcontains¥ © identicalflows
with route � © and round trip time D © � q � . All flows in the same
classwill have thesameaveragebehavior. Thus,we canrepresent
thebehavior of theaveragewindow sizefor eachflow usingequa-
tion (9). We suitablymodify the equationfor the averagequeue
sizein thefollowing mannerW l
�²��
�B�W � � X 9 ³�:Ã � )�� � "�J �© ¦Ä¶ Ã ¥ © lC ©D © �?l
 � � (12)

This formulation leadsto a considerablesavings in computation
time whenwe have a largenumberof identicalflows to solve for.
Thenumberof equationsandunknowns reducesfrom Å ¶"/� � ¥ " JZO¹ � ¹ to ± J Z�¹ � ¹ .
It is alsoworth noting that, asthe numberof flows in a classin-
crease,the law of largenumberscomesinto play andtheexpected
behavior begins to approachthe aggregatesamplepathbehavior.
Thus,thestochasticdifferentialequationsstartconverging to ordi-
narydifferentialequations.

3. AN APPLICATION TO THE RED ACTIVE
QUEUE MAN AGEMENT POLICY

We now presentan applicationof the system,taking RED asthe
AQM policy REDhasbeenshown to outperformDrop-Tail queues
undercertainscenarios.RED is a powerful mechanismto control
traffic, potentiallysolvingproblemslikeflow synchronization,cor-
relationof drop eventswhile providing consistentlyhigh link uti-
lizations.However, numerousproblemshave beencitedwith RED
[10]. RED works well in certainscenarios,whereasit doesvery
poorly, evenworsethanDrop-Tail, in othercases[6]. Thereis no
clearunderstandingon how to tunevariousRED parametersthat
work well in all scenarios.Consequently, thereis considerablener-
vousnessin thecommunityregardingdeploymentof RED,andnu-
merousvariationsof REDhave beenproposed[5], [12], [4]. Some
of theschemeshave self-tuningparameters,while othersmaintain
per-flow state. It is clearthat thereis a greatneedfor thoroughly
understandingthebehavior of RED.Webelieveourtechniquescan
helpin thateffort.

Throughoutthis sectionwe will comparetheresultsobtainedfrom
our modelto thoseobtainedfrom simulatinganequivalentsystem
usingthe well known ns simulator. To avoid confusionbetween
the processof averagingby RED, andour operationof obtaining

expectedvaluesusingdifferential equations,we denotethe aver-
agequeuelength(asit is morecommonlyreferred)ascalculated
by thens implementationof RED asQueueestimate( � ) andthe
resultobtainedby our differentialequationsolution �ml��� asaverage
Queueestimate.Similarly, l
 is referredto asthe averageInstan-
taneousQueuelength and 
 as reportedby ns as instantaneous
queuelength.Our differentialequationsolver wasimplementedas
a MATLAB program(a simpleimplementationwith 42 total lines
of code)which takesthematrix A anda link capacityvectorC as
input. Wedid not incorporateslow-startin ourprogram.All routers
areassumedto have thesameRED parameters. Thepropagation
(non-queueing)delayfor eachclassof flowsis keptat200ms.The
buffersaresizedsothatall lossesareRED-related,i.e. nodrop-tail
lossesoccuron thenetwork.The � !#"%$ is 150packetsandthe � !54 &
is 200packets. p is aparameterin oursolverwhich is notspecified
in RED.InsteadREDupdatesthequeuesizeestimateonthearrival
of eachpacket. Wecanaccountfor it in two differentwaysÆ ns updatesthequeueat every packet arrival. Thus,we can

choosep � to be
9 K�Ç � , where Ç � is the instantaneousarrival

rateataqueuemeasuredin packets. p�² thusbecomesafunc-
tion of time.Æ We can choosea fixed value of p � . If the queueis stable,
then the steadystatearrival rate = servicerate. Then, for
each(bottlenecked) queue,p � is simply

9 K �#� where
�#�

is
thecapacityof link � in termsof (average)sizedpacketsper
second.

Note thatboth techniquesareapproximate,in our implementation
we use

9 K � � asanestimateof p � .
S1

S2

S3

S2

S4

S5

Q1 Q2

Figure2: Simple network topology

3.1 Experiment topology
We usethesimpletopologyshown in Figure3. It consistsof two
REDqueuesº 9 and º Z . Both links have threesetsof flowsgoing
throughthem. È Z goesthroughboth the queues,whereasÈ 9 �mÈ�Â
and È�É��mÈ-Ê gothroughonly º 9 and º Z respectively. Theonly bot-
tlenecklinks arethequeuesº 9 and º Z . We’ll show resultsfrom 5
differentexperimentsperformedusingns andour DE solver. We
tabulate the parameterchoicesin the variousexperimentsin the
following tablefor reference



Parameter setsfor various experiments
Exp.Ë No. Ì Q1 cap. Q2 cap. Pkt size Í !54 &

1 0.0001 5 Mb/s 5 Mb/s 500Bytes 0.1
2 0.0001 5 Mb/s 2.5Mb/s 500Bytes 0.1
3 0.0001 15Mb/s 15Mb/s 500Bytes 0.1
4 0.0001 15Mb/s 15Mb/s 1500Bytes 0.1
5 0.0001 15Mb/s 15Mb/s 500Bytes 1

3.2 Experiment 1
We first considera symmetriccase,wherebothRED queueshave
similar bandwidthcapacityof 5Mb/s. s is keptat 0.0001,� !54 & ���> 9 . Eachclassof flows consistsof 40 individual flows whichstart
at �½�Î� (200 flows in all). At time �e� ÏdÊ , threefourthsof the
flows in eachclassdrop out (so thereare only 10 flows in each
class).At time �8� 9 Êd� , thoseflows restart.We plot theQueuees-
timateandinstantaneousqueuelengthfor Queue1 and2 in Figures
3, 4 respectively alongwith our modelpredictionsof theexpected
valuesfor the same. Note that we areplotting the resultsof one
ns simulationalongwith oursolutionwhichgivestheexpectedre-
sults. As we cansee,the differentialequationsolutiontracksthe
simulationspretty well, trackingboth the averagequeueestimate
andtheinstantaneousqueuelengthwell. Our methodadaptsto the
changingnatureof the loadaswell. Note thatour solutiondiffers
initially from thesimulationin all cases,becausewe didn’t imple-
menttheeffect of slow start. We’ll returnto this discrepancy in a
latersection.

3.3 Experiment 2
Now we repeatthe experimentin an asymmetricsetting. We re-
duce the link capacityof the secondqueueto be 2.5Mb/s from
5Mb/s. Again we show the averagequeueestimateand instanta-
neousqueuelengthalongwith ourDEestimatesfor boththequeues
in Figure5 andourresultsmatchwell with ns simulationsfor both
thequeues.Noticethattheaveragequeueestimatestayshigherfor
Queue2 which is correctlyreflectedin ourDE solution.

3.4 The importance of p
If we focuson in themiddleportionof Figure4 and5 (whenonly
a fourth of theflows areactive), we observe thatQueue1 exhibits
moreoscillationsthanQueue2. Theoscillationsarenot goodfor
thenetwork asthey mayresultin unacceptablylargequeuelengths
andhencea largevariability in delaysfor theflows goingthrough.
Evenif themeandelaymayturn out to bethesame,theseoscilla-
tionsaddconsiderablejitter to thedelays.If thebuffer is not large
enough,thenthe effect of the oscillationswill be to causebuffer
overflows. They alsocauseperiodicallyhigh RED lossratesand
affect thethroughputadversely. Thequestionis: why? Thelarger
bandwidthcapacityof Queue1 certainlyplaysapart,reducingsta-
bility margins,howeverwewould like to pointoutanother, hidden,
cause.This is doneby revisiting equation(7):

W �W � � �%�d� � � 9 X s-�p ���
�B� X ���(� � � 9 X s-�p 
O�
�B�
Denote ���(��� � 9 X s���KTp by XÑÐ (since ���d��� � 9 X s-� is a negative
quantity).Thenwe have

W �W � � XÑÐ ���
�B� J Ð 
��
���
Taking the Laplacetransformof both sides,we get the transfer
function of the queueaveragingmoduleas ÒÒ }GÓ . This is the first
order low passfilter which wasthe original designgoal of RED,
to track the averagequeuesize(low frequency signal),andto fil-
ter out bursts(high frequency signal). The input to this filter is
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Figure3: Symmetric case,Plots for Queue1, Experiment 1

theinstantaneousqueuelength,andtheoutputis theaveragequeue
estimate. Asymptotically, the frequency responseof this filter is
describedby themagnitudeBodeplot shown in Figure7. It allows
frequenciessmallerthan Ð to passthrough,while dampinginputs
at a frequency higherthan Ð . In simpleterms, Ð determinesthe
responsivenessof the filter. Thehigherthevalueof Ð , the faster
it will respondto a suddenchange.If we maintaina high valueofÐ , thentheAQM functionstartstrackingtheinstantaneousqueue
lengthcloselyresultingin sustainedoscillations.Let’sperformex-
periment3, with all settingsunchangedexceptwith both link ca-
pacitiessetat15Mb/s,andFigure8 illustratestheQueueestimates
andInstantaneousQueueLengthsfor Queue1 in thetime interval
[0 75] (i.e. whenall flows areactive). We observe the presence
of large oscillations. In the scenariowherethe link capacitywas
5Mb/sandthepacket size500Bytes,theeffectivesamplingperiodp was Ô½Õ 9 � '	Ö (thelink capacityis 1250packetsof 500bytesper
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Figure4: Symmetric case,Plots for Queue2, Experiment 1

second,
9 K � gives p ). With sª����> �(�(� 9 ,Ð � X ���(�Ä� � 9 X s-�p� X ���(�Ä� � 9 X �O> �d�(� 9 �Ô×Õ 9 � '	Ö� �O> 9�Z Êd�

With theincreasein link capacityto 15Mb/s,thevalueof p reduced
to
Z > Ø(Ø�Õ 9 � '*Ö and Ð becomes.3750(3 timestheearliervalue).As

thelink capacityincreases,theREDaveragequeueestimatetracks
theinstantaneousqueuelengthmoreclosely, essentiallyresultingin
sustainedoscillations.This hiddenartifactof theRED algorithm,
the adaptivenatureof p , is, in our opinion, a significantcauseof
the “tuning problem” with RED. We canmodify our DE solution
systemby usinga staticvalueof p , largerthan

9 K � with thehope
of reducing Ð and therebyreducingoscillations. Figure9 illus-
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Figure5: Asymmetric case,Plots for Queue1, Experiment 2

tratesthebehavior of theQueueEstimateandInstantaneousQueue
Lengthfor differentvaluesof p . Wekeeps constantat 0.0001,the
valuewe have usedin all the experimentsso far. As we observe,
increasingthe valueof p resultsin increasingstability, with both
theaveragequeueestimateaswell asaverageinstantaneousqueue
length settlingdown . However, careshouldbe taken that p not
bekept too large,asincreasingvaluesof p resultin increasingrise
timesof theaveragequeueestimateandincreasinginitial overshoot
of theaverageinstantaneousqueuelength.

Returningto theproblemof tuningREDparameters,notonly does
theperformanceof themechanismdependon link bandwidth,but
also on the averagepacket size of the flows. We now illustrate
this via experiment4. Considerthetwo queuesettingwith thelink
capacitiessetto 15Mb. This time we increasethepacket sizefrom
500Bytesto 1500Bytes. This resultsin a p that is approximately
thesameastheonewherelink capacitywas5 Mb/s with 500Byte
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Figure6: Asymmetric case,Plots for Queue2, Experiment 2

packets(thenumberof packetsthatarebeingprocessedremainsa
constant).LookingatFigure10,we indeedobserve thatthesystem
is stabilized.

Sincethe averagepacket sizeis not somethingnetwork designers
cancontrol,theonly hopeto stabilizetheREDalgorithmis to makep aparameterwhosevalueis independentof

�
andthepacket size.

Implementinganalgorithmwhosestability is influencedby exter-
nal factors(userpacketsizes)is alsonotgoodfrom asecuritypoint
of view. A malicioususercouldconceivably influenceREDbehav-
ior by sendingverysmallor very largepackets.

It is not sufficient to make s , the forgetting factor, small to re-
ducetheeffectsof transientspikesin incomingtraffic. If p changes
in responseto the input packet rate, then a changing p meansa
changingforgettingrate. In fact,becauseof thevery natureof the
spikes,at thepoint of their arrival RED startssamplingthequeue

 0 dB

K

Figure 7: Magnitude BodePlot of the first order averaging fil-
ter

sizemuchmorefrequently, thereby“forgetting” history thatmuch
morequickly andstartstrackingthespike closer.

In [6] Firoiu et. al. suggestthat p shouldbe madeequalto the
smallestroundtrip time of theflows going throughthe link. They
alsosuggestedthat the p thusselectedis “good enough”andfiner
samplingwon’t improve things. Theauthorsproposesomeguide-
linesfor choosingREDparameters.We arecurrentlyinvestigating
“tuning” RED parametervaluesvia a different, control theoretic
viewpoint.

Further, in [6] theauthorsalsosuggestedthat the discontinuityin
the RED drop function (the jump from �*!54 & to 1 at �:!54 & ) is a
causeof oscillationsin RED. It hasbeensuggestedthat making
the drop function continuousvia the gentle [7] should improve
things in that regard. Our experimentsshow that the discontinu-
ity is not the only causeof oscillationsand that a simple fix by
making the drop function continuouswon’t remove them. To il-
lustratethat, we repeatthe previous experimentwith � !54 & � 9 ,
therebyremoving thediscontinuity. Weperformexperiment5, and
theresultsareillustratedin Figure11,showing thattheoscillations
persist. A quick investigationwith our differential equationtool
revealsthat sª� 9 Õ 9 � '�Ù stabilizesthesystem,keepingp¼� 9 K � .
However, onthedownsidethesystembecomesverysluggishin it’ s
responsetime to changesin the load. Thus,this tradeoff between
responsivenessandstability unfortunatelycannotbeavoidedwith
theRED controlmechanism.Thus,it is a combinationof the link
bandwidth

�
, averagepacketsize,s , p andloadlevelswhichmake

thesystemstable.Summarizing,our mainobservationswith RED
are Æ Theadaptive natureof thesamplinginterval is harmful and

canleadto oscillationsÆ The averagingalgorithmneedsto be modified,to make the
samplingperiodastaticvalueindependentof packet sizesor
arrival ratesÆ Thepresenceof oscillationsdependsonmany factorsinclud-
ing packet size,link bandwidthandloadlevels
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Figure 8: Link speed15 Mb/s, Packet size500 Bytes, Experi-
ment 3

3.5 Modeling different variations of TCP
We have describeda genericTCP model, i.e., we have not con-
sideredthe differentvariationsReno,Sack,Fack etc. Oneof the
majordifferencesbetweenthevariationsof TCPis how they infer
timeouts. Sackand Fack yield a much betterbehavior with re-
spectto timeoutsWe modeltheeffectsof timeoutsby thefunctionº]��»Y� , where º]��»¼� givesthesplit betweentimeoutandtriple du-
plicateacklossesgiventhata lossoccurredwhenthewindow size
was » . The º]��»¼� thatwe usedwasderived in [13], which seems
valid for Reno. For Sack,a ºf��»Y� lower thanthe onederived for
Renoshouldbe used. Our observation hasbeenthat a º]��»Y� of¾]À�ÁG� 9 � 9 KT»Y� seemsto work for Sackwhile Renoneedsa º]��»Y� of¾]À�ÁG� 9 �3Â(KT»Y� . Thiswasvalidatedby experimentsnotreportedhere.

3.6 Control systemsmapping
A very importantby-productof our modelingand formulation is
that we can map the differential equationbasedTCP+AQM sys-
teminto a classicalcontrolsystemsmodel. We canthenusestan-
dard techniquesto analyzevariousmechanismsandproposeim-
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Figure9: Link speed15Mb/s, Packet size500Bytes

provementsto algorithmsaswell asanalysis-backedguidelinesfor
choosingparametersof thealgorithms.We arecurrentlypreparing
a manuscriptdescribingour work on theanalysisof suchsystems
from a controlsystemsperspective.

3.7 Somecommentson modeling and simula-
tion

The lack of slow-start in the model usedto predict performance
only affects initial startup of the experiments. Oncethe system
nearsthe stablepoint, the DE solver is able to track changesin
thenetwork well. Hence,for computationalsimplicity, we did not
incorporateslow-start.

At anumberof placesin ourderivation,wehadto maketheapprox-
imation

[]\ o �����_^	g o � []\ ��^k� . This is strictly notcorrectandshould
causeerrors. However our systemseemsto capturethedynamics
of TCP reasonablywell. For theparticularcaseof

[f\ 9 KdD���
(�_^Rg9 KTD��?l
(� we explain why theapproximationmay not be sobad: If
we divide D���
(� into (a propagationdelay+ queueingdelay), the
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Figure 10: Link speed15 Mb/s, Packet size1500Bytes,Exper-
iment 4

randomnesscomesfrom thequeueingdelay. If we look at theplots
from theexperiments,for mostcaseswe seethat thequeuelength
variesperiodically. Thus,we canfurtherbreakit down to a deter-
ministic, periodicpartanda randompart. As thenumberof flows
startsto increase,therandompartof theroundtrip time makesup
asmallerandsmallercontribution, it is dominatedby thedetermin-
istic part. In which casetheapproximationis not bad,since,if we
write D½��
w� as DÑÚ J DYÛ , denotingthedeterministicandrandompart
respectively, we get[�a 9DzÚ J DYÛ c � [¿a 9 KTDzÚ9 J DzÛ@KdDÑÚ c� 9D Ú [ a 99 J D Û KdD Ú cg 9DzÚ []\ 9 X D Û KTD Ú ^� 9DzÚ � 9 X []\ DYÛm^DzÚ �
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Figure 11: Link speed15 Mb/s, Packet size500bytes, � !54 & �9
, Experiment 5

We have usedour methodsto solve for thousandsof flows in high
bandwidthnetworks, however dueto our inability to validateour
resultswith simulationwe do not presentthoseresults.While it is
notright to comparethecomputationalcomplexity of ourtechnique
with ns, asns provides a lot more functionality, to get an idea
of the speedsinvolved we mentionthat noneof the experiments
presentedin thepapertook morethan10 secondsto solve within
MATLAB, while someof thens simulationstook severalminutes
to run.

4. CONCLUSIONS
We have developeda methodologyto modelandobtain(numeri-
cally) expectedtransientbehavior of networks with Active Queue
ManagementrouterssupportingTCP flows. We appliedour tech-
niquesto analyzenetworkswheretheAQM policy wasRED. Our
resultsmatchwell with simulationresults,andareableto scaleup
well to largeflows. We areableto geta qualitative understanding
of thebehavior of suchnetworksquickly with our tool. Ourmodel-
ing techniqueenablesusto spota possibleproblemwith theRED



averagingmechanism,which we verify via simulations.Thetech-
niqueÜ thatwe presentedin this paperis quitegeneralpurposeand
canbe easilyextendedto modelandanalyzeotherAQM mecha-
nisms. Thereareseveral avenuesof futurework which we intend
exploring. We arecurrentlystudyingthe control-dynamicsof the
systemof RED routersandflows usingtheanalyticalformulation
that we obtained. In termsof improvementsto the methodology,
finergrainmodelingof TCP, accuratemodelingof drop-tailbehav-
ior andabetterhandlingof thestochasticnatureof queueingdelays
areissuesto beexplored.
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APPENDIX
A. POISSONCOUNTER DRIVEN STOCHAS-

TIC DIFFERENTIAL EQUATIONS

Considera stochasticintegral equation�F�
�B���I���u�w� J � )Ý o ������i*�m�:i*� W i J � )Ý�Þ ������i*�m�vi*� W ;���i	� (13)

where ; � is a PoissonCounter. The solutionof equation(13) is
definedasfollows.

Definition: ���:­ � is a solutionof (13) in the Itô senseif, on an in-
terval where ; is constant,� satisfies ß�7� o ���F�_�B� andif, when ;
jumpsat � � , � changesaccordingto� À�¾)
à{) �� ���
�B��� Þ � � À�¾)�à¬)_á� ���
���m�v� � � J � À�¾)�à¬)_á� ���
���
and ���:­ � is taken to be continuousfrom the left. Equation(13) is
oftenwrittenas W ���
�B�-� o ���F�:��� W � J Þ ����� W ;��
�B�
and is called the PoissonCounterDriven StochasticDifferential
Equation(PCSDE)or JumpProcessDrivenStochasticDifferential
Equation.

Welist somedirectconsequencesof theabovedefinition.Consider
a stochasticdifferentialequationdrivenby ¥ independentPoisson
Counters; � �?>%>�>��3; $ :W �n� o ����� W � J $� "k� � Þ " �����

W ; " �
�B�m�����=D $ >
Wehavethefollowing “It ô rule”. If âEãwD $]ä D is adifferentiable
function,thenW âz�
�B�-�xå@æ âæ � � o ������ç

W � J $� "/� � \ âY���F�
�B� J Þ " �����
�B����� X âz�����
�B���_^
W ; " �
���m>

Since ���
�B� is continuousfrom the left andthe Poissoncounteris
takento becontinuousfrom theright, we have

WW � []\ �F�
�B�_^*� []\ o �����
�����_^ J !� "k� � � [f\ Þ " �����
�B�m�_�B���_^ V " �
�B�
where

V " �
�B� is theratefor ; " �
�B� .
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